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We consider, in a smooth bounded multiply connected domain

; the main difference stems in the construction of test functions with energy control.

This article deals with the existence problem of local minimizers of the Ginzburg-Landau functional with prescribed degrees in a 2D perforated domain D.

The domain we consider is of the form D = Ω \ ∪ i∈N N ω i , where N ∈ N * , Ω and the ω i 's are simply connected, bounded and smooth open sets of R 2 .

We assume that ω i ⊂ Ω and ω i ∩ ω j = ∅ for i, j ∈ N N := {1, ..., N }, i = j. The Ginzburg-Landau functional is

E ε (u, D) := 1 2 D |∇u| 2 + 1 2ε 2 1 -|u| 2 2 dx (1.1)
with u : D → C ≃ R 2 and ε is a positive parameter (the inverse of κ, the Ginzburg-Landau parameter).

When there is no ambiguity we will write E ε (u) instead of E ε (u, D). Functions we will consider belong to the class

J = u ∈ H 1 (D, C) | |u| = 1 on ∂D .
Clearly, J is closed under weak H 1 -convergence. This functional is a simplified version of the Ginzburg-Landau functional which arises in superconductivity (or superfluidity) to model the state of a superconductor submitted to a magnetic field (see, e.g., [START_REF] Tinkham | Introduction to Superconductivity[END_REF] or [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF]). The simplified version of the Ginzburg-Landau functional considered in (1.1) ignores the magnetic field. The issue we consider in this article is existence of local minimizers with prescribed degrees on ∂D.

We next formulate rigorously the problem discussed in this article. To this purpose, we start by defining properly the degrees of a map u ∈ J . For γ ∈ {∂Ω, ..., ∂ω N } and u ∈ J we let

deg γ (u) = 1 2π γ u × ∂ τ u dτ .
Here:

• each γ is directly (counterclockwise) oriented,

• τ = ν ⊥ , τ is the tangential vector of γ and ν the outward normal to Ω if γ = ∂Ω or ω i if γ = ∂ω i ,

• ∂ τ = τ • ∇, the tangential derivative and " • " stands for the scalar product in R 2 ,

• "×" stands for the vectorial product in C, (z 1 +ız 2 )×(w 1 +ıw 2 ) := z 1 w 2 -z 2 w 1 , z 1 , z 2 , w 1 , w 2 ∈ R,

• the integral over γ should be understood using the duality between H 1/2 (γ) and H -1/2 (γ) (see, e.g., [START_REF] Berlyand | Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices[END_REF] definition 1).

It is known that deg γ (u) is an integer see [START_REF] Berlyand | Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices[END_REF] (the introduction) or [START_REF] Brezis | New questions related to the topological degree[END_REF].

We denote the (total) degree of u ∈ J in D by deg(u, D) = deg ∂ω 1 (u), ..., deg ∂ω N (u), deg ∂Ω (u) ∈ Z N × Z.

For (p, q) ∈ Z N × Z, we are interested in the minimization of E ε in J p,q := {u ∈ J | deg(u, D) = (p, q)} .

There is an huge literature devoted to the minimization of E ε . In a simply connected domain Ω, the minimization problem of E ε with the Dirichlet boundary condition g ∈ C ∞ (∂Ω, S 1 ) is studied in detail in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF]. E ε has a minimizer for each ε > 0. This minimizer need not to be unique. In this framework, when deg ∂Ω (g) = 0, the authors studied the asymptotic behaviour of a sequence of minimizers (when ε n ↓ 0) and point out the existence (up to subsequence) of a finite set of singularities of the limit.

Other types of boundary conditions were studied, like Dirichlet condition g ∈ C ∞ (∂Ω, C \ {0}) (in a simply connected domain Ω) in [START_REF] André | Minimization of a Ginzburg-Landau type functional with nonvanishing Dirichlet boundary condition[END_REF] and later for g ∈ C ∞ (∂Ω, C) (see [START_REF] André | On the minimizers of a Ginzburg-Landau type energy when the boundary condition has zeros[END_REF]).

If the boundary data is not u |∂D , but a given set of degrees, then the existence of local minimizers is non trivial. Indeed, one can show that J p,q is not closed under weak H 1 -convergence (see next section), so that one cannot apply the direct method in the calculus of variations in order to derive existence of minimizers. Actually this is not just a technical difficulty, since in general the infimum of E ε in J p,q is not attained, we need more assumptions like the value of the H 1 -capacity of D (see [START_REF] Berlyand | Nonexistence of Ginzburg-Landau minimizers with prescribed degree on the boundary of a doubly connected domain[END_REF] and [START_REF] Berlyand | Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices[END_REF]).

Minimizers u of E ε in J p,q , if they do exist, satisfy the equation

         -∆u = u ε 2 (1 -|u| 2 ) in D |u| = 1 on ∂D u × ∂ ν u = 0 on ∂D deg(u, D) = (p, q) (1.2)
where ∂ ν denotes the normal derivative, i.e.,

∂ ν = ∂ ∂ν = ν • ∇.
Existence of local minimizers of E ε is obtained following the same lines as in [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF]. It turns out that, even if the infimum of E ε in J p,q is not attained, (1.2) may have solutions. This was established by Berlyand and Rybalko when D has a single hole, i.e., when N = 1. Our main result is the following generalisation of the main result in [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF]: Theorem 1. Let (p, q) ∈ Z N × Z and let M ∈ N * , there is ε 1 (p, q, M ) > 0 s.t. for ε < ε 1 , there are at least M locally minimizing solutions.

Actually, we will prove a more precise form of Theorem 1 (see Theorem 2), whose statement relies on the notion of approximate bulk degree introduced in [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF] and generalised in the next section.

The main difference with respect to [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF] stems in the construction of the test functions with energy control in section 6. In a sense that will be explained in details in section 6, our construction is local, while the one in [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF] is global. We also simplify and unify some proofs in [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF].

We do not know whether the conclusion of theorem 1 still holds when D has no holes at all. That is, we do not know whether for a simply connected domain Ω, a given d ∈ Z * and small ε, the problem

         -∆u = u ε 2 (1 -|u| 2 ) in Ω u × ∂ ν u = 0 on ∂Ω |u| = 1 on ∂Ω deg ∂Ω (u) = d (1.3) has solutions. Existence of a solution of (1.3) is clear when Ω is a disc, say Ω = D(0, R) (it suffices to consider a solution of -∆u = u ε 2 (1 -|u| 2 ) of the form u(z) = f (|z|) z |z| d with u |∂Ω = z |z| d ).
However, we do not know the answer when Ω is not radially symmetric anymore.

The approximate bulk degree

This section is a straightforward adaptation of [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF].

Existence of (local) minimizers for E ε in J p,q is not straightforward since J p,q is not closed under weak H 1 -convergence. A typical example (see [START_REF] Berlyand | Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices[END_REF]) is a sequence (M n ) n s.t.

M n : D(0, 1) → D(0, 1) x → x -(1 -1/n) (1 -1/n)x -1 , where D(0, 1) ⊂ C is the open unit disc centered at the origin. Then M n ⇀ 1 in H 1 , deg S 1 (M n ) = 1 and deg S 1 (1) = 0.
To obtain local minimizers, Berlyand and Rybalko (in [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF]) devised a tool: the approximate bulk degree. We adapt this tool for a multiply connected domain.

We consider, for i ∈ N N := {1, ..., N }, V i the unique solution of

   -∆V i = 0 in D V i = 1 on ∂D \ ∂ω i V i = 0 on ∂ω i . (2.1)
For u ∈ J , we set, noting

∂ k u = ∂ ∂x k u abdeg i (u, D) = 1 2π D u × (∂ 1 V i ∂ 2 u -∂ 2 V i ∂ 1 u) dx, (2.2) abdeg(u, D) = ( abdeg 1 (u, D) , ..., abdeg N (u, D) ) .
Following [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF], we call abdeg(u, D) the approximate bulk degree of u. abdeg i : J → R, in general, is not an integer (unlike the degree). However, we have

Proposition 1. 1) If u ∈ H 1 (D, S 1 ), then abdeg i (u, D) = deg ∂ω i (u); 2) Let Λ, ε > 0 and u, v ∈ J s.t. E ε (u), E ε (v) ≤ Λ, then |abdeg i (u) -abdeg i (v)| ≤ 2 π V i C 1 (D) Λ 1/2 u -v L 2 (D) ; (2.3) 3) Let Λ > 0 and (u ε ) ε>0 ⊂ J s.t. for all ε > 0, E ε (u ε ) ≤ Λ, then dist(abdeg(u ε ), Z N ) → 0 when ε → 0. (2.4)
Proof of Proposition 1 is postponed to Appendix B. We define for d = (d 1 , ..., d N ) ∈ Z N , p = (p 1 , ..., p N ) ∈ Z N and q ∈ Z,

J d p,q = J d p,q (D) := u ∈ J p,q | abdeg(u) -d ∞ := max i∈N N |d i -abdeg i (u)| ≤ 1 3 .
The following result states that J d p,q in never empty for (p, q, d)

∈ Z N × Z × Z N . Proposition 2. Let (p, q, d) ∈ Z N × Z × Z N . Then J d p,q = ∅.
Proof. For i ∈ {0, ..., N }, we denote e i = (δ i,1 , ..., δ i,N , δ i,0 ) ∈ Z N +1 where

δ i,k = 1 if i = k 0 otherwise is the Kronecker symbol. For i ∈ {0, ..., N }, there is M i n ∈ J (p i -d i )e i if i = 0 and M 0 n ∈ J (q-d j )e 0 s.t. M i n ⇀ 1 in H 1 and |M i
n | ≤ 1 (Lemmas 6.1 and 6.2 in [START_REF] Berlyand | Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices[END_REF]). Let

E d := u ∈ H 1 (D, S 1 ) | deg(u, D) = (d, d) , d = (d 1 , ..., d N ), d = N j=1 d j .
We note that, E d = ∅, see, e.g., [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF]. Let u ∈ E d and u n := u N i=0 M i n . Then we will prove that, for large n, we have, up to subsequence, that u n ∈ J d p,q . Indeed, up to subsequence,

u n ⇀ u in H 1 , u n ∈ J p,q .
Using the fact that abdeg(u) = d and the weak H 1 -continuity of the approximate bulk degree, we obtain for n sufficiently large, that u n ∈ J d p,q .

