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FUNCTIONAL WITH PRESCRIBED DEGREES

Mickaél Dos Santos *
dossantos@math.univ-lyonl.fr

November 7, 2011

Abstract

We consider, in a smooth bounded multiply connected domain D C R?, the Ginzburg-Landau
energy E.(u) = 5 [, {IVul® + 55 (1 — [u[*)?} subject to prescribed degree conditions on each
component of 9D. In general, minimal energy maps do not exist [4]. When D has a single hole,
Berlyand and Rybalko [5] proved that for small € local minimizers do exist. We extend the
result in [5]: E.(u) has, in domains D with 2,3, ... holes and for small €, local minimizers. Our
approach is very similar to the one in [5]; the main difference stems in the construction of test
functions with energy control.
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1 Introduction

This article deals with the existence problem of local minimizers of the Ginzburg-Landau func-
tional with prescribed degrees in a 2D perforated domain D.

The domain we consider is of the form D = Q \ Ujen, @i, where N € N*, Q and the w;’s are
simply connected, bounded and smooth open sets of R2.

We assume that w; C Q and w; Nw; =0 for 4,5 € Ny :={1,..., N},i # j.

The Ginzburg-Landau functional is

E.(u,D) := %/D {|Vu|2 + % (1- |u|2)2} dz (1.1)

with 4 : D — C ~ R? and ¢ is a positive parameter (the inverse of x, the Ginzburg-Landau
parameter).

When there is no ambiguity we will write E.(u) instead of E.(u, D).

Functions we will consider belong to the class

J ={ue H(D,C)||u| =1 on dD}.

Clearly, J is closed under weak H'—convergence.

This functional is a simplified version of the Ginzburg-Landau functional which arises in super-
conductivity (or superfluidity) to model the state of a superconductor submitted to a magnetic field
(see, e.g., [10] or [9]). The simplified version of the Ginzburg-Landau functional considered in (1.1)
ignores the magnetic field. The issue we consider in this article is existence of local minimizers with
prescribed degrees on 9D.

We next formulate rigorously the problem discussed in this article. To this purpose, we start by
defining properly the degrees of a map v € J. For v € {99, ...,0wn} and u € J we let

1
deg, (u) = o /u X Orudr.
v

Here:

e cach ~ is directly (counterclockwise) oriented,

e 7 = v, 7 is the tangential vector of v and v the outward normal to Q if v = 9Q or w; if

Y= 80.)7;,

7

e 0, =7 -V, the tangential derivative and ” - ” stands for the scalar product in R?,



e 7 x” stands for the vectorial product in C, (z1+122) X (w1 +1ws) := zywe— zown, 21, 22, W1, Wy €

R

)

e the integral over v should be understood using the duality between H'/2(y) and H~1/2(y)
(see, e.g., |[4] definition 1).

It is known that deg, (u) is an integer see [4] (the introduction) or [7].
We denote the (total) degree of u € J in D by

deg(u’ D) = (degam (u)a s degawN (u)’ degaQ(u)) € ZN x 7.

For (p,q) € Z" x Z, we are interested in the minimization of E, in
TIp.g = {u € J |deg(u,D) = (p,q)} -

There is an huge literature devoted to the minimization of E.. In a simply connected domain §2,
the minimization problem of E. with the Dirichlet boundary condition g € C*°(9€,S') is studied
in detail in [6]. E. has a minimizer for each ¢ > 0. This minimizer need not to be unique. In
this framework, when degyn(g) # 0, the authors studied the asymptotic behaviour of a sequence
of minimizers (when ¢, | 0) and point out the existence (up to subsequence) of a finite set of
singularities of the limit.

Other types of boundary conditions were studied, like Dirichlet condition g € C*°(99,C \ {0})
(in a simply connected domain 2) in [1] and later for g € C*(99,C) (see [2]).

If the boundary data is not ujsp, but a given set of degrees, then the existence of local minimizers
is non trivial. Indeed, one can show that [Jp 4 is not closed under weak H L_convergence (see next
section), so that one cannot apply the direct method in the calculus of variations in order to derive
existence of minimizers. Actually this is not just a technical difficulty, since in general the infimum
of E; in Jp 4 is not attained, we need more assumptions like the value of the H 1_capacity of D
(see [3] and [4]).

Minimizers u of F. in Jp 4, if they do exist, satisfy the equation

~Au= 5%(1 —|uf?) mD
lu| =1 on 0D (1.2)
u X O,u=0 on 0D
deg(u, D) = (P, q)

0

where 0, denotes the normal derivative, i.e., 3, = — =v - V.

Existence of local minimizers of E. is obtainedyfollowing the same lines as in [5]. It turns
out that, even if the infimum of E. in Jp 4 is not attained, (1.2) may have solutions. This was
established by Berlyand and Rybalko when D has a single hole, ¢.e., when N = 1. Our main result
is the following generalisation of the main result in [5]:

Theorem 1. Let (p,q) € ZN x Z and let M € N*, there is e1(p,q, M) > 0 s.t. for e < &1, there
are at least M locally minimizing solutions.

Actually, we will prove a more precise form of Theorem 1 (see Theorem 2), whose statement
relies on the notion of approzimate bulk degree introduced in [5] and generalised in the next section.

The main difference with respect to [5] stems in the construction of the test functions with
energy control in section 6. In a sense that will be explained in details in section 6, our construction
is local, while the one in [5] is global. We also simplify and unify some proofs in [5].



We do not know whether the conclusion of theorem 1 still holds when D has no holes at all.
That is, we do not know whether for a simply connected domain €2, a given d € Z* and small ¢, the
problem

U
—Au=—(1—-1|u®) inQ
U 62( |ul) in

uxO,u=0 on O0f) (1.3)
lul =1 on 09
degyq(u) = d

has solutions. Existence of a solution of (1.3) is clear when £ is a disc, say @ = D(0, R) (it suffices

d d
to consider a solution of —Au = % (1 —|u|?) of the form u(z) = f(|2|) <ﬁ> with ujgq = <ﬁ> ).
2 z

However, we do not know the answer when € is not radially symmetric anymore.

2 The approximate bulk degree

This section is a straightforward adaptation of [5].
Existence of (local) minimizers for E. in Jp,q 1s not straightforward since Jp 4 is not closed
under weak H'—convergence. A typical example (see [4]) is a sequence (M,,),, s.t.

M,: D(0,1) — D(0,1)
. x—(1—-1/n)
(1-1/n)z—1

where D(0,1) C C is the open unit disc centered at the origin. Then M,, — 1in H', degg:i (M,) = 1
and deggi (1) = 0.

To obtain local minimizers, Berlyand and Rybalko (in [5]) devised a tool: the approzimate bulk
degree. We adapt this tool for a multiply connected domain.

We consider, for i € Ny :={1,..., N}, V; the unique solution of

—AV; =0 inD
Vi=1 on 0D \ Ow; . (2.1)
Vi=0 on Ow;

For u € J, we set, noting Jyu = —u
8.%'k

™

abdeg;(u,D) = 2i/ u x (01V; Oau — 02V, Oyu) du, (2.2)
D

abdeg(u,D) = (abdeg,(u,D), ..., abdegy(u,D)).

Following [5], we call abdeg(u, D) the approzimate bulk degree of u. abdeg; : J — R, in general, is
not an integer (unlike the degree). However, we have

Proposition 1. 1) Ifu € H'(D,S'), then abdeg;(u, D) = degg,, (u);

2) Let Aye >0 and u,v € J s.t. E-(u), E-(v) <A, then
2
labdeg; (u) — abdeg; (v)| < ;||W||01(D)A1/2||u —vllz2(p); (2.3)

3) Let A >0 and (uc)eso C J s.t. for alle >0, E-(us) < A, then

dist(abdeg(u.), Z) — 0 when & — 0. (2.4)



Proof of Proposition 1 is postponed to Appendix B.
We define for d = (dy,...,dn) € ZV, p = (p1,....,pn) € ZN and ¢q € Z,

Ty = T3lP) = {1 Ty Iabiog) ~ dl = maxd: ~ abdogs (1] <

b

Wl =

The following result states that jr‘:q in never empty for (p,q,d) € ZV x Z x ZN.
Proposition 2. Let (p,q,d) € ZV x Z x ZN. Then qu # 0.

