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ABSTRACT. We propose a new method to deal with random geometries. It is an extension to the
stochastic context of the eXtended Finite Element Method. This method lies on two majors
points: the implicit description of geometry by the level set technique and the use of the par-
tition of unity method for the enrichment of the finite element approximation space. This new
technique leads by a direct calculus on a fixed finite element mesh to a solution which is explicit
in terms of the basic random variables describing the geometry. We present here the basis of
this approach and several examples to illustrate its performances.

RÉSUMÉ. Nous proposons une nouvelle méthode éléments finis stochastiques permettant de
prendre en compte le caractère aléatoire de la géométrie dans le calcul de structures. Cette
approche est basée sur la technique X-FEM, étendue au cadre stochastique. Elle repose sur
deux points importants : la description fonctionnelle implicite de la géométrie par la tech-
nique des level sets et l’utilisation de la partition de l’unité pour l’enrichissement de l’espace
d’approximation. Cette approche, qu’on pourrait baptiser naturellement eXtended Stochastic
Finite Element Method (X-SFEM), permet d’obtenir par un calcul « direct » une solution expli-
cite en fonction des variables aléatoires décrivant le caractère aléatoire de la géométrie. On
présente ici les fondements de cette méthode et des exemples illustrent ses performances.

KEYWORDS: computational stochastic mechanics, X-FEM, level set, stochastic finite element,
random geometry.

MOTS-CLÉS : calcul stochastique, X-FEM, level set, éléments finis stochastiques, géométrie aléa-
toire.
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1. Introduction

A great challenge in the last few years has been to develop robust and effi-

cient computational strategies to take into account uncertainties in structural analy-

sis. Stochastic finite element methods (Ghanem et al., 1991; Ghanem, 1999; Deb et
al., 2001; Matthies et al., 2005) have been recently proposed and offers a significant

tool to deal with random material properties and boundary conditions. They lead to

a very fine solution at the stochastic level which is explicit in terms of the random

variables describing the uncertainties. Their efficiency, constantly improved by the

use of ad hoc resolution techniques (Pellissetti et al., 2000; Keese et al., 2005; Nouy

et al., 2005), allows one to use them in various fields of structural analysis such as de-

sign, reliability analysis. . . Dealing with uncertainties on applied loads or on material

properties is a question relatively mastered within these methods. However, there is

still no available efficient strategy to deal with uncertainties in the geometry although

it could have a great interest in various applications: modeling of uncertainties in fab-

rication processes (size or position of borings, shape of a weld), of loss of matter due

to corrosion, of random multi-phased materials. A traditional Monte-Carlo simulation

could be performed to obtain statistics of the response. However, each event is asso-

ciated with a new geometry and the use of classical finite element methods implies

numerous remeshings and leads to prohibitive computational costs. To reduce the cost

of remeshings, an alternative technique could consist in introducing variabilities on

the position of the nodes of the finite element model. Nevertheless, this technique

is limited to small variabilities of the geometry to avoid intolerable distorsion of the

mesh and numerical instabilities. For large variabilities, this kind of techniques also

need many remeshings.

Here, we propose a new stochastic finite element method which enables to deal

with random geometry without remeshings. It is based on the extended finite element

method (Moës et al., 1999; Sukumar et al., 2001), extended to the stochastic context.

This method relies on two majors points: implicit description of the geometry by the

level set technique (Sethian, 1999) and use of the partition of unity method (Melenk et
al., 1996) for the enrichment of the finite element approximation space. The approach

proposed here is a new intrusive technique which we call eXtended Stochastic Finite

Element Method (X-SFEM). It leads by a direct calculus on a fixed finite element

mesh to a solution which is explicit in terms of the basic random variables describing

the geometry. A particular care is taken on the choice of approximation spaces. No-

tably, we show how the use of finite element approximation at the stochastic level can

consequently improve the performances of this approach. In this article, we will focus

on uncertainties on the shape of the domain. Enrichment by the partition of unity to

model internal surfaces as cracks or material interfaces will be introduced in a subse-

quent paper. The method proposed here also offers a significant tool for parametric

analysis which could be performed during the design stage of structures.

The plan of the paper is as follows: in Section 2, the problem involving random

geometry is introduced mathematically. In Section 3, a probabilistic modeling of the

geometry using the level set technique is presented. Approximation spaces are in-
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troduced in Section 4. The discretized problem, its construction and resolution are

also presented in Section 4. Two examples will illustrate the capabilities of our ap-

proach in Section 5. We will emphasize in particular on the discretization choice at

the stochastic level.