We denote m ε (p, q, d) the infimum of E ε on J d p,q , i.e,

m ε (p, q, d) = inf u∈J d p,q E ε (u) and I 0 (d, D) = inf u∈E d 1 2 D |∇u| 2 .
We may now state a refined version of Theorem 1.

Theorem 2. Let d ∈ (N * ) N . Then, for all (p 1 , ..., p N , q) ∈ Z N +1 s.t. q ≤ d and p i ≤ d i , there is

ε 2 = ε 2 (p, q, d) > 0 s.t. for 0 < ε < ε 2 , m ε (p, q, d) is attained.
Moreover, we have the following estimate

m ε (p, q, d) = I 0 (d, D) + π (d 1 -p 1 + ... + d N -p N + d -q) -o ε (1), o ε (1) → ε→0 0.
For further use, a configuration of degrees (p, q, d) ∈ Z N × Z × (N * ) N s.t. p i ≤ d i and q ≤ d i will be called a "good configuration". Noting that, for d = d ∈ Z N and (p, q) ∈ Z N × Z, we have J d p,q ∩ J d p,q = ∅, we are led to Proof of Theorem 1: Let (p, q) ∈ Z N × Z and set for k ∈ N * ,

d = max max i |p i |, |q| and d k = (d + k, ..., d + k).
We apply Theorem 2 to the class J d k p,q . We obtain the existence of

ε 1 (p, q, M ) = min k∈N M ε 2 (p, q, d k ) > 0 s.t. for ε < ε 1 , k ∈ N M , m ε (p, q, d k ) is achieved by u k ε .
Noting the continuity of the degree and of the approximate bulk degree for the strong H 1convergence, there exists

V k ε ⊂ J d k p,q ⊂ J an open (for H 1 -norm) neighbourhood of u k ε . It follows easily that E ε (u k ε ) = min u∈V k ε E ε (u). Then u k ε ∈ J p,q is a local minimizer of E ε in J (for H 1 -norm) for 0 < ε < ε 1 (p, q, M ).
3 Basic facts of the Ginzburg-Landau theory

It is well known (cf [START_REF] Berlyand | Ginzburg-Landau minimizers with prescribed degrees. Capacity of the domain and emergence of vortices[END_REF], lemma 4.4 page 22) that the local minimizers of E ε in J p,q satisfy 

-∆u = 1 ε 2 u(1 -|u| 2 ) in D, (3.1 
One of the questions in the Ginzburg-Landau model is the location of the vortices of stable solutions (i.e., local minimizers of E ε ). We will define ad hoc a vortex as an isolated zero x of u with nonzero degree on small circles around x.

The following result shows that, under energy bound assumptions on solutions of (3.1), vortices are expelled to the boundary when ε → 0. Lemma 1. [START_REF] Mironescu | Explicit bounds for solutions to a Ginzburg-Landau type equation[END_REF] Let Λ > 0 and let u be a solution of (3.1) satisfying (3.3) and the energy bound E ε (u) ≤ Λ. Then with C, C k and ε 3 depending only on Λ, D, we have, for 0 < ε < ε 3 and x ∈ D,

1 -|u(x)| 2 ≤ Cε 2 dist 2 (x, ∂D) (3.4) 
and

|D k u(x)| ≤ C k dist k (x, ∂D) . (3.5)
When u is smooth in D and ρ = |u| > 0, the map u ρ admits a lifting θ , i.e, we may write

u = ρe ıθ ,
where θ is a smooth (and locally defined) real function on D and ∇θ is a globally defined smooth vector field. Using (3.1) and (3.2), we have

div(ρ 2 ∇θ) = 0 in B ∂ ν θ = 0 on ∂D , (3.6) 
-∆ρ + |∇θ| 2 ρ + 1 ε 2 ρ(ρ 2 -1) = 0 in B ρ = 1 on ∂D , (3.7) 
here, B = {x ∈ D | u(x) = 0}. We will need later the following.

Lemma 2. [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF] Let u be a solution of (3. 

Then E ε (ρw, G) = E ε (u, G) + L ε (w, G), with L ε (w, G) = 1 2 G ρ 2 |∇w| 2 dx - 1 2 G |w| 2 ρ 2 |∇v| 2 dx + 1 4ε 2 G ρ 4 (1 -|w| 2 ) 2 dx.
For further use, we note that we may write, locally in G, u = ρe ıθ , so that v = e ıθ . It turns out that ∇θ is smooth and globally defined in G. In terms of ∇θ, we may rewrite

L ε (w, G) = 1 2 G ρ 2 |∇w| 2 dx - 1 2 G |w| 2 ρ 2 |∇θ| 2 dx + 1 4ε 2 G ρ 4 (1 -|w| 2 ) 2 dx.
For u a solution of (3.1) and (3.2), we can consider (see Lemma 7 in [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF]) h the unique globally defined solution of

   ∇ ⊥ h = u × ∇u in D h = 1 on ∂Ω h = k i on ∂ω i , (3.8) 
where k i 's are real constants uniquely defined by the first two equations in (3.8). Here

∇ ⊥ h = -∂ 2 h ∂ 1 h is the orthogonal gradient of h and u × ∇u = u × ∂ 1 u u × ∂ 2 u . It is easy to show that        ∇h = -ρ 2 ∇ ⊥ θ in B div( 1 ρ 2 ∇h) = 0 in B ∆h = 2∂ 1 u × ∂ 2 u in B ; (3.9) here, B = {x ∈ D | u(x) = 0}.
In [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF], Bethuel, Brezis and Hélein consider the minimization of

E(u) = 1 2 D |∇u| 2 dx, the
Dirichlet functional, in the class

E d = {u ∈ H 1 (D, S 1 ) | deg(u, D) = (d, d)};
here, d = d k . Theorem I.1 in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF] gives the existence of a unique solution (up to multiplication by an S 1constant) for the minimization of E in E d . We denote u 0 this solution. This u 0 is also a solution of

-∆v = v|∇v| 2 in D v × ∂ ν v = 0 on ∂D .
Moreover, we have

I 0 (d, D) := min u∈E d E(u) = 1 2 D |∇h 0 | 2 dx (3.10)
with h 0 the unique solution of

           ∆h 0 = 0 in D h 0 = 1 on ∂Ω h 0 = Cst k on ∂ω k , k ∈ {1, ..., N } ∂ω k ∂ ν h 0 dσ = 2πd k for k ∈ {1, ..., N } . (3.11)
One may prove that h 0 is the (globally defined) harmonic conjugate of a local lifting of u 0 .

Energy needed to change degrees

We denote ae :

(Z N × Z) × (Z N × Z) → N ((d, d), (p, q)) → N i=1 |d i -p i | + |d -q| .
The next result quantifies the energy needed to change degrees in the weak limit.

Lemma 3. ([4], Lemma 1) Let (u n ) n ⊂ J p,q be a sequence weakly converging in H 1 to u. Then lim inf n E(u n ) ≥ E(u) + πae(deg(u, D), (p, q)) (4.1)
and for ε > 0 lim inf

n E ε (u n ) ≥ E ε (u) + πae(deg(u, D), (p, q)). (4.2) 
The next lemma is proved in [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF].

Lemma 4. Let d = (d 1 , ..., d N ), p = (p 1 , ..., p N ) ∈ Z N , q ∈ Z. There is o ε (1) → ε→0 0 (depending of (p, q, d)) s.t. for u ∈ J d p,q we have E ε (u) ≥ I 0 (d, D) + πae((d, d), (p, q)) -o ε (1). (4.3)
Here, d := d i .

We present below a simpler proof than the original one in [START_REF] Berlyand | Solution with vortices of a semi-stiff boundary value problem for the Ginzburg-Landau equation[END_REF].

Proof. Let (p, q, d) ∈ Z N × Z × Z N .
We argue by contradiction and we suppose that there are

δ > 0, ε n ↓ 0 and (u n ) n ⊂ J d p,q s.t. E εn (u n ) ≤ I 0 (d, D) + πae((d, d), (p, q)) -δ. (4.4) Since (u n ) n is bounded in H 1 , there is some u s.t., up to subsequence, u n ⇀ u in H 1 and u n → u in L 4 . Using the strong convergence in L 4 , (4.4) and Proposition 1, we have u ∈ H 1 (D, S 1 )∩J d d,d = E d .
To conclude, we use (4.4) combined with Lemma 3

I 0 (d, D) + πae((d, d), (p, q)) -δ ≥ lim inf n E εn (u n ) ≥ lim inf n E(u n ) ≥ E(u) + πae((d, d), (p, q)) ≥ I 0 (d, D) + πae((d, d), (p, q))
which is a contradiction.

