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Semiclassical origin of the spectral gap for transfer operators

of partially expanding map.

Frédéric Faure∗

March 14, 2009

Abstract

We consider a simple model of partially expanding map on the torus. We study the
spectrum of the Ruelle transfer operator and show that in the limit of high frequencies in the
neutral direction (this is a semiclassical limit), the spectrum develops a spectral gap, for a
generic map. This result has already been obtained by M. Tsujii in [Tsu08a]. The novelty here
is that we use semiclassical analysis which provides a different and quite natural description.
We show that the transfer operator is a semiclassical operator with a well defined “classical
dynamics” on the cotangent space. This classical dynamics has a “trapped set” which is
responsible for the Ruelle resonances spectrum. In particular we show that the spectral gap
is closely related to a specific dynamical property of this trapped set.
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1 Introduction

Chaotic behavior of certain dynamical systems is due to hyperbolicity of the trajectories. This
means that the trajectories of two closed initial points will diverge from each other either in the
future or in the past (or both). As a result the behavior of an individual trajectory looks like
complicated and unpredictable. However evolution of a cloud of points seems more simple: it will
spread and equidistributes according to an invariant measure, called an equilibrium measure (or
S.R.B. measure). Following this idea, D. Ruelle in the 70’ [Rue78, Rue86], has shown that instead
of considering individual trajectories, it is much more natural to consider evolution of densities
under a linear operator called the Ruelle Transfer operator or the Perron Frobenius operator.

For dynamical systems with strong chaotic properties, such as uniformly expanding maps or
uniformly hyperbolic maps, Ruelle, Bowen, Fried, Rugh and others, using symbolic dynamics
techniques, have shown that the spectrum of the transfer operator has a discrete spectrum of
eigenvalues. This spectral description has an important meaning for the dynamics since each
eigenvector corresponds to an invariant distribution (up to a time factor). From this spectral
characterization of the transfer operator, one can derive other specific properties of the dynamics
such as decay of time correlation functions, central limit theorem, mixing, ... In particular a
spectral gap implies exponential decay of correlations.

This spectral approach has recently (2002-2005) been improved by M. Blank, S. Gouëzel,
G. Keller, C. Liverani [BKL02, GL05, Liv05] and V. Baladi and M. Tsujii [Bal05, BT07] (see
[BT07] for some historical remarks), through the construction of functional spaces adapted to the
dynamics, independent of any symbolic dynamics. The case of dynamical systems with continuous
time is more delicate (see [FMT07] for historical remarks). This is due to the direction of time
flow which is neutral (i.e. two nearby points on the same trajectory will not diverge from each
other). In 1998 Dolgopyat [Dol98, Dol02] showed the exponential decay of correlation functions
for certain Anosov flows, using techniques of oscillatory integrals and symbolic dynamics. In 2004
Liverani [Liv04] adapted Dolgopyat’s ideas to his functional analytic approach, to treat the case
of contact Anosov flows. In 2005 M. Tsujii [Tsu08a] obtained an explicit estimate for the spectral
gap for the suspension of an expanding map. Then in 2008 M. Tsujii [Tsu08b] obtained an explicit
estimate for the spectral gap, in the case of contact Anosov flows.

Semiclassical approach for transfer operators: It also appeared recently [FR06, FRS08]
that for hyperbolic dynamics, the study of transfer operator is naturally a semiclassical problem
in the sense that a transfer operator can be considered as a “Fourier integral operator” and using
standard tools of semiclassical analysis, some of its spectral properties can be obtained from the
study of “the associated classical symplectic dynamics”, namely the initial hyperbolic dynamics
lifted on the cotangent space (the phase space).

The simple idea behind this, crudely speaking, is that a transfer operator transports a “wave
packet” (i.e. localized both in space and in Fourier space) into another wave packet, and this is
exactly the characterization of a Fourier integral operator. A wave packet is characterized by a
point in phase space (its position and its momentum), hence one is naturally led to study the
dynamics in phase space. Moreover, since any function or distribution can be decomposed as a
linear superposition of wave packets, the dynamics of wave packets characterizes completely the
transfer operators.

Following this approach, in the papers [FR06, FRS08] we studied hyperbolic diffeomorphisms.
The aim of the present paper is to show that semiclassical analysis is also well adapted (even
better) for hyperbolic systems with neutral direction. We consider here the simplest model: a
partially expanding map f : (x, s) → f (x, s), i.e. a map on a torus (x, s) ∈ S1 × S1 with an
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expanding direction
(
x ∈ S1

x

)
and a neutral direction

(
s ∈ S1

s

)
(the inverse map f−1 is k-valued,

with k ≥ 2). The results are presented in section 2. We summarize them in few lines. First in
order to reduce the problem and drop out the neutral direction, we use a Fourier analysis in s ∈ S1

s

and decompose the transfer operator F̂ on S1
x × S1

s (defined by F̂ϕ := ϕ ◦ f) as a collection of
transfer operators F̂ν on the expanding space S1

x only, with ν ∈ Z being the Fourier parameter
and playing the role of the semiclassical parameter. The semiclassical limit is |ν| → ∞.

Then we introduce a (multivalued) map Fν on the cotangent space (x, ξ) ∈ T ∗S1
x which is the

canonical map associated to the transfer operator F̂ν . The fact that the initial map f is expanding
along the space S1

x implies that on the cylinder T ∗S1
x trajectories starting from a large enough

value of |ξ| escape towards infinity (|ξ| → ∞). We define the trapped set as the compact set
K = limn→∞ F−n

ν (K0) where K0 ⊂ T ∗S1 is an initial large compact set. K contains trajectories
which do not escape towards infinity.

Using a standard semiclassical approach (with escape functions on phase space [HS86]) we first
show that the operator F̂ν as a discrete spectrum called Ruelle resonances (we have to consider
F̂ν in Sobolev space of distributions). This is Theorem 1. This result is well known, but the
semiclassical approach we use here is new.

Then we show that a specific hypothesis on the trapped set implies that the operator F̂ν
develops a “spectral gap” in the semi-classical limit ν → ∞ (i.e. its spectral radius reduces). This
is Theorem 2 illustrated on Figure 2. This Theorem is very similar to Theorem 1.1 in [Tsu08a].
With the semiclassical approach, this result is very intuitive: the basic idea (followed in the proof)
is that an initial wave packet ϕ0 represented as a point on the trapped set K evolves in several wave
packets (ϕj)j=1→kunder the transfer operator F̂ν , but in general only one wave packet remains on

the trapped set K and the (k − 1) other ones escape towards infinity. As a result the probability
on the trapped set K decays by a factor 1/k. This is the origin of the spectral gap at 1/

√
k on

Figure 2.
This work has been supported by “Agence Nationale de la Recherche” under the grant JC05 52556.