2. Formulation of a stochastic problem with random geometry

2.1. Formulation of the continuous problem

We will focus for simplicity on the case of a linear elliptic stochastic partial differ-

ential equation defined on a random domain. We denote by (Θ,B, P ) the probability

space, where Θ is the set of outcomes, B the σ-algebra of events and P the probability

measure. The random geometry is defined by the mapping θ ∈ Θ → Ω(θ) ⊂ R
d. The

stochastic problem is: find u(θ, x) which satisfies P -almost everywhere on Θ,

−∇ · (a(θ, x)∇u(θ, x)) = f(θ, x) on Ω(θ) [1]

u = 0 on Γ1(θ) n · a∇u = g(θ, x) on Γ2(θ)

where a is the diffusion coefficient, possibly random. Γ1 is the part of ∂Ω(θ) where

Dirichlet conditions are imposed and Γ2(θ) is the complementary part to Γ1. In this

article, we consider that Γ1 is deterministic.

The variational formulation of the problem can be written: find u ∈ V0 = {u ∈
V ; u|Θ×Γ1

= 0} such that

A(u, v) = L(v) ∀v ∈ V0 [2]

with A(u, v) =

∫

Θ

∫

Ω(θ)

a∇u · ∇v dxdP (θ)

L(v) =

∫

Θ

∫

Ω(θ)

fv dxdP (θ) +

∫

Θ

∫

Γ2(θ)

gv dsdP (θ)

2.2. Choice of ad hoc function spaces

The question of the choice of an ad hoc function space V0 in order to prove exis-

tence and uniqueness of the solution of problem [2] has not been treated in the littera-

ture to the knowledge of the authors. Although presented in the deterministic context,

we can find in (Babuska et al., 2002; Babuska, 2003) some results on the effects of un-

certainties in the domain on the solution of stochastic boundary value problems. Here,

we introduce a mathematical framework which is adapted to the method proposed in

this article.

Let us consider a domain B such that
⋃

θ Ω(θ) ⊂ B. We assume that a is bounded

and uniformly coercive. Under classical regularity assumptions on a and the right
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hand side of [2], the solution u, for a fixed θ, belongs to the space H1(Ω(θ)). By

prolongation, this space can be considered as a subspace of H1(B). Then, we will

work on the following function space:

V = L2(Θ, dP ; H1(B))

= {v : Θ × B → R |

∫

Θ

‖v(θ, .)‖2
H1(B)dP (θ) < ∞} [3]

The bilinear and linear forms in problem [2] are then rewritten as follows:

A(u, v) =

∫

Θ

∫

B

a∇u · ∇vIΩ dxdP (θ) [4]

L(v) =

∫

Θ

∫

B

fvIΩ dxdP (θ) +

∫

Θ

∫

Γ2(θ)

gv dsdP (θ) [5]

where IΩ(θ, ·) : B → {0, 1} denotes the characteristic function of Ω(θ).

The bilinear form A is bounded but only semi-coercive on V . The kernel in V0

of v → A(v, v) is a set of functions whose support is a subset of what we can call

the “non-physical” domain N = {(θ, x) ∈ Θ × B; x /∈ Ω(θ)}. Problem [2] have

an infinite number of solutions which differ from one another by functions in this

kernel. Let us briefly prove this statement. Let u1 and u2 be two solutions of [2] and

w = u1 − u2 ∈ V0. We have A(w,w) = 0. Then, a∇w · ∇wIΩ = 0 almost surely

on Θ × B. Let us denote by N c = {(θ, x) ∈ Θ × B; x ∈ Ω(θ)} the “physical”

domain, which is the complementary set of N . We have IΩ(θ, x) = 1 on N c and 0 on

N (i.e. IΩ is the characteristic function of N c). Due to positivity properties of a, we

have ∇w = 0 almost surely on N c and w|Θ×Γ1
= 0. We then conclude that w = 0

almost surely on N c. The “physical” part of the solution, i.e. its restriction to N c, is

then unique. And this is the part of the solution we are interested in ! Prolongation of

the solution in H1(B) in the stochastic context will not have any physical meaning.

For example, if we consider a point x ∈ B such that P (x ∈ Ω(θ)) < 1, the quantity

u(θ, x) will make sense only for outcomes of domain which include x. A good post-

processing will have to avoid such quantities of interest. We will rather be interested

in quantities defined on a well defined zone (such as mean displacement on a part of

the boundary. . . ) or on implicit quantities such as the maximum stress.