Proof. For i € {0,..., N}, we denote €; = (§; 1, ..., 6i N, 0i0) € ZNT! where

1 ifi=k .
Ok = { 0 otherwise ° the Kronecker symbol.

For i € {0,...,N}, there is M! € T(pi—di)e; if i # 0 and MY e T3 d))e

i 0

|M:| <1 (Lemmas 6.1 and 6.2 in [4]). Let

st. Mi —1in H' and

N
Eq:={ue H'(D,S") |deg(u,D) = (d,d)} ,d = (di,....dn), d = _dj.
j=1

We note that, Eq # 0, see, e.g., [6]. Let u € Eq and u,, := qu‘]\io M¢. Then we will prove that,
for large n, we have, up to subsequence, that u, € jr‘iq. Indeed, up to subsequence,

. 1
Up = uin H*, u, € Jpgq-

Using the fact that abdeg(u) = d and the weak H'-continuity of the approzimate bulk degree, we
obtain for n sufficiently large, that u, € qu. O

We denote me(p, q,d) the infimum of E. on jr(iw i.e,

me(p,g,d) = inf Ee(u)
USIp,q

and

We may now state a refined version of Theorem 1.

Theorem 2. Let d € (N*)N. Then, for all (p1,...,pn.q) € ZNT! s.t. q < d and p; < d;, there is
g9 = e3(p,q,d) > 0 s.t. for 0 < e < g9, me(p,q,d) is attained.
Moreover, we have the following estimate

me(p,q,d) = Io(d, D) + 7 (dr = p1 + . +dy —pn +d = q) = 0:(1), 0=(1) = 0.

For further use, a configuration of degrees (p,q,d) € ZV X Z % (N*)N s.t. p; < d; and ¢ < > d;
will be called a "good configuration". Noting that, for d # d € ZN and (p,q) € Z" x Z, we have
qu N qu = (), we are led to
Proof of Theorem 1: Let (p,q) € Z" x Z and set for k € N*,

d = max {max |pil, |q|} and dy = (d+ k,...,d + k).



We apply Theorem 2 to the class jf,i, . We obtain the existence of

e1(p,q, M) = Jé%& e2(p,q,dy) >0

s.t. for e < e1, k € Ny, me(p, q,dg) is achieved by uF.

Noting the continuity of the degree and of the approzimate bulk degree for the strong H'-
convergence, there exists V¥ C ‘7;,1, L C J an open (for H'-norm) neighbourhood of u¥. It follows
easily that

B\ .
E.(u) = Jrelgjc E.(u).

Then uf € J, 4 is a local minimizer of E. in J (for H'-norm) for 0 < ¢ < &1(p, q, M).

3 Basic facts of the Ginzburg-Landau theory

It is well known (cf [4], lemma 4.4 page 22) that the local minimizers of E. in Jp 4 satisfy
—Au = ;u(l — |u|*) in D, (3.1)

|lu| =1 and u x d,u = 0 on ID. (3.2)

Equation (3.1) and the Dirichlet condition on the modulus in (3.2) are classical. The Neumann
condition on the phase in (3.2) is less standard but it is for example stated in [4].
Equation (3.1) combined with the boundary condition on 9D implies, via a maximum principle,
that
lul <1in D. (3.3)

One of the questions in the Ginzburg-Landau model is the location of the vortices of stable
solutions (i.e., local minimizers of E.). We will define ad hoc a vortex as an isolated zero x of u
with nonzero degree on small circles around z.

The following result shows that, under energy bound assumptions on solutions of (3.1), vortices
are expelled to the boundary when ¢ — 0.

Lemma 1. [8] Let A > 0 and let u be a solution of (3.1) satisfying (3.3) and the energy bound
E.(u) < A. Then with C,Cy and e3 depending only on A, D, we have, for 0 < e < e3 and x € D,

Ce?
1-— ElD 3.4
u@)l” < dist2(m,8D) (34)
and o
|D*u(z)| < i (3.5)

dist®(z,0D)"

u
When u is smooth in D and p = |u| > 0, the map — admits a lifting 6 , i.e, we may write
P

u = pe”,

where 6 is a smooth (and locally defined) real function on D and V# is a globally defined smooth
vector field.
Using (3.1) and (3.2), we have

div(p®’V0) =0 in B
0,0 =0 on 0D ’

6



1
~Ap+|VO)*p + 6—2/)(/)2 —-1)=0 inB
p=1 on 0D

here, B = {z € D |u(z) # 0}.
We will need later the following.

Lemma 2. [5] Let u be a solution of (3.1) and (3.2). Let G C D be an open Lipschitz set s.t. u
does not vanish in G. Write, in G, u = pv with p = |u|. Let w € H(G,C) be s.t. |troqgw| = 1.
Then
E.(pw,G) = E.(u,G) + Le(w, G),
with
Lo(w,G) = l/ p2|vw|2dx—1/ |w|2p2|vv|2dx+i/ P w]?)? de.
2 G 2 G 462 G

For further use, we note that we may write, locally in G, u = pe*, so that v = e*?. It turns out
that V6 is smooth and globally defined in G. In terms of V8, we may rewrite

Lew.G) = 5 [ IVl — 5 [ P VoRas+ 5 [ 50 = juf)an

For u a solution of (3.1) and (3.2), we can consider (see Lemma 7 in [5]) h the unique globally
defined solution of
Vih=uxVu inD
h=1 on 90 (3.8)
h=k; on dw;

where k;’s are real constants uniquely defined by the first two equations in (3.8). Here

—0oh u X 01
1y _ 2 . : _ 1
V~h = ( Ok ) is the orthogonal gradient of h and v x Vu = < w X By > .

It is easy to show that
Vh=-p*V+0 inB
diV(%Vh) =0 inB ; (3.9)
Ah =201u X dhu in B
here, B = {z € D |u(z) # 0}.
In [6], Bethuel, Brezis and Hélein consider the minimization of E(u) = %/D |Vu|? dz, the

Dirichlet functional, in the class
Eq={ue H'(D,S")| deg(u, D) = (d,d)};

here, d = d.
Theorem 1.1 in [6] gives the existence of a unique solution (up to multiplication by an S!-
constant) for the minimization of F in E4q. We denote ug this solution. This ug is also a solution

of
—~Av=09|Vv? inD
vXx0d,v=0 ondD

Moreover, we have

1
Iy(d,D) := min E(u) = —/ |Vho|? dz (3.10)
ueFg 2 D



with Ao the unique solution of

Ahy=0 in D

ho =1 on Jf)
ho = Csty, on dwg, k€ {1,...,N} . (3.11)
Oyhgdo = 2ndy,  for k € {1, ,N}

Owy,

One may prove that hg is the (globally defined) harmonic conjugate of a local lifting of wy.

4 Energy needed to change degrees

We denote
2: (ZNxZ)x (ZN x7Z) — N

((d,d), (p.q)) = SN (di—pil +ld—q|

The next result quantifies the energy needed to change degrees in the weak limit.

Lemma 3. ([/], Lemma 1) Let (uy)n C Jpq be a sequence weakly converging in H' to u. Then
liminf E(uy) > E(u) 4+ mae(deg(u, D), (p, q)) (4.1)
n

and for e >0
hmninf E(un) = Ee(u) + mee(deg(u, D), (P, q))- (4.2)

The next lemma is proved in [5].
Lemma 4. Let d = (dy,....,dx),p = (p1,....,pn) € ZV, q¢ € Z. There is 0.(1) et 0 (depending of
(p,q,d)) s.t. forue qu we have
E(u) > Io(d, D) + wa((d, d), (p, q)) — 0c(1). (4.3)
Here, d := > d;.
We present below a simpler proof than the original one in [5].

Proof. Let (p,q,d) € ZN x Z x Z~. We argue by contradiction and we suppose that there are
0>0,¢e,]0and (up), C j;iq s.t.