One may easily proved (see Lemma 14 in

Appendix C) that for η > 0, i ∈ {0, ..., N } and u ∈ J deg(u,D) , there are v ± ∈ J deg(u,D)±e i s.t. E ε (v ± ) ≤ E ε (u) + π + η.
The key ingredient is a sharper result which holds under two additional hypotheses. In order to unify the notations, we use the notation ω 0 for Ω. We may now state the main ingredient in the proof of Theorem 2.

Lemma 5. Let u ∈ J p,q be a solution of (3.1), (3.2).

Assume that

abdeg j (u) ∈ (d j - 1 3 , d j + 1 3 ), ∀ j ∈ N N . (4.5) 
Let i ∈ {0, ..., N } and assume that there is some point

x i ∈ ∂ω i s.t. u × ∂ τ u(x i ) > 0.
Recall that τ is the direct tangent vector to ∂ω i . Then there is ũ ∈ J (p,q)-e i s.t.

E ε (ũ) < E ε (u) + π and abdeg j (ũ) ∈ (d j - 1 3 , d j + 1 3 ), ∀j ∈ N N .
The proof of Lemma 5 is postponed to section 6. We also have an upper bound for m ε (p, q, d).

Lemma 6. Let ε > 0 and (p, q, d) ∈ Z N × Z × Z N . Then m ε (p, q, d) ≤ I 0 (d, D) + πae((d, d), (p, q)). (4.6) 
To prove Lemma 6, we need the following

Lemma 7. Let u ∈ J , ε > 0 and δ = (δ 1 , ..., δ N , δ 0 ) ∈ Z N +1 . For all η > 0, there is u δ η ∈ J deg(u,D)+δ s.t. E ε (u δ η ) ≤ E ε (u) + π i∈{0,...,N } |δ i | + η (4.7) and u -u δ η L 2 (D) = o η (1), o η (1) → η→0 0. (4.8) 
The proof of Lemma 7 is postponed to Appendix C.

Proof. We prove that for η > 0 small, we have

m ε (p, q, d) ≤ I 0 (d, D) + πae((d, d), (p, q)) + η.
We denote

u 0 ∈ E d s.t. E(u 0 ) = I 0 (d, D). Then abdeg i (u 0 ) = d i . Using Lemma 7 with δ = (p, q) -(d, d), there is u η s.t. u η ∈ J (p,q) and E ε (u η ) ≤ E ε (u 0 ) + πae((d, d), (p, q)) + η = I 0 (d, D) + πae((d, d), (p, q)) + η. Furthermore, by (4.8), u 0 -u η L 2 (D) = o η (1)
. For η small, by Proposition 1, we have u 0 ∈ J d p,q which proves the lemma.

A family with bounded energy converges

In this section we discuss:

1. the asymptotic behaviour of a sequence of solutions of (3.1), (3.2), (u εn ) n ⊂ J d p,q (ε n ↓ 0) with bounded energy , i.e, E εn (u εn ) ≤ Λ, 2. the asymptotic behaviour of a minimizing sequence of E ε in J d p,q , 3. a fundamental lemma.

Proposition 3. Let ε n ↓ 0, (u εn ) n ⊂ J d p,q with u εn a solution of (3.1), (3.2), s.t. for Λ > 0, we have E εn (u εn ) ≤ Λ.
Then, denoting h εn the unique solution of (3.8) with u = u εn , we have

h εn ⇀ h 0 in H 1 (D), (5.1) 
where h 0 is the unique solution of (3.11).

Up to subsequence, it holds

u εn ⇀ u 0 in H 1 (D), (5.2) 
where u 0 ∈ E d is the unique solution of (3.10) up to multiplication by an S 1 -constant.

Proof. Using the energy bound on u εn and a Poincaré type inequality, we have, up to subsequence,

h εn ⇀ h in H 1 .
In order to establish (5.1), it suffices to prove that h = h 0 .

The set

H := {h ∈ H 1 (D, R) ; ∂ τ h ≡ 0 on ∂D and h |∂Ω ≡ 1} is closed convex in H 1 (D, R). Since (h εn ) n ⊂ H, we find that h ∈ H.
By boundedness of E εn (u εn ), Lemma 1 implies that u εn is bounded in C 2 loc (D, R 2 ). Therefore there is some u ∈ C 1 loc (D, C) s.t., up to subsequence,

u εn → u in C 1 loc (D, R 2 ), L 4 (D, R 2 ) and weakly in H 1 (D, R 2 ).
Using the strong convergence in L 4 and the energy bound on u εn , we find that u ∈ H 1 (D, S 1 ). It follows that ∂ 1 u × ∂ 2 u = 0 in D. On the other hand,

∆h εn = 2∂ 1 u εn × ∂ 2 u εn → 0 in C 0 loc .
Therefore, h is a harmonic function in D.

In order to show that h = h 0 , it suffices to check that

∂ω i ∂ ν h dσ = 2πd i .
To this end, we note that, since

u εn × (∂ 1 V i ∂ 2 u εn -∂ 2 V i ∂ 1 u εn ) = ∇V i • ∇h εn , we have from (2.1)
2π abdeg i (u εn ) = D ∇V i • ∇h εn dx ---→ n→∞ D ∇V i • ∇h dx = ∂D\∂ω i ∂ ν h dσ.
Noting that, by Proposition 1,

abdeg i (u εn ) ---→ n→∞ abdeg i (u) = deg ∂ω i (u) abdeg i (u εn ) ---→ n→∞ d i and that 0 = D ∆h dx = ∂D ∂ ν h dσ, we obtain ∂D\∂ω i ∂ ν h dσ = ∂ω i ∂ ν h dσ = 2π d i = 2π deg ∂ω i (u).
In the first integral, ν is the outward normal to D, in the second, ν is the outward normal to ω i . This proves (5.1).

We next turn to (5.2). Let u 0 be s.t., up to subsequence,

u εn ⇀ u 0 in H 1 (D). Since |u εn | ≤ 1, we find that u εn × ∇u εn ⇀ u 0 × ∇u 0 in L 2 (D).
In view of (3.8) and (5.1), we have u 0 × ∇u 0 = ∇ ⊥ h 0 . Therefore,

E(u 0 ) = E(h 0 ) = I 0 (d, D).
Proposition 1 implies that u 0 ∈ E d . Then u 0 is the unique, up to multiplication by an

S 1 -constant, minimizer of E in E d . Proposition 4. Let (p, q, d) ∈ Z N × Z × Z N . For ε > 0, let (u ε n ) n≥0 ⊂ J d p,q be a minimizing sequence of E ε in J d p,q . Then there is ε 4 (p, q, d) > 0 s.t. for 0 < ε < ε 4 , up to subsequence, u n ⇀ u in H 1 with u which minimizes E ε in J d deg(u,D) . Proof. For ε > 0, let (u ε n ) n ⊂ J d p,q be a minimizing sequence of E ε in J . Up to subsequence, using Proposition 1, u ε n ⇀ u ε in H 1 with u ε ∈ J d deg(u ε ,D) .
Using Lemmas 3 and 6, we see that {deg(u ε , D), ε > 0} ⊂ Z N × Z is a finite set and that E ε (u ε ) is bounded. Therefore, with Proposition 1, there is

ε 4 > 0 s.t. |abdeg i (u ε ) -d i | < 1 3 for all i ∈ N N and 0 < ε < ε 4 .
We argue by contradiction and we assume that there is ε < ε 4 s.t.

E ε (u ε ) = m ε (deg(u ε , D), d) + 2η, η > 0. Let u ∈ J d deg(u ε ,D) be s.t. E ε (u) ≤ m ε (deg(u ε , D), d) + η. Using Lemma 7 with δ = (p, q) -deg(u ε , D), there is v ∈ J p,q s.t. E ε (v) < E ε (u) + πae((p, q), deg(u ε , D)) + η.
Furthermore, by (4.8), uv L 2 can be taken arbitrary small, so that we may further assume v ∈ J d p,q . To summarise we have

m ε (p, q, d) = lim inf n E ε (u ε n ) ≥ E ε (u ε ) + πae((p, q), deg(u ε , D)) = m ε (deg(u ε , D), d) + 2η + πae((p, q), deg(u ε , D)) ≥ E ε (u) + πae((p, q), deg(u ε , D)) + η > E ε (v) ≥ m ε (p, q, d).
This contradiction completes the proof.

The main tool requires the following lemma. Lemma 8. Let (p, q, d) ∈ Z N × Z × Z N and Λ > 0. There is ε 5 (p, q, d, Λ) > 0 s.t. for ε < ε 5 and u ∈ J d p,q , a solution of (3.1) and (3.

2) with E ε (u) ≤ Λ, if d > 0 (respectively d i > 0), then there is x 0 ∈ ∂Ω (respectively x i ∈ ∂ω i ) s.t. u × ∂ τ u(x 0 ) > 0 (respectively u × ∂ τ u(x i ) > 0).
Here τ is the direct tangent vector to ∂Ω (resp. ∂ω i ).

Proof. We prove existence of x 0 ∈ ∂Ω under appropriate assumptions. Existence of x i is similar. We argue by contradiction. Assume that there are ε n ↓ 0, (u n ) ⊂ J d p,q solutions of (3.1) and

(3.2) with E εn (u n ) ≤ Λ s.t. u n × ∂ τ u n ≤ 0 on ∂Ω. Since q = 1 2π ∂Ω u n × ∂ τ u n , we have q ≤ 0.
Up to subsequence, by Proposition 3, we can assume that u n → u 0 a.e. with u 0 the unique solution (up to S 1 ) of (3.10).