3. Representing random geometry by the level set technique

3.1. Definition and approximation of level sets

In the deterministic context, the level set technique (Sethian, 1999) consists in rep-

resenting a surface by the zero level set of a function. We commonly use for this

function the signed function to the surface. This function, denoted by φ(x), is gen-
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erally interpolated at nodes of a fixed finite element mesh which does not conform to

the physical surface:

φ(x) =
∑

i
Ni(x)φi = N(x)φ [6]

where Ni are the classical finite element shape functions and where N =
[N1, . . . , NN ], with N the number of nodes. In the probabilistic context, this function

simply becomes a stochastic field φ(θ, x), where θ denotes the outcome. For a given

outcome θ, the zero level set of φ(θ, x) represent the corresponding outcome of the

random surface. In the same way, this field will be interpolated at nodes of a fixed

finite element mesh and will then be described by a vector of random variables φ(θ).
The question is: how to build this stochastic field ? In all cases, for the resolution

of the stochastic problem, we will try to reduce the source of randomness to a small

number of independent random variables ξ(θ). The level set function will then be

defined by

φ(ξ(θ), x) = N(x)φ(ξ(θ)) [7]

First, we can chose an a priori representation of the geometry parameterized in terms

of a set of random variables, whose probabilistic laws can be identified from ex-

perimental data. Let us take for example the case of a circular hole with random

center c(θ), whose position depends on two random variables in 2D, and with ran-

dom radius R(θ). In this case, the level set can be explicitly written as follows:

φ(θ, x) = R(θ) − ‖x − c(θ)‖. Explicit expressions of level sets exist for several

classical geometrical forms (ellipses, polygones. . . ) (Sukumar et al., 2001).

If the geometry can be written as a function of a stochastic field, a discretization

step of this field and a systematic construction of the corresponding level set will be

necessary. These points will be detailed in a subsequent paper.

3.2. Representation of an external random geometry

When the domain Ω is random, we introduce a level set function φ(θ, x) whose

iso-zero surface represents the boundary ∂Ω(θ). We suppose that φ(θ, x) is negative in

Ω(θ) and positive in the complementary part. Denoting by H the Heaviside function,

the characteristic function of the domain can simply be written:

IΩ(θ, x) = H(−φ(θ, x)) [8]

4. Discretization of the problem

In this part, we introduce the discretization of problem [2] at the spatial and

stochastic levels. In this article, we only consider random shapes. It is a particular

case of X-SFEM for which no enrichment is needed (see (Daux et al., 2000) for the

deterministic case).
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4.1. Preliminaries and notations

We assume that the probabilistic modeling stage has allowed us to represent the

source of randomness with a finite number m of independent random variables ξ(θ) =
(ξ1(θ), . . . , ξm(θ)). A random variable v(θ) can then be expressed in terms of ξ:

v(θ) ≡ v(ξ(θ)). We then work in the image probability space Θ = ξ(Θ) ⊂ R
m

endowed with probability measure Pξ defined for Borel sets b ∈ BRm by Pξ(b) =
P (ξ−1(b)). We denote by E(.) the mathematical expectation, defined by

E(v) =

∫

Θ

v(θ)dP (θ) =

∫

Θ

v(x)dPξ(x) [9]

4.2. Choice of approximation spaces

We first notice that V , defined in [3], is the tensor product of the spaces S = L2(Θ)
and U = H1(B). We then choose a tensor product approximation. The domain B is

discretized by a mesh Th yielding a finite element approximation space Uh ⊂ U . The

set of shape functions is denoted by {Ni}i∈I , where I denotes the set of nodes. At the

stochastic level, we introduce {Hα(ξ)}α∈IP
, a basis of P functions of SP ⊂ S. The

approximate solution, denoted by uh,P , will then be searched in the space

Vh,P = SP ⊗ Uh = {
∑

α∈IP

∑

i∈I

Ni(x)Hα(ξ)ui,α , ui,α ∈ R}

= {
∑

α∈IP

N(x)uαHα(ξ) , uα ∈ R
N} [10]

where N = [N1, . . . , Nn], n being the number of nodes in the mesh.

Several choices have been proposed for building approximation basis of L2(Θ).
Spectral approaches as polynomial chaos (Wiener, 1938; Ghanem et al., 1991) or gen-

eralized polynomial chaos (Xiu et al., 2002) use orthogonal polynomial basis and ex-

hibit exponential convergence rates (Xiu et al., 2002) in the case of regular solutions.

For the case of less regular solutions, other approximation techniques were introduced

(Wiener-Haar chaos (Le Maître et al., 2004), hp finite elements (Deb et al., 2001)).

In practice, the basis functions will be taken orthonormal: E(HαHβ) = 1 if α = β
and 0 otherwise.