Ee,(up) < Io(d, D) + wee((d, d), (. q)) — 0. (4.4)

Since (uy,)y, is bounded in H', there is some u s.t., up to subsequence, u,, — v in H' and u,, — u in
L*. Using the strong convergence in L*, (4.4) and Proposition 1, we have u € H'(D, Sl)ﬂj(id = Fq.
To conclude, we use (4.4) combined with Lemma 3

Iy(d, D) + m=((d,d), (p,q)) — 6 > liminf E. (uy,)
> liminf E(uy)
> E(u) +n((d,d),(p,q))
> Iy(d, D) + mz((d, d), (P, q))
which is a contradiction. O



One may easily proved (see Lemma 14 in Appendix C) that for n > 0, i € {0,..., N} and
u € jdeg(u7'D), there are vy € jdeg(%'p)iei s.t.

E.(vy) < E:(u)+7+mn.

The key ingredient is a sharper result which holds under two additional hypotheses. In order to
unify the notations, we use the notation wq for 2. We may now state the main ingredient in the
proof of Theorem 2.

Lemma 5. Let u € Jp 4 be a solution of (3.1), (5.2).
Assume that ) 1
abdeg;(u) € (d; — §’dj + 5)’ Vj e Nn. (4.5)
Let i € {0,..., N} and assume that there is some point ¥° € Ow; s.t. u x d-u(z') > 0. Recall that T
is the direct tangent vector to dw;.
Then there is 4 € Jp g)—e; S-1t-
E.(@) < Ee(u) + 7

and

1 1
abdeg;(u) € (dj — 5,d; + 5)’ Vj € Nn.

3

The proof of Lemma 5 is postponed to section 6.
We also have an upper bound for m.(p, q,d).

Lemma 6. Let ¢ > 0 and (p,q,d) € ZY x Z x ZN. Then
me(p,q,d) < Io(d, D) + wa((d, d), (p, q))- (4.6)
To prove Lemma 6, we need the following

Lemma 7. Letu € J,e > 0 and § = (61, ...,0n,00) € ZNTL. Foralln > 0, there is uf] € Jdeg(u,D)+6
s.t.

E.(up) < Ec(w)+m > |6l+n (4.7)
i€{0,...,N}
and
lu = up |l 12y = 0y(1), 04(1) o0 (4.8)

The proof of Lemma 7 is postponed to Appendix C.
Proof. We prove that for n > 0 small, we have
me(p,¢,d) < Io(d, D) + w((d, d), (p,q)) + 7.

We denote ug € Eq s.t. E(ug) = Ip(d, D). Then abdeg;(ug) = d;.
Using Lemma 7 with 6 = (p, ¢) — (d, d), there is u, s.t.

Uy € Jp,g) and Ee(uy) < Ec(uo) +m((d,d), (p,q) +1 = Io(d, D) + 7((d,d), (p,q)) + 7.

Furthermore, by (4.8), [luo — uyllr2(py = 0y(1). For n small, by Proposition 1, we have ug € T3,
which proves the lemma.



5 A family with bounded energy converges

In this section we discuss:

1. the asymptotic behaviour of a sequence of solutions of (3.1), (3.2), (ue, )n C T3, (€n | 0) with
bounded energy , i.e, E., (ue,) <A,

2. the asymptotic behaviour of a minimizing sequence of E. in jr‘,i,q,
3. a fundamental lemma.

Proposition 3. Let &, | 0, (ue,)n C J5, with ue, a solution of (3.1), (8.2), s.t. for A >0, we
have

E., (ue,) < A.

n

Then, denoting he, the unique solution of (3.8) with u = u,,,, we have
he, — hg in HY(D), (5.1)

where hg is the unique solution of (3.11).
Up to subsequence, it holds
ue, — ug in H (D), (5.2)

where ug € Eq is the unique solution of (3.10) up to multiplication by an S*-constant.

Proof. Using the energy bound on u., and a Poincaré type inequality, we have, up to subsequence,
he, — hin H'.

In order to establish (5.1), it suffices to prove that h = hg.

The set H := {h € H'(D,R); 9-h = 0 on D and hjgq = 1} is closed convex in H'(D,R).
Since (he, )n, C H, we find that h € H.

By boundedness of E., (u.,), Lemma 1 implies that u., is bounded in CZ_(D,R?). Therefore
(D, C) s.t., up to subsequence, u., — u in C{_(D,R?), L*(D,R?) and weakly

there is some u € O} loc

loc
in H'(D,R?).
Using the strong convergence in L* and the energy bound on u,,, we find that u € H'(D,S').
It follows that 01u X dou = 0 in D. On the other hand,

Ah., = 201u., % Oyu., — 0in CP_.

Therefore, h is a harmonic function in D.
In order to show that h = hg, it suffices to check that

O, hdo = 27d;.
Ow;

To this end, we note that, since u., x (01V;0aue, — 02V;01ue,) = VV; - Vh,, , we have from (2.1)

21 abdeg; (ue,, ) = / VVi-Vh,, de —— [ VV;-Vhdx = / Oyhdo.

n—oo D

Noting that, by Proposition 1,

n—oo

abdeg;(ue, ) —— abdeg;(u) = degy,, (u)
abdeg; (ue,,) — d;

10



and that 0 = / Ahdx = 0,h do, we obtain
D oD

/ Oyhdo = Oyhdo = 2md; = 27 degy,, (u).
BD\awZ awi

In the first integral, v is the outward normal to D, in the second, v is the outward normal to w;.
This proves (5.1).
We next turn to (5.2). Let ug be s.t., up to subsequence, u., — ug in H*(D). Since |u,| <1,
we find that
x Vu., — ug x Vug in L?(D).

In view of (3.8) and (5.1), we have ug x Vug = V+hg. Therefore,

Ug

n

E(UO) = E(ho) = IQ(d,D)

Proposition 1 implies that ug € Eq. Then ug is the unique, up to multiplication by an S'-constant,
minimizer of F in Fq. O

Proposition 4. Let (p,q,d) € Z¥ x Z x ZN. For e > 0, let (u5)n>0 C qu be a minimizing
sequence of E. in jr‘:q. Then there is €4 (p,q,d) > 0 s.t. for 0 < e < 4, up to subsequence, u, — u
in HY with w which minimizes E. in j&ig(u D)

Proof. For € > 0, let (u5,), C jg,q be a minimizing sequence of E. in J. Up to subsequence, using
Proposition 1,
u;, — u° in H' with ¢ € j(gg(usp).
Using Lemmas 3 and 6, we see that {deg(u®,D),e > 0} C Z" x Z is a finite set and that F.(u®)
is bounded. Therefore, with Proposition 1, there is e4 > 0 s.t. [abdeg;(u®) — d;| < % for all i € Ny

and 0 < € < ¢4.
We argue by contradiction and we assume that there is € < €4 s.t.

EE(U’E) = mﬁ(deg(u67D)7d) + 2777 n > 0.

Let u € jcﬁag(us p) bes.t. E.(u) < mg(deg(u®,D),d) + n.
Using Lemma 7 with § = (p, ¢) — deg(u®, D), there is v € Jp 4 s.t.

E.(v) < E:(u) + m((p, q),deg(u®, D)) + .

Furthermore, by (4.8), ||u — v|/;2 can be taken arbitrary small, so that we may further assume
v E jr(iq' To summarise we have

me(p,q,d) = limninf E.(u})
> E.(u®) + m((p,q),deg(u®, D))
= me(deg(u,D),d) + 2n + m2((p, q), deg(u®, D))
> E.(u)+7me((p,q),deg(u®, D)) +n
> E.(v) > me(p,q,d).

This contradiction completes the proof.

The main tool requires the following lemma.
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Lemma 8. Let (p,q,d) € ZN x Z x Z" and A > 0. There is e5(p,q,d,A) > 0 s.t. for e < e5 and
ue JS,. a solution of (3.1) and (3.2) with E-(u) < A, if d > 0 (respectively d; > 0), then there is
29 € 09 (respectively x € Ow;) s.t. u x O,u(x’) > 0 (respectively u x Oyu(xt) > 0).

Here 7 is the direct tangent vector to 9S) (resp. Ow;).

Proof. We prove existence of z° € 90 under appropriate assumptions. Existence of z* is similar.
We argue by contradiction. Assume that there are €, | 0, (u,) C jg,q solutions of (3.1) and
(3.2) with Eg, (uy) < A s.t. up X Oruy < 0 on 0N
1
Since g = o Uy, X Orly,, we have g < 0.