2 Model and results

2.1 A partially expanding map

Let g : S1 → S1 be a C∞ diffeomorphism (on S1 := R/Z). g can be written as g : R → R with
g (x+ 1) = g (x) + 1, ∀x ∈ R. Let k ∈ N, k ≥ 2, and let the map E : S1 → S1 be defined by

E : x ∈ S1 → E (x) = kg (x) mod 1 (1)

Let

Emin := min
x

(
dE

dx

)

(x) = kmin
x

(
dg

dx
(x)

)

We will suppose that the function g is such that

Emin > 1 (2)

so that E is a uniform expanding map on S1. The map E is then a k : 1 map (i.e. every point
y has k previous images x ∈ E−1 (y)). Let τ : S1 → R be a C∞ function, and define a map f on
T2 = S1 × S1 by:

f :

(
x
s

)

7−→
(
x′ = E (x) = kg (x) mod 1
s′ = s+ 1

2π τ (x) mod 1

)

(3)

3



The map f is also a k : 1 map. The map f is a very simple example of a compact group

extension of the expanding map E (see [Dol02], [Pes04, p.17]). It is also a special example of a
partially hyperbolic map2. See figure 1.

s

x

s

x

s

x

n = 0s

x

n = 2 n = 10 n = 19

Figure 1: Numerical evolution of an initial small cloud of points on the torus (x, s) ∈ T2 under
the map f , Eq.(3), at different time n = 0, 2, 10, 19. We have chosen here E (x) = 2x and
τ (x) = cos (2πx). The initial cloud of points is centered around the point (0, 0). For small time n,
the cloud of point is transported in the vertical direction s and spreads in the expanding horizontal
direction x. Due to instability in x and periodicity, the cloud fills the torus S1 ×S1 for large time
n. On the last image n = 19, one observes an invariant absolutely continuous probability measure
(called SRB measure, equal to the Lebesgue measure in our example). It reveals the mixing
property of the map f in this example.

2.2 Transfer operator

Instead of studying individual trajectories which have chaotic behavior, one prefer to study the
evolutions of densities induced by the map f . This is the role of the Perron-Frobenius transfer

operator F̂ ∗ on C∞ (T2
)

given by:

(

F̂ ∗ψ
)

(y) =
∑

x∈f−1(y)

1

|Dxf |
ψ (x) , ψ ∈ C∞ (

T
2
)
. (4)

Indeed if the the function ψ has its support in a vicinity of x then the support of F̂ ∗ψ is in a

vicinity of y = f (x). To explain the Jacobian in the prefactor, one checks3 that
∫

T2

(

F̂ ∗ψ
)

(y) dy =
∫

T2 ψ (x) dx, i.e. the total measure is preserved.

The operator F̂ ∗ extends to a bounded operator on L2
(
T2, dx

)
. Its L2-adjoint written F̂ is

defined by
(

F̂ ∗ψ, ϕ
)

L2

=
(

ψ, F̂ϕ
)

L2

, with the scalar product (ψ, ϕ)L2 :=
∫

T2 ψ (x)ϕ (x) dx. One

2A even more general setting would be a C∞ map f : M → M on a compact Riemannian manifold M , which
is supposed to be partially expanding, i.e., for any m ∈ M , the tangent space TmM decomposes continuously as

TmM = Eu (m) ⊕E0 (m)

where Eu (m) is a (non invariant) expanding direction (with respect to a Riemannian metric g):

|Dmf (vu)|g > |vu|g , ∀vu ∈ Eu (m)

and E0 (m) the neutral direction: there exist a non zero global section v0 ∈ C∞ (TM) such that v0 (m) ∈ E0 (m)
and Df (v0) = v0. In our example (3), M = S1 ×S1, the neutral section is v0 = (0, 1), and the expanding direction
Eu (m) is spanned by the vector (1, 0).

3Since y = f (x), then dy = |Dxf | dx, and
Z

T2

“

F̂ ∗ψ
”

(y) dy =
X

x∈f−1(y)

Z

T2

1

|Dxf |
ψ (x) |Dxf | dx =

Z

T2

ψ (x) dx
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checks easily that F̂ has a simpler expression than F̂ ∗: it is the pull back operator, also called
the Koopman operator, or Ruelle transfer operator and given by:

(

F̂ψ
)

(x) = ψ (f (x)) (5)

2.3 The reduced transfer operator

The particular form of the map (3) allows some simplifications. Observe that for a function of the
form

ψ (x, s) = ϕ (x) ei2πνs

with ν ∈ Z (i.e. a Fourier mode in s), then

(

F̂ψ
)

(x, s) = ϕ (E (x)) eiντ(x)ei2πνs.

Therefore the operator F̂ preserves the following decomposition in Fourier modes:

L2
(
T

2
)

=
⊕

ν∈Z

Hν , Hν :=
{
ϕ (x) ei2πνs, ϕ ∈ L2

(
S1
)}

(6)

The space Hν and L2
(
S1
)

are unitary equivalent. For ν ∈ Z given, the operator F̂ restricted to

the space Hν ≡ L2
(
S1
)
, written F̂ν is4:

(

F̂νϕ
)

(x) := ϕ (E (x)) eiντ(x) ϕ ∈ L2
(
S1
)
≡ Hν (7)

and with respect to the orthogonal decomposition (6), we can write:

F̂ =
⊕

ν∈Z

F̂ν

We will study the spectrum of this family of operators F̂ν , with parameter ν ∈ Z, and consider
more generally a real parameter ν ∈ R. We will see that the parameter ν is a semiclassical

parameter, and ν → ∞ is the semiclassical limit. (if ν 6= 0, ν = 1/~ in usual notations
[Mar02]).

Remarks:

• For ν = 0, F̂0 has an obvious eigenfunction ϕ (x) = 1, with eigenvalue 1. Except in special
cases (e.g. τ = 0), there is no other obvious eigenvalues for F̂ν in L2

(
S1
)
.

2.4 Main results on the spectrum of the transfer operator F̂ν

We first observe that by duality, the operator F̂ν defined in (7) extends to the distribution space
D′ (S1

)
:

F̂ν (α) (ϕ) = α
(

F̂ ∗
ν (ϕ)

)

, α ∈ D′ (S1
)
, ϕ ∈ C∞ (S1

)
,

where the L2-adjoint F̂ ∗
ν is given by

(

F̂ ∗
ν ϕ
)

(y) =
∑

x∈E−1(y)

e−iντ(x)

E′ (x)
ϕ (x) , ϕ ∈ C∞ (S1

)
. (8)

4Notice that the operator F̂ν appears to be a transfer operator for the expanding map E with an additional
weight function eiντ(x).
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Before giving the main results, remind that for m ∈ R, the Sobolev space Hm
(
S1
)
⊂ D′ (S1

)

consists in distributions (or continuous functions if m > 1/2) such that their Fourier series ψ̂ (ξ)

satisfy
∑

ξ∈Z

∣
∣
∣〈ξ〉m ψ̂ (ξ)

∣
∣
∣

2

< ∞, with 〈ξ〉 :=
(
1 + ξ2

)1/2
. It can equivalently be written ([Tay96a]

p.271).