Let x 0 ∈ ∂Ω and let γ : ∂Ω → [0, H 1 (∂Ω)[=: I be s.t. γ -1 is the direct arc-length parametrization of ∂Ω with the origin at x 0 .

We denote θ n : I → R the smooth functions s.t.

u n (x) = e ıθn[γ(x)] ∀ x ∈ ∂Ω 0 ≤ θ n (0) < 2π .
Then, for all n, θ n is nonincreasing and

θ n ∈ [θ n (0) + 2πq, θ n (0)] ⊂ [2πq, 2π].
Using Helly's selection theorem, up to subsequence, we can assume that θ n → θ everywhere on I with θ nonincreasing. Denote Ξ the set of discontinuity points of θ. Since θ is nonincreasing, Ξ is a countable set.

Using the monotonicity of θ, we can consider the following decomposition θ = θ c + θ δ , with θ c and θ δ are nonincreasing functions.

θ c is the continuous part of θ and θ δ is the jump function. The set of discontinuity points of θ δ is Ξ.

For t / ∈ Ξ, θ δ (t) = 0<s<t, s∈ Ξ {θ(s+) -θ(s-)}.
We obtain easily that u 0 (x) = e ıθ[γ(x)] a.e. x ∈ ∂Ω. Since u 0 , θ n and γ have side limits at each points and u 0 = e ıθ•γ a.e., we find that u 0 (x±) = e ıθ[γ(x±)] for each x ∈ ∂Ω.

Using the continuity of u 0 , we obtain e ıθ[γ(x+)] = e ıθ[γ(x-)] ∀ x ∈ ∂Ω which implies that

θ[γ(x+)] -θ[γ(x-)] ∈ 2πZ ∀ x ∈ ∂Ω. For t / ∈ Ξ, θ δ (t) = 0<s<t, s∈ Ξ {θ(s+) -θ(s-)} ∈ 2πZ. Then u 0 (x)e -ıθ c [γ(x)] = e ıθ δ [γ(x)] = 1 a.e. x ∈ ∂Ω.
Finally, u 0 (x) = e ıθ c [γ(x)] a.e. x ∈ ∂Ω, which is equivalent (using the continuity of the functions) at u 0 = e ıθ c •γ . We have a contradiction observing that

0 < 2πdeg ∂Ω (u 0 ) = 2πd = θ c (H 1 (∂Ω)) -θ c (0)
and using the fact that θ c is nonincreasing.

Proof of Lemma 5

We prove only the part of the lemma concerning ∂Ω. The proof for the other connected components of ∂D is similar.

For reader's convenience, we state the part of Lemma 5 that we will actually prove Lemma . Let u ∈ J p,q be a solution of (3.1) and (3.2). Assume that

abdeg j (u) ∈ (d j - 1 3 , d j + 1 3 ), ∀ j ∈ N N (4.5)
and that there is some point

x 0 ∈ ∂Ω s.t. u × ∂ τ u(x 0 ) > 0.
Then there is ũ ∈ J (p,q-1) s.t.

E ε (ũ) < E ε (u) + π, abdeg j (ũ) ∈ (d j - 1 3 , d j + 1 3
), ∀ j ∈ N N .

Decomposition of D

By hypothesis, there is some

x 0 ∈ ∂Ω s.t. ∂ ν h(x 0 ) > 0.
Without loss of generality, we may assume that u(x 0 ) = 1.

Then there is Υ ⊂ D, a compact neighbourhood of x 0 , simply connected and with nonempty interior, s.t.:

• γ := ∂Ω ∩ ∂Υ is connected with nonempty interior;

• x 0 is an interior point of γ; • |∇h| > 0, ρ > 0, h ≤ 1 in Υ;
• ∂ ν h > 0 on γ (ν the outward normal to Ω).

It follows that, in Υ, θ, a lifting of u/|u| is globally defined (we take the determination of θ which vanishes at x 0 ) .

Using the inverse function theorem, we may assume, by further restricting Υ, that there are some 0 < η, δ < 1 s.t.

Υ = {x ∈ D s.t. dist(x, x 0 ) < η, 1 -δ ≤ h(x) ≤ 1, -2δ ≤ θ(x) ≤ 2δ}.
We may further assume that, by replacing δ by smaller value if necessary and denoting D δ := • Υ (see Figure 1), we have

(i) Θ := (θ, h) |D δ : D δ → (-2δ, 2δ) × (1 -δ, 1) is a C 1 -diffeomorphism, x → (θ, h) (ii) ∂D δ \ ({h = 1} ∪ {h = 1 -δ}) = ∂D δ ∩ ({θ = -2δ} ∪ {θ = 2δ}), (iii) D δ is a Lipschitz domain.
We consider δ 0 > 0 s.t. for δ < δ 0 , D δ satisfies previous properties and

|D δ | 1/2 < π abdeg(u) -d ∞ -1 3 
6 max i V i C 1 (D) (E ε (u) + π) 1/2 . (6.1)
Using Proposition 1 and (6.1)

, if v ∈ H 1 (D, C) satisfies u = v in D \ D δ , |v| ≤ 2 in D and E ε (v) < E ε (u) + π, then we have abdeg i (v) ∈ (d i -1/3, d i + 1/3).
We let δ < δ 0 and we denote

D ′ δ := Θ -1 [(-δ, δ) × (1 -δ, 1)] , D - δ := Θ -1 [(-2δ, -δ) × (1 -δ, 1)] , D + δ := Θ -1 [(δ, 2δ) × (1 -δ, 1)] ,
so that D ′ δ , D - δ and D + δ are Lipschitz domains (see Figure 1).

D + δ D ′ δ D - δ h = 1 -δ h = 1 θ = -2δ θ = 2δ θ = δ θ = -δ ω 4 ω 3 ω 1 ω 2 Ω D = Ω \ ∪ i ω i x 0 • Figure 1: Decomposition of D

Construction of the test function

We consider an application (with unknown expression in D δ ) ψ t : D → C (t > 0 smaller than δ) s.t.

ψ t (x) =    1 in D \ D δ e -ıθ -(1 -tϕ(θ)) e -ıθ (1 -tϕ(θ)) -1 on ∂Ω ∩ ∂D δ , (6.2) 
with 0 ≤ ϕ ≤ 1 a smooth, even and 2π-periodic function satisfying

ϕ |(-δ/2,δ/2) ≡ 1 and ϕ |[-π,π[\(-δ,δ) ≡ 0.
It is clear that ψ t|∂D ∈ C ∞ (∂D) and

deg ∂ω i (ψ t ) = 0 for all i ∈ N N . (6.3)
Expanding in Fourier series, we have

e -ıθ -(1 -tϕ(θ)) e -ıθ (1 -tϕ(θ)) -1 = (1 -tb -1 (t)) + t k =-1 b k (t)e -(k+1)ıθ . (6.4)
Noting that the real part of e -ıθ -(1tϕ(θ)) e -ıθ (1tϕ(θ)) -1 is even and the imaginary part is odd, we obtain that b k (t) ∈ R for all k, t.

The following lemma is proven in Appendix B Lemma 9. We denote, for e ıθ ∈ S 1 ,

Ψ t (e ıθ ) = e -ıθ -(1 -tϕ(θ)) e -ıθ (1 -tϕ(θ)) -1 and F t (e ıθ ) = e -ıθ -(1 -t) e -ıθ (1 -t) -1 .
Then:

1) |Ψ t -F t | ≤ C δ t on S 1 ; 2) F t (z) = z -(1 -t) z(1 -t) -1 = (1 -tc -1 ) + t k =-1 c k (t)z k+1 , with c k =      (t -2)(1 -t) k if k ≥ 0 0 if k ≤ -2 1 if k = -1 ; 3) |b k (t) -c k (t)| ≤ C(n, δ) (1 + |k|) -n , ∀ n > 0 with C(n, δ) independent of t sufficiently small.
It is easy to see using Lemma 9 that, for t sufficiently small,

deg S 1 (Ψ t ) = deg S 1 (F t ) = -1.
Using the previous equality and the fact that ∂ τ θ > 0 on γ, we find that

deg ∂Ω (ψ t ) = -1. (6.5) 
It will be convenient to use h and θ as a shorthand for h(x) and θ(x). With these notations, we will look for ψ t of the form

ψ t (x) = ψt (h, θ) =              (1 -tf -1 (h)b -1 (t)) + t k =-1 b k (t)f k (h)e -(k+1)ıθ in D ′ δ θ -δ δ + ψt (h, δ) 2δ -θ δ in D + δ - θ + δ δ + ψt (h, -δ) 2δ + θ δ in D - δ . (6.6) 
We impose f k (1δ) = 0 and f k (1) = 1 for k ∈ Z.

Our aim is to show that for t > 0 small and appropriate f k 's, the function ψ t defined by (6.6) satisfies (6.2) and L ε (ψ t e ıθ , D δ ) < π. (6.7)

Here, L ε is the functional defined in Lemma 2, so that

E ε (ρψ t e ıθ , D δ ) = E ε (u, D δ ) + L ε (ψ t e ıθ , D δ ).
Then, considering

ψ t =    ψ t if |ψ t | ≤ 2 2 ψ t |ψ t | if |ψ t | > 2
and setting

ũ = ρw t = ψ t u in D δ u in D \ D δ ,
in view of (6.7), it is straightforward that ũ satisfies the conclusion of Lemma 5.

