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LOCAL MINIMIZERS OF THE GINZBURG-LANDAU

FUNCTIONAL WITH PRESCRIBED DEGREES

Mickaël Dos Santos ∗
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November 7, 2011

Abstract

We consider, in a smooth bounded multiply connected domain D ⊂ R2, the Ginzburg-Landau
energy Eε(u) =

1

2

∫

D

{

|∇u|2 + 1

2ε2
(1 − |u|2)2

}

subject to prescribed degree conditions on each
component of ∂D. In general, minimal energy maps do not exist [4]. When D has a single hole,
Berlyand and Rybalko [5] proved that for small ε local minimizers do exist. We extend the
result in [5]: Eε(u) has, in domains D with 2, 3, ... holes and for small ε, local minimizers. Our
approach is very similar to the one in [5]; the main difference stems in the construction of test
functions with energy control.
Keywords: Ginzburg-Landau functional, prescribed degrees, local minimizers
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1 Introduction

This article deals with the existence problem of local minimizers of the Ginzburg-Landau func-
tional with prescribed degrees in a 2D perforated domain D.

The domain we consider is of the form D = Ω \ ∪i∈NN
ωi, where N ∈ N

∗, Ω and the ωi’s are
simply connected, bounded and smooth open sets of R2.

We assume that ωi ⊂ Ω and ωi ∩ ωj = ∅ for i, j ∈ NN := {1, ..., N}, i 6= j.
The Ginzburg-Landau functional is

Eε(u,D) :=
1

2

∫

D

{

|∇u|2 + 1

2ε2
(

1− |u|2
)2
}

dx (1.1)

with u : D → C ≃ R
2 and ε is a positive parameter (the inverse of κ, the Ginzburg-Landau

parameter).
When there is no ambiguity we will write Eε(u) instead of Eε(u,D).
Functions we will consider belong to the class

J =
{

u ∈ H1(D,C) | |u| = 1 on ∂D
}

.

Clearly, J is closed under weak H1−convergence.
This functional is a simplified version of the Ginzburg-Landau functional which arises in super-

conductivity (or superfluidity) to model the state of a superconductor submitted to a magnetic field
(see, e.g., [10] or [9]). The simplified version of the Ginzburg-Landau functional considered in (1.1)
ignores the magnetic field. The issue we consider in this article is existence of local minimizers with
prescribed degrees on ∂D.

We next formulate rigorously the problem discussed in this article. To this purpose, we start by
defining properly the degrees of a map u ∈ J . For γ ∈ {∂Ω, ..., ∂ωN} and u ∈ J we let

degγ(u) =
1

2π

∫

γ
u× ∂τudτ .

Here:

• each γ is directly (counterclockwise) oriented,

• τ = ν⊥, τ is the tangential vector of γ and ν the outward normal to Ω if γ = ∂Ω or ωi if
γ = ∂ωi,

• ∂τ = τ · ∇, the tangential derivative and ” · ” stands for the scalar product in R
2,
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• ”×” stands for the vectorial product in C, (z1+ız2)×(w1+ıw2) := z1w2−z2w1, z1, z2, w1, w2 ∈
R,

• the integral over γ should be understood using the duality between H1/2(γ) and H−1/2(γ)
(see, e.g., [4] definition 1).

It is known that degγ(u) is an integer see [4] (the introduction) or [7].
We denote the (total) degree of u ∈ J in D by

deg(u,D) =
(

deg∂ω1
(u), ...,deg∂ωN

(u),deg∂Ω(u)
)

∈ Z
N × Z.

For (p, q) ∈ Z
N × Z, we are interested in the minimization of Eε in

Jp,q := {u ∈ J |deg(u,D) = (p, q)} .

There is an huge literature devoted to the minimization of Eε. In a simply connected domain Ω,
the minimization problem of Eε with the Dirichlet boundary condition g ∈ C∞(∂Ω,S1) is studied
in detail in [6]. Eε has a minimizer for each ε > 0. This minimizer need not to be unique. In
this framework, when deg∂Ω(g) 6= 0, the authors studied the asymptotic behaviour of a sequence
of minimizers (when εn ↓ 0) and point out the existence (up to subsequence) of a finite set of
singularities of the limit.

Other types of boundary conditions were studied, like Dirichlet condition g ∈ C∞(∂Ω,C \ {0})
(in a simply connected domain Ω) in [1] and later for g ∈ C∞(∂Ω,C) (see [2]).

If the boundary data is not u|∂D, but a given set of degrees, then the existence of local minimizers
is non trivial. Indeed, one can show that Jp,q is not closed under weak H1-convergence (see next
section), so that one cannot apply the direct method in the calculus of variations in order to derive
existence of minimizers. Actually this is not just a technical difficulty, since in general the infimum
of Eε in Jp,q is not attained, we need more assumptions like the value of the H1−capacity of D
(see [3] and [4]).

Minimizers u of Eε in Jp,q, if they do exist, satisfy the equation



















−∆u =
u

ε2
(1− |u|2) in D

|u| = 1 on ∂D
u× ∂νu = 0 on ∂D

deg(u,D) = (p, q)

(1.2)

where ∂ν denotes the normal derivative, i.e., ∂ν =
∂

∂ν
= ν · ∇.

Existence of local minimizers of Eε is obtained following the same lines as in [5]. It turns
out that, even if the infimum of Eε in Jp,q is not attained, (1.2) may have solutions. This was
established by Berlyand and Rybalko when D has a single hole, i.e., when N = 1. Our main result
is the following generalisation of the main result in [5]:

Theorem 1. Let (p, q) ∈ Z
N × Z and let M ∈ N

∗, there is ε1(p, q,M) > 0 s.t. for ε < ε1, there
are at least M locally minimizing solutions.

Actually, we will prove a more precise form of Theorem 1 (see Theorem 2), whose statement
relies on the notion of approximate bulk degree introduced in [5] and generalised in the next section.

The main difference with respect to [5] stems in the construction of the test functions with
energy control in section 6. In a sense that will be explained in details in section 6, our construction
is local, while the one in [5] is global. We also simplify and unify some proofs in [5].
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We do not know whether the conclusion of theorem 1 still holds when D has no holes at all.
That is, we do not know whether for a simply connected domain Ω, a given d ∈ Z

∗ and small ε, the
problem



















−∆u =
u

ε2
(1− |u|2) in Ω

u× ∂νu = 0 on ∂Ω
|u| = 1 on ∂Ω

deg∂Ω(u) = d

(1.3)

has solutions. Existence of a solution of (1.3) is clear when Ω is a disc, say Ω = D(0, R) (it suffices

to consider a solution of −∆u = u
ε2
(1−|u|2) of the form u(z) = f(|z|)

(

z

|z|

)d

with u|∂Ω =

(

z

|z|

)d

).

However, we do not know the answer when Ω is not radially symmetric anymore.

2 The approximate bulk degree

This section is a straightforward adaptation of [5].
Existence of (local) minimizers for Eε in Jp,q is not straightforward since Jp,q is not closed

under weak H1−convergence. A typical example (see [4]) is a sequence (Mn)n s.t.

Mn : D(0, 1) → D(0, 1)

x 7→ x− (1− 1/n)

(1− 1/n)x− 1

,

where D(0, 1) ⊂ C is the open unit disc centered at the origin. Then Mn ⇀ 1 in H1, degS1(Mn) = 1
and degS1(1) = 0.

To obtain local minimizers, Berlyand and Rybalko (in [5]) devised a tool: the approximate bulk
degree. We adapt this tool for a multiply connected domain.

We consider, for i ∈ NN := {1, ..., N}, Vi the unique solution of







−∆Vi = 0 in D
Vi = 1 on ∂D \ ∂ωi

Vi = 0 on ∂ωi

. (2.1)

For u ∈ J , we set, noting ∂ku =
∂

∂xk
u

abdegi(u,D) =
1

2π

∫

D
u× (∂1Vi ∂2u− ∂2Vi ∂1u)dx, (2.2)

abdeg(u,D) = ( abdeg1(u,D) , ..., abdegN (u,D) ) .

Following [5], we call abdeg(u,D) the approximate bulk degree of u. abdegi : J → R, in general, is
not an integer (unlike the degree). However, we have

Proposition 1. 1) If u ∈ H1(D,S1), then abdegi(u,D) = deg∂ωi
(u);

2) Let Λ, ε > 0 and u, v ∈ J s.t. Eε(u), Eε(v) ≤ Λ, then

|abdegi(u)− abdegi(v)| ≤
2

π
‖Vi‖C1(D)Λ

1/2‖u− v‖L2(D); (2.3)

3) Let Λ > 0 and (uε)ε>0 ⊂ J s.t. for all ε > 0, Eε(uε) ≤ Λ, then

dist(abdeg(uε),Z
N ) → 0 when ε→ 0. (2.4)
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Proof of Proposition 1 is postponed to Appendix B.
We define for d = (d1, ..., dN ) ∈ Z

N , p = (p1, ..., pN ) ∈ Z
N and q ∈ Z,

J d
p,q = J d

p,q(D) :=

{

u ∈ Jp,q | ‖abdeg(u)− d‖∞ := max
i∈NN

|di − abdegi(u)| ≤
1

3

}

.

The following result states that J d
p,q in never empty for (p, q,d) ∈ Z

N × Z× Z
N .

Proposition 2. Let (p, q,d) ∈ Z
N × Z× Z

N . Then J d
p,q 6= ∅.

Proof. For i ∈ {0, ..., N}, we denote ei = (δi,1, ..., δi,N , δi,0) ∈ Z
N+1 where

δi,k =

{

1 if i = k
0 otherwise

is the Kronecker symbol.

For i ∈ {0, ..., N}, there is M i
n ∈ J(pi−di)ei if i 6= 0 and M0

n ∈ J(q−
∑

dj)e0 s.t. M i
n ⇀ 1 in H1 and

|M i
n| ≤ 1 (Lemmas 6.1 and 6.2 in [4]). Let

Ed :=
{

u ∈ H1(D,S1) |deg(u,D) = (d, d)
}

,d = (d1, ..., dN ), d =

N
∑

j=1

dj .

We note that, Ed 6= ∅, see, e.g., [6]. Let u ∈ Ed and un := u
∏N

i=0M
i
n. Then we will prove that,

for large n, we have, up to subsequence, that un ∈ J d
p,q. Indeed, up to subsequence,

un ⇀ u in H1, un ∈ Jp,q.