Hm
(
S1
)

:=
〈

ξ̂
〉−m (

L2
(
S1
))

with the differential operator ξ̂ := −i ddx .
The following theorem is well known [Rue86]. We will however provide a new proof based on

semiclassical analysis.

Theorem 1. Discrete spectrum of resonances.
Let m < 0. The operator F̂ν leaves the Sobolev space Hm

(
S1
)

invariant, and

F̂ν : Hm
(
S1
)
→ Hm

(
S1
)

is a bounded operator and can be written

F̂ν = R̂+ K̂ (9)

where K̂ is a compact operator, and R̂ has a small norm:

∥
∥
∥R̂
∥
∥
∥ ≤ rm :=

1

E
|m|
min

√

k

Emin
. (10)

(the interesting situation is m≪ 0, since the norm
∥
∥
∥R̂
∥
∥
∥ shrinks to zero for m→ −∞).

Therefore, F̂ν has an essential spectral radius less than rm, which means that F̂ν has discrete (even-
tually empty) spectrum of generalized eigenvalues λi outside the circle of radius rm (see [Tay96a,
prop. 6.9 p.499]). The eigenvalues λi are called Ruelle resonances. Together with their associ-
ated eigenspace, they do not depend on m and are intrinsic to the transfer operator F̂ν .

The following theorem is analogous to Theorem 1.1 in [Tsu08a]. However the approach and
the proof we propose are different and rely on semiclassical analysis.

Theorem 2. Spectral gap in the semiclassical limit.
if the map f is partially captive (definition given page 15) (and m small enough), then the
spectral radius of the operator F̂ν : Hm

(
S1
)
→ Hm

(
S1
)

does not depend on m and satisfies in the
semi-classical limit ν → ∞:

rs

(

F̂ν

)

≤ 1√
Emin

+ o (1) (11)

which is strictly smaller than 1 from (3).

Remarks:

• This remark concerns the regularity of the eigenfunctions of F̂ν . Let λi be a generalized
eigenvalue of F̂ν . Let ϕi denotes a generalized eigenfunction of F̂ν associated to λi (i.e.
F̂νϕi = λiϕi if λi is an eigenvalue). Then ϕi belongs to Hm for any m such that m < m0

where m0 is given by rm0
= |λi|.
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ν = 0 ν = 1 ν = 10

ν = 50 ν = 0 → 80

Figure 2: Black dots are numerical computation of the eigenvalues λi of F̂ν for different values
of ν ∈ N, and union of these in the last image. We have chosen here E (x) = 2x i.e. k = 2,
and τ (x) = cos (2πx). The external red circle has radius 1. The internal green circle has radius
1/

√
Emin = 1/

√
2 and represents the upper bound given in Eq.(11). As ν ∈ R moves continuously,

the resonances move in a spectacular way. This can be seen on a movie on http://www-fourier.

ujf-grenoble.fr/∼faure/articles

• By duality we have similar spectral results for the Perron Frobenius operator F̂ ∗
ν : Hm

(
S1
)
→

Hm
(
S1
)

if m > 0. The eigenvalues of F̂ ∗
ν are λi. We have seen that the generalized eigen-

functions of F̂ν belong to different Sobolev spaces Hm
(
S1
)

with m < 0. Eq.(10) says that
m should satisfy rm < |λi|, so m → −∞ as |λi| → 0. The situation is simpler for the
generalized eigenfunctions of F̂ ∗

ν since they all belong to
⋂

m>0H
m = H∞ = C∞ (S1

)
.

• In the proof of Theorem 2, we will obtain that a general bound for rs

(

F̂ν

)

(with no hy-

pothesis on f) is given by

rs

(

F̂ν

)

≤ 1√
Emin

exp

(
1

2
lim
n∞

(
logN (n)

n

))

+ o (1) (12)

where the function N (n) will be defined in Eq.(30). This bound is similar to the bound
given in [Tsu08a, Theorem 1.1] by M. Tsujii.

• In [Tsu08a, Theorem 1.2] M. Tsujii shows that the partially captive property, i.e.

limn∞
(

logN (n)
n

)

= 0, is true for almost all functions τ .

• From the definition of N (n) it is clear that N (n) ≤ kn hence exp
(

1
2 limn∞

(
logN (n)

n

))

≤

7
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√
k. Also from the definition of Emin, it is clear that Emin ≤ k and therefore the upper

bound in (12) is not sharp since it does not give the obvious bound rs

(

F̂ν

)

≤ 1 (see [FRS08,

corollary 2]). It is therefore tempting to conjecture that for almost all functions τ Eq.(11)
can be replaced by:

rs

(

F̂ν

)

≤ 1√
k

+ o (1)

• Notice that the above results say nothing about the existence of Ruelle resonances λi. The
work of F. Naud [Nau08] are the first results concerning the existence of resonances λi.

• One observes numerically that for large ν ∈ R, the eigenvalues λi (ν) repulse each other like
eigenvalues of random complex matrices. (See a movie on http://www-fourier.ujf-grenoble.

fr/∼faure/articles). This suggests that many important questions of quantum chaos (e.g.
the conjecture of Random Matrices[Boh91]) also concerns the Ruelle resonances of partially
hyperbolic dynamics in the semiclassical limit.

• Remarks on numerical computation of the Ruelle resonances: one diagonalizes the matrix
which expresses the operator F̂ν in Fourier basis ϕn (x) := exp (i2πnx), n ∈ Z. For the

example of Figure 2 one gets 〈ϕn′ |F̂ϕn〉 = e−i2π
3

4 (2n−n′)J(2n−n′) (ν) where Jn (x) is the
Bessel function of first kind [AS54, 9.1.21 p 360]. Corollary 2 in [FR06] guaranties that the
eigenvalues of the truncated matrix |n| , |n′| ≤ N converges towards the Ruelle resonances
as N → ∞.

• One can proves [AF09] that in the semi-classical limit ν → ∞, the number of Ruelle reso-
nances λi (counting multiplicities) outside a fixed radius λ is bounded by a “Weyl law”:

∀λ > 0, ♯ {i ∈ N, s.t. |λi| ≥ λ} ≤
( ν

2π

)

µ (K) + o (ν)

where µ (K) is the Lebesgue measure of the trapped set K defined later in Eq.(29). As usual
in the semiclassical theory of non selfadjoint operators, see [Sjö90, SZ07], the Weyl law gives
an upper bound for the density of resonances but no lower bound. See discussions in [Non08,
section 3.1].

2.5 Spectrum of F̂ and dynamical correlation functions

In this section, in order to give some “physical meaning” to the spectrum of F̂ν , we recall relations
between the spectral results of Theorems 1,2 and the evolution of correlation functions [Bal00].
This will allow us to interpret the evolution and convergence of clouds of points observed in Figure
1.