4.2.1. Polynomial chaos

We note that S is the product space S1 ⊗ . . .⊗Sm, where Si = L2(Θi,Bi, dPξi
).

The polynomial chaos discretization consists in choosing for SP a space of multi-

dimensional polynomials Hα = h1
α1

(x1) . . . hn
αn

(xn), where hi
αi

∈ Si and where

α = (α1, . . . , αm) denotes a multi-index of N
m. Polynomials are chosen orthogonal

with respect to the scalar product of S = L2(Θ, dPξ), defined by (u, v) = E(uv).
The method initially proposed by (Ghanem et al., 1991) consists in working with a
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set ξ of independent Gaussian variables. In this case, hi
j denotes Hermite polyno-

mials which are the orthogonal polynomials with respect to Gaussian measure. The

same basis functions are used for all stochastic dimensions. Classically, we choose

for SP the polynomial chaos of order p in m variables, defined with multi-indices:

IP = {α ∈ N
m ; |α| =

∑m
i=1 αi 6 p}. The number of basis functions of SP is

P = (m+p)!
p! m!

The generalized polynomial chaos method (Xiu et al., 2002) uses orthogonal poly-

nomials with respect to measures dPξi
for hi

j . In the case of uniform, beta or gamma

random variables, we use respectively Legendre, Jacobi and Laguerre polynomial. For

arbitrary measure and possibly dependent variables, it is also possible to introduce

generalized chaos decompositions (Soize et al., 2004).

4.2.2. Finite elements at the stochastic level

Finite element approximation at the stochastic level (Deb et al., 2001; Babuska

et al., 2005) consists in choosing for SP a space of piecewise polynomial functions

(discontinuous) on a mesh of Θ. This type of approximation allows one to use tools

which are classical in the finite element context such as a posteriori error estimation,

adaptative refinement. . .

Here, we suppose that Θ = Θ1 × . . .×Θm is a bounded open set of R
m. On each

stochastic dimension, we introduce a mesh T i
k of ni elements of Θi. We denote by

Tk = T 1
k × . . .×T m

k the corresponding rectangular mesh of R
m. The restriction of a

function Hα(x) of SP to an element τ of Tk satisfies

Hα|τ ∈ span
(

m
∏

i=1

xqi

i , qi ∈ N and qi 6 pi

)

[11]

where pi is the approximation degree on Θi. Here, we choose for IP the set: IP =
{α = (α1, . . . αm) ∈ (N2)m , αi = (ji, qi) , 1 6 ji 6 ni , 0 6 qi 6 pi}. The

number of basis functions of SP is here P =
∏m

i=1 ni(pi +1). We recall that the basis

functions are orthonormalized.

4.3. Definition of the approximate solution

We introduce Vh,P,0 = Vh,P ∩ V0. The Galerkin approximation uh,P ∈ Vh,P,0 of

[2] is defined by

A(uh,P , vh,P ) = L(vh,P ) , ∀vh,P ∈ Vh,P,0 [12]

To avoid singularity in the discretized problem [12], it is necessary to suppress

functions of Vh,P lying in the kernel of v → A(v, v). In particular, that leads to

suppress degrees of freedom associated with the set of nodes Iout whose support is

Pξ-almost surely outside the physical domain. Denoting by ωi the support of shape
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function Ni, i.e. the union of elements having node i as one of their vertices, the set

Iout can be written:

Iout = {i ∈ I ; Pξ(ωi ∩ Ω(ξ) = ∅) = 1} = {i ∈ I ; ωi ⊂ Ω0} [13]

where Ωo is the biggest open set almost surely outside Ω, i.e. such that Pξ(Ωo ∩
Ω(ξ) = ∅) = 1. Figure 1 illustrate this definition in the case of a circular hole with

random radius.

Ω(θ)

Iout

Ω 
o

Figure 1. Circular hole with random radius (bounded): definition of the node set Iout.
Ωo is the biggest open set such that Pξ(Ωo ∩ Ω(ξ) = ∅) = 1

Suppressing these degrees of freedom is only a necessary condition for the non-

singularity of the discretized problem [12]. In general, we will then have to solve a

semi-definite system of equations for which we will search a particular solution (see

Section 2.2).