T Jon
Up to subsequence, by Proposition 3, we can assume that

U, — up a.e. with ug the unique solution (up to S) of (3.10).

Let 29 € OQ and let y : 9Q — [0, H!(09)[=: I bes.t. v~ is the direct arc-length parametrization
of Q2 with the origin at xg.
We denote 6, : I — R the smooth functions s.t.

Un () = @ v 2 € 90
0<6,(00) <27 '
Then, for all n, 6,, is nonincreasing and 6,, € [6,,(0) + 27q, 6,,(0)] C [27q, 27].
Using Helly’s selection theorem, up to subsequence, we can assume that 6,, — 6 everywhere on
I with € nonincreasing. Denote = the set of discontinuity points of 6. Since @ is nonincreasing, = is

a countable set.
Using the monotonicity of 6, we can consider the following decomposition

0 = 6°+0°, with #° and #° are nonincreasing functions.

6° is the continuous part of # and 6° is the jump function. The set of discontinuity points of 87 is

m

For ¢t ¢ =,
)= > {0(s+)—0(s—)}.

0<s<t,s€ =

We obtain easily that ug(z) = W@ ae. z € OQ. Since ug, 0,, and v have side limits at each
points and ug = €°7 a.e., we find that

up(zt) = @] for each z € HQ.
Using the continuity of ug, we obtain e®?@H)] = ¢@(@=) v 1 € 9O which implies that
Oy(x+)] — Oy(xz—)] € 27ZV = € O9.

For t ¢ =,
) = > {0(s+)—0(s—)} € 2nZ.

0<s<t,s€ =
Then S
up(x)e "0N@) = @] — 1 a6 2 € ON.

Finally, ug(z) = e"’®)] ae. € 99, which is equivalent (using the continuity of the functions) at
f¢o
ug = e .

We have a contradiction observing that
0 < 2rdegyq (ug) = 2md = 0°(H1(8Q)) — °(0)

and using the fact that ¢ is nonincreasing. O
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6 Proof of Lemma 5

We prove only the part of the lemma concerning 9€). The proof for the other connected com-
ponents of 9D is similar.
For reader’s convenience, we state the part of Lemma 5 that we will actually prove

Lemma . Let u € Jp 4 be a solution of (3.1) and (3.2).

Assume that
abdeg;(u) € (dj — é’dj + é), Vje Ny (4.5)
and that there is some point x° € 0Q s.t. u x Oru(x°) > 0.
Then there is u € Jp g—1) S-1.
E (i) < Ec(u) +,
1 1

abdeg; () € (dj — -, d; + 5)

Vj e Np.
3 v V] N

6.1 Decomposition of D

By hypothesis, there is some z° € 9Q s.t. 9,h(z") > 0. Without loss of generality, we may
assume that u(z?) = 1.

Then there is ¥ C D, a compact neighbourhood of 2, simply connected and with nonempty
interior, s.t.:

e v:= 00 NAIY is connected with nonempty interior;

.1‘0

is an interior point of ~;
e |[Vh|>0,p>0,h<1in7T;
e J,h >0 on v (v the outward normal to €2).

It follows that, in Y, 6, a lifting of u/|u| is globally defined (we take the determination of
which vanishes at z2°) .
Using the inverse function theorem, we may assume, by further restricting Y, that there are
some 0 < n,d <1 s.t.
T = {r € Dst. dist(z,2) <n, 1 —§ < h(z) <1, 25 < () < 26}.

o

We may further assume that, by replacing ¢ by smaller value if necessary and denoting Dg :=7
(see Figure 1), we have

Q) ©:=(0,h)p,: Ds — (—26,20) x (1—4,1) is a C'-diffeomorphism,
r (0,h)

(ii)) 0Ds\ ({h=1}U{h=1—-06}) =0Ds N ({0 = =20} U {0 = 20}),

(i) Dy is a Lipschitz domain.

We consider §p > 0 s.t. for § < &g, Dy satisfies previous properties and

T ‘Habdeg(u) —d|le — %‘
6 max; |[Villor ) (Ee(u) + )"/

|D(5|1/2 < (61)

13



Using Proposition 1 and (6.1), if v € HY(D,C) satisfies u = v in D\ Ds, |v] < 2 in D and
E.(v) < E-(u) 4+ 7, then we have abdeg;(v) € (d; —1/3,d; + 1/3).
We let § < §yp and we denote

Dj:=071[(=6,6) x (1-10,1)],
Dy == 071[(=26,—6) x (1 —4,1)],
Df == 071[(6,20) x (1 —46,1)],

so that Dj, Dy and Dj are Lipschitz domains (see Figure 1).

Figure 1: Decomposition of D

6.2 Construction of the test function

We consider an application (with unknown expression in Dj) 9, : D — C (¢t > 0 smaller than ¢)

s.t.
{ 1 in D\ Ds

() = (6.2)

0 — (1 —typ(h
e —0-W0) . aanaps
e (1 —tp(9)) — 1
with 0 < ¢ <1 a smooth, even and 2m-periodic function satisfying

Pl(~5/2,6/2) = L and @z z\(—s,8) = 0.

14



It is clear that vy 9p € C*°(9D) and
degg,, (¥¢) = 0 for all 7 € Ny. (6.3)

Expanding in Fourier series, we have

e — (1 —tp(0))
e (1 —tp(9)) — 1

=1 —tha(t)+t Y bp(t)e *FLr (6.4)
k£—1

— (1 —tp(0))

Noting that the real part of 26(1 1) — 1

that by (t) € R for all &, t.
The following lemma is proven in Appendix B

is even and the imaginary part is odd, we obtain

Lemma 9. We denote, for e € ST,

e —(1-1)
e (1 —1¢t)—1

e — (1 —tp(d
\I’t(ew) = o=l _( tgo(@g)i(—))l and ft(ew) =

Then:
1) ¥, — F| < Cst on S';

z—(1—t .
2) ]:t(Z) == ﬁ == (1 - tcfl) +1 Z Ck(t)zk—’—l, with

(t—2)1—t)F ifk>0
k=140 if k<=2,
1 ifk=—1
3) |bk(t) — cp(t)| < C(n,d8) (L+|k])™", Yn > 0 with C(n,d) independent of t sufficiently small.
It is easy to see using Lemma 9 that, for ¢ sufficiently small,
degg1 (V) = deggi (F) = —
Using the previous equality and the fact that 0,0 > 0 on ~, we find that

It will be convenient to use h and 6 as a shorthand for h(z) and 6(z). With these notations, we
will look for ), of the form

() = Py(h,0)

(1 —tf_y( )+t > be(t) fr(h)e KT in DY
k£—1
= o 5 (520 in Df - (6.6)
0+9 26 + 6 . _
5 + 1y (h, =) —— 5 in Dj

We impose fr(1 —60) =0 and fx(1) =1 for k € Z.
Our aim is to show that for ¢ > 0 small and appropriate f’s, the function v, defined by (6.6)
satisfies (6.2) and

L.(ye¥ Ds) < m. (6.7)
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Here, L. is the functional defined in Lemma 2, so that
E-(pyre®, Ds) = Ex(u, Ds) + Le(¢1e”, Dy).
Then, considering
Pt if |¢] <2
Y =

Ve
o f
2|¢t| 1 ‘¢t‘ > 2

and setting

u in'D\D(g ’

in view of (6.7), it is straightforward that @ satisfies the conclusion of Lemma 5.

ﬂ:{ pwy = Pyu in Ds

6.3 Upper bound for L_(-, Ds). An auxiliary problem
If we let w : [1 — 4, 1] x [—24,20] be s.t. w(h(x),8(z)) = w(x), then we have
Vwl> = 10wl = ) |0wi(h,0) 0+ dpi (5, 0) 0,6/

= (010w (h, )| + |05 (h, 0)*)|VO]*.