Upper bound for L ε (•, D δ ). An auxiliary problem

If we let w : [1δ, 1] × [-2δ, 2δ] be s.t. w(h(x), θ(x)) := w(x), then we have

|∇w| 2 = i |∂ i w| 2 = i |∂ h w(h, θ) ∂ i h + ∂ θ w(h, θ) ∂ i θ| 2 = (ρ 4 |∂ h w(h, θ)| 2 + |∂ θ w(h, θ)| 2 )|∇θ| 2 .
Therefore,

L ε (w, D δ ) = 1 2 D δ ρ 4 |∂ h w(h, θ)| 2 + |∂ θ w(h, θ)| 2 -| w(h, θ)| 2 ρ 2 |∇θ| 2 + + 1 2ε 2 ρ 4 (1 -| w(h, θ)| 2 ) 2 dx ≤ 1 2 D δ |∂ h w(h, θ)| 2 + |∂ θ w(h, θ)| 2 -| w(h, θ)| 2 + + λ|e ıθ -w(h, θ)| 2 ρ 2 |∇θ| 2 dx (6.8) =: M λ (w, D δ ), provided that |w| ≤ 2 in D δ and λ ≥ 9 2ε 2 inf D δ |∇θ| 2 .
In order to simplify formulas, we will write, in what follows, the second integral in (6.8) as

1 2 D δ |∂ h w| 2 + |∂ θ w| 2 -| w| 2 + λ|e ıθ -w| 2 ρ 2 |∇θ| 2 dx.
The same simplified notation will be implicitly used for similar integrals.

Remark 1. If we replace w by w := w |w| min(|w|, 2), then M λ does not increase. Furthermore replacing w by w does not affect the Dirichlet condition of (6.2). Therefore, by replacing w by w if necessary, we may assume |w| ≤ 2.

We next state a lemma which allows us to give a new form of M λ . Lemma 10. Let f ∈ C 1 (R, R). Then, for k ∈ Z, we have

D ′ δ f (h) cos(kθ)ρ 2 |∇θ| 2 dx =        2δ 1 1-δ f (s) ds if k = 0 2 sin(kδ) k 1 1-δ f (s) ds if k = 0 , D ± δ f (h) ρ 2 |∇θ| 2 dx = δ 1 1-δ f (s) ds.
Proof. This result is easily obtained by noting that the jacobian of the change of variable x → (θ(x), h(x)) is exactly ρ 2 |∇θ| 2 .

For w = w t = ψ t e ıθ where ψ t of the form given by (6.6), we have

M λ (w, D δ ) = 1 2 D δ |∂ h w| 2 + |∂ θ w| 2 -| w| 2 + λ|e ıθ -w| 2 ρ 2 |∇θ| 2 dx.
We next rewrite M λ (w, D ′ δ ). Recalling that for a sequence {a k } ⊂ R, we have

k∈Z a k e ıkθ 2 = k∈Z a 2 k + 2 k,l∈Z, k>l a k a l cos[(k -l)θ].
Then we obtain

M λ (w, D ′ δ ) = D ′ δ t 2 2 k∈Z b k 2 f ′ k 2 + f k 2 (k 2 + λ -1) -t k =-1 b k f k (k + 1) cos[(k + 1)θ] -t 2 k =-1 b -1 b k [f ′ -1 f ′ k -f -1 f k (k -λ + 1)] cos[(k + 1)θ] + t 2 k,l =-1 k-l>0 b k b l [f ′ k f ′ l + (kl + λ -1)f k f l ] cos[(k -l)θ] ρ 2 |∇θ| 2 . (6.9) 
Using Lemma 10 and (6.9), we have

M λ (w, D ′ δ ) = δt 2 k∈Z b 2 k φ k (f k ) -2t k =-1 b k sin[(k + 1)δ] 1 1-δ f k -2t 2 k =-1 b -1 b k sin[(k + 1)δ] k + 1 1 1-δ f ′ -1 f ′ k -(k -λ + 1)f -1 f k +2t 2 k,l =-1 k-l>0 b k b l sin[(k -l)δ] k -l 1 1-δ f ′ k f ′ l + (kl + λ -1)f k f l (6.10) = R λ (w) -2t k =-1 b k sin[(k + 1)δ] 1 1-δ f k . (6.11) with R λ (w) = δt 2 k∈Z b 2 k φ k (f k ) -2t 2 k =-1 b -1 b k sin[(k + 1)δ] k + 1 1 1-δ f ′ -1 f ′ k -(k -λ + 1)f -1 f k +2t 2 k,l =-1 k-l>0 b k b l sin[(k -l)δ] k -l 1 1-δ f ′ k f ′ l + (kl + λ -1)f k f l , φ k (f ) = 1 1-δ f ′2 + α 2 k f 2 and α k = k 2 + λ -1.
We next establish a similar identity for M λ (w t , D ± δ ). Using (6.6), we have

M λ (w t , D ± δ ) = 1 2 D ± δ |∂ h w(h, θ)| 2 + |∂ θ w(h, θ)| 2 -|w| 2 + λ|e ıθ -w| 2 ρ 2 |∇θ| 2 = 1 2 D ± δ |∂ h ψt (h, ±δ)| 2 2δ ∓ θ δ 2 +δ -2 (1 + λ (2δ ∓ θ) 2 )| ψt (h, ±δ) -1| 2 ∓ 2δ -1 Im ψt (h, ±δ) ρ 2 |∇θ| 2 = 1 2δ 2 D ± δ |∂ h ψt (h, ±δ)| 2 (2δ ∓ θ) 2 + (1 + λ (2δ ∓ θ) 2 )| ψt (h, ±δ) -1| 2 ρ 2 |∇θ| 2 + t k =-1 b k (t) sin[(k + 1)δ] 1 1-δ f k . (6.12)
Here, Im ψ denotes the imaginary part of ψ. To obtain (6.12), we used the identity

|∂ θ (ψe ıθ )| 2 = |∂ θ ψ| 2 + |ψ| 2 + 2ψ × ∂ θ ψ.

Choice of w = ψ t e ıθ

We take

f k (h) = e α k (h-1) 1 -e -2α k δ + e -α k (h-1)
1e 2α k δ . (6.13) With this choice, by direct computations we have

φ k (f k ) = α k 1 + 2 e 2α k δ -1 , (6.14) 1 1-δ f k = 1 α k 1 - 2 e α k δ + 1 (6.15) and for k, l ∈ Z s.t. k = ±l, 1 1-δ f k f l = 1 -e -2(α k +α l )δ (α k + α l )(1 -e -2α k δ )(1 -e -2α l δ ) - 1 -e -2(α k -α l )δ (α k -α l )(1 -e -2α k δ )(e 2α l δ -1)
, (6.16)

1 α k α l 1 1-δ f ′ k f ′ l = 1 -e -2(α k +α l )δ (α k + α l )(1 -e -2α k δ )(1 -e -2α l δ ) + 1 -e -2(α k -α l )δ (α k -α l )(1 -e -2α k δ )(e 2α l δ -1)
. (6.17) Using (6.11)-( 6.17), we may obtain the following estimate, whose proof is postponed to Appendix B.

Lemma 11. We have

M λ (w t , D δ ) ≤ δ -2δt + 4t 2 k>l>0 c k c l sin[(k -l)δ] k -l kl k + l
+ o(t). (6.18)

End of the proof of Lemma 5

We denote

S(δ, t) := k>l>0 c k c l sin[(k -l)δ] k -l kl k + l . (6.19)
Setting n = kl and noting that

(n + l)l n + 2l = l 2 + ln 2(n + 2l)
, we have

2 (t -2) 2 S(δ, t) = n>0 (1 -t) n sin(nδ) n l>0 l(1 -t) 2l + n,l>0
(1t) n+2l sin(nδ) l n + 2l

.

Here, we have used the explicit formulae for the c k 's, given by Lemma 9.

Using Appendix A (see Appendix A.1) we find that for 0 < t < δ, we have

S(δ, t) = (1 -t) 2 2t 2 arctan 1 -t -cos δ sin δ + arctan cos δ sin δ + (1 -t + cos δ)(2 -t) 8t sin δ + O(1). (6.20)
We note that We conclude that for t sufficiently small, L d ε (w t , D δ ) < π.

arctan 1 -t -cos δ sin δ = arctan 1 -cos δ sin δ - t sin δ 2(1 -cos δ) + O(t 2 ) = δ 2 - t sin δ 2(1 -cos δ) + O(t 2 ) (6.

Conclusion

ũ := ψu, with ψ = ψ t min(|ψ t |, 2) |ψ t |
, satisfies the desired properties i.e.:

• E ε (ũ) < E ε (u) + π (by (6.8) and (6.27)) ;

• ũ ∈ J d p,q-1 (by (6.1), (6.3) and (6.5)).

A direct consequence of Lemma 5

By applying Lemma 5 and next Lemma 7, one may easily obtain the following Corollary 1. Let u ∈ J p,q be a solution of (3.1), (3.2). Assume that

abdeg j (u) ∈ (d j - 1 3 , d j + 1 3 ), ∀ j ∈ N N .
Assume that there are i 0 ∈ {0, ..., N } and

x 0 ∈ ∂ω i 0 s.t. u × ∂ τ u(x 0 ) > 0.
Then for all δ = (δ 1 , ..., δ N , δ 0 ) ∈ Z N +1 s.t. δ i 0 > 0, there is ũδ ∈ J (p,q)-δ s.t.