Using the fact that abdeg(u) = d and the weak H1-continuity of the approximate bulk degree, we
obtain for n sufficiently large, that un ∈ J d

p,q.

We denote mε(p, q,d) the infimum of Eε on J d
p,q, i.e,

mε(p, q,d) = inf
u∈J d

p,q

Eε(u)

and

I0(d,D) = inf
u∈Ed

1

2

∫

D
|∇u|2.

We may now state a refined version of Theorem 1.

Theorem 2. Let d ∈ (N∗)N . Then, for all (p1, ..., pN , q) ∈ Z
N+1 s.t. q ≤ d and pi ≤ di, there is

ε2 = ε2(p, q,d) > 0 s.t. for 0 < ε < ε2, mε(p, q,d) is attained.
Moreover, we have the following estimate

mε(p, q,d) = I0(d,D) + π (d1 − p1 + ...+ dN − pN + d− q)− oε(1), oε(1) →
ε→0

0.

For further use, a configuration of degrees (p, q,d) ∈ Z
N ×Z× (N∗)N s.t. pi ≤ di and q ≤∑ di

will be called a "good configuration". Noting that, for d 6= d̃ ∈ Z
N and (p, q) ∈ Z

N × Z, we have

J d
p,q ∩ J d̃

p,q = ∅, we are led to

Proof of Theorem 1: Let (p, q) ∈ Z
N × Z and set for k ∈ N

∗,

d = max

{

max
i

|pi|, |q|
}

and dk = (d+ k, ..., d + k).
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We apply Theorem 2 to the class J dk
p,q. We obtain the existence of

ε1(p, q,M) = min
k∈NM

ε2(p, q,dk) > 0

s.t. for ε < ε1, k ∈ NM , mε(p, q,dk) is achieved by ukε .
Noting the continuity of the degree and of the approximate bulk degree for the strong H1-

convergence, there exists V k
ε ⊂ J dk

p,q ⊂ J an open (for H1-norm) neighbourhood of ukε . It follows
easily that

Eε(u
k
ε) = min

u∈V k
ε

Eε(u).

Then ukε ∈ Jp,q is a local minimizer of Eε in J (for H1-norm) for 0 < ε < ε1(p, q,M).

3 Basic facts of the Ginzburg-Landau theory

It is well known (cf [4], lemma 4.4 page 22) that the local minimizers of Eε in Jp,q satisfy

−∆u =
1

ε2
u(1− |u|2) in D, (3.1)

|u| = 1 and u× ∂νu = 0 on ∂D. (3.2)

Equation (3.1) and the Dirichlet condition on the modulus in (3.2) are classical. The Neumann
condition on the phase in (3.2) is less standard but it is for example stated in [4].

Equation (3.1) combined with the boundary condition on ∂D implies, via a maximum principle,
that

|u| ≤ 1 in D. (3.3)

One of the questions in the Ginzburg-Landau model is the location of the vortices of stable
solutions (i.e., local minimizers of Eε). We will define ad hoc a vortex as an isolated zero x of u
with nonzero degree on small circles around x.

The following result shows that, under energy bound assumptions on solutions of (3.1), vortices
are expelled to the boundary when ε→ 0.

Lemma 1. [8] Let Λ > 0 and let u be a solution of (3.1) satisfying (3.3) and the energy bound
Eε(u) ≤ Λ. Then with C,Ck and ε3 depending only on Λ, D, we have, for 0 < ε < ε3 and x ∈ D,

1− |u(x)|2 ≤ Cε2

dist2(x, ∂D)
(3.4)

and

|Dku(x)| ≤ Ck

distk(x, ∂D)
. (3.5)

When u is smooth in D and ρ = |u| > 0, the map
u

ρ
admits a lifting θ , i.e, we may write

u = ρe ıθ,

where θ is a smooth (and locally defined) real function on D and ∇θ is a globally defined smooth
vector field.

Using (3.1) and (3.2), we have

{

div(ρ2∇θ) = 0 in B
∂νθ = 0 on ∂D , (3.6)
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{

−∆ρ+ |∇θ|2ρ+ 1

ε2
ρ(ρ2 − 1) = 0 in B

ρ = 1 on ∂D
, (3.7)

here, B = {x ∈ D |u(x) 6= 0}.
We will need later the following.

Lemma 2. [5] Let u be a solution of (3.1) and (3.2). Let G ⊂ D be an open Lipschitz set s.t. u
does not vanish in G. Write, in G, u = ρv with ρ = |u|. Let w ∈ H1(G,C) be s.t. |tr∂Gw| ≡ 1.
Then

Eε(ρw,G) = Eε(u,G) + Lε(w,G),

with

Lε(w,G) =
1

2

∫

G
ρ2|∇w|2 dx− 1

2

∫

G
|w|2ρ2|∇v|2 dx+

1

4ε2

∫

G
ρ4(1− |w|2)2 dx.

For further use, we note that we may write, locally in G, u = ρe ıθ, so that v = e ıθ. It turns out
that ∇θ is smooth and globally defined in G. In terms of ∇θ, we may rewrite

Lε(w,G) =
1

2

∫

G
ρ2|∇w|2 dx− 1

2

∫

G
|w|2ρ2|∇θ|2 dx+

1

4ε2

∫

G
ρ4(1− |w|2)2 dx.

For u a solution of (3.1) and (3.2), we can consider (see Lemma 7 in [5]) h the unique globally
defined solution of







∇⊥h = u×∇u in D
h = 1 on ∂Ω
h = ki on ∂ωi

, (3.8)

where ki’s are real constants uniquely defined by the first two equations in (3.8). Here

∇⊥h =

(

−∂2h
∂1h

)

is the orthogonal gradient of h and u×∇u =

(

u× ∂1u
u× ∂2u

)

.

It is easy to show that














∇h = −ρ2∇⊥θ in B

div(
1

ρ2
∇h) = 0 in B

∆h = 2∂1u × ∂2u in B

; (3.9)

here, B = {x ∈ D |u(x) 6= 0}.
In [6], Bethuel, Brezis and Hélein consider the minimization of E(u) =

1

2

∫

D
|∇u|2 dx, the

Dirichlet functional, in the class

Ed = {u ∈ H1(D,S1) |deg(u,D) = (d, d)};

here, d =
∑

dk.
Theorem I.1 in [6] gives the existence of a unique solution (up to multiplication by an S

1-
constant) for the minimization of E in Ed. We denote u0 this solution. This u0 is also a solution
of

{

−∆v = v|∇v|2 in D
v × ∂νv = 0 on ∂D .

Moreover, we have

I0(d,D) := min
u∈Ed

E(u) =
1

2

∫

D
|∇h0|2 dx (3.10)
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with h0 the unique solution of























∆h0 = 0 in D
h0 = 1 on ∂Ω

h0 = Cstk on ∂ωk, k ∈ {1, ..., N}
∫

∂ωk

∂νh0 dσ = 2πdk for k ∈ {1, ..., N}
. (3.11)

One may prove that h0 is the (globally defined) harmonic conjugate of a local lifting of u0.

4 Energy needed to change degrees

We denote
æ : (ZN × Z)× (ZN × Z) → N

((d, d), (p, q)) 7→ ∑N
i=1 |di − pi|+ |d− q| .

The next result quantifies the energy needed to change degrees in the weak limit.

Lemma 3. ([4], Lemma 1) Let (un)n ⊂ Jp,q be a sequence weakly converging in H1 to u. Then

lim inf
n

E(un) ≥ E(u) + πæ(deg(u,D), (p, q)) (4.1)

and for ε > 0
lim inf

n
Eε(un) ≥ Eε(u) + πæ(deg(u,D), (p, q)). (4.2)

The next lemma is proved in [5].

Lemma 4. Let d = (d1, ..., dN ),p = (p1, ..., pN ) ∈ Z
N , q ∈ Z. There is oε(1) →

ε→0
0 (depending of

(p, q,d)) s.t. for u ∈ J d
p,q we have

Eε(u) ≥ I0(d,D) + πæ((d, d), (p, q)) − oε(1). (4.3)

Here, d :=
∑

di.

We present below a simpler proof than the original one in [5].

Proof. Let (p, q,d) ∈ Z
N × Z × Z

N . We argue by contradiction and we suppose that there are
δ > 0, εn ↓ 0 and (un)n ⊂ J d

p,q s.t.

Eεn(un) ≤ I0(d,D) + πæ((d, d), (p, q)) − δ. (4.4)

Since (un)n is bounded in H1, there is some u s.t., up to subsequence, un ⇀ u in H1 and un → u in
L4. Using the strong convergence in L4, (4.4) and Proposition 1, we have u ∈ H1(D,S1)∩J d

d,d = Ed.
To conclude, we use (4.4) combined with Lemma 3

I0(d,D) + πæ((d, d), (p, q)) − δ ≥ lim inf
n

Eεn(un)

≥ lim inf
n

E(un)

≥ E(u) + πæ((d, d), (p, q))

≥ I0(d,D) + πæ((d, d), (p, q))

which is a contradiction.
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One may easily proved (see Lemma 14 in Appendix C) that for η > 0, i ∈ {0, ..., N} and
u ∈ Jdeg(u,D), there are v± ∈ Jdeg(u,D)±ei s.t.

Eε(v±) ≤ Eε(u) + π + η.

The key ingredient is a sharper result which holds under two additional hypotheses. In order to
unify the notations, we use the notation ω0 for Ω. We may now state the main ingredient in the
proof of Theorem 2.

Lemma 5. Let u ∈ Jp,q be a solution of (3.1), (3.2).
Assume that

abdegj(u) ∈ (dj −
1

3
, dj +

1

3
), ∀ j ∈ NN . (4.5)

Let i ∈ {0, ..., N} and assume that there is some point xi ∈ ∂ωi s.t. u× ∂τu(x
i) > 0. Recall that τ

is the direct tangent vector to ∂ωi.
Then there is ũ ∈ J(p,q)−ei s.t.

Eε(ũ) < Eε(u) + π

and

abdegj(ũ) ∈ (dj −
1

3
, dj +

1

3
), ∀j ∈ NN .

The proof of Lemma 5 is postponed to section 6.
We also have an upper bound for mε(p, q,d).

Lemma 6. Let ε > 0 and (p, q,d) ∈ Z
N × Z× Z

N . Then

mε(p, q,d) ≤ I0(d,D) + πæ((d, d), (p, q)). (4.6)

To prove Lemma 6, we need the following

Lemma 7. Let u ∈ J , ε > 0 and δ = (δ1, ..., δN , δ0) ∈ Z
N+1. For all η > 0, there is uδη ∈ Jdeg(u,D)+δ

s.t.
Eε(u

δ
η) ≤ Eε(u) + π

∑

i∈{0,...,N}

|δi|+ η (4.7)

and
‖u− uδη‖L2(D) = oη(1), oη(1) →

η→0
0. (4.8)

The proof of Lemma 7 is postponed to Appendix C.