Let ν ∈ Z. If ψ1, ψ2 ∈ C∞ (S1
)
, the correlation function at time n ∈ N is defined by:

Cψ2,ψ1
(n) :=

(

F̂ ∗n
ν ψ2, ψ1

)

L2

=
(

ψ2, F̂
n
ν ψ1

)

L2

which represents the function ψ2 evolved n times by the Perron-Frobenius operator F̂ ∗
ν and tested

against the test function ψ1.
The first spectral result of Theorem 1 implies that for any ε > 0, and large n (and assuming

that the eigenvalues (λi,ν)i of F̂ν are simple for short; see [FRS08] for a more extended discussion)

Cψ2,ψ1
(n) =

∑

|λi,ν |>0

λni,νvi,ν
(
ψ2

)
wi,ν (ψ1) + Oε (εn)

If the conclusion of Theorem 2 holds, this implies that for any ρ such that 1√
Emin

< ρ < 1, there

exists ν0 such that for any ν ≥ ν0, all the eigenvalues of F̂ν are bounded: |λi,ν | < ρ < 1, ∀i. This

gives an exponential decay of correlations for n→ ∞ in these space F̂ν :

Cψ2,ψ1
(n) = O (ρn)

8

http://www-fourier.ujf-grenoble.fr/~faure/articles
http://www-fourier.ujf-grenoble.fr/~faure/articles


It is known that if the function τ is not a co-boundary (i.e. if the map f is not equivalent to the
trivial case τ = 0, as explained in Appendix A) then the map f is ergodic, which implies that all
the eigenvalues λi,ν are strictly less than one: |λi,ν | < 1, ∀ν, ∀i, except for λ0,0 = 1 associated to
the eigenfunction ϕ (x) = 1. One deduces mixing property of the dynamics as observed in Figure
1.

3 Proof of theorem 1 on resonances spectrum

In this proof, we follow closely the proof of theorem 4 in [FRS08] although we deal here with
expanding map instead of hyperbolic map, and this simplifies a lot, since we can work with
ordinary Sobolev spaces and not anisotropic Sobolev spaces. Here ν ∈ Z is fixed.

3.1 Dynamics on the cotangent space T ∗S1

The first step is to realize that in order to study the spectral properties of the transfer operator,
we have to study the dynamics lifted on the cotangent space. This basic idea has already been
exploited in [FRS08].

In Eq.(1), the map E : S1 → S1 is a k : 1 map, which means that every point y ∈ S1 has k
inverses denoted by xε ∈ E−1 (y) and given explicitly by

xε = E−1
ε (y) = g−1

(
y

k
+ ε

1

k

)

, with ε = 0, . . . , k − 1

We will denote the derivative by E′ (x) := dE/dx.

Proposition 1. In Eq.(7) F̂ν is a Fourier integral operator (FIO) acting on C∞ (S1
)
.

The associated canonical transform on the cotangent space (x, ξ) ∈ T ∗S1 ≡ S1 ×R is k-valued and
given by:

F (x, ξ) = {F0 (x, ξ) , . . . , Fk−1 (x, ξ)} , (x, ξ) ∈ S1 × R (13)

where for any ε = 0, . . . , k − 1,

Fε :

{

x → x′ε = E−1
ε (x) = g−1

(
1
kx+ ε 1

k

)

ξ → ξ′ε = E′ (x′ε) ξ = kg′ (x′ε) ξ
(14)

Similarly the adjoint F̂ ∗ is a FIO whose canonical transformation is F−1. See figure 3.

The proof is just that the operator ϕ → ϕ ◦ E on C∞ (S1
)

is one of the simplest example of
Fourier integral operator, see [Mar02] example 2 p.150.

The term eiντ(x) in Eq.(7) does not contribute to the expression of F , since here ν is considered
as a fixed parameter, and therefore eiντ(x) acts as a pseudodifferential operator (equivalently as a
FIO whose canonical map is the identity).

The map F is the map E−1 lifted on the cotangent space T ∗S1 in the canonical way. Indeed,
if we denote a point (x, ξ) ∈ T ∗S1 ≡ S1 × R then using the usual formula for differentials y =
E (x) = kg (x)⇒dy = E′ (x) dx⇔ ξ′ = E′ (x) ξ, we deduce the above expression for F .

Remarks

• The physical meaning for F̂ε being a Fourier Integral Operator is that if ϕ(x,ξ) is a wave
packet “micro-localized” at position (x, ξ) ∈ T ∗S1 of phase space (this makes sense for ξ ≫ 1,
and means that the micro-support of ϕ is (x, ξ)), then ϕ′ := F̂νϕ(x,ξ) will be a superposition
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of k wave packets at positions (x′ε, ξ
′
ε) = Fε (x, ξ), ε = 0, . . . , k−1, i.e. with a very restricted

micro-support, controlled by the canonical map F .

• Observe that the dynamics of the map F on S1 × R has a quite simple property: the zero
section

{
(x, ξ) ∈ S1 × R, ξ = 0

}
is globally invariant and any other point with ξ 6= 0 escapes

towards infinity (ξ → ±∞) in a controlled manner:

|ξ′ε| ≥ Emin |ξ| , ∀ε = 0, . . . , k − 1 (15)

where Emin > 1 is given in (2).

0 1 x

ξ

F−1

F

F0(x, ξ) F1(x, ξ)

(x, ξ)

Figure 3: This figure is for k = 2. The map F = {F0, . . . , Fk−1} is 1:k, and its inverse F−1 is k:1
on T ∗S1 ≡ S1 × R.

3.2 The escape function

Let m < 0 and define the C∞ function on T ∗S1:

Am (x, ξ) := 〈ξ〉m ∈ Sm

with 〈ξ〉 =
(
1 + ξ2

)1/2
. Am decreases with |ξ| and belongs to the symbol class5 Sm.

Eq. (15) implies that the function Am decreases strictly along the trajectories of F outside
the zero section:

∀R > 0, ∀ |ξ| > R, ∀ε = 0, . . . , k−1
Am (Fε (x, ξ))

Am (x, ξ)
≤ C|m| < 1, with C =

√

R2 + 1

R2Emin + 1
< 1

(16)

Proof.

Am (Fε (x, ξ))

Am (x, ξ)
=

(
1 + ξ2

)|m|/2

(

1 + (ξ′ε)
2
)|m|/2 ≤

(
1 + ξ2

)|m|/2

(1 + Eminξ2)
|m|/2 ≤

(
1 +R2

1 + EminR2

)|m|/2
= C|m|

5See [Tay96b] p.2. The class of symbols Sm, with order m ∈ R, consists of functions on the cotangent space
A ∈ C∞

`

S1 × R
´

such that
˛

˛

˛

∂α
ξ ∂

β
xA

˛

˛

˛

∞
≤ Cα,β 〈ξ〉m−|α| , 〈ξ〉 =

`

1 + ξ2
´1/2

10



The symbol Am can be quantized into a pseudodifferential operator Âm (PDO for short) which
is self-adjoint and invertible on C∞ (S1

)
using the quantization rule ([Tay96b] p.2)

(

Âϕ
)

(x) =
1

2π

∫

A (x, ξ) ei(x−y)ξϕ (y) dydξ, (17)

but in our simple case, this is very explicit: in Fourier space, Âm is simply the multiplication by
〈ξ〉m.