Therefore,
1 - - N
Lew.Ds) = 5 [ {(onaln.0F + awi(h 0)F ~ (0, 0)7) 190 +
)
+ ot (k)2 ) da
2e2 ’
1

IN

5 [ {10 + a0 - o o)f +
Ds

+ Me™ — @(h, 6)]2};)2]V0\2dx (6.8)

= M)\ (w, D(;),

provided that |w| <2 in Ds and A > W.
In order to simplify formulas, we will write, in what follows, the second integral in (6.8) as
1

5/ {10l + |y |2 + Xe® — 2} | V0P da.
Ds

The same simplified notation will be implicitly used for similar integrals.

Remark 1. If we replace w by w := %min(!w[,?), then M)y does not increase. Furthermore

replacing w by w does not affect the Dirichlet condition of (6.2). Therefore, by replacing w by w if
necessary, we may assume |w| < 2.

We next state a lemma which allows us to give a new form of M.

Lemma 10. Let f € CY(R,R). Then, for k € Z, we have
1
20 f(s)ds if k=0
4

| feosteo)? V0P =3, ,

5 T s (S) ds ka:;«éO

1
/f(h)pQ\W!de:é/ f(s) ds.
Dy 1-6
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Proof. This result is easily obtained by noting that the jacobian of the change of variable z —
(O(x), h(x)) is exactly p?|VO)|>. O
e where 1y of the form given by (6.6), we have

1 i L P
My (w, Ds) = 5/ {\Bhw\Q + |0g10|? — ] + Me® — w\Q} p*IVO|% d.
Ds

For w =w; =

We next rewrite M) (w, Dj). Recalling that for a sequence {ax} C R, we have

2
Zake”w = Zaz +2 Z agay cos|(k —1)0].

kEZ kEZ k€7,
k>l

Then we obtain

My (w,D}) = /{ sz[ + fi2 k2+)\—1)}

D; keZ
—t Y bpfu(k + 1) cos[(k + 1)0]
k#—1

— 23 boabplf 1 fh — fo1fulk — X+ 1)) cos[(k + 1)0]
k#—1

+ 23 bl fif] + (KL + X = 1) fi. fi] cos[(k — 1)9]}p2!V9\2- (6.9)
kl#—1
k—I1>0

Using Lemma 10 and (6.9), we have

My(w,Df) = 62> broe(fe) — 2t Y bysin[(k + 1)0] 1 fr
kEZ k-1 1-5
—2t° Z b 1bkw/ {foifi— (k= A+ 1) f1fi}
k#—1
+2t » bkblw/ {fLf+ R+ X=1)frfi} (6.10)
kA1 k-1 1-¢
k—1>0
1
= Ra(w)—2t > besin[(k + 1)J] fe- (6.11)
k1 1-6

with
Ra(w) = 0 bign(fe)

keZ
9 sin[(k + 1)0
=262 > b ogbp————— A / {Fflafi— (k= A+ D) f 1 fi}

k#—1
22 bib L (kl+X—1
+262 ) biby {fkfl + ) fifi}s
k,l 1
k—7l£>0

1
o) = [ {2 +air?y
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and

o = VEZ+X—1.
We next establish a similar identity for M) (w, D5). Using (6.6), we have
1 - ~ v
My(w, D) = 5 /D {1005, 0) + 1855 (1, 0)2 = w]? + Ne™ — w]?} p? V0]
6

1 - 20 F 0
= 5 [ s (250)

+672(1+ A (26 7 0)%)|r(h, £6) — 11 F 20~ Tm ¢ (R, ié)}pﬂvw

= o5 | {owdin o s o

9452
26 pE

+ (14X (265 0)°)[du(h, £0) — 12 } 2 VO

1
+t Y b(t)sin[(k + 1)5) F- (6.12)
b1 1-5

Here, Im 1) denotes the imaginary part of ¢. To obtain (6.12), we used the identity
100 (™) ? = 18g01* + [ + 20 x Dpy.

6.4 Choice of w = 1),e?

We take
ek (h—1) e —ak(h—1)
With this choice, by direct computations we have
2
O fr) = o (1 + e 1 1) , (6.14)
1
1 2
and for k,l € Z s.t. k # =+,
1 f f _ 1— 6_2(ak+al)6 1— e—Q(Oék—al)é (6 16)
157 (o o) (1= e 2ad)(1 —e=28)  (ay —a)(1 — e 2awd)(e2d —1)”
1 1 f/f, _ 1— 672(ak+al)5
agoy Ji_s ! (a + ag)(1 — e20%0)(1 — e —20)
1 — e 2(ar—a1)d

+ ° (6.17)

(ar —ag)(1 —e~20md)(e2md — 1)

Using (6.11)—(6.17), we may obtain the following estimate, whose proof is postponed to Ap-
pendix B.

Lemma 11. We have

Mj(wy, D) < 6 — 20t +482 Y erey Sm[lik__ll)é] kl‘i 7+ olb). (6.18)

k>1>0
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6.5 End of the proof of Lemma 5

We denote (k- 18] K
sin[(k —
S(4,t) := Z ey R
k>1>0
ntoo1 l
Setting n = k — [ and noting that (n+D =—+ 771, we have

n+2l 2 2(n+20)

(t —22)25(5’t) = > (- t)"w ST =1+ > (1 — )" sin(nd)
n>0 1>0 n,1>0

Here, we have used the explicit formulae for the ¢;’s, given by Lemma 9.
Using Appendix A (see Appendix A.1) we find that for 0 < ¢ < ¢, we have

(1= 1—t—cosd cos §
S(6,t) = 57 arctan — + arctan e
(1 —t+cosd)(2—1t)

8t sin
We note that

EMctam<1—t—cos§> _ arctan<1—cos<5>_ tsin o +O)

sin 0 sin 0 2(1 — cosd)
o tsind 9
= -5 + Ot
2 2(1 —cosd) +0()
and
rctan CosON _ T _ o
M \Gns ) T2 77
From (6.20)—(6.22) we infer
1 1[(1—t+cosd)(2—1) sin &
< (m—0)++ ~ 1
50.1) < 4¢2 (r—0)+ t [ 8sin § 4(1 — cos d) o)
with
(1—t+cosd)(2—1t) sin § - (1 + cosd) sin § B
8sind 4(1 — cosd) 4siné 4(1 —cosé)
From (6.18),

My (wy, Ds) < § — 26t + 4t2S(5,t) + o(t).

Using (6.23) and (6.24),
4t28(6,t) < — 6 + o(t).

Finally, we have by combining (6.25) with (6.26),
M) (wi, Ds) < m — 26t + o(t) < m for ¢ small.

We conclude that for ¢ sufficiently small, LZ(w,, Ds) < 7.
6.6 Conclusion
i 2
i == ypu, with ¢ = ¢t7mm|(lf|t|’ )
- - t

o E.(a) < Ec(u) + 7 (by (6.8) and (6.27)) ;

, satisfies the desired properties i.e.:

e icJd, | (by (6.1), (6.3) and (6.5)).
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6.7 A direct consequence of Lemma 5

By applying Lemma 5 and next Lemma 7, one may easily obtain the following

Corollary 1. Let u € Jp 4 be a solution of (3.1), (3.2).

Assume that 1 1
abdeg;(u) € (d; — §’dj + g), VjeNn.

Assume that there are ig € {0, ..., N} and xg € Ow;, s.t. u x Oyu(xg) > 0.
Then for all § = (61,...,6n5,00) € ZNT! s.t. §;, > 0, there is G5 € J(p,q)—5 -t

E-(u5) < Ex(u) +w§j|6i|

and 1 1
abdegj(ﬁg) € (dj — §’dj + g), Vj € Ny.

7 Proof of Theorem 2

The energy estimate is obtained from Lemmas 4 and 6.
We call (p,q,d) a good configuration of degrees if

(p,q,d) € ZV x Z x (N*)N, p; < dj and ¢ <) d; =: d.

7

We first prove Theorem 2 when
2((d,d),(p.q) =|dr —p1| + ... +|dy —pn|+[d— g/ =0 p=dand g =d.