Proof. We prove that for η > 0 small, we have

mε(p, q,d) ≤ I0(d,D) + πæ((d, d), (p, q)) + η.

We denote u0 ∈ Ed s.t. E(u0) = I0(d,D). Then abdegi(u0) = di.
Using Lemma 7 with δ = (p, q)− (d, d), there is uη s.t.

uη ∈ J(p,q) and Eε(uη) ≤ Eε(u0) + πæ((d, d), (p, q)) + η = I0(d,D) + πæ((d, d), (p, q)) + η.

Furthermore, by (4.8), ‖u0 − uη‖L2(D) = oη(1). For η small, by Proposition 1, we have u0 ∈ J d
p,q

which proves the lemma.
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5 A family with bounded energy converges

In this section we discuss:

1. the asymptotic behaviour of a sequence of solutions of (3.1), (3.2), (uεn)n ⊂ J d
p,q (εn ↓ 0) with

bounded energy , i.e, Eεn(uεn) ≤ Λ,

2. the asymptotic behaviour of a minimizing sequence of Eε in J d
p,q,

3. a fundamental lemma.

Proposition 3. Let εn ↓ 0, (uεn)n ⊂ J d
p,q with uεn a solution of (3.1), (3.2), s.t. for Λ > 0, we

have
Eεn(uεn) ≤ Λ.

Then, denoting hεn the unique solution of (3.8) with u = uεn , we have

hεn ⇀ h0 in H1(D), (5.1)

where h0 is the unique solution of (3.11).
Up to subsequence, it holds

uεn ⇀ u0 in H1(D), (5.2)

where u0 ∈ Ed is the unique solution of (3.10) up to multiplication by an S
1-constant.

Proof. Using the energy bound on uεn and a Poincaré type inequality, we have, up to subsequence,

hεn ⇀ h in H1.

In order to establish (5.1), it suffices to prove that h = h0.
The set H := {h ∈ H1(D,R) ; ∂τh ≡ 0 on ∂D and h|∂Ω ≡ 1} is closed convex in H1(D,R).

Since (hεn)n ⊂ H, we find that h ∈ H.
By boundedness of Eεn(uεn), Lemma 1 implies that uεn is bounded in C2

loc(D,R2). Therefore
there is some u ∈ C1

loc(D,C) s.t., up to subsequence, uεn → u in C1
loc(D,R2), L4(D,R2) and weakly

in H1(D,R2).
Using the strong convergence in L4 and the energy bound on uεn , we find that u ∈ H1(D,S1).

It follows that ∂1u× ∂2u = 0 in D. On the other hand,

∆hεn = 2∂1uεn × ∂2uεn → 0 in C0
loc.

Therefore, h is a harmonic function in D.
In order to show that h = h0, it suffices to check that

∫

∂ωi

∂νhdσ = 2πdi.

To this end, we note that, since uεn × (∂1Vi∂2uεn − ∂2Vi∂1uεn) = ∇Vi · ∇hεn , we have from (2.1)

2π abdegi(uεn) =

∫

D
∇Vi · ∇hεn dx −−−→

n→∞

∫

D
∇Vi · ∇hdx =

∫

∂D\∂ωi

∂νhdσ.

Noting that, by Proposition 1,

{

abdegi(uεn) −−−→n→∞
abdegi(u) = deg∂ωi

(u)

abdegi(uεn) −−−→n→∞
di
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and that 0 =

∫

D
∆hdx =

∫

∂D
∂νhdσ, we obtain

∫

∂D\∂ωi

∂νhdσ =

∫

∂ωi

∂νhdσ = 2π di = 2π deg∂ωi
(u).

In the first integral, ν is the outward normal to D, in the second, ν is the outward normal to ωi.
This proves (5.1).
We next turn to (5.2). Let u0 be s.t., up to subsequence, uεn ⇀ u0 in H1(D). Since |uεn | ≤ 1,

we find that
uεn ×∇uεn ⇀ u0 ×∇u0 in L2(D).

In view of (3.8) and (5.1), we have u0 ×∇u0 = ∇⊥h0. Therefore,

E(u0) = E(h0) = I0(d,D).

Proposition 1 implies that u0 ∈ Ed. Then u0 is the unique, up to multiplication by an S
1-constant,

minimizer of E in Ed.

Proposition 4. Let (p, q,d) ∈ Z
N × Z × Z

N . For ε > 0, let (uεn)n≥0 ⊂ J d
p,q be a minimizing

sequence of Eε in J d
p,q. Then there is ε4 (p, q,d) > 0 s.t. for 0 < ε < ε4, up to subsequence, un ⇀ u

in H1 with u which minimizes Eε in J d
deg(u,D).

Proof. For ε > 0, let (uεn)n ⊂ J d
p,q be a minimizing sequence of Eε in J . Up to subsequence, using

Proposition 1,
uεn ⇀ uε in H1 with uε ∈ J d

deg(uε,D).

Using Lemmas 3 and 6, we see that {deg(uε,D), ε > 0} ⊂ Z
N ×Z is a finite set and that Eε(u

ε)
is bounded. Therefore, with Proposition 1, there is ε4 > 0 s.t. |abdegi(uε)− di| < 1

3 for all i ∈ NN

and 0 < ε < ε4.
We argue by contradiction and we assume that there is ε < ε4 s.t.

Eε(u
ε) = mε(deg(u

ε,D),d) + 2η, η > 0.

Let u ∈ J d
deg(uε,D) be s.t. Eε(u) ≤ mε(deg(u

ε,D),d) + η.

Using Lemma 7 with δ = (p, q)− deg(uε,D), there is v ∈ Jp,q s.t.

Eε(v) < Eε(u) + πæ((p, q),deg(uε,D)) + η.

Furthermore, by (4.8), ‖u − v‖L2 can be taken arbitrary small, so that we may further assume
v ∈ J d

p,q. To summarise we have

mε(p, q,d) = lim inf
n

Eε(u
ε
n)

≥ Eε(u
ε) + πæ((p, q),deg(uε,D))

= mε(deg(u
ε,D),d) + 2η + πæ((p, q),deg(uε,D))

≥ Eε(u) + πæ((p, q),deg(uε,D)) + η

> Eε(v) ≥ mε(p, q,d).

This contradiction completes the proof.

The main tool requires the following lemma.
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Lemma 8. Let (p, q,d) ∈ Z
N × Z× Z

N and Λ > 0. There is ε5(p, q,d,Λ) > 0 s.t. for ε < ε5 and
u ∈ J d

p,q, a solution of (3.1) and (3.2) with Eε(u) ≤ Λ, if d > 0 (respectively di > 0), then there is
x0 ∈ ∂Ω (respectively xi ∈ ∂ωi) s.t. u× ∂τu(x

0) > 0 (respectively u× ∂τu(x
i) > 0).

Here τ is the direct tangent vector to ∂Ω (resp. ∂ωi).

Proof. We prove existence of x0 ∈ ∂Ω under appropriate assumptions. Existence of xi is similar.
We argue by contradiction. Assume that there are εn ↓ 0, (un) ⊂ J d

p,q solutions of (3.1) and
(3.2) with Eεn(un) ≤ Λ s.t. un × ∂τun ≤ 0 on ∂Ω.

Since q =
1

2π

∫

∂Ω
un × ∂τun, we have q ≤ 0.

Up to subsequence, by Proposition 3, we can assume that

un → u0 a.e. with u0 the unique solution (up to S
1) of (3.10).

Let x0 ∈ ∂Ω and let γ : ∂Ω → [0,H1(∂Ω)[=: I be s.t. γ−1 is the direct arc-length parametrization
of ∂Ω with the origin at x0.

We denote θn : I → R the smooth functions s.t.
{

un(x) = e ıθn[γ(x)] ∀x ∈ ∂Ω
0 ≤ θn(0) < 2π

.

Then, for all n, θn is nonincreasing and θn ∈ [θn(0) + 2πq, θn(0)] ⊂ [2πq, 2π].
Using Helly’s selection theorem, up to subsequence, we can assume that θn → θ everywhere on

I with θ nonincreasing. Denote Ξ the set of discontinuity points of θ. Since θ is nonincreasing, Ξ is
a countable set.

Using the monotonicity of θ, we can consider the following decomposition

θ = θc + θδ, with θc and θδ are nonincreasing functions.

θc is the continuous part of θ and θδ is the jump function. The set of discontinuity points of θδ is
Ξ.

For t /∈ Ξ,

θδ(t) =
∑

0<s<t, s∈Ξ

{θ(s+)− θ(s−)}.

We obtain easily that u0(x) = e ıθ[γ(x)] a.e. x ∈ ∂Ω. Since u0, θn and γ have side limits at each
points and u0 = e ıθ◦γ a.e., we find that

u0(x±) = e ıθ[γ(x±)] for each x ∈ ∂Ω.

Using the continuity of u0, we obtain e ıθ[γ(x+)] = e ıθ[γ(x−)] ∀x ∈ ∂Ω which implies that

θ[γ(x+)]− θ[γ(x−)] ∈ 2πZ ∀x ∈ ∂Ω.

For t /∈ Ξ,

θδ(t) =
∑

0<s<t, s∈Ξ

{θ(s+)− θ(s−)} ∈ 2πZ.

Then
u0(x)e

−ıθc[γ(x)] = e ıθ
δ[γ(x)] = 1 a.e. x ∈ ∂Ω.

Finally, u0(x) = e ıθ
c[γ(x)] a.e. x ∈ ∂Ω, which is equivalent (using the continuity of the functions) at

u0 = e ıθ
c◦γ .

We have a contradiction observing that

0 < 2πdeg∂Ω(u0) = 2πd = θc(H1(∂Ω))− θc(0)

and using the fact that θc is nonincreasing.
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6 Proof of Lemma 5

We prove only the part of the lemma concerning ∂Ω. The proof for the other connected com-
ponents of ∂D is similar.

For reader’s convenience, we state the part of Lemma 5 that we will actually prove

Lemma . Let u ∈ Jp,q be a solution of (3.1) and (3.2).
Assume that

abdegj(u) ∈ (dj −
1

3
, dj +

1

3
), ∀ j ∈ NN (4.5)

and that there is some point x0 ∈ ∂Ω s.t. u× ∂τu(x
0) > 0.