Remind that the Sobolev space Hm
(
S1
)

is defined by ([Tay96a] p.271):

Hm
(
S1
)

:= Â−1
m

(
L2
(
S1
))

The following commutative diagram

L2
(
S1
) Q̂m→ L2

(
S1
)

↓ Â−1
m 	 ↓ Â−1

m

Hm
(
S1
) F̂ν→ Hm

(
S1
)

shows that F̂ν : Hm
(
S1
)
→ Hm

(
S1
)

is unitary equivalent to

Q̂m := ÂmF̂νÂ
−1
m : L2

(
S1
)
→ L2

(
S1
)

We will therefore study the operator Q̂m. Notice that Q̂m is defined a priori on a dense domain
(C∞ (S1

)
). Define

P̂ := Q̂∗
mQ̂m = Â−1

m

(

F̂ ∗
ν Â

2
mF̂ν

)

Â−1
m = Â−1

m B̂Â−1
m (18)

where appears the operator
B̂ := F̂ ∗

ν Â
2
mF̂ν (19)

The Egorov Theorem will help us to treat this operator (see [Tay96b] p.24). This is a simple
but crucial step in the proof: as explained in [FRS08], the Egorov theorem is the main Theorem
used in order to establish both the existence of a discrete spectrum of resonances and properties
of them. However there is a difference with [FRS08]: for the expanding map we consider here, the
operator F̂ν is not invertible and the canonical map F is k-valued. Therefore we have to state the
Egorov theorem in an appropriate way (we restrict however the statement to our simple context).

Lemma 1. (Egorov theorem). B̂ := F̂ ∗
ν Â

2
mF̂ν is a pseudo-differential operator with symbol in

Sm given by:

B (x, ξ) =




∑

ε=0,...,k−1

1

E′ (x′ε)
A2
m (Fε (x, ξ))



+R (20)

with R ∈ Sm−1 has a subleading order.

Proof. As we explained in Proposition 1, F̂ν and F̂ ∗
ν are Fourier integral operators (FIO) whose

canonical map are respectively F and F−1. The pseudodifferential operator (PDO) Âm can also
be considered as a FIO whose canonical map is the identity. By composition we deduce that
B̂ = F̂ ∗

ν Â
2
mF̂ν is a FIO whose canonical map is the identity since F−1 ◦ F = Id. See figure 3.

Therefore B̂ is a PDO. Using (7), (8) and (14) we obtain that the principal symbol of B̂ is

∑

ε=0,...,k−1

1

E′ (x′ε)
A2
m (Fε (x, ξ)) (21)

11



Remark: contrary to (19), F̂νÂmF̂
∗
ν is not a PDO, but a FIO whose canonical map F ◦F−1 is

k−valued (see figure 3).
Now by theorem of composition of PDO ([Tay96b] p.11), (18) and (20) imply that P̂ is a

PDO of order 0 with principal symbol:

P (x, ξ) =
B (x, ξ)

A2
m (x, ξ)

=




∑

ε=0,...,k−1

1

E′ (x′ε)
A2
m (Fε (x, ξ))

A2
m (x, ξ)





The estimate (16) together with (2) give the following upper bound

∀ |ξ| > R, |P (x, ξ)| ≤ C2|m| ∑

ε=0,...,k−1

1

E′ (x′ε)
≤ C2|m| k

Emin

(This upper bound goes to zero as m → −∞). From L2-continuity theorem for PDO we
deduce that for any α > 0 (see [FRS08] Lemma 38)

P̂ = k̂α + p̂α

with k̂α a smoothing operator (hence compact) and ‖p̂α‖ ≤ C2|m| k
Emin

+ α. If Q̂m = Û
∣
∣
∣Q̂
∣
∣
∣ is

the polar decomposition of Q̂m, with Û unitary, then from (18) P̂ =
∣
∣
∣Q̂
∣
∣
∣

2

⇔
∣
∣
∣Q̂
∣
∣
∣ =

√

P̂ and the

spectral theorem ([Tay96b] p.75) gives that
∣
∣
∣Q̂
∣
∣
∣ has a similar decomposition

∣
∣
∣Q̂
∣
∣
∣ = k̂′α + q̂α

with k̂′α smoothing and ‖q̂α‖ ≤ C|m|
√

k
Emin

+ α, with any α > 0. Since
∥
∥
∥Û
∥
∥
∥ = 1 we deduce

a similar decomposition for Q̂m = Û
∣
∣
∣Q̂
∣
∣
∣ : L2

(
S1
)
→ L2

(
S1
)

and we deduce (9) and (10) for

F̂ν : Hm → Hm. We also use the fact that C → 1/Emin for R → ∞ in (16).
The fact that the eigenvalues λi and their generalized eigenspaces do not depend on the choice

of space Hm is due to density of Sobolev spaces. We refer to the argument given in the proof of
corollary 1 in [FRS08]. This finishes the proof of Theorem 1.

4 Proof of theorem 2 on spectral gap

We will follow steps by steps the same analysis as in the previous section. The main difference
now is that in Theorem 2, ν ≫ 1 is a semi-classical parameter. In other words, we just perform a
linear rescaling in cotangeant space: ξh := ~ξ with

~ :=
1

ν
≪ 1.

Therefore, our quantization rule for a symbol A (x, ξh), Eq.(17) writes now (see [Mar02] p.22)

(

Âϕ
)

(x) =
1

2π~

∫

A (x, ξ) ei(x−y)ξh/~ϕ (y) dydξh (22)

For simplicity we will write ξ for ξh below.

4.1 Dynamics on the cotangent space T ∗S1

In Eq.(7) the multiplicative term eiντ(x) = eiτ(x)/~ acts now as a Fourier integral operator (FIO)
and contributes to the transport (it was merely a P.D.O. for theorem 1 in Section 3 when ν was
fixed). Its associated canonical transformation on T ∗S1 = S1 × R is (x, ξ) →

(
x, ξ + dτ

dx (x)
)

(this is a direct consequence of stationary phase approximation in Fourier transform see [Mar02,
Examples 1,2 p.150]). We obtain:

12



Proposition 2. In Eq.(7) F̂ν is a semi-classical Fourier integral operator acting on
C∞ (S1

)
(with semi-classical parameter ~ := 1/ν ≪ 1). The associated canonical transfor-

mation on the cotangent space (x, ξ) ∈ T ∗S1 ≡ S1 × R is k-valued and given by:

F (x, ξ) = {F0 (x, ξ) , . . . , Fk−1 (x, ξ)} , (x, ξ) ∈ S1 × R (23)

Fε :

{

x → x′ε = E−1 (x)

ξ → ξ′ε = E′ (x′ε) ξ + dτ
dx (x′ε)

, ε = 0, . . . , k − 1 (24)

Similarly F̂ ∗ is a FIO whose canonical transformation is F−1.