E ε (ũ δ ) < E ε (u) + π i |δ i | and abdeg j (ũ δ ) ∈ (d j - 1 3 , d j + 1 3 ), ∀j ∈ N N .
7 Proof of Theorem 2

The energy estimate is obtained from Lemmas 4 and 6. We call (p, q, d) a good configuration of degrees if

(p, q, d) ∈ Z N × Z × (N * ) N , p i ≤ d i and q ≤ i d i =: d.
We first prove Theorem 2 when 

ae((d, d), (p, q)) = |d 1 -p 1 | + ... + |d N -p N | + |d -q| = 0 ⇔ p = d and q = d. For ε > 0, let (u ε n ) n be a minimizing sequence of E ε in J d d,d . For ε < ε 4 (d,
I 0 (d, D) ≥ E ε (u ε ) + πae(deg(u ε , D), (d, d)) ≥ I 0 (d, D) - π 2 + 2πae(deg(u ε , D), (d, d)). It follows, ae(deg(u ε , D), (d, d)) ≤ 1 4 which implies u ε ∈ J d d,d
. We now prove (following the same strategy) Theorem 2 for a good configuration (p, q, d) s.t. ae((p,q),(d,d)) > 0.

For ε > 0 consider (u ε n ) n a minimizing sequence of E ε in J d p,q . For ε < ε 4 (p, q, d), up to subsequence, using Proposition 4, u ε n → u ε weakly in H 1 and strongly in L 4 and u ε is a (global) minimizer of E ε in J d deg(uε,D) . Let Λ := I 0 (d, D) + ae((p, q), (d, d))π + 1, by Lemma 8, for ε < ε 5 (p, q, d, Λ), there is x 0 ε ∈ ∂Ω s.t. (u ε × ∂ τ u ε )(x 0 ε ) > 0.
The third assertion in Proposition 1 and the energy bound give the existence of

0 < ε ′ 2 (p, q, d, Λ) < ε 5 (p, q, d, Λ) s.t. for 0 < ε < ε ′ 2 , abdeg i (u ε ) ∈ (d i - 1 3 , d i + 1 3 ). Fix ε ′ 2 (p, q, d) > ε 2 (p, q, d) > 0 s.t. the o ε (1) in Lemma 4 is lower than π 2 (here ε 5 is defined in Lemma 8).
Using Lemmas 3, 4 and 6, we have for ε < ε 2

I 0 (d, D) + πae((p, q), (d, d)) ≥ lim inf E ε (u ε n ) (by Lemma 6 and the definition of (u ε n ) n ) ≥ E ε (u ε ) + πae ((p, q), deg(u ε , D)) (Lemma 3) ≥ I 0 (d, D) + π [ae ((p, q), deg(u ε , D)) +ae ((d, d), deg(u ε , D))] - π 2 (Lemma 4) It follows that ae ((p, q), deg(u ε , D)) + ae ((d, d), deg(u ε , D)) = ae((p, q), (d, d)). (7.1) 
Thus

p i ≤ deg ∂ω i (u ε ) ≤ d i and q ≤ deg ∂Ω (u ε ) ≤ d.
Assume that there is ε < ε 2 s.t. u ε / ∈ J d p,q . Then from Lemma 8 and (7.1), one may apply Corollary 1 to obtain the existence of ũε ∈ J d p,q s.t.

m ε (p, q, d) ≤ E ε (ũ ε ) < E ε (u ε ) + πae ((p, q), deg(u ε , D)) ≤ lim inf E ε (u ε n ) = m ε (p, q, d) which is a contradiction. Thus for ε < ε 2 , u ε ∈ J d p,q and consequently u ε is a minimizer of E ε in J d p,q .
We next prove (A.6). Let

f (X) = n,l>0 sin(nδ) l n + 2l X n+2l .
On the one hand, by (A.3), (A.4),

f ′ (X) = 1 X n>0 sin(nδ)X n l>0 lX 2l = X 2 sin δ (1 -X 2 ) 2 (1 -2X cos δ + X 2 )
.

On the other hand d dX

X + cos δ 4 sin δ(1 -X 2 ) - 1 4 sin 2 δ arctan X -cos δ sin δ = X 2 sin δ (1 -X 2 ) 2 (1 -2X cos δ + X 2 ) .
A.2 Estimates for f k and α k

Recall that we defined, in section 6, f k and α k by

f k (h) = e α k (h-1) 1 -e -2α k δ + e -α k (h-1) 1 -e 2α k δ , α k = k 2 + λ -1.
In this part, we prove the following inequalities:

α k = |k| + O 1 |k| + 1 , (A.7) |f k (h) -e -|k|(1-h) | ≤ C k 2 , with C independent of k ∈ Z * , h ∈ (1 -δ, 1), (A.8) |f ′ k (h) -|k|e -|k|(1-h) | ≤ C |k| , with C independent of k ∈ Z * , h ∈ (1 -δ, 1). (A.9)
Proof: The first assertion is obtained using a Taylor expansion. Let g h (u) = e u(h-1) , we have

|f k (h) -e -|k|(1-h) | ≤ |g h (α k ) -g h (|k|)| + C k 2 ≤ sup (|k|,α k ) |g ′ h (u)||α k -|k|| + C k 2 ≤ 1 e k 1 2k + C k 2 ≤ C k 2 .
The proof of (A.9) is similar, one uses gh (u) = ue u(h-1) instead of g h

A.3 Further estimates on f k and α k

We have

0 ≤ 1 1-δ f ′ k 2 -α 2 k f k 2 ≤ 1 1-δ f ′ k 2 -k 2 f k 2 ≤ C |k| + 1 , with C independent of k ∈ Z, (A.10) 1 1-δ f k f l ≤ C max(|k|, |l|) , with C independent of k, l ∈ Z, s.t. |k| = |l|, (A.11) 1 1-δ f ′ k f ′ l ≤ C (min(|k|, |l|) + 1) , with C independent of k, l ∈ Z, s.t. |k| = |l|. (A.12)
Proof: Actually (A.11), (A.12) still hold when |k| = |l|, but this will not used in the proof of Lemma 5 and requires a separate argument.

Since

α k ≥ |k|, 1 1-δ f ′ k 2 -α 2 k f k 2 ≤ 1 1-δ f ′ k 2 -k 2 f k 2 .
By direct computations,

0 ≤ 1 1-δ f ′ k 2 -α 2 k f k 2 = 4δα 2 k (1 -e -2α k δ )(e 2α k δ -1) ≤ C(δ, n) k n , ∀n ∈ N * , 1 1-δ f ′ k 2 -k 2 f k 2 = 1 1-δ f ′ k 2 -α 2 k f k 2 + (λ -1) 1 1-δ f k 2 , 1 1-δ f k 2 = 1 2α k 1 1 -e -2α k δ - 1 1 -e 2α k δ + O 1 |k| + 1 = O 1 |k| + 1 .
Which proves (A.10).

For |k| = |l|, we have

1 1-δ f k f l = 1 -e -2(α k +α l )δ (α k + α l )(1 -e -2α k δ )(1 -e -2α l δ ) - 1 -e -2(α k -α l )δ (α k -α l )(1 -e -2α k δ )(e 2α l δ -1) ≤ C max(|k|, |l|) + 1 -e -2(α k -α l )δ (α k -α l )(1 -e -2α k δ )(e 2α l δ -1)
.

We assume that |k| > |l| and we consider the two following cases: α l < α k ≤ 2α l and α k > 2α l .

Noting that 1-e -2xδ

x is bounded for x ∈ R * + , we have

1 -e -2(α k -α l )δ (α k -α l )(1 -e -2α k δ )(e 2α l δ -1) ≤ C e 2α l δ ≤ C max(|k|, |l|) if α l < α k ≤ 2α l , 1 -e -2(α k -α l )δ (α k -α l )(1 -e -2α k δ )(e 2α l δ -1) ≤ C α k -α l ≤ C max(|k|, |l|) if α k > 2α l .
This proves (A.11).

For |k| = |l|,

1 1-δ f ′ k f ′ l = α k α l 1 -e -2(α k +α l )δ (α k + α l )(1 -e -2α k δ )(1 -e -2α l δ ) + α k α l 1 -e -2(α k -α l )δ (α k -α l )(1 -e -2α k δ )(e 2α l δ -1)
.

It is clear that,

α k α l (1 -e -2(α k +α l )δ ) (α k + α l )(1 -e -2α k δ )(1 -e -2α l δ ) ≤ C α k α l α k + α l ≤ C [min(|k|, |l|) + 1] . (A.13)
As in the proof of (A.11), we have

α k α l (1 -e -2(α k -α l )δ ) (α k -α l )(1 -e -2α k δ )(e 2α l δ -1) ≤ Cα k α l max(|k|, |l|) ≤ C [min(|k|, |l|) + 1] . (A.14)
Inequalities (A.12) follows from (A.13) and (A.14).

A.4 Two fundamental estimates

In this part, we let k > l ≥ 0 and prove the following:

X k,l := (α k α l + kl + λ -1)(1 -e -2(α k +α l )δ ) (α k + α l )(1 -e -2α k δ )(1 -e -2α l δ ) = 2kl k + l + O 1 l + 1 , (A.15) Y k,l := (α k α l + kl + λ -1)(1 -e -2(α k -α l )δ ) (α k -α l )(1 -e -2α k δ )(e 2α l δ -1) ≤ Ce -δl . (A.16)
The computations are direct:

X k,l - 2kl k + l = 2kl (α k + α l )(1 -e -2α k δ )(1 -e -2α l δ ) - 2kl k + l + O 1 l + 1 = 2kl k + l -(α k + α l )(1 -e -2α k δ )(1 -e -2α l δ ) (k + l)(α k + α l )(1 -e -2α k δ )(1 -e -2α l δ ) + O 1 l + 1 = O k + k 2 le -lδ/2 (k + l)(α k + α l )(1 -e -2α k δ )(1 -e -2α l δ ) + O 1 l + 1 = O 1 l + 1
.