Then there is ũ ∈ J(p,q−1) s.t.
Eε(ũ) < Eε(u) + π,

abdegj(ũ) ∈ (dj −
1

3
, dj +

1

3
), ∀ j ∈ NN .

6.1 Decomposition of D
By hypothesis, there is some x0 ∈ ∂Ω s.t. ∂νh(x

0) > 0. Without loss of generality, we may
assume that u(x0) = 1.

Then there is Υ ⊂ D, a compact neighbourhood of x0, simply connected and with nonempty
interior, s.t.:

• γ := ∂Ω ∩ ∂Υ is connected with nonempty interior;

• x0 is an interior point of γ;

• |∇h| > 0, ρ > 0, h ≤ 1 in Υ;

• ∂νh > 0 on γ (ν the outward normal to Ω).

It follows that, in Υ, θ, a lifting of u/|u| is globally defined (we take the determination of θ
which vanishes at x0) .

Using the inverse function theorem, we may assume, by further restricting Υ, that there are
some 0 < η, δ < 1 s.t.

Υ = {x ∈ D s.t. dist(x, x0) < η, 1− δ ≤ h(x) ≤ 1, −2δ ≤ θ(x) ≤ 2δ}.

We may further assume that, by replacing δ by smaller value if necessary and denoting Dδ :=
◦
Υ

(see Figure 1), we have

(i)
Θ := (θ, h)|Dδ

: Dδ → (−2δ, 2δ) × (1− δ, 1) is a C1-diffeomorphism,

x 7→ (θ, h)

(ii) ∂Dδ \ ({h = 1} ∪ {h = 1− δ}) = ∂Dδ ∩ ({θ = −2δ} ∪ {θ = 2δ}),

(iii) Dδ is a Lipschitz domain.

We consider δ0 > 0 s.t. for δ < δ0, Dδ satisfies previous properties and

|Dδ|1/2 <
π
∣

∣‖abdeg(u)− d‖∞ − 1
3

∣

∣

6maxi ‖Vi‖C1(D) (Eε(u) + π)1/2
. (6.1)
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Using Proposition 1 and (6.1), if v ∈ H1(D,C) satisfies u = v in D \ Dδ , |v| ≤ 2 in D and
Eε(v) < Eε(u) + π, then we have abdegi(v) ∈ (di − 1/3, di + 1/3).
We let δ < δ0 and we denote

D′
δ := Θ−1 [(−δ, δ) × (1− δ, 1)] ,

D−
δ := Θ−1 [(−2δ,−δ) × (1− δ, 1)] ,

D+
δ := Θ−1 [(δ, 2δ) × (1− δ, 1)] ,

so that D′
δ , D

−
δ and D+

δ are Lipschitz domains (see Figure 1).

D+
δ

D′
δ D−

δ

h = 1− δ

h = 1

θ =−2δθ = 2δ
θ = δ θ =−δ

ω4
ω3

ω1

ω2

Ω

D = Ω \ ∪iωi

x0•

Figure 1: Decomposition of D

6.2 Construction of the test function

We consider an application (with unknown expression in Dδ) ψt : D → C (t > 0 smaller than δ)
s.t.

ψt(x) =







1 in D \Dδ

e−ıθ − (1− tϕ(θ))

e−ıθ(1− tϕ(θ))− 1
on ∂Ω ∩ ∂Dδ

, (6.2)

with 0 ≤ ϕ ≤ 1 a smooth, even and 2π-periodic function satisfying

ϕ|(−δ/2,δ/2) ≡ 1 and ϕ|[−π,π[\(−δ,δ) ≡ 0.
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It is clear that ψt|∂D ∈ C∞(∂D) and

deg∂ωi
(ψt) = 0 for all i ∈ NN . (6.3)

Expanding in Fourier series, we have

e−ıθ − (1− tϕ(θ))

e−ıθ(1− tϕ(θ))− 1
= (1− tb−1(t)) + t

∑

k 6=−1

bk(t)e
−(k+1)ıθ. (6.4)

Noting that the real part of
e−ıθ − (1− tϕ(θ))

e−ıθ(1− tϕ(θ))− 1
is even and the imaginary part is odd, we obtain

that bk(t) ∈ R for all k, t.
The following lemma is proven in Appendix B

Lemma 9. We denote, for e ıθ ∈ S
1,

Ψt(e
ıθ) =

e−ıθ − (1− tϕ(θ))

e−ıθ(1− tϕ(θ))− 1
and Ft(e

ıθ) =
e−ıθ − (1− t)

e−ıθ(1− t)− 1
.

Then:

1) |Ψt −Ft| ≤ Cδ t on S
1;

2) Ft(z) =
z − (1− t)

z(1− t)− 1
= (1− tc−1) + t

∑

k 6=−1

ck(t)z
k+1, with

ck =











(t− 2)(1− t)k if k ≥ 0

0 if k ≤ −2

1 if k = −1

;

3) |bk(t)− ck(t)| ≤ C(n, δ) (1 + |k|)−n , ∀n > 0 with C(n, δ) independent of t sufficiently small.

It is easy to see using Lemma 9 that, for t sufficiently small,

degS1(Ψt) = degS1(Ft) = −1.

Using the previous equality and the fact that ∂τθ > 0 on γ, we find that

deg∂Ω(ψt) = −1. (6.5)

It will be convenient to use h and θ as a shorthand for h(x) and θ(x). With these notations, we
will look for ψt of the form

ψt(x) = ψ̃t(h, θ)

=



























(1− tf−1(h)b−1(t)) + t
∑

k 6=−1

bk(t)fk(h)e
−(k+1)ıθ in D′

δ

θ − δ

δ
+ ψ̃t(h, δ)

2δ − θ

δ
in D+

δ

−θ + δ

δ
+ ψ̃t(h,−δ)

2δ + θ

δ
in D−

δ

. (6.6)

We impose fk(1− δ) = 0 and fk(1) = 1 for k ∈ Z.
Our aim is to show that for t > 0 small and appropriate fk’s, the function ψt defined by (6.6)

satisfies (6.2) and
Lε(ψte

ıθ,Dδ) < π. (6.7)
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Here, Lε is the functional defined in Lemma 2, so that

Eε(ρψte
ıθ,Dδ) = Eε(u,Dδ) + Lε(ψte

ıθ,Dδ).

Then, considering

ψt =







ψt if |ψt| ≤ 2

2
ψt

|ψt|
if |ψt| > 2

and setting

ũ =

{

ρwt = ψtu in Dδ

u in D \Dδ
,

in view of (6.7), it is straightforward that ũ satisfies the conclusion of Lemma 5.

6.3 Upper bound for Lε(·, Dδ). An auxiliary problem

If we let w̃ : [1− δ, 1] × [−2δ, 2δ] be s.t. w̃(h(x), θ(x)) := w(x), then we have

|∇w|2 =
∑

i

|∂iw|2 =
∑

i

|∂hw̃(h, θ) ∂ih+ ∂θw̃(h, θ) ∂iθ|2

= (ρ4|∂hw̃(h, θ)|2 + |∂θw̃(h, θ)|2)|∇θ|2.
Therefore,

Lε(w,Dδ) =
1

2

∫

Dδ

{

(

ρ4|∂hw̃(h, θ)|2 + |∂θw̃(h, θ)|2 − |w̃(h, θ)|2
)

ρ2|∇θ|2 +

+
1

2ε2
ρ4(1− |w̃(h, θ)|2)2

}

dx

≤ 1

2

∫

Dδ

{

|∂hw̃(h, θ)|2 + |∂θw̃(h, θ)|2 − |w̃(h, θ)|2 +

+ λ|e ıθ − w̃(h, θ)|2
}

ρ2|∇θ|2 dx (6.8)

=: Mλ(w,Dδ),

provided that |w| ≤ 2 in Dδ and λ ≥ 9

2ε2 infDδ
|∇θ|2 .

In order to simplify formulas, we will write, in what follows, the second integral in (6.8) as

1

2

∫

Dδ

{

|∂hw̃|2 + |∂θw̃|2 − |w̃|2 + λ|e ıθ − w̃|2
}

ρ2|∇θ|2 dx.

The same simplified notation will be implicitly used for similar integrals.

Remark 1. If we replace w by w := w
|w| min(|w|, 2), then Mλ does not increase. Furthermore

replacing w by w does not affect the Dirichlet condition of (6.2). Therefore, by replacing w by w if
necessary, we may assume |w| ≤ 2.

We next state a lemma which allows us to give a new form of Mλ.

Lemma 10. Let f ∈ C1(R,R). Then, for k ∈ Z, we have

∫

D′
δ

f(h) cos(kθ)ρ2|∇θ|2 dx =















2δ

∫ 1

1−δ
f(s) ds if k = 0

2 sin(kδ)

k

∫ 1

1−δ
f(s) ds if k 6= 0

,

∫

D±

δ

f(h) ρ2|∇θ|2 dx = δ

∫ 1

1−δ
f(s) ds.
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Proof. This result is easily obtained by noting that the jacobian of the change of variable x 7→
(θ(x), h(x)) is exactly ρ2|∇θ|2.

For w = wt = ψte
ıθ where ψt of the form given by (6.6), we have

Mλ(w,Dδ) =
1

2

∫

Dδ

{

|∂hw̃|2 + |∂θw̃|2 − |w̃|2 + λ|e ıθ − w̃|2
}

ρ2|∇θ|2 dx.

We next rewrite Mλ(w,D
′
δ). Recalling that for a sequence {ak} ⊂ R, we have

∣

∣

∣

∣

∣

∑

k∈Z

ake
ıkθ

∣

∣

∣

∣

∣

2

=
∑

k∈Z

a2k + 2
∑

k,l∈Z,
k>l

akal cos[(k − l)θ].