Notice that for simplicity we have kept the same notation for the canonical transformation F
although it differs from (14).

Since the map F is k-valued, a trajectory is a tree. Let us precise the notation:

Definition 1. For ε = (. . . ε3, ε2, ε1) ∈ {0, . . . , k − 1}N
∗

, a point (x, ξ) ∈ S1 × R and time n ∈ N∗

let us denote:

Fnε (x, ξ) := Fεn
Fεn−1

. . . Fε1 (x, ξ) (25)

For a given sequence ε ∈ {0, . . . , k − 1}N
∗

, a trajectory issued from the point (x, ξ) is
{Fnε (x, ξ) , n ∈ N}.

Notice that at time n ∈ N, there are kn points issued from a given point (x, ξ):

Fn (x, ξ) := {Fnε (x, ξ) , ε ∈ {0, . . . , k − 1}n} (26)

The new term dτ
dx (x′ε) in the expression of ξ′ε, Eq.(24), complicates significantly the dynamics

near the zero section ξ = 0. However a trajectory from an initial point with |ξ| large enough still
escape towards infinity:

Lemma 2. For any 1 < κ < Emin, there exists R ≥ 0 such that for any |ξ| > R, any ε = 0, . . . k−1,

|ξ′ε| > κ |ξ| (27)

Proof. From (24), one has ξ′ε = E′ (x′
ε) ξ + τ ′ (x′

ε), so ξ′ε − κξ = (E′ (x′
ε) − κ) ξ + τ ′ (x′

ε) ≥ (Emin − κ) ξ +

min τ ′ > 0 if ξ > −
min τ ′

(Emin−κ)
≥ 0, and similarly ξ′ε−κξ ≤ (Emin − κ) ξ+max τ ′ < 0 if ξ < −

max τ ′

(Emin−κ)
.

We will denote the set:

Z := S1 × [−R,R] (28)

outside of which trajectories escape in a controlled manner (27). See figure 4.

4.2 The trapped set K

We will be interested now in the trajectories of F which do not escape towards infinity.

13



Definition 2. We define the trapped set

K :=
⋂

n∈N

(
F−1

)n
(Z) (29)

which contains points for which a trajectory at least does not escape towards infinity. See figure 4.
The definition of K does not depend on the compact set Z (if Z is chosen large enough).

trapped set

Escape

Escape

R

−R

K

F0 F1

Z

ξ

x

π

−π

0

Figure 4: The trapped set K in the cotangent space S1 ×R. We have chosen here E (x) = 2x and
τ (x) = cos (2πx).

Since the map F is multivalued, some trajectories may escape from the trapped set. We will
need a characterization of how many such trajectories succeed to escape:

For n ∈ N, let

N (n) := max
(x,ξ)

♯ {Fnε (x, ξ) ∈ Z, ε ∈ {0, . . . , k − 1}n} (30)

See Figure 5 for an illustration of N (n). Of course N (n) ≤ kn.
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Definition 3. The map F (or f) is partially captive if

logN (n)

n
−→
n→∞

0 (31)

This property is the hypothesis of Theorem 2.

Remarks

• “F partially captive” means that most of the trajectories escape from the trapped set K.
See figure 5. Another description of the trapped set K and of the partially captive property
will be given in Appendix B. Notice that the function N (n), Eq.(30) depends on the set Z
but property (31) does not.

• If the function τ is trivial in (24), i.e. τ = 0 , then obviously all the trajectories issued from
a point (x, ξ) on the line ξ = 0 remains on this line (the trapped set). Therefore

♯ {Fnε (x, ξ) ∈ Z, ε ∈ {0, 1, . . . , k − 1}n} = kn

and the map F is not partially captive (but could be called “totally captive”). This is also
true if the function τ is a “co-boundary”, i.e. if τ (x) = η (E (x)) − η (x) with η ∈ C∞ (S1

)

as discussed in Appendix A.

• M. Tsujii has studied a dynamical system very similar to (24) in [Tsu01], but this model
is not volume preserving. He establishes there that the SRB measure on the trapped set is
absolutely continuous for almost every τ .

4.3 The escape function

Let m < 0 and consider the C∞ function on T ∗S1:

Am (x, ξ) := 〈ξ〉m for |ξ| > R+ η

:= 1 for ξ ≤ R

where η > 0 is small and with 〈ξ〉 :=
(
1 + ξ2

)1/2
. Am decreases with |ξ| and belongs to the symbol

class Sm.
Eq. (27) implies that the function Am decreases strictly along the trajectories of F outside

the trapped set (similarly to Eq.(16)):

∀ |ξ| > R, ∀ε = 0, . . . , k − 1
Am (Fε (x, ξ))

Am (x, ξ)
≤ C|m| < 1, with C =

√

R2 + 1

κR2 + 1
< 1 (32)

And for any point we have the general bound:

∀ (x, ξ) ∈ T ∗S1,
Am (Fε (x, ξ))

Am (x, ξ)
≤ 1. (33)

Using the quantization rule (22), the symbol Am can be quantized giving a pseudodifferential oper-
ator Âm which is self-adjoint and invertible on C∞ (S1

)
. In our case Âm is simply a multiplication

operator by Am (ξ) in Fourier space.
Let us consider the (usual) Sobolev space

Hm
(
S1
)

:= Â−1
m

(
L2
(
S1
))
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(x, ξ)

R

−R

Z

kn = 8

N (n) = 2

ξ

Figure 5: This Figure illustrates the trajectories Fnε (x, ξ) issued from an initial point (x, ξ).
Here k = 2 and n = 3. The property for the map F of being “partially captive” according to
definition 3 is related to the number of points N (n) which do not escape from the compact zone
Z after time n.

Then F̂ν : Hm
(
S1
)
→ Hm

(
S1
)

is unitary equivalent to

Q̂ := ÂmF̂νÂ
−1
m : L2

(
S1
)
→ L2

(
S1
)

Let n ∈ N∗ (a fixed time which will be made large at the end of the proof) and define

P̂ (n) := Q̂∗nQ̂n = Â−1
m F̂ ∗n

ν Â2
mF̂

n
ν Â

−1
m (34)

Using Egorov theorem (the semi-classical version of Lemma 1) and Theorem of composition of
PDO, we obtain that P̂ (n) is a PDO of order 0 with principal symbol

P (n) (x, ξ) =




∑

ε∈{0,...,k−1}n

1

E′
n (x)

A2
m (Fnε (x, ξ))

A2
m (x, ξ)



 (35)

where E′
n (x) :=

∏n
j=1 E

′
(

E−j
εj

(x)
)

is the expanding rate of the trajectory at time n. Eq.(2)

implies that E′
n (x) ≥ Enmin. Now we will bound this (positive) symbol from above, considering

different cases for the trajectory Fnε (x, ξ), as illustrated on Figure 5.