For € > 0, let (u$), be a minimizing sequence of E in j(?d. For ¢ < g4(d,d,d), up to subsequence,
using Proposition 4, u, — u. weakly in H! and strongly in L* and . is a (global) minimizer of E.
: d
mn jdeg(us,’D)'
Applying Lemmas 3 and 4, for ¢ < ea(d) < g4 (here, €3 is s.t. the o-(1) of Lemma 4 is lower
i

than —),
2

Iy(d, D)

Y

E.(uc) + wae(deg(ue, D), (d, d))
Io(d, D) — g + 2rz(deg(ue, D), (d, d)).

v

1
It follows, &(deg(ue, D), (d,d)) < 1 which implies u. € Jg .
We now prove (following the same strategy) Theorem 2 for a good configuration (p, ¢, d) s.t.

2((p,q), (d,d)) > 0.

For € > 0 consider (uf), a minimizing sequence of E; in qu.

For ¢ < £4(p, q,d), up to subsequence, using Proposition 4, u, — u. weakly in H' and strongly
in L* and u, is a (global) minimizer of E. in jfeg(us,p).

Let A := Iy(d, D) + =((p,q), (d,d))r + 1, by Lemma 8, for € < e5(p, q,d, A), there is 22 € 9
s.t. (ue x Orug)(z2) > 0.

The third assertion in Proposition 1 and the energy bound give the existence of 0 < 5(p, ¢, d, A) <
e5(p, ¢, d, A) s.t. for 0 < e < &b,

abdeg;(us) € (di — =,d; + =).
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Fix e} (p, ¢, d) > ea2(p,q,d) > 0 s.t. the o.(1) in Lemma 4 is lower than g (here 5 is defined in

Lemma 8).
Using Lemmas 3, 4 and 6, we have for € < g9

Iy(d, D) + m=((p,q), (d,d)) liminf F.(u}) (by Lemma 6 and the definition of (u),)

>
> E.(u) + 72 ((p,g), deg(us, D)) (Lemma 3)
> Io(d, D) ™ [z ((p. ). deg(u7, D))

&((d,d),deg(u®,D))] — = (Lemma 4)

2
It follows that
2 ((p,q),deg(u”, D)) + = ((d, d), deg(u", D)) = =((p, 9), (d, d)). (7.1)

Thus
pi < degy,, (u°) < d; and g < degyq(u”) < d.

Assume that there is € < g9 s.t. u. ¢ qu. Then from Lemma 8 and (7.1), one may apply Corollary
1 to obtain the existence of u, € jlgq s.t.

ms(pa q, d) < Es(as) < Ez—:(us) + mee ((p, Q)a deg(ue, D)) < liminf Ee(u;) = me(p, q, d)

which is a contradiction.
Thus for € < €9, ue € qu and consequently u. is a minimizer of E. in jr?,q

A Results used in the proof of Lemma 5

A.1 Power series expansions

For X € C, | X| < 1, we have

| X|¥
> — =~ (- X]), (A1)
E>1
1
d Xk = % (A.2)
k>0
kXF = A.
E>1
X sind
> sin(ké)X* = T X cons T X7 (A.4)
k>0
. Y _
Z Sln(7]€(5)X]C = arctan ,7(:085 + arctan C985 , (A.5)
k sin é sin
k>0
l X + cosd 1 X —cosd
in(nd)—— X"+ — - tan [ ———— | + Cst(0). A6
Zsm(n )n+2l 4(1— X?)sind 4sinZs an( sin 0 >+ st(9) (4.6)

n,[>0

Proof: The first four identities are classical. We sketch the argument that leads to (A.5) and (A.6).
The identity (A.5) follows from (A.4) by integration.
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We next prove (A.6). Let

fx)=>" sin(né)ﬁX"Jﬂl.

n, >0
On the one hand, by (A.3), (A.4),
’ o l . n 21 X2 Sin5
FX) = X rgosm(né)X bZOZX - (1—-X2)2(1 —2X cosd + X2)

On the other hand

d X+coss 1 X —cosd\ X?sind
dX \4sind(1 — X2) 4sin?4 sin & T (1—-X2)2(1-2Xcosd + X2)

A.2 Estimates for f, and oy
Recall that we defined, in section 6, fr and ay by

con(h=1)  g—ap(h—1)
fk(h) = 1 _ e—2ak6 + 1 _ 620%6 ?

Oék:\/k2+)\—1.

In this part, we prove the following inequalities:

1
=[k|+0(— AT
o=l +0 (57 ) (A7)
| fi(h) — e "FIO=R)| < % with C independent of k € Z*, h € (1 —§,1), (A.8)
|f1(h) — |kle~IFIO=R)| < %, with C independent of k € Z*, h € (1 —6,1). (A9)

Proof: The first assertion is obtained using a Taylor expansion.
Let gp(u) = e we have

() — O < gy () — gu((KD)] + 5

¢ _ 11 «C _C
<

< s 4 — |k < —=4 =< —=.
The proof of (A.9) is similar, one uses gp,(u) = ue™™1) instead of gy,
A.3 Further estimates on f; and «;
We have
1 1
OS/ { éZ—Oéika} < / { éQ—szkQ}
1-6 1-6
< |k|i T with C independent of k € Z, (A.10)
! C
/ fefil < —————=, with C independent of k,l € Z, s.t. |k| # [l (A.11)
15 max(|k|, [I])
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/15 fifi

Proof: Actually (A.11), (A.12) still hold when |k| = |/|, but this will not used in the proof of
Lemma 5 and requires a separate argument.

Since ay, > |k|, X X
[ {sz-atret< [ {n2-wnl)

< C (min(|k|, |I|) + 1), with C independent of k,l € Z, s.t. |k| # |]. (A.12)

By direct computations,

! 4602 C(6,n)
12 2,2 _ k ’ *
OS\/l_é{ k _akfk }_ (1—6_2ak6)(e20‘k6—1) S kn ) Vn €N )

[ demwenh= [ {-aaseh o [

1 1 1 1 1 1

2

= — oOl——)=0—-).
1_5fk 20 <1—e_20‘k5 1—620‘k5> + <]k\ —i—l) <]k\ —i—l)

Which proves (A.10).
For |k| # |I], we have

/115 Tefi

1 — e —2(ar+tai)d 1 — e 2(0p—a)d

(ax + o) (I — e 20)(I — ¢ 205)  (ay — ar)(1 — e 2ad)(c2d — 1)

CA—
max(|k|, [1])

1— e_Q(Oék_al)é
(ak — ag)(1 —e—2on0)(e2® — 1) |7

We assume that |k| > |I| and we consider the two following cases: a; < ai < 2qq and ay > 2qy.
Noting that 1=¢ ="

xT

is bounded for x € R% , we have

1—e —2(ap—ay)d

(ak _ Oél)(l _ e—Qak(S)(eZozl(S _ 1)

< ¢ < ¢
= o200 = max([K] 1]

if o < oy, < 20qy,

1 — e 2Mar—)d C C " )

(Oék _ Oél)(l _ e—2ak5)(e2al5 _ 1) = ap—aq max(|k:|, |l|) I o > 204.
This proves (A.11).
For [K| # |1,

1 Ff = Qo (1 — e*2(ak+az)5) . anoy (1 _ 672(0%704)5)
s T (o) (1 — e 20w0) (1 — e 2018 " (ay, — o) (1 — e —20w0) (e 2000 — 1)
It is clear that,
akal(l _ e—2(ak+al)6) Ry '
< k|, |1 1]. Al

(g + o)1 —e 20)(1 —e29) = "oy +ay — C lmin([, ) +1 (A.13)

As in the proof of (A.11), we have
ooy (1 — e 2(an—a)d) Caroy )
< <C k|, |l 1]. A.l4
(Oék _ al)(l _ 6720”“5)(620‘15 _ 1) — max(]k\, M) = [mln(| |,| |) + ] ( )

Inequalities (A.12) follows from (A.13) and (A.14).
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A.4 Two fundamental estimates

In this part, we let £ > [ > 0 and prove the following:

(poy + kl4+ X —1)(1 — e 2awta)dy  ofy 1
X = = @ A.15
M et e (T e 2) ki O \i¥1)” A
—1)(1 — e 2Aox—)d
Yo, — Qrt KA1 —c ) < e, (A.16)

T (o —ag)(1 el (e2? — 1)
The computations are direct:
2kl 2kl 2kl 1
Xk — k+1 (ap + ) (1 —e 2000)(1 — e 2000) L+ +0 <l+—1>
el e e (1)
(k+ D) (ag + ap)(1 — e 20%9) (1 — e ~2:9) 1
B O(kz+k2le_l‘5/2) < 1 >

(et D(on + an)(1 — e 200) (1 — o—2a00) O\

I+1
1
- ()

We now turn to (A.16).
If ap, > 20y (or equivalently, if ay —a; > %), then
(poy + kL 4+ X — 1)(1 — e~ 2ax—)d) -
(ak —oy)(1 —e 20w0)(e2m0 —1) = “ay

If ap < 2qy, then

(apay 4+ kl 4+ X — 1)(1 — e ~2Aax—x)d)

2 —2a;8 sl
(Oék - Oél)(l — e—Qak(S)(eQal(S _ 1) < Cl“e < Ce )

B Proof of Proposition 1 and of Lemma 9

B.1 Proof of Proposition 1

The proof of 1) is direct by noting that if u € H'(D,S!), then Oju and Gou are pointwise
proportional and deggq(u) = >, degy,, (u),

1
abdeg;(u, D) = o (—1)k/ (u X Opu)05_ Vi
k=1,2 D
1
= % o Viux ;udr = degag(u) — Y degy,, (1) = degy,, (u).