Then we obtain

Mλ(w,D
′
δ) =

∫

D′
δ

{t2

2

∑

k∈Z

bk
2
[

f ′k
2
+ fk

2(k2 + λ− 1)
]

− t
∑

k 6=−1

bkfk(k + 1) cos[(k + 1)θ]

− t2
∑

k 6=−1

b−1bk[f
′
−1f

′
k − f−1fk(k − λ+ 1)] cos[(k + 1)θ]

+ t2
∑

k,l 6=−1
k−l>0

bkbl[f
′
kf

′
l + (kl + λ− 1)fkfl] cos[(k − l)θ]

}

ρ2|∇θ|2. (6.9)

Using Lemma 10 and (6.9), we have

Mλ(w,D
′
δ) = δt2

∑

k∈Z

b2kφk(fk)− 2t
∑

k 6=−1

bk sin[(k + 1)δ]

∫ 1

1−δ
fk

−2t2
∑

k 6=−1

b−1bk
sin[(k + 1)δ]

k + 1

∫ 1

1−δ

{

f ′−1f
′
k − (k − λ+ 1)f−1fk

}

+2t2
∑

k,l 6=−1
k−l>0

bkbl
sin[(k − l)δ]

k − l

∫ 1

1−δ

{

f ′kf
′
l + (kl + λ− 1)fkfl

}

(6.10)

= Rλ(w)− 2t
∑

k 6=−1

bk sin[(k + 1)δ]

∫ 1

1−δ
fk. (6.11)

with

Rλ(w) = δt2
∑

k∈Z

b2kφk(fk)

−2t2
∑

k 6=−1

b−1bk
sin[(k + 1)δ]

k + 1

∫ 1

1−δ

{

f ′−1f
′
k − (k − λ+ 1)f−1fk

}

+2t2
∑

k,l 6=−1
k−l>0

bkbl
sin[(k − l)δ]

k − l

∫ 1

1−δ

{

f ′kf
′
l + (kl + λ− 1)fkfl

}

,

φk(f) =

∫ 1

1−δ

{

f ′2 + α2
kf

2
}
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and
αk =

√

k2 + λ− 1.

We next establish a similar identity for Mλ(wt,D
±
δ ). Using (6.6), we have

Mλ(wt,D
±
δ ) =

1

2

∫

D±

δ

{

|∂hw̃(h, θ)|2 + |∂θw̃(h, θ)|2 − |w|2 + λ|e ıθ − w|2
}

ρ2|∇θ|2

=
1

2

∫

D±

δ

{

|∂hψ̃t(h,±δ)|2
(

2δ ∓ θ

δ

)2

+δ−2(1 + λ (2δ ∓ θ)2)|ψ̃t(h,±δ) − 1|2 ∓ 2δ−1Im ψ̃t(h,±δ)
}

ρ2|∇θ|2

=
1

2δ2

∫

D±

δ

{

|∂hψ̃t(h,±δ)|2 (2δ ∓ θ)2

+ (1 + λ (2δ ∓ θ)2)|ψ̃t(h,±δ) − 1|2
}

ρ2|∇θ|2

+ t
∑

k 6=−1

bk(t) sin[(k + 1)δ]

∫ 1

1−δ
fk. (6.12)

Here, Im ψ denotes the imaginary part of ψ. To obtain (6.12), we used the identity

|∂θ(ψe ıθ)|2 = |∂θψ|2 + |ψ|2 + 2ψ × ∂θψ.

6.4 Choice of w = ψte
ıθ

We take

fk(h) =
eαk(h−1)

1− e−2αkδ
+

e−αk(h−1)

1− e 2αkδ
. (6.13)

With this choice, by direct computations we have

φk(fk) = αk

(

1 +
2

e2αkδ − 1

)

, (6.14)

∫ 1

1−δ
fk =

1

αk

(

1− 2

eαkδ + 1

)

(6.15)

and for k, l ∈ Z s.t. k 6= ±l,
∫ 1

1−δ
fkfl =

1− e−2(αk+αl)δ

(αk + αl)(1− e−2αkδ)(1− e−2αlδ)
− 1− e−2(αk−αl)δ

(αk − αl)(1− e−2αkδ)(e 2αlδ − 1)
, (6.16)

1

αkαl

∫ 1

1−δ
f ′kf

′
l =

1− e−2(αk+αl)δ

(αk + αl)(1− e−2αkδ)(1− e−2αlδ)

+
1− e−2(αk−αl)δ

(αk − αl)(1 − e−2αkδ)(e 2αlδ − 1)
. (6.17)

Using (6.11)—(6.17), we may obtain the following estimate, whose proof is postponed to Ap-
pendix B.

Lemma 11. We have

Mλ(wt,Dδ) ≤ δ − 2δt + 4t2
∑

k>l>0

ckcl
sin[(k − l)δ]

k − l

kl

k + l
+ o(t). (6.18)
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6.5 End of the proof of Lemma 5

We denote

S(δ, t) :=
∑

k>l>0

ckcl
sin[(k − l)δ]

k − l

kl

k + l
. (6.19)

Setting n = k − l and noting that
(n+ l)l

n+ 2l
=
l

2
+

ln

2(n+ 2l)
, we have

2

(t− 2)2
S(δ, t) =

∑

n>0

(1− t)n
sin(nδ)

n

∑

l>0

l(1− t)2l +
∑

n,l>0

(1− t)n+2l sin(nδ)
l

n + 2l
.

Here, we have used the explicit formulae for the ck’s, given by Lemma 9.
Using Appendix A (see Appendix A.1) we find that for 0 < t < δ, we have

S(δ, t) =
(1− t)2

2t2

[

arctan

(

1− t− cos δ

sin δ

)

+ arctan

(

cos δ

sin δ

)]

+
(1− t+ cos δ)(2 − t)

8t sin δ
+O(1). (6.20)

We note that

arctan

(

1− t− cos δ

sin δ

)

= arctan

(

1− cos δ

sin δ

)

− t sin δ

2(1− cos δ)
+O(t2)

=
δ

2
− t sin δ

2(1 − cos δ)
+O(t2) (6.21)

and

arctan

(

cos δ

sin δ

)

=
π

2
− δ. (6.22)

From (6.20)—(6.22) we infer

S(δ, t) ≤ 1

4t2
(π − δ) +

1

t

[

(1− t+ cos δ)(2 − t)

8 sin δ
− sin δ

4(1− cos δ)

]

+O(1) (6.23)

with
(1− t+ cos δ)(2 − t)

8 sin δ
− sin δ

4(1 − cos δ)
<

(1 + cos δ)

4 sin δ
− sin δ

4(1− cos δ)
= 0. (6.24)

From (6.18),
Mλ(wt,Dδ) ≤ δ − 2δt + 4t2S(δ, t) + o(t). (6.25)

Using (6.23) and (6.24),
4t2S(δ, t) ≤ π − δ + o(t). (6.26)

Finally, we have by combining (6.25) with (6.26),

Mλ(wt,Dδ) ≤ π − 2δt + o(t) < π for t small. (6.27)

We conclude that for t sufficiently small, Ld
ε(wt,Dδ) < π.

6.6 Conclusion

ũ := ψu, with ψ = ψt
min(|ψt|, 2)

|ψt|
, satisfies the desired properties i.e.:

• Eε(ũ) < Eε(u) + π (by (6.8) and (6.27)) ;

• ũ ∈ J d
p,q−1 (by (6.1), (6.3) and (6.5)).
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6.7 A direct consequence of Lemma 5

By applying Lemma 5 and next Lemma 7, one may easily obtain the following

Corollary 1. Let u ∈ Jp,q be a solution of (3.1), (3.2).
Assume that

abdegj(u) ∈ (dj −
1

3
, dj +

1

3
), ∀ j ∈ NN .

Assume that there are i0 ∈ {0, ..., N} and x0 ∈ ∂ωi0 s.t. u× ∂τu(x0) > 0.
Then for all δ = (δ1, ..., δN , δ0) ∈ Z

N+1 s.t. δi0 > 0, there is ũδ ∈ J(p,q)−δ s.t.

Eε(ũδ) < Eε(u) + π
∑

i

|δi|

and

abdegj(ũδ) ∈ (dj −
1

3
, dj +

1

3
), ∀j ∈ NN .

7 Proof of Theorem 2

The energy estimate is obtained from Lemmas 4 and 6.
We call (p, q,d) a good configuration of degrees if

(p, q,d) ∈ Z
N × Z× (N∗)N , pi ≤ di and q ≤

∑

i

di =: d.

We first prove Theorem 2 when

æ((d, d), (p, q)) = |d1 − p1|+ ...+ |dN − pN |+ |d− q| = 0 ⇔ p = d and q = d.

For ε > 0, let (uεn)n be a minimizing sequence of Eε in J d
d,d. For ε < ε4(d, d,d), up to subsequence,

using Proposition 4, uεn → uε weakly in H1 and strongly in L4 and uε is a (global) minimizer of Eε

in J d
deg(uε,D).

Applying Lemmas 3 and 4, for ε < ε2(d) ≤ ε4 (here, ε2 is s.t. the oε(1) of Lemma 4 is lower

than
π

2
),

I0(d,D) ≥ Eε(uε) + πæ(deg(uε,D), (d, d))

≥ I0(d,D)− π

2
+ 2πæ(deg(uε,D), (d, d)).

It follows, æ(deg(uε,D), (d, d)) ≤ 1

4
which implies uε ∈ J d

d,d.

We now prove (following the same strategy) Theorem 2 for a good configuration (p, q,d) s.t.

æ((p, q), (d, d)) > 0.

For ε > 0 consider (uεn)n a minimizing sequence of Eε in J d
p,q.

For ε < ε4(p, q,d), up to subsequence, using Proposition 4, uεn → uε weakly in H1 and strongly
in L4 and uε is a (global) minimizer of Eε in J d

deg(uε,D).

Let Λ := I0(d,D) + æ((p, q), (d, d))π + 1, by Lemma 8, for ε < ε5(p, q,d,Λ), there is x0ε ∈ ∂Ω
s.t. (uε × ∂τuε)(x

0
ε) > 0.

The third assertion in Proposition 1 and the energy bound give the existence of 0 < ε′2(p, q,d,Λ) <
ε5(p, q,d,Λ) s.t. for 0 < ε < ε′2,

abdegi(uε) ∈ (di −
1

3
, di +

1

3
).

20



Fix ε′2(p, q,d) > ε2(p, q,d) > 0 s.t. the oε(1) in Lemma 4 is lower than
π

2
(here ε5 is defined in

Lemma 8).
Using Lemmas 3, 4 and 6, we have for ε < ε2

I0(d,D) + πæ((p, q), (d, d)) ≥ lim inf Eε(u
ε
n) (by Lemma 6 and the definition of (uεn)n)

≥ Eε(uε) + πæ ((p, q),deg(uε,D)) (Lemma 3)

≥ I0(d,D) + π [æ ((p, q),deg(uε,D))

+æ ((d, d),deg(uε,D))]− π

2
(Lemma 4)

It follows that

æ ((p, q),deg(uε,D)) + æ ((d, d),deg(uε,D)) = æ((p, q), (d, d)). (7.1)

Thus
pi ≤ deg∂ωi

(uε) ≤ di and q ≤ deg∂Ω(u
ε) ≤ d.