1. If (x, ξ) /∈ Z then (32) gives

A2 (Fnε (x, ξ))

A2 (x, ξ)
=

A2 (Fnε (x, ξ))

A2
(
Fn−1
ε (x, ξ)

) . . .
A2 (Fε (x, ξ))

A2 (x, ξ)
≤
(

C2|m|
)n

(36)

therefore

P (n) (x, ξ) ≤ kn

Enmin

(

C2|m|
)n
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2. If (x, ξ) ∈ Z but Fn−1
ε (x, ξ) /∈ Z then

(A2◦Fn
ε )(x,ξ)

(A2◦Fn−1
ε )(x,ξ)

≤ C2|m| from (32). Using also (33) we

have
A2 (Fnε (x, ξ))

A2 (x, ξ)
=

A2 (Fnε (x, ξ))

A2
(
Fn−1
ε (x, ξ)

) . . .
A2 (Fε (x, ξ))

A2 (x, ξ)
≤ C2|m| (37)

3. In the other cases ((x, ξ) ∈ Z and Fn−1
ε (x, ξ) ∈ Z) we can only use (33) to bound:

A2 (Fnε (x, ξ))

A2 (x, ξ)
≤ 1 (38)

From definition (30) we have

♯
{
Fn−1
ε (x, ξ) ∈ Z, ε ∈ {0, 1}n

}
≤ N (n− 1) .

For (x, ξ) ∈ Z, we split the sum Eq.(35) accordingly to cases 1,2 or 3 above. Notice that
(
C2|m|)n ≤

C2|m|. This gives

P (n) (x, ξ) ≤ 1

Enmin

(

(kn −N (n− 1))C2|m| + N (n− 1)
)

≤ B (39)

with the bound

B :=

(
k

Emin

)n

C2|m| +
N (n− 1)

Enmin
Then

lim sup
(x,ξ)

∣
∣
∣P (n) (x, ξ)

∣
∣
∣ ≤ B

With L2continuity theorem for pseudodifferential operators this implies that in the limit ~ → 0
∥
∥
∥P̂ (n)

∥
∥
∥ ≤ B + On (~) (40)

Polar decomposition of Q̂n gives

∥
∥
∥Q̂n

∥
∥
∥ ≤

∥
∥
∥

∣
∣
∣Q̂n

∣
∣
∣

∥
∥
∥ =

√
∥
∥
∥P̂ (n)

∥
∥
∥ ≤ (B + On (~))

1/2

Then for any n the spectral radius of Q̂ satisfies [RS72, p.192]

rs

(

Q̂
)

≤
∥
∥
∥Q̂n

∥
∥
∥

1/n

≤ (B + On (~))
1/2n

Also notice that
(N (n− 1)

Enmin

)1/2n

=
1√
Emin

exp

(
1

2n
logN (n− 1)

)

We let ~ → 0 first, and after m → −∞ giving C|m| → 0, and also we let n → ∞. Then for
~ = 1/ν → 0 we have6:

rs

(

Q̂
)

≤
√

1

Emin
exp

(

lim
n∞

inf

(
logN (n)

n

))

+ o (1) . (41)

If we make the assumption that F be partially captive, Eq.(31), we get that for ~ = 1/ν → 0,

rs

(

Q̂
)

≤ 1√
Emin

+ o (1) .

We have finished the proof of Theorem 2.

6It can be shown that logN (n) is sub-additive and therefore limn∞ inf
“

log N (n)
n

”

= limn∞

“

logN (n)
n

”

,[RS72,

p.217, ex.11]
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A Equivalence classes of dynamics

Let us make a simple and well known observation about equivalent classes of dynamics. The map
f we consider in Eq.(3) depends on k ∈ N and on the functions E : S1 → S1, τ : S1 → R. To
emphasize this dependence, we denote f(E,τ). The transfer operator (7) is also denoted by F̂(E,τ).

In this Appendix we characterize an equivalence class of functions (E, τ) such that in a given
equivalence class the maps f(E,τ) are C∞ conjugated together, the transfer operators F̂(E,τ) are
also conjugated and the resonances spectrum are therefore the same.

Let η : S1 → R be a smooth function. Let us consider the map T : S1 × S1 → S1 × S1 defined
by

T (x, s) =

(

x, s+
1

2π
η (x)

)

Then using (3) one gets that:

(
T−1 ◦ f(E,τ) ◦ T

)
(x, s) =

(

E (x) , s+
1

2π
(τ (x) + η (x) − η (E (x)))

)

Therefore
(
T−1 ◦ f(E,τ) ◦ T

)
= f(E,ζ)

i.e. f(E,ζ) ∼ f(E,τ), with

ζ = τ + (η − η ◦ E) .

The function τ has been modified by a “co-boundary term” ([KH95], p.100).
With (7) we also obtain that the transfer operator F̂(E,ζ) of f(E,ζ) on C∞ (S1

)
is given by

F̂(E,ζ) = χ̂F̂(E,τ)χ̂
−1 (42)

with the operator χ̂ : C∞ (S1
)
→ C∞ (S1

)
defined by:

(χ̂ϕ) (x) = eiνη(x)ϕ (x) .

Proof.
(

χ̂F̂(E,τ)χ̂
−1ϕ

)

(x) =
(
ϕ (E (x)) e−iνη(E(x))

)
eiντ(x)eiνη(x) =

(

F̂(E,ζ)ϕ
)

(x).

The conjugation (42) immediately implies that F̂(E,ζ) and F̂(E,τ) have the same spectrum of
Ruelle resonances.

Observe that χ̂ is a O.I.F whose associated canonical transformation on T ∗S1 ≡ S1 × R is
given by (ν ≫ 1 is considered as a semi-classical parameter):

χ : (x, ξ) ∈
(
S1 × R

)
→
(

x, ξ +
dη

dx

)

∈
(
S1 × R

)
.

Therefore at the level of canonical transforms on T ∗S1:

F(E,ζ) = χ ◦ F(E,τ) ◦ χ−1 (43)

The conjugation (43) implies in particular that the corresponding trapped sets (29) are related
by

K(E,ζ) = χ
(
K(E,τ)

)

B Description of the trapped set

In this section we provide further description of the trapped set K defined in Eq.(29) as well as
the dynamics of the canonical map F restricted on it.
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B.1 Dynamics on the cover R2

The dynamics of F on the cylinder T ∗S1 = S1 × R has been defined in Eq.(24). This is a
multivalued map. It is convenient to consider the lifted dynamics on the cover R2 which is a
diffeomorphism given by

F̃ :

{

x → x′ = E−1 (x)

ξ → ξ′ = E′ (x′) ξ + dτ
dx (x′)

(44)

where E = kg : R → R is the map (1) lifted on R. It is invertible from (2). Let us suppose for
simplicity that E (0) = 0.