J#
Proof of 2). Since V; is locally constant on 9D, integrating by parts,

/ v X (31u 82‘/; — 8211,61‘/2) dx = / Uu X (811) ({92‘/; — 621) ({91V2) dx.
D D

Then

27|abdeg; (u) — abdeg; (v)| ‘ / (u—wv) x [(61 Vi Oau — 02V; 01u)
D

4 (81 Vi Do — DoV, aw)} dm(

V2||u - Ol ey Viller ooy ([IVull 2oy + [Vl L2 (D))
2llu — vl 20y IVill o1 (py [E-(u)? + E.(v)"/?]
Al = || 2oy | Vill o (py A2

ININ A
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We prove assertion 3) by showing that dist(abdeg;(uc),Z) = o(1). Using the first and the second
assertion, we have

dist(abdeg;(us),Z) < inf labdeg; (us) — abdeg; (v)]

UEE
< —HVHm JAYZ inf flue — v 2() (B.1)
veED
where Ef} := {u € HY(D,S") s / |Vul|? dz < A} # 0.

Now, it suffices to show that inf,¢pa [ue — v[|L2(py — 0. We argue by contradiction and we

assume that there is an extraction (g,,), L 0 and 6 > 0 s.t. for all n, inf ue, —vlL2py > 9.
veE 0
We see that (ue, ), is bounded in H'. Then, up to subsequence, u,, converges to u € H'(D,R?)

weakly in H' and strongly in L*.
Since |[|ue, |*—1|12(py = 0, we have u € H(D,S") and by weakly convergence, HVUHLQ < 2A.

To conclude, we have u € E) et ||ue, —ul|z2 — 0, which is a contradiction.

B.2 Proof of Lemma 9

1) We see easily that, with z = e we have
WE-FE  (-e@)-) AW ©2)
t [2(1 —1) = 1] [2(1 — te(0)) — 1]~ B(0,t) '

The modulus of the RHS of (B.2) can be bounded by noting that

e there is some m > 0 s.t. |B(6,t)| > m for each ¢t and each 0 s.t. || > §/2 mod 2m;
e there is some M > 0 s.t. |A(6,t)] < M for each t and each 6 s.t. |#] > §/2 mod 27,
e if |#| < /2 (modulo 27), then (¥, — F)t 1 = 0.

2) This assertion is a standard expansion.
3) With a classical result relating regularity of ¥; — F; to the asymptotic behaviour of its Fourier
coefficients, we have
2" 7|9y (g — Fi) [l oo sty
t(1+[k])"

b (t) — ex(t)] <

Ap

—~
>

7t)

Noting that, for 8, (U; — F)t ™' = ny

n

B, (0
e there is some m,, > 0 s.t. |B,(0,t)] > for each ¢ and each 6 s.t. 0| > /2 mod 2m;
t)

my
e there is some M,, > 0 s.t. |A,(0,t)| < M, for each t and each 6 s.t. |#| > 6/2 mod 27;
e if |#| < /2 (modulo 27), then (¥, — F)t~ 1 = 0.

Thus the result follows.
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B.3 Proof of Lemma 11

The key argument to treat the energetic contribution of Df;t is the following lemma.

Lemma 12. 1. [¢y(h,£6) — 1| = O(t);
2. |Onhi(h, £6)| = O(t] Int]).

Proof. (of Lemma 12)
Using Lemma 9, (A.2) and (A.8), we have

T e(h,6) =1 < |—eifoa(h) + Y epfu(h)e D)
kA1
+ = by — o) fo1(h) + Y (b — ex) fu(h)e DS
kA1
< C(9) { Z <(1 — t)e—(l—h)—zé)k N 1} _ o).
k>0

We prove that |9),1:(h,d)| = O(t|Int]). Using Lemma 9, (A.3) and (A.9),

O (h8)| < |—eoif+ Y epfre BT
k#—1

+ = =)L+ D (b — ) freETD0

k#A—1

IN

21>k [(1 —t)e*“**“*h)]k +O(|Int]) = O(|Int]).
k>0

Using (6.11), (6.12) and Lemma 12, we have (with the notation of section 6) that

My (wg, Ds) = Ry (wy) + o(t),
where

sin[(k + 1

R)\(wt) = 5t2 Z bi(bk(fk) — 2t2 Z b_lbk L 1

keZ k-1

l

1
L T S (RS AY S

sin _ 1
co 3 oD g A= g

kl£A—1
k—I1>0

The proof of Lemma 12 is completed provided we establish the following estimate:

sin[(k — 1)3] ki
1 ka1 oW

R)\(wt) <§— 20t + 4t? Z CcLCl
E,1>0
k—I1>0
The remaining part of this appendix is devoted to the proof of (B.3).
We estimate the first term of Rj:
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Using (6.14) and Lemma 9, we have (with C' independent of ¢)

D bio(f) = D Gen(fi)] < C. (B.4)

kEZL kEZ

With (6.14) and (A.7), we obtain

2 1
or(fr) = a(l+ 620{57_1) =|k|+ O <W> when |k| — oo. (B.5)

From (A.1), (A.3) and (B.5),
2y qon(fi) = Coa(f) +20E -2 (11— oulfi)

kez k>0
= 2(t-2)"> k(1 —t)* +o(t) =1-2t+o(t). (B.6)
k>0

We estimate the second term of R):
Using Lemma 9, (A.11) and (A.12), we have (with C' independent of t)

sin !
> (bk—%)wz 5[f/71f12—(k—>\+1)f71fk] <C.
kA1 -

Since b_1(t) is bounded by a quantity independent of ¢, in the order to estimate the third term of
the RHS of (6.10), we observe that there is C' independent of ¢ s.t.

ST g x| < C(Z “,j)kﬂ)

k>0 k+1 1-5 £
= C(|lnt]+1).
Finally, using Lemma 9, (6.16) and (6.17), we have
sin[(k 4+ 1)8] [!
2 bk[/ifl)]/ 5 flafie = (k= A+ 1) f-1fi]| < C(|nt| +1). (B.7)
1—

kA —1

We estimate the last term of R):
First, we consider the case k = —1 > 0 (i.e., fr = f1). Using (6.15), 0 < fr < 1 and (A.10), we
have (with C' independent of ¢)

sin2ks !
Zbkbfk / [ + (=K + X = 1) f7)
k>0 2k 1-4

<C.

It remains to estimate the last sum in R, considered only over the indices k and [ s.t. |k| # |].
We start with

sin[(k —1)8] [*
> (bxbi - CkCl)[]({:fl)] / (el + (kL+X = 1) fufi (B.8)
kA1 1-6
k—150,k#—1
= > k=)l — ) + b — @) + by — )] *

kA1
k—1>0,k#—1

. sin[(k — 1)0] /1
1

- [fefl + (BU+ X = 1) fi fi]-
-5
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By Assertion 3) of Lemma 9, the first sum of the RHS of (B.8) is easily bounded by a quantity
independent of ¢. By (A.11), (A.12) and Lemma 9,

in[(k —1)d L
> at-a™EZ0 g G- 0
b 150k

(1 —t)%|b, — /|l
< .
<c ¥ v o
k>00%—1
ke T> 0 kf—1

On the other hand (putting n =k — 1),

Z (1 =% b — o]l < Z (1—t)F |bz—Cl|l Z (1 —t)%|by — |l
k-1 = k- K+ |1
k>00%—1 k>0 k>0.1<—
k150, k1
1-)"
< > ( n) b — |l+ Z |bl—01||l|
1>0.n>0 <
= O(|Int]).