Assume that there is ε < ε2 s.t. uε /∈ J d
p,q. Then from Lemma 8 and (7.1), one may apply Corollary

1 to obtain the existence of ũε ∈ J d
p,q s.t.

mε(p, q,d) ≤ Eε(ũε) < Eε(uε) + πæ ((p, q),deg(uε,D)) ≤ lim inf Eε(u
ε
n) = mε(p, q,d)

which is a contradiction.
Thus for ε < ε2, uε ∈ J d

p,q and consequently uε is a minimizer of Eε in J d
p,q.

A Results used in the proof of Lemma 5

A.1 Power series expansions

For X ∈ C, |X| < 1, we have

∑

k≥1

|X|k
k

= − ln(1− |X|), (A.1)

∑

k≥0

Xk =
1

1−X
, (A.2)

∑

k≥1

kXk =
X

(1−X)2
, (A.3)

∑

k>0

sin(kδ)Xk =
X sin δ

1− 2X cos δ +X2
, (A.4)

∑

k>0

sin(kδ)

k
Xk = arctan

(

X − cos δ

sin δ

)

+ arctan

(

cos δ

sin δ

)

, (A.5)

∑

n,l>0

sin(nδ)
l

n + 2l
Xn+2l =

X + cos δ

4(1−X2) sin δ
− 1

4 sin2 δ
arctan

(

X − cos δ

sin δ

)

+ Cst(δ). (A.6)

Proof: The first four identities are classical. We sketch the argument that leads to (A.5) and (A.6).
The identity (A.5) follows from (A.4) by integration.
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We next prove (A.6). Let

f(X) =
∑

n,l>0

sin(nδ)
l

n + 2l
Xn+2l.

On the one hand, by (A.3), (A.4),

f ′(X) =
1

X

∑

n>0

sin(nδ)Xn
∑

l>0

lX2l =
X2 sin δ

(1−X2)2(1− 2X cos δ +X2)
.

On the other hand

d

dX

(

X + cos δ

4 sin δ(1 −X2)
− 1

4 sin2 δ
arctan

X − cos δ

sin δ

)

=
X2 sin δ

(1−X2)2(1− 2X cos δ +X2)
.

A.2 Estimates for fk and αk

Recall that we defined, in section 6, fk and αk by

fk(h) =
eαk(h−1)

1− e−2αkδ
+

e−αk(h−1)

1− e 2αkδ
,

αk =
√

k2 + λ− 1.

In this part, we prove the following inequalities:

αk = |k|+O
(

1

|k|+ 1

)

, (A.7)

|fk(h)− e−|k|(1−h)| ≤ C

k2
, with C independent of k ∈ Z

∗, h ∈ (1− δ, 1), (A.8)

|f ′k(h)− |k|e−|k|(1−h)| ≤ C

|k| , with C independent of k ∈ Z
∗, h ∈ (1− δ, 1). (A.9)

Proof: The first assertion is obtained using a Taylor expansion.
Let gh(u) = eu(h−1), we have

|fk(h)− e−|k|(1−h)| ≤ |gh(αk)− gh(|k|)| +
C

k2

≤ sup
(|k|,αk)

|g′h(u)||αk − |k||+ C

k2
≤ 1

ek

1

2k
+
C

k2
≤ C

k2
.

The proof of (A.9) is similar, one uses g̃h(u) = ueu(h−1) instead of gh

A.3 Further estimates on fk and αk

We have

0 ≤
∫ 1

1−δ

{

f ′k
2 − α2

kfk
2
}

≤
∫ 1

1−δ

{

f ′k
2 − k2fk

2
}

≤ C

|k|+ 1
, with C independent of k ∈ Z, (A.10)

∣

∣

∣

∣

∫ 1

1−δ
fkfl

∣

∣

∣

∣

≤ C

max(|k|, |l|) , with C independent of k, l ∈ Z, s.t. |k| 6= |l|, (A.11)
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∣

∣

∣

∣

∫ 1

1−δ
f ′kf

′
l

∣

∣

∣

∣

≤ C (min(|k|, |l|) + 1) , with C independent of k, l ∈ Z, s.t. |k| 6= |l|. (A.12)

Proof: Actually (A.11), (A.12) still hold when |k| = |l|, but this will not used in the proof of
Lemma 5 and requires a separate argument.

Since αk ≥ |k|,
∫ 1

1−δ

{

f ′k
2 − α2

kfk
2
}

≤
∫ 1

1−δ

{

f ′k
2 − k2fk

2
}

.

By direct computations,

0 ≤
∫ 1

1−δ

{

f ′k
2 − α2

kfk
2
}

=
4δα2

k

(1− e−2αkδ)(e 2αkδ − 1)
≤ C(δ, n)

kn
, ∀n ∈ N

∗,

∫ 1

1−δ

{

f ′k
2 − k2fk

2
}

=

∫ 1

1−δ

{

f ′k
2 − α2

kfk
2
}

+ (λ− 1)

∫ 1

1−δ
fk

2,

∫ 1

1−δ
fk

2 =
1

2αk

(

1

1− e−2αkδ
− 1

1− e2αkδ

)

+O
(

1

|k|+ 1

)

= O
(

1

|k|+ 1

)

.

Which proves (A.10).
For |k| 6= |l|, we have

∣

∣

∣

∣

∫ 1

1−δ
fkfl

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1− e−2(αk+αl)δ

(αk + αl)(1 − e−2αkδ)(1 − e−2αlδ)
− 1− e−2(αk−αl)δ

(αk − αl)(1− e−2αkδ)(e 2αlδ − 1)

∣

∣

∣

∣

∣

≤ C

max(|k|, |l|) +
∣

∣

∣

∣

∣

1− e−2(αk−αl)δ

(αk − αl)(1− e−2αkδ)(e 2αlδ − 1)

∣

∣

∣

∣

∣

.

We assume that |k| > |l| and we consider the two following cases: αl < αk ≤ 2αl and αk > 2αl.

Noting that 1−e−2xδ

x is bounded for x ∈ R
∗
+, we have

∣

∣

∣

∣

∣

1− e−2(αk−αl)δ

(αk − αl)(1− e−2αkδ)(e 2αlδ − 1)

∣

∣

∣

∣

∣

≤ C

e 2αlδ
≤ C

max(|k|, |l|) if αl < αk ≤ 2αl,

∣

∣

∣

∣

∣

1− e−2(αk−αl)δ

(αk − αl)(1 − e−2αkδ)(e 2αlδ − 1)

∣

∣

∣

∣

∣

≤ C

αk − αl
≤ C

max(|k|, |l|) if αk > 2αl.

This proves (A.11).
For |k| 6= |l|,

∫ 1

1−δ
f ′kf

′
l =

αkαl

(

1− e−2(αk+αl)δ
)

(αk + αl)(1− e−2αkδ)(1− e−2αlδ)
+

αkαl

(

1− e−2(αk−αl)δ
)

(αk − αl)(1− e−2αkδ)(e 2αlδ − 1)
.

It is clear that,

αkαl(1− e−2(αk+αl)δ)

(αk + αl)(1− e−2αkδ)(1− e−2αlδ)
≤ C

αkαl

αk + αl
≤ C [min(|k|, |l|) + 1] . (A.13)

As in the proof of (A.11), we have
∣

∣

∣

∣

∣

αkαl(1− e−2(αk−αl)δ)

(αk − αl)(1− e−2αkδ)(e 2αlδ − 1)

∣

∣

∣

∣

∣

≤ Cαkαl

max(|k|, |l|) ≤ C [min(|k|, |l|) + 1] . (A.14)

Inequalities (A.12) follows from (A.13) and (A.14).
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A.4 Two fundamental estimates

In this part, we let k > l ≥ 0 and prove the following:

Xk,l :=
(αkαl + kl + λ− 1)(1 − e−2(αk+αl)δ)

(αk + αl)(1− e−2αkδ)(1 − e−2αlδ)
=

2kl

k + l
+O

(

1

l + 1

)

, (A.15)

Yk,l :=
(αkαl + kl + λ− 1)(1 − e−2(αk−αl)δ)

(αk − αl)(1− e−2αkδ)(e 2αlδ − 1)
≤ Ce−δl. (A.16)

The computations are direct:

Xk,l −
2kl

k + l
=

2kl

(αk + αl)(1 − e−2αkδ)(1 − e−2αlδ)
− 2kl

k + l
+O

(

1

l + 1

)

= 2kl
k + l − (αk + αl)(1− e−2αkδ)(1 − e−2αlδ)

(k + l)(αk + αl)(1− e−2αkδ)(1− e−2αlδ)
+O

(

1

l + 1

)

=
O
(

k + k2le−lδ/2
)

(k + l)(αk + αl)(1− e−2αkδ)(1 − e−2αlδ)
+O

(

1

l + 1

)

= O
(

1

l + 1

)

.

We now turn to (A.16).
If αk ≥ 2αl (or equivalently, if αk − αl ≥ αk

2 ), then

(αkαl + kl + λ− 1)(1− e−2(αk−αl)δ)

(αk − αl)(1− e−2αkδ)(e 2αlδ − 1)
≤ C

kl

αk
e−2αlδ ≤ Ce−δl.

If αk < 2αl, then

(αkαl + kl + λ− 1)(1 − e−2(αk−αl)δ)

(αk − αl)(1− e−2αkδ)(e 2αlδ − 1)
≤ Cl2e−2αlδ ≤ Ce−δl.

B Proof of Proposition 1 and of Lemma 9

B.1 Proof of Proposition 1

The proof of 1) is direct by noting that if u ∈ H1(D,S1), then ∂1u and ∂2u are pointwise
proportional and deg∂Ω(u) =

∑

i deg∂ωi
(u),

abdegi(u,D) =
1

2π

∑

k=1,2

(−1)k
∫

D
(u× ∂ku)∂3−kVi

=
1

2π

∫

∂D
Vi u× ∂τudτ = deg∂Ω(u)−

∑

j 6=i

deg∂ωj
(u) = deg∂ωi

(u).

Proof of 2). Since Vi is locally constant on ∂D, integrating by parts,
∫

D
v × (∂1u∂2Vi − ∂2u∂1Vi)dx =

∫

D
u× (∂1v ∂2Vi − ∂2v ∂1Vi)dx.