One easily establish the following properties of the map F̃ , illustrated on figure 6:

• The point

I := (0, ξI) :=

(

0,− τ ′ (0)

(E′ (0) − 1)

)

is the unique fixed point of F̃ . It is hyperbolic with unstable manifold

Wu = {(0, ξ) , ξ ∈ R}

and stable manifold

Ws = {(x, S (x)) , x ∈ R} (45)

where the C∞ function S (x) is defined by the following co-homological equation, deduced
directly from (44)

S
(
E−1 (x)

)
= E′ (E−1 (x)

)
S (x) + τ ′

(
E−1 (x)

)
, S (0) = ξI .

The first equation can be written as

S (x) =
1

E′ (E−1 (x))

(
S
(
E−1 (x)

)
− τ ′

(
E−1 (x)

))

and recursively we deduce that

S (x) = −
∞∑

p=1

1

E′(−p) (x)
τ ′
(

E(−p)x
)

(46)

where

x(−p) := E(−p) (x) :=



E−1 ◦ . . . ◦ E−1
︸ ︷︷ ︸

p



 (x) (47)

and
E′(−p) (x) := E′ (x−p) . . . E

′ (x−2)E
′ (x−1) (48)

is the product of derivatives. In the case of E (x) = 2x, one gets simply

S (x) = −
∞∑

p=1

1

2p
τ ′
( x

2p

)

(49)

• If P : (x, ξ) ∈ R2 → (xmod 1, ξ) ∈ S1 × R ≡ T ∗S1 denotes the projection, then trapped

set K, defined in Eq.(29) is obtained by wrapping the stable manifold around the cylinder
and taking the closure:

K = P (Ws) (50)

Compare Figures 6 and Figure 4.
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• If X0 = (x0, ξ0) ∈ R2 is an initial point on the plane, and P (X0) denotes its image on
the cylinder, then at time n ∈ N, the kn evolutions of the point P (X0) under the map Fn

are the images of the evolutions F̃n (Xk) of the translated points Xp = X0 + (p, 0), with
p = 0 → kn − 1:

Fn (P (X0)) =
{

P
(

F̃n (Xp)
)

, Xp = X0 + (p, 0) , p ∈ [0, kn[
}

and more precisely, using notation of Eq.(25) for these points, one has the relation:

Fnε (P (X0)) = P
(

F̃n (Xp)
)

(51)

where ε is the number p written in base k:

ε = εn−1 . . . ε1ε0 = pbase k ∈ {0, . . . , k − 1}n

Figure 7 illustrates this correspondence.

• For an initial point X0 = (x0, ξ0) ∈ R2, then Xn = (xn, ξn) = F̃n (X0) satisfies

xn = E(−n) (x0) , ξn − S (xn) =
(

E′(−n) (x0)
)

(ξ0 − S (x0)) (52)

with E(−n) (x), E′(−n) (x) given by (47), (48). Hence

|ξn − S (xn)| ≥ Enmin |ξ0 − S (x0)|

This last inequality describes how fast the trajectories above or below the separatrix Ws

escape towards infinity on Figure 6.

I

Wu

x

Ws = S(x)π

0

−π

Figure 6: The fixed point I = (0, ξ0), the stable manifold Ws and unstable manifold Wu of the
lifted map F̃ , Eq.(44), in the example E (x) = 2x, τ (x) = cos (2πx).

B.2 Partially captive property

Here we rephrase the property of partial captivity, Definition 3, in terms of a property on the
separatrix function S (x) defined in Eq.(45) and given in Eq. (46).

For simplicity, we consider from now on the simple model with a linear expanding map E (x) =
kx.
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X

X0 X1 X3

F 2
00(X)

x

Projection

X2

P

F0(X)
F 2

10(X)

F1(X)

F 2
11(X)

F 2
01(X)

ξ ξ

F̃ 2(X3)

F̃ 2(X1)
F̃ (X3)

F̃ (X1)

F̃ (X0)
F̃ (X2)F̃ 2(X2)

F̃ 2(X0)

x

π

0

−π

0 1

Figure 7: This picture shows how the dynamics of a point X = P (X0) ∈ S1×R under the map F
is related by Eq.(51) to the dynamics of its lifted images Xk = X0 + (k, 0) under F̃ on the cover
R2.

Proposition 3. For n ∈ N, and R̃ > 0, let

ÑR̃ (n) = max
(x,ξ)∈R2

♯

{

p ∈ [0, kn[, |ξ − S (x+ p)| ≤ R̃

kn

}

(53)

Then the map F is partially captive (see definition page 15) if and only if

lim
n→∞

log ÑR̃ (n)

n
= 0 (54)

for R̃ large enough.

Proof. From (30) and using (51),(52) one gets

N (n) = max
(x,ξ)

♯ {Fnε ((x, ξ)) ∈ Z, ε ∈ {0, . . . , k − 1}n}

= max
(x,ξ)

♯ {|ξn,p| ≤ R, p ∈ [0, kn[}

with (xn,p, ξn,p) := F̃n ((x+ p, ξ)) given by xn,p = x+p
kn and ξn,p = S (xn,p) + kn (ξ − S (x+ p)).

Therefore

|ξn,p| ≤ R ⇔
∣
∣
∣
∣

S (xn,p)

kn
+ ξ − S (x+ p)

∣
∣
∣
∣
≤ R

kn
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But S is a bound function on R, |S (x)| ≤ Smax. Therefore
∣
∣
∣
S(xn,p)
kn + ξ − S (x+ p)

∣
∣
∣ ≤ R

kn =⇒
|ξ − S (x+ p)| ≤ R̃

kn with some R̃ > 0, and conversely. This implies that (54) is equivalent to
(31).

B.3 Fractal aspect of the Trapped set

The characterization Eq.(53) concerns the discrete set of points S (x+m) , m ∈ Z. From Eq.(50)
these points are the slice of the trapped set K = ∪x∈S1Kx:

Kx = {S (x+m) , m ∈ Z}

For simplicity, we consider from now on the simple model with E (x) = 2x, and τ (x) =
cos (2πx).

From Eq.(49), these points are given by

S (x+m) =

∞∑

p=1

2π

2p
sin

(
2π

2p
(x+m)

)

= ℑ
( ∞∑

p=1

2π

2p
exp

(
i2π

2p
(x+m)

))

Therefore the slice Kx is the projection on the imaginary axis of the following set:

Kc
x = {Sc (x+m) ,m ∈ Z} (55)

Sc (x+m) =

∞∑

p=1

2π

2p
ei2π

1

2p (x+m)

On Figure 8 we observe that Kc
x is a fractal set. Compare Figure 8 with Figure 4.

Fractal 

Fractal 

Kc
x

Trapped set
Kx

Kc
x

ξ ξ

x = 0

x = 0.5Kx

Figure 8: This picture represents the set Kc
x ⊂ C defined by Eq.(55). The trapped set K at

position x is obtained by the projection on the imaginary axis Kx = ℑ (Kc
x). On the web page

http://www-fourier.ujf-grenoble.fr/∼faure/articles one can observe the motion of the
fractal Kc

x as x ∈ R increases smoothly.
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