Similarly, we may prove that

in|(k — L
Z ¢ (b — Ck)w /1_5 [f]/gfl, + (Kl + X = 1) frfi]| = O(|1nt]).
b 150k

We have thus proved that

: _ 1
> - o™ [ s A= D] = o)
eyl

To finish the proof, it suffices to obtain

: B 1
) CkCzW /15 [fifi + (kL + X = 1) fifi]

k,l#—1
E—1>0,k#—1

sin[(k —1)d] Kkl _1
—Qchq P F 1l +o(t™).
k,l1>0
k—I1>0

Since ¢;;, = 0 for m < —1, it suffices to consider the case k > [ > 0. Under these hypotheses, we
have by (6.16), (6.17), (A.15) and (A.16),

> Sm —l)5]/1 ifi+ R+ X=1fefi] = 2 ) qusm[(k—l)é] il

k>1>0 K120 k—1 k+1

cralsin[(k —1)d]| 1
o ( 2 k=1 I+1]
k>1>0

We conclude by noting that

sin[(k —1)6 (1—t¢
M‘ < (HZ Z l) >§0(1+1n2t).

n>0 >0
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C Proof of Lemma 7

Lemma 13. Let 0 < 1,6 < 1, there is

M,

0 D(O,l) — C

. o M, () s.t. (C.1)

i) |M,s5| =1 on S deggi (M, 5) =1,
1

i) 5 [ VMR,
2 /b,

iii) ‘MW;‘ <2
w) if |0| > & mod 2r, then M, 5(e'?) = 1.
Claim:_Taking M—Wg instead of M, 5, we obtain the same conclusions replacing the assertion i) by
deggi (M, 5) = —1.
Proof. As in section 6, let ¢ € C*°(R,R) be s.t.
e 0<p<1,
e ( is even and 2m-periodic,

® P(-5/26/2) =1 and @z ap\(-66) = 0.
For 0 <t < 6, let M; = M be the unique solution of

M) = o= (=te0) - h )

e(1—tp(0)) — 1
AM = 0 in D(0,1)

It follows easily that M satisfies i), #77) and ). We will prove that for ¢ small i) holds.
Using (6.4), we have

— (1 —tp(9)) o (k10
1—th_y(t)) +t bi( C.2
e?(1 —tp(h)) —1 = k;I (€-2)
It is not difficult to see that
M(re) = (L—tb_1(t)) +t > _ by(t)r/FHeFHine, (C.3)
k-1
From (C.3),
1 2
—/ IVM|)? = tz/ da/ dr ) bp(k + 1)
2 Jp(0,) P
= 7Y Uik + 1)+ x> > |k+ 15}
k>0 k<—2
= 7t? Z ci(k+1) + O(t?) (using Lemma 9)
k>0
= t)%t? Z )2 (k 4 1) + O(t?) (using Lemma 9)
k>0
= 7+ O(t?) (using (A.2) and (A.3))
< 7w+ n for ¢t small.
We finish the proof taking, for ¢ small, M, 5 = M;. O
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Lemma 14. Letu € J,i € {0,....,N} and e > 0. For all n > 0, there is

+
Up € jdeg(u,D):l:ei

s.t.
B (uy) < Bo(u) + 7+ 7 (C4)

and
+ —
Ju = 2y = onl1), 0g(1) =, 0 (©5)

Proof. We prove that for i = 0, there is uf?' € Jdeg(u,D)+e,; Satisfying (C.4) and (C.5). In the other
cases the proof is similar. _ _

Using the density of C°(D,C) N J in J for the H'-norm, we may assume u € C°(D,C) N J.

It suffices to prove the result for 0 < n < min{1073,£2}.

Let 2 € Q and V;, be an open regular set of D s.t. :

IV, N oD #0, |V,| <n?,

0

e 7 is an interior point of 92 N9V},

V), is simply connected,

lu? < 1+9%in V,
o [[Vullr2qy,) <7

Using the Carathéodory’s theorem, there is

oV, — D(0, 1),
a homeomorphism s.t. @y, : V;; — D(0,1) is a conformal mapping.
Without loss of generality, we may assume that ®(2%) = 1. Let § > 0 be s.t. for |#| < & we have
®~1(e) € 9V, N 0N
Let N, € J be defined by

B 1 ifx €D\ V,
Ny () = { M,z 5(®(x)) otherwise

Here, M, ;5 is defined by Lemma 13. Using the conformal invariance of the Dirichlet functional, we
have

1 1
—/WVMP:_/ IV M,z 51> < 7+ 0% (C.6)
2 Jy, 2 Jp)

It is not difficult to see that u,} 1= uNy € Tieg(u,D)+eo- Since [Ny| < 2 and || N, =1 L2(py = 0y(1),
using the Dominated convergence theorem, we may prove that uN,, — u in L?(D) when  — 0. It
follows that (C.5) holds.

From (C.6) and using the following formula,

IV (wo)? = [o]?|Vul® + [uf*[ Vo] +2 3 (005u) - (udjo)

§=1,2
we obtain
1 1
5 [Vl = 5 [ S INPITUP 4 WP ITN 2 Y (V2y0) - iy )
2 Jv, 2 Jv, j=1,2
< () +0?) + 2| VullZz ) + 4V T+ 2Vl 2 IV Nyl 2 vy
< w+g (C.7)

30



Furthermore, we have

From (C.7) and (C.8), it follows
EE(U$7D) = E(u, D\ Vn) + Ee(u;7 Vn) < Ee(u,D) + 7+ 1.
The previous inequality completes the proof. ]

We may now prove Lemma 7. For the convenience of the reader, we recall the statement of the
lemma.

Lemma . Letu € J, e >0 and § = (61, ...,0n,00) € ZNTL. For allm > 0, there is uf, € Jdeg(u,D)+6
s.t.

E.(up) < Ec(w)+m > |6l+7n (4.7)
i€{0,...,N}
and
lu = up || 12y = 0y(1), 04(1) 00 (4.8)

Proof. As in the previous lemma, it suffices to prove the proposition for 0 < n < min{1073,£2} and
ue C'D,C)NJ.
We construct ug int; = Z |0;] steps. If £; = 0 (which is equivalent at 6 = Ozn+1) then,
i€{0,...,N}
taking ug =u, (4.7) and (4.8) hold.
Assume 01 #0. Let ' = {i € {0,..., N}|d; #0} #0, L = CardT" and pu = EE We enumerate

1
the elements of I' in (i )nen, s.t. for n € Np_; we have iy, < ip41.

x
Let o be the sign function i.e. for x € R*, o(z) = —.

]

For n € Ny and [ € N5, |, we construct

l
Un € jdeg(vifl ,D)+0(d;)ei,

s.t
d; .
v8 =u, 1) = vlh"l_ﬁ with for n =1, 9;, =0,
I+
A ={ G0k o 2o 0<i<lal
Here, (vil)ff stands for uff defined by Lemma 14 taking u = v}, and n = p.

It is clear that v!, is well defined and that for n € Np, v, = vl{sinl € Jdeg(vn_1,D)+6;,e;, With

Vo = Uu.
Therefore, using (C.4), we have for n € Nz,

Up € jdeg(u,D)+ZkeNn di ey EE(vn) < EE(U) + (7‘(‘ + :U’) Z |5lk|
keN,
Taking n = L, we obtain that
ug =L € jdeg(u,D)Jréa EE(ug) < EE(U) + Z |5l| +17.
1€{0,...,N}

Furthermore, uf] is obtained from u multiplying by ¢; factors N;, | € Ny,. Each Nj is bounded by 2
and converges to 1 in L?-norm (when n — 0). Using the Dominated convergence theorem, we may
prove that uf] satisfies (4.8).

O
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