Then

2π|abdegi(u)− abdegi(v)| =
∣

∣

∣

∫

D
(u− v)×

[

(∂1 Vi ∂2u− ∂2Vi ∂1u)

+ (∂1 Vi ∂2v − ∂2Vi ∂1v)
]

dx
∣

∣

∣

≤
√
2‖u− v‖L2(D)‖Vi‖C1(D)(‖∇u‖L2(D) + ‖∇v‖L2(D))

≤ 2‖u− v‖L2(D)‖Vi‖C1(D)[Eε(u)
1/2 + Eε(v)

1/2]

≤ 4‖u− v‖L2(D)‖Vi‖C1(D)Λ
1/2.
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We prove assertion 3) by showing that dist(abdegi(uε),Z) = o(1). Using the first and the second
assertion, we have

dist(abdegi(uε),Z) ≤ inf
v∈EΛ

0

|abdegi(uε)− abdegi(v)|

≤ 2

π
‖Vi‖C1(D)Λ

1/2 inf
v∈EΛ

0

‖uε − v‖L2(D) (B.1)

where EΛ
0 :=

{

u ∈ H1(D,S1) s.t.
1

2

∫

D
|∇u|2 dx ≤ Λ

}

6= ∅.
Now, it suffices to show that infv∈EΛ

0
‖uε − v‖L2(D) → 0. We argue by contradiction and we

assume that there is an extraction (εn)n ↓ 0 and δ > 0 s.t. for all n, inf
v∈EΛ

0

‖uεn − v‖L2(D) > δ.

We see that (uεn)n is bounded in H1. Then, up to subsequence, un converges to u ∈ H1(D,R2)
weakly in H1 and strongly in L4.

Since ‖|uεn |2−1‖L2(D) → 0, we have u ∈ H1(D,S1) and by weakly convergence, ‖∇u‖2L2(D) ≤ 2Λ.

To conclude, we have u ∈ EΛ
0 et ‖uεn − u‖L2 → 0, which is a contradiction.

B.2 Proof of Lemma 9

1) We see easily that, with z = e ıθ, we have

Ψt(z)−Ft(z)

t
=

(1− ϕ(θ))(1− z2)

[z(1− t)− 1] [z(1− tϕ(θ))− 1]
≡ A(θ, t)

B(θ, t)
. (B.2)

The modulus of the RHS of (B.2) can be bounded by noting that

• there is some m > 0 s.t. |B(θ, t)| ≥ m for each t and each θ s.t. |θ| > δ/2 mod 2π;

• there is some M > 0 s.t. |A(θ, t)| ≤M for each t and each θ s.t. |θ| > δ/2 mod 2π;

• if |θ| ≤ δ/2 (modulo 2π), then (Ψt −Ft) t
−1 ≡ 0.

2) This assertion is a standard expansion.
3) With a classical result relating regularity of Ψt−Ft to the asymptotic behaviour of its Fourier

coefficients, we have

|bk(t)− ck(t)| ≤
2n+1π‖∂n

θ (Ψt −Ft) ‖L∞(S1)

t (1 + |k|)n .

Noting that, for ∂
n

θ (Ψt −Ft) t
−1 ≡ An(θ, t)

Bn(θ, t)

• there is some mn > 0 s.t. |Bn(θ, t)| ≥ mn for each t and each θ s.t. |θ| > δ/2 mod 2π;

• there is some Mn > 0 s.t. |An(θ, t)| ≤Mn for each t and each θ s.t. |θ| > δ/2 mod 2π;

• if |θ| ≤ δ/2 (modulo 2π), then (Ψt −Ft) t
−1 ≡ 0.

Thus the result follows.
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B.3 Proof of Lemma 11

The key argument to treat the energetic contribution of D±
δ is the following lemma.

Lemma 12. 1. |ψ̃t(h,±δ) − 1| = O(t);

2. |∂hψ̃t(h,±δ)| = O(t| ln t|).

Proof. (of Lemma 12)
Using Lemma 9, (A.2) and (A.8), we have

t−1|ψ̃t(h, δ) − 1| ≤

∣

∣

∣

∣

∣

∣

−c−1f−1(h) +
∑

k 6=−1

ckfk(h)e
−ı[(k+1)δ]

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

−(b−1 − c−1)f−1(h) +
∑

k 6=−1

(bk − ck)fk(h)e
−ı(k+1)δ

∣

∣

∣

∣

∣

∣

≤ C(δ)







∣

∣

∣

∣

∣

∣

∑

k≥0

(

(1− t)e−(1−h)−ıδ
)k

∣

∣

∣

∣

∣

∣

+ 1







= O(1).

We prove that |∂hψ̃t(h, δ)| = O(t| ln t|). Using Lemma 9, (A.3) and (A.9),

t−1|∂hψ̃t(h, δ)| ≤

∣

∣

∣

∣

∣

∣

−c−1f
′
−1 +

∑

k 6=−1

ckf
′
ke

−ı(k+1)δ

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

−(b−1 − c−1)f
′
−1 +

∑

k 6=−1

(bk − ck)f
′
ke

−ı(k+1)δ

∣

∣

∣

∣

∣

∣

≤ 2

∣

∣

∣

∣

∣

∣

∑

k≥0

k
[

(1− t)e−ıδ−(1−h)
]k

∣

∣

∣

∣

∣

∣

+O(| ln t|) = O(| ln t|).

Using (6.11), (6.12) and Lemma 12, we have (with the notation of section 6) that

Mλ(wt,Dδ) = Rλ(wt) + o(t),

where

Rλ(wt) = δt2
∑

k∈Z

b2kφk(fk)− 2t2
∑

k 6=−1

b−1bk
sin[(k + 1)δ]

k + 1

∫ 1

1−δ
[f ′−1f

′
k − (k − λ+ 1)f−1fk]

+ 2t2
∑

k,l 6=−1
k−l>0

bkbl
sin[(k − l)δ]

k − l

∫ 1

1−δ
[f ′kf

′
l + (kl + λ− 1)fkfl].

The proof of Lemma 12 is completed provided we establish the following estimate:

Rλ(wt) ≤ δ − 2δt+ 4t2
∑

k,l≥0
k−l>0

ckcl
sin[(k − l)δ]

k − l

kl

k + l
+ o(t). (B.3)

The remaining part of this appendix is devoted to the proof of (B.3).
We estimate the first term of Rλ:
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Using (6.14) and Lemma 9, we have (with C independent of t)
∣

∣

∣

∣

∣

∑

k∈Z

b2kφk(fk)−
∑

k∈Z

c2kφk(fk)

∣

∣

∣

∣

∣

≤ C. (B.4)

With (6.14) and (A.7), we obtain

φk(fk) = α(1 +
2

e 2αδ − 1
) = |k|+O

(

1

|k|+ 1

)

when |k| → ∞. (B.5)

From (A.1), (A.3) and (B.5),

t2
∑

k∈Z

c2kφk(fk) = t2φ−1(f−1) + t2(t− 2)2
∑

k≥0

(1− t)2kφk(fk)

= t2(t− 2)2
∑

k>0

k(1− t)2k + o(t) = 1− 2t+ o(t). (B.6)

We estimate the second term of Rλ:

Using Lemma 9, (A.11) and (A.12), we have (with C independent of t)
∣

∣

∣

∣

∣

∣

∑

k 6=−1

(bk − ck)
sin[(k + 1)δ]

k + 1

∫ 1

1−δ
[f ′−1f

′
k − (k − λ+ 1)f−1fk]

∣

∣

∣

∣

∣

∣

≤ C.

Since b−1(t) is bounded by a quantity independent of t, in the order to estimate the third term of
the RHS of (6.10), we observe that there is C independent of t s.t.

∣

∣

∣

∣

∣

∣

∑

k≥0

(1− t)k
sin[(k + 1)δ]

k + 1

∫ 1

1−δ
[f ′−1f

′
k − (k − λ+ 1)f−1fk]

∣

∣

∣

∣

∣

∣

≤ C





∑

k≥1

(1− t)k

k
+ 1





= C(| ln t|+ 1).

Finally, using Lemma 9, (6.16) and (6.17), we have
∣

∣

∣

∣

∣

∣

∑

k 6=−1

bk
sin[(k + 1)δ]

k + 1

∫ 1

1−δ
[f ′−1f

′
k − (k − λ+ 1)f−1fk]

∣

∣

∣

∣

∣

∣

≤ C(| ln t|+ 1). (B.7)

We estimate the last term of Rλ:

First, we consider the case k = −l > 0 (i.e., fk = fl). Using (6.15), 0 ≤ fk ≤ 1 and (A.10), we
have (with C independent of t)

∣

∣

∣

∣

∣

∑

k>0

bkb−k
sin 2kδ

2k

∫ 1

1−δ
[f ′2k + (−k2 + λ− 1)f2k ]

∣

∣

∣

∣

∣

≤ C.

It remains to estimate the last sum in Rλ, considered only over the indices k and l s.t. |k| 6= |l|.
We start with

∑

k,l 6=−1
k−l>0,k 6=−l

(bkbl − ckcl)
sin[(k − l)δ]

k − l

∫ 1

1−δ
[f ′kf

′
l + (kl + λ− 1)fkfl] (B.8)

=
∑

k,l 6=−1
k−l>0,k 6=−l

[(bk − ck)(bl − cl) + ck(bl − cl) + cl(bk − ck)] ∗

∗ sin[(k − l)δ]

k − l

∫ 1

1−δ
[f ′kf

′
l + (kl + λ− 1)fkfl].
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By Assertion 3) of Lemma 9, the first sum of the RHS of (B.8) is easily bounded by a quantity
independent of t. By (A.11), (A.12) and Lemma 9,

∣

∣

∣

∣

∣

∑

k,l 6=−1
k−l>0,k 6=−l

ck(bl − cl)
sin[(k − l)δ]

k − l

∫ 1

1−δ
[f ′kf

′
l + (kl + λ− 1)fkfl]

∣

∣

∣

∣

∣

≤ C
∑

k≥0,l 6=−1
k−l>0,k 6=−l

(1− t)k|bl − cl||l|
k − l

+ C.