We now turn to (A.16).

If

α k ≥ 2α l (or equivalently, if α k -α l ≥ α k 2 ), then (α k α l + kl + λ -1)(1 -e -2(α k -α l )δ ) (α k -α l )(1 -e -2α k δ )(e 2α l δ -1) ≤ C kl α k e -2α l δ ≤ Ce -δl . If α k < 2α l , then (α k α l + kl + λ -1)(1 -e -2(α k -α l )δ ) (α k -α l )(1 -e -2α k δ )(e 2α l δ -1) ≤ Cl 2 e -2α l δ ≤ Ce -δl .
B Proof of Proposition 1 and of Lemma 9

B.1 Proof of Proposition 1

The proof of 1) is direct by noting that if u ∈ H 1 (D, S 1 ), then ∂ 1 u and ∂ 2 u are pointwise proportional and deg ∂Ω (u

) = i deg ∂ω i (u), abdeg i (u, D) = 1 2π k=1,2 (-1) k D (u × ∂ k u)∂ 3-k V i = 1 2π ∂D V i u × ∂ τ u dτ = deg ∂Ω (u) - j =i deg ∂ω j (u) = deg ∂ω i (u).
Proof of 2). Since V i is locally constant on ∂D, integrating by parts,

D v × (∂ 1 u ∂ 2 V i -∂ 2 u ∂ 1 V i ) dx = D u × (∂ 1 v ∂ 2 V i -∂ 2 v ∂ 1 V i ) dx.
Then

2π|abdeg i (u) -abdeg i (v)| = D (u -v) × (∂ 1 V i ∂ 2 u -∂ 2 V i ∂ 1 u) + (∂ 1 V i ∂ 2 v -∂ 2 V i ∂ 1 v) dx ≤ √ 2 u -v L 2 (D) V i C 1 (D) ( ∇u L 2 (D) + ∇v L 2 (D) ) ≤ 2 u -v L 2 (D) V i C 1 (D) [E ε (u) 1/2 + E ε (v) 1/2 ] ≤ 4 u -v L 2 (D) V i C 1 (D) Λ 1/2 .
We prove assertion 3) by showing that dist(abdeg i (u ε ), Z) = o(1). Using the first and the second assertion, we have

dist(abdeg i (u ε ), Z) ≤ inf v∈E Λ 0 |abdeg i (u ε ) -abdeg i (v)| ≤ 2 π V i C 1 (D) Λ 1/2 inf v∈E Λ 0 u ε -v L 2 (D) (B.1)
where E Λ 0 := u ∈ H 1 (D, S 1 ) s.t.

1 2 D |∇u| 2 dx ≤ Λ = ∅. Now, it suffices to show that inf v∈E Λ 0 u ε -v L 2 (D) → 0.
We argue by contradiction and we assume that there is an extraction (ε n ) n ↓ 0 and δ > 0 s.t. for all n, inf

v∈E Λ 0 u εn -v L 2 (D) > δ.
We see that (u εn ) n is bounded in H 1 . Then, up to subsequence, u n converges to u ∈ H 1 (D, R 2 ) weakly in H 1 and strongly in L 4 .

Since

|u εn | 2 -1 L 2 (D) → 0, we have u ∈ H 1 (D, S 1
) and by weakly convergence, ∇u 2 L 2 (D) ≤ 2Λ. To conclude, we have u ∈ E Λ 0 et u εnu L 2 → 0, which is a contradiction.

B.2 Proof of Lemma 9

1) We see easily that, with z = e ıθ , we have

Ψ t (z) -F t (z) t = (1 -ϕ(θ))(1 -z 2 ) [z(1 -t) -1] [z(1 -tϕ(θ)) -1] ≡ A(θ, t) B(θ, t) . (B.2)
The modulus of the RHS of (B.2) can be bounded by noting that

• there is some m > 0 s. 

• if |θ| ≤ δ/2 (modulo 2π), then (Ψ t -F t ) t -1 ≡ 0.
2) This assertion is a standard expansion.

3) With a classical result relating regularity of Ψ t -F t to the asymptotic behaviour of its Fourier coefficients, we have

|b k (t) -c k (t)| ≤ 2 n+1 π ∂ n θ (Ψ t -F t ) L ∞ (S 1 ) t (1 + |k|) n . Noting that, for ∂ n θ (Ψ t -F t ) t -1 ≡ A n (θ, t) B n (θ, t)
• there is some m n > 0 s. 

• if |θ| ≤ δ/2 (modulo 2π), then (Ψ t -F t ) t -1 ≡ 0.
Thus the result follows.

B.3 Proof of Lemma 11

The key argument to treat the energetic contribution of D ± δ is the following lemma. Proof. (of Lemma 12) Using Lemma 9, (A.2) and (A.8), we have

t -1 | ψt (h, δ) -1| ≤ -c -1 f -1 (h) + k =-1 c k f k (h)e -ı[(k+1)δ] + -(b -1 -c -1 )f -1 (h) + k =-1 (b k -c k )f k (h)e -ı(k+1)δ ≤ C(δ)    k≥0 (1 -t)e -(1-h)-ıδ k + 1    = O(1).
We prove that |∂ h ψt (h, δ)| = O(t| ln t|). Using Lemma 9, (A.3) and (A.9),

t -1 |∂ h ψt (h, δ)| ≤ -c -1 f ′ -1 + k =-1 c k f ′ k e -ı(k+1)δ + -(b -1 -c -1 )f ′ -1 + k =-1 (b k -c k )f ′ k e -ı(k+1)δ ≤ 2 k≥0 k (1 -t)e -ıδ-(1-h) k + O(| ln t|) = O(| ln t|).
Using (6.11), (6.12) and Lemma 12, we have (with the notation of section 6) that

M λ (w t , D δ ) = R λ (w t ) + o(t), where R λ (w t ) = δt 2 k∈Z b 2 k φ k (f k ) -2t 2 k =-1 b -1 b k sin[(k + 1)δ] k + 1 1 1-δ [f ′ -1 f ′ k -(k -λ + 1)f -1 f k ] + 2t 2 k,l =-1 k-l>0 b k b l sin[(k -l)δ] k -l 1 1-δ [f ′ k f ′ l + (kl + λ -1)f k f l ].
The proof of Lemma 12 is completed provided we establish the following estimate:

R λ (w t ) ≤ δ -2δt + 4t 2 k,l≥0 k-l>0 c k c l sin[(k -l)δ] k -l kl k + l + o(t). (B.3)
The remaining part of this appendix is devoted to the proof of (B.3).

We estimate the first term of R λ :

Using (6.14) and Lemma 9, we have (with

C independent of t) k∈Z b 2 k φ k (f k ) - k∈Z c 2 k φ k (f k ) ≤ C. (B.4)
With (6.14) and (A.7), we obtain

φ k (f k ) = α(1 + 2 e 2αδ -1 ) = |k| + O 1 |k| + 1 when |k| → ∞. (B.5)
From (A.1), (A.3) and (B.5),

t 2 k∈Z c 2 k φ k (f k ) = t 2 φ -1 (f -1 ) + t 2 (t -2) 2 k≥0 (1 -t) 2k φ k (f k ) = t 2 (t -2) 2 k>0 k(1 -t) 2k + o(t) = 1 -2t + o(t). (B.6)
We estimate the second term of R λ : Using Lemma 9, (A.11) and (A.12), we have (with C independent of t)

k =-1 (b k -c k ) sin[(k + 1)δ] k + 1 1 1-δ [f ′ -1 f ′ k -(k -λ + 1)f -1 f k ] ≤ C.
Since b -1 (t) is bounded by a quantity independent of t, in the order to estimate the third term of the RHS of (6.10), we observe that there is C independent of t s.t.

k≥0 (1 -t) k sin[(k + 1)δ] k + 1 1 1-δ [f ′ -1 f ′ k -(k -λ + 1)f -1 f k ] ≤ C   k≥1 (1 -t) k k + 1   = C(| ln t| + 1).
Finally, using Lemma 9, (6.16) and (6.17), we have

k =-1 b k sin[(k + 1)δ] k + 1 1 1-δ [f ′ -1 f ′ k -(k -λ + 1)f -1 f k ] ≤ C(| ln t| + 1). (B.7)
We estimate the last term of R λ : First, we consider the case k = -l > 0 (i.e., f k = f l ). Using (6.15), 0 ≤ f k ≤ 1 and (A.10), we have (with

C independent of t) k>0 b k b -k sin 2kδ 2k 1 1-δ [f ′2 k + (-k 2 + λ -1)f 2 k ] ≤ C.
It remains to estimate the last sum in R λ , considered only over the indices k and l s.t. |k| = |l|. We start with

k,l =-1 k-l>0,k =-l (b k b l -c k c l ) sin[(k -l)δ] k -l 1 1-δ [f ′ k f ′ l + (kl + λ -1)f k f l ] (B.8) = k,l =-1 k-l>0,k =-l [(b k -c k )(b l -c l ) + c k (b l -c l ) + c l (b k -c k )] * * sin[(k -l)δ] k -l 1 1-δ [f ′ k f ′ l + (kl + λ -1)f k f l ].
By Assertion 3) of Lemma 9, the first sum of the RHS of (B.8) is easily bounded by a quantity independent of t. By (A.11), (A.12) and Lemma 9,

k,l =-1 k-l>0,k =-l c k (b l -c l ) sin[(k -l)δ] k -l 1 1-δ [f ′ k f ′ l + (kl + λ -1)f k f l ] ≤ C k≥0,l =-1 k-l>0,k =-l (1 -t) k |b l -c l ||l| k -l + C.
On the other hand (putting Similarly, we may prove that

n = k -l), k≥0,l =-1 k-l>0,k =-l (1 -t) k |b l -c l ||l| k -l ≤ k>l≥0 (1 -t) k |b l -c l |l k -l + k≥0,l≤-1 (1 -t) k |b l -c l ||l| k + |l| ≤ l≥0,n>0 ( 
k,l =-1 k-l>0,k =-l c l (b k -c k ) sin[(k -l)δ] k -l 1 1-δ [f ′ k f ′ l + (kl + λ -1)f k f l ] = O(| ln t|).
We have thus proved that To finish the proof, it suffices to obtain

k,l =-1 k-l>0,k =-l c k c l sin[(k -l)δ] k -l 1 1-δ [f ′ k f ′ l + (kl + λ -1)f k f l ] = 2 k,l≥0 k-l>0 c k c l sin[(k -l)δ] k -l kl k + l + o(t -1
).

Since c m = 0 for m < -1, it suffices to consider the case k > l ≥ 0. Under these hypotheses, we have by (6.16), (6.17 Claim: Taking M η,δ instead of M η,δ , we obtain the same conclusions replacing the assertion i) by deg S 1 (M η,δ ) = -1.

Proof. As in section 6, let ϕ ∈ C ∞ (R, R) be s.t.

• 0 ≤ ϕ ≤ 1,
• ϕ is even and 2π-periodic,

• ϕ |(-δ/2,δ/2) ≡ 1 and ϕ |[-π,π[\(-δ,δ) ≡ 0.

For 0 < t < δ, let M t = M be the unique solution of .

It follows easily that M satisfies i), iii) and iv). We will prove that for t small ii) holds. Using (6.4), we have (1t) 2k (k + 1) + O(t 2 ) (using Lemma 9)

= π + O(t 2 ) (using (A.2) and (A.3)) ≤ π + η for t small.

We finish the proof taking, for t small, M η,δ = M t .

Lemma 14. Let u ∈ J , i ∈ {0, ..., N } and ε > 0. For all η > 0, there is Proof. We prove that for i = 0, there is u + η ∈ J deg(u,D)+e i satisfying (C.4) and (C.5). In the other cases the proof is similar.

u ± η ∈ J deg(u,D)±e i s.t. E ε (u ± η ) ≤ E ε (u) + π + η (C.
Using the density of C 0 (D, C) ∩ J in J for the H 1 -norm, we may assume u ∈ C 0 (D, C) ∩ J . It suffices to prove the result for 0 < η < min{10 -3 , ε 2 }. Let x 0 ∈ ∂Ω and V η be an open regular set of D s.t. :

• ∂V η ∩ ∂D = ∅, |V η | ≤ η 2 ,
• x 0 is an interior point of ∂Ω ∩ ∂V η ,

• V η is simply connected,

• |u| 2 ≤ 1 + η 2 in V η , • ∇u L 2 (Vη) ≤ η 2 .
Using the Carathéodory's theorem, there is Φ : V η → D(0, 1), a homeomorphism s.t. Φ |Vη : V η → D(0, 1) is a conformal mapping. Without loss of generality, we may assume that Φ(x 0 ) = 1. Let δ > 0 be s.t. for |θ| ≤ δ we have Φ -1 (e ıθ ) ∈ ∂V η ∩ ∂Ω.

Let N η ∈ J be defined by

N η (x) = 1 if x ∈ D \ V η M η 2 ,δ (Φ(x)) otherwise .
Here, M η 2 ,δ is defined by Lemma 13. Using the conformal invariance of the Dirichlet functional, we have 
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) |u| = 1

 1 and u × ∂ ν u = 0 on ∂D. (3.2) Equation (3.1) and the Dirichlet condition on the modulus in (3.2) are classical. The Neumann condition on the phase in (3.2) is less standard but it is for example stated in [4]. Equation (3.1) combined with the boundary condition on ∂D implies, via a maximum principle, that |u| ≤ 1 in D.

Lemma 12. 1 . 2 .

 12 | ψt (h, ±δ) -1| = O(t); |∂ h ψt (h, ±δ)| = O(t| ln t|).

1 ( 1 -

 11 1t) n n |b lc l |l + k>0,l≤-t) k k |b lc l ||l| = O(| ln t|).

k

  ,l =-1 k-l>0,k =-l (b k b lc k c l ) sin[(kl)δ] k -k f ′ l + (kl + λ -1)f k f l ] = o(t -1).

2 k>l≥0cC Proof of Lemma 7 Lemma 13 . 1 )

 27131 ), (A.15) and (A.16),k>l≥0 c k c l sin[(kl)δ] k -k f ′ l + (kl + λ -1)f k f l ] = k c l | sin[(kl)δ]| k -We conclude by noting thatk>l≥0 c k c l sin[(kl)δ] (kl)(l + 1) ≤ C 1 + n>0 (1t) n n l>0 (1t) 2l l ≤ C(1 + ln 2 t). Let 0 < η, δ < 1, there is M η,δ : D(0, 1) → C x → M η,δ (x) s.t.: (C.1) i) |M η,δ | = 1 on S 1 , deg S 1 (M η,δ ) = 1, |∇M η,δ | 2 ≤ π + η, iii) |M η,δ | ≤2iv) if |θ| > δ mod 2π, then M η,δ (e ıθ ) = 1.

M

  (e ıθ ) = e ıθ -(1tϕ(θ)) e ıθ (1tϕ(θ)) -1on ∂D(0,

e ıθ -( 1 -πt 2 k≤- 2 |k + 1|b 2 k = πt 2 k≥0 c 2 k

 12222 tϕ(θ)) e ıθ (1tϕ(θ)) -1 = (1tb -1 (t)) + t k =-1 b k (t)e (k+1)ıθ . (C.2)It is not difficult to see thatM (re ıθ ) = (1tb -1 (t)) + t k =-1 b k (t)r |k+1| e (k+1)ıθ . (k + 1) + O(t 2 ) (using Lemma 9) = π(2t) 2 t 2 k≥0

4 )

 4 and uu ± η L 2 (D) = o η (1), o η(1)

1 2 2 j=1, 2 ( 2 j=1, 2 (

 22222 Vη |∇N η | 2 = 1 2 D(0,1) |∇M η 2 ,δ | 2 ≤ π + η 2 . (C.6) It is not difficult to see that u + η := uN η ∈ J deg(u,D)+e 0 . Since |N η | ≤ 2 and N η -1 L 2 (D) = o η (1), using the Dominated convergence theorem, we may prove that uN η → u in L 2 (D) when η → 0. It follows that (C.5) holds.From (C.6) and using the following formula,|∇(uv)| 2 = |v| 2 |∇u| 2 + |u| 2 |∇v| 2 + v∂ j u) • (u∂ j v) |N η | 2 |∇u| 2 + |u| 2 |∇N η | 2 + N η ∂ j u) • (u∂ j N η )    ≤ (1 + η 2 )(π + η 2 ) + 2 ∇u 2 L 2 (Vη) + 4 1 + η 2 ∇u L 2 (Vη ) ∇N η L 2 (Vη ) ≤ π + η 2 .(C.7)

  1) and (3.2). Let G ⊂ D be an open Lipschitz set s.t. u does not vanish in G. Write, in G, u = ρv with ρ = |u|. Let w ∈ H 1 (G, C) be s.t. |tr ∂G w| ≡ 1.

  t. |B(θ, t)| ≥ m for each t and each θ s.t. |θ| > δ/2 mod 2π;

• there is some M > 0 s.t. |A(θ, t)| ≤ M for each t and each θ s.t. |θ| > δ/2 mod 2π;

  t. |B n (θ, t)| ≥ m n for each t and each θ s.t. |θ| > δ/2 mod 2π; • there is some M n > 0 s.t. |A n (θ, t)| ≤ M n for each t and each θ s.t. |θ| > δ/2 mod 2π;
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A Results used in the proof of Lemma 5

A.1 Power series expansions

For X ∈ C, |X| < 1, we have

Proof: The first four identities are classical. We sketch the argument that leads to (A.5) and (A.6). The identity (A.5) follows from (A.4) by integration. Furthermore, we have

From (C.7) and (C.8), it follows

The previous inequality completes the proof.

We may now prove Lemma 7. For the convenience of the reader, we recall the statement of the lemma.

Proof. As in the previous lemma, it suffices to prove the proposition for 0

Let σ be the sign function i.e. for x ∈ R * , σ(x) = x |x| .

For n ∈ N L and l ∈ N |δ in | , we construct

Here, (v l n ) ± µ stands for u ± µ defined by Lemma 14 taking u = v l n and η = µ. It is clear that v l n is well defined and that for n

Therefore, using (C.4), we have for n ∈ N L ,

Taking n = L, we obtain that

Furthermore, u δ η is obtained from u multiplying by ℓ 1 factors N l , l ∈ N ℓ 1 . Each N l is bounded by 2 and converges to 1 in L 2 -norm (when η → 0). Using the Dominated convergence theorem, we may prove that u δ η satisfies (4.8).