On the other hand (putting n = k − l),

∑

k≥0,l 6=−1
k−l>0,k 6=−l

(1− t)k|bl − cl||l|
k − l

≤
∑

k>l≥0

(1− t)k|bl − cl|l
k − l

+
∑

k≥0,l≤−1

(1− t)k|bl − cl||l|
k + |l|

≤
∑

l≥0,n>0

(1− t)n

n
|bl − cl|l +

∑

k>0,l≤−1

(1− t)k

k
|bl − cl||l|

= O(| ln t|).
Similarly, we may prove that

∣

∣

∣

∣

∣

∣

∣

∣

∑

k,l 6=−1
k−l>0,k 6=−l

cl(bk − ck)
sin[(k − l)δ]

k − l

∫ 1

1−δ
[f ′kf

′
l + (kl + λ− 1)fkfl]

∣

∣

∣

∣

∣

∣

∣

∣

= O(| ln t|).

We have thus proved that
∣

∣

∣

∣

∣

∣

∣

∣

∑

k,l 6=−1
k−l>0,k 6=−l

(bkbl − ckcl)
sin[(k − l)δ]

k − l

∫ 1

1−δ
[f ′kf

′
l + (kl + λ− 1)fkfl]

∣

∣

∣

∣

∣

∣

∣

∣

= o(t−1).

To finish the proof, it suffices to obtain

∑

k,l 6=−1
k−l>0,k 6=−l

ckcl
sin[(k − l)δ]

k − l

∫ 1

1−δ
[f ′kf

′
l + (kl + λ− 1)fkfl]

= 2
∑

k,l≥0
k−l>0

ckcl
sin[(k − l)δ]

k − l

kl

k + l
+ o(t−1).

Since cm = 0 for m < −1, it suffices to consider the case k > l ≥ 0. Under these hypotheses, we
have by (6.16), (6.17), (A.15) and (A.16),

∑

k>l≥0

ckcl
sin[(k − l)δ]

k − l

∫ 1

1−δ
[f ′kf

′
l + (kl + λ− 1)fkfl] = 2

∑

k>l≥0

ckcl
sin[(k − l)δ]

k − l

kl

k + l

+O





∑

k>l≥0

ckcl| sin[(k − l)δ]|
k − l

1

l + 1



 .

We conclude by noting that
∣

∣

∣

∣

∣

∣

∑

k>l≥0

ckcl

∣

∣

∣

∣

sin[(k − l)δ]

(k − l)(l + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ C

(

1 +
∑

n>0

(1− t)n

n

∑

l>0

(1− t)2l

l

)

≤ C(1 + ln2 t).
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C Proof of Lemma 7

Lemma 13. Let 0 < η, δ < 1, there is

Mη,δ : D(0, 1) → C

x 7→ Mη,δ(x)
s.t.: (C.1)

i) |Mη,δ| = 1 on S
1, degS1(Mη,δ) = 1,

ii)
1

2

∫

D(0,1)
|∇Mη,δ|2 ≤ π + η,

iii) |Mη,δ| ≤ 2

iv) if |θ| > δ mod 2π, then Mη,δ(e
ıθ) = 1.

Claim: Taking Mη,δ instead of Mη,δ, we obtain the same conclusions replacing the assertion i) by
degS1(Mη,δ) = −1.

Proof. As in section 6, let ϕ ∈ C∞(R,R) be s.t.

• 0 ≤ ϕ ≤ 1,

• ϕ is even and 2π-periodic,

• ϕ|(−δ/2,δ/2) ≡ 1 and ϕ|[−π,π[\(−δ,δ) ≡ 0.

For 0 < t < δ, let Mt =M be the unique solution of






M(e ıθ) =
e ıθ − (1− tϕ(θ))

e ıθ(1− tϕ(θ))− 1
on ∂D(0, 1)

∆M = 0 in D(0, 1)
.

It follows easily that M satisfies i), iii) and iv). We will prove that for t small ii) holds.
Using (6.4), we have

e ıθ − (1− tϕ(θ))

e ıθ(1− tϕ(θ))− 1
= (1− tb−1(t)) + t

∑

k 6=−1

bk(t)e
(k+1)ıθ. (C.2)

It is not difficult to see that

M(re ıθ) = (1− tb−1(t)) + t
∑

k 6=−1

bk(t)r
|k+1|e (k+1)ıθ. (C.3)

From (C.3),

1

2

∫

D(0,1)
|∇M |2 = t2

∫ 2π

0
dθ

∫ 1

0
dr
∑

k 6=−1

b2k(k + 1)r2|k+1|−2

= πt2
∑

k≥0

b2k(k + 1) + πt2
∑

k≤−2

|k + 1|b2k

= πt2
∑

k≥0

c2k(k + 1) +O(t2) (using Lemma 9)

= π(2− t)2t2
∑

k≥0

(1− t)2k(k + 1) +O(t2) (using Lemma 9)

= π +O(t2) (using (A.2) and (A.3))

≤ π + η for t small.

We finish the proof taking, for t small, Mη,δ =Mt.
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Lemma 14. Let u ∈ J , i ∈ {0, ..., N} and ε > 0. For all η > 0, there is

u±η ∈ Jdeg(u,D)±ei

s.t.
Eε(u

±
η ) ≤ Eε(u) + π + η (C.4)

and
‖u− u±η ‖L2(D) = oη(1), oη(1) →

η→0
0. (C.5)

Proof. We prove that for i = 0, there is u+η ∈ Jdeg(u,D)+ei satisfying (C.4) and (C.5). In the other
cases the proof is similar.

Using the density of C0(D,C) ∩ J in J for the H1-norm, we may assume u ∈ C0(D,C) ∩ J .
It suffices to prove the result for 0 < η < min{10−3, ε2}.
Let x0 ∈ ∂Ω and Vη be an open regular set of D s.t. :

• ∂Vη ∩ ∂D 6= ∅, |Vη| ≤ η2,

• x0 is an interior point of ∂Ω ∩ ∂Vη ,

• Vη is simply connected,

• |u|2 ≤ 1 + η2 in Vη,

• ‖∇u‖L2(Vη) ≤ η2.

Using the Carathéodory’s theorem, there is

Φ : Vη → D(0, 1),

a homeomorphism s.t. Φ|Vη
: Vη → D(0, 1) is a conformal mapping.

Without loss of generality, we may assume that Φ(x0) = 1. Let δ > 0 be s.t. for |θ| ≤ δ we have
Φ−1(e ıθ) ∈ ∂Vη ∩ ∂Ω.

Let Nη ∈ J be defined by

Nη(x) =

{

1 if x ∈ D \ Vη
Mη2,δ(Φ(x)) otherwise

.

Here, Mη2,δ is defined by Lemma 13. Using the conformal invariance of the Dirichlet functional, we
have

1

2

∫

Vη

|∇Nη|2 =
1

2

∫

D(0,1)
|∇Mη2,δ|2 ≤ π + η2. (C.6)

It is not difficult to see that u+η := uNη ∈ Jdeg(u,D)+e0 . Since |Nη| ≤ 2 and ‖Nη−1‖L2(D) = oη(1),
using the Dominated convergence theorem, we may prove that uNη → u in L2(D) when η → 0. It
follows that (C.5) holds.

From (C.6) and using the following formula,

|∇(uv)|2 = |v|2|∇u|2 + |u|2|∇v|2 + 2
∑

j=1,2

(v∂ju) · (u∂jv)

we obtain

1

2

∫

Vη

|∇u+η |2 =
1

2

∫

Vη







|Nη |2|∇u|2 + |u|2|∇Nη|2 + 2
∑

j=1,2

(Nη∂ju) · (u∂jNη)







≤ (1 + η2)(π + η2) + 2‖∇u‖2L2(Vη)
+ 4
√

1 + η2‖∇u‖L2(Vη)‖∇Nη‖L2(Vη)

≤ π +
η

2
. (C.7)
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Furthermore, we have
1

4ε2

∫

Vη

(1− |u+η |2)2 ≤ η2

4ε2
≤ η

2
. (C.8)

From (C.7) and (C.8), it follows

Eε(u
+
η ,D) = Eε(u,D \ Vη) + Eε(u

+
η , Vη) ≤ Eε(u,D) + π + η.

The previous inequality completes the proof.

We may now prove Lemma 7. For the convenience of the reader, we recall the statement of the
lemma.

Lemma . Let u ∈ J , ε > 0 and δ = (δ1, ..., δN , δ0) ∈ Z
N+1. For all η > 0, there is uδη ∈ Jdeg(u,D)+δ

s.t.
Eε(u

δ
η) ≤ Eε(u) + π

∑

i∈{0,...,N}

|δi|+ η (4.7)

and
‖u− uδη‖L2(D) = oη(1), oη(1) →

η→0
0. (4.8)

Proof. As in the previous lemma, it suffices to prove the proposition for 0 < η < min{10−3, ε2} and
u ∈ C0(D,C) ∩ J .

We construct uδη in ℓ1 =
∑

i∈{0,...,N}

|δi| steps. If ℓ1 = 0 (which is equivalent at δ = 0ZN+1) then,

taking uδη = u, (4.7) and (4.8) hold.

Assume ℓ1 6= 0. Let Γ = {i ∈ {0, ..., N} | δi 6= 0} 6= ∅, L = CardΓ and µ =
η

ℓ1
. We enumerate

the elements of Γ in (in)n∈NL
s.t. for n ∈ NL−1 we have in < in+1.

Let σ be the sign function i.e. for x ∈ R
∗, σ(x) =

x

|x| .
For n ∈ NL and l ∈ N|δin |

, we construct

vln ∈ Jdeg(vl−1
n ,D)+σ(δi)ein

s.t

v00 = u, v0n = v
|δin−1

|

n−1 with for n = 1, δi0 = 0,

vl+1
n =

{

(vln)
+
µ if δin > 0

(vln)
−
µ if δin < 0

, 0 ≤ l < |δin |
.

Here, (vln)
±
µ stands for u±µ defined by Lemma 14 taking u = vln and η = µ.

It is clear that vln is well defined and that for n ∈ NL, vn := v
|δin |
n ∈ Jdeg(vn−1,D)+δinein

with
v0 = u.

Therefore, using (C.4), we have for n ∈ NL,

vn ∈ Jdeg(u,D)+
∑

k∈Nn
δikeik

, Eε(vn) ≤ Eε(u) + (π + µ)
∑

k∈Nn

|δik |.

Taking n = L, we obtain that

uδη = vL ∈ Jdeg(u,D)+δ, Eε(u
δ
η) ≤ Eε(u) + π

∑

i∈{0,...,N}

|δi|+ η.

Furthermore, uδη is obtained from u multiplying by ℓ1 factors Nl, l ∈ Nℓ1 . Each Nl is bounded by 2
and converges to 1 in L2-norm (when η → 0). Using the Dominated convergence theorem, we may
prove that uδη satisfies (4.8).
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