4.4. The discretized problem and its resolution

Discretized problem [12] can also be written: find u ∈ Vh,P,0 such that ∀v ∈
Vh,P,0

A(
∑

α∈IP

N(x)vαHα(ξ),
∑

β∈IP

N(x)uβHβ(ξ)) = L(
∑

α∈IP

N(x)vαHα(ξ))

=⇒
∑

α,β∈IP

v
T
αE(KHαHβ)uβ =

∑

α∈IP

v
T
αE(fHα) [14]

where the random matrix K and the random vector f are defined by:

K(ξ) =

∫

B

a(ξ, x)∇N
T∇NH(−φ(ξ, x)) dx [15]

f(ξ) =

∫

B

N
T fH(−φ(ξ, x)) dx +

∫

Γ2(ξ)

N
T g ds [16]
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Let Kαβ = E(KHαHβ) and fα = E(fHα). System [14] can then be rewritten:













Kα1α1
Kα1α2

. . . Kα1αP

Kα2α1

. . .
...

...
. . .

...

KαP α1
. . . . . . KαP αP























uα1

uα2

...

uαP











=











fα1

fα2

...

fαP











[17]

In practice, system [17] can not be solved by a direct resolution technique. Indeed, the

memory storage and computational costs of assembling and solving this huge system

become prohibitive for common engineering problems. To avoid assembling and to

take part of the sparsity of this system, we classically use Krylov-type iterative res-

olution techniques (Ghanem et al., 1996; Pellissetti et al., 2000; Keese et al., 2005).

An alternative approach has been proposed in (Nouy et al., 2005), which consists in

searching an optimal spectral decomposition of the solution. An ad hoc construction

of this decomposition allows one to transform the problem into the resolution of a few

uncoupled deterministic spatial finite element problems and stochastic equations. This

approach reduces drastically computational and storage costs.

4.5. Computing matrices and vectors of the discretized problem

For solving [17], matrices Kαβ = E(KHαHβ) have to be computed. Computing

these matrices independently would lead to prohibitive costs. In practice, we first

decompose K on an ortho-normal basis of SP ′ ⊂ S:

K(ξ) =
∑

α∈IP ′

KαHα(ξ) with Kα = E(KHα) [18]

This decomposition being performed, we simply have:

E(KHαHβ) =
∑

γ∈IP ′

KγE(HγHαHβ) [19]

REMARK. — Here, SP ′ will be chosen different from SP , the approximation space

of the solution. Indeed, in the case where SP is a space of orthogonal (piecewise)

polynomials of degree less than p (for polynomial chaos or finite element approxima-

tion at the stochastic level), the value of Kαβ will be exact if SP ′ contains orthogonal

polynomials of degree less than 2p. With this choice, the approximation made on K

will have no influence on the solution of the discretized problem [14] (see proof in

(Matthies et al., 2005)).

In the decomposition [18], Kα terms are calculated by Gauss-quadrature:

Kα = E(KHα) =

ng
∑

k=1

K(ξk)Hα(ξk)ωk [20]
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where nk is the number of gauss points, ωk the weights and ξk the integration points

associated to the measure dPξ. The calculation of all the matrices Kα then only

requires the assembling of ng matrices

K(ξk) =

∫

B

a(ξk, x)∇N(x)T∇N(x)H(−φ(ξk, x)) dx [21]

φ(ξk, x) is a deterministic level set corresponding to an outcome of the geometry

and, therefore, the calculation of matrices K(ξk) is a classical calculation within the

context of deterministic X-FEM method. In practice, to perform spatial integration,

we use a classical Gauss-quadrature on elements which are not cut by a level set.

Elements which are cut by a level set are first split into sub-elements on which we

perform a classical Gauss-quadrature (Moës et al., 1999; Dolbow et al., 2000).

Vectors fα = E(fHα) of the right hand side of [17] are calculated by a similar

numerical integration. Their calculation is still classical within the X-FEM method.

4.6. Back to the choice of stochastic discretization

Parametrized problem equivalent to problem [14] can be written: K(ξ)u(ξ) =
f(ξ), ξ ∈ Θ. In fact, matrices and vectors of this problem are only piecewise regular

on Θ. This will be illustrated in example 1. Therefore, the use of a spectral discretiza-

tion at the stochastic level such as polynomial chaos is not optimal. A better choice

consists in using at the stochastic level a finite element discretization on a mesh Tk of

Θ such that matrices and vectors are regular on the elements of Tk. We use for build-

ing this mesh an automatic procedure which will be presented in a forecoming paper.

In the case where X-FEM method gives an exact solution to the associated determin-

istic problem, this choice of approximation can allow one to obtain the exact solution

of the stochastic problem [2]. When using classical polynomial chaos approximation,

this meshing procedure of Θ is also needed to well integrate matrices and vectors of

the discretized problem [17].

5. Examples

5.1. Example 1: traction of a beam with random length

We consider an homogeneous beam in traction laying in the random domain Ω =
]0, ξ[, where ξ is a uniform random variable: ξ = U(0.25, 0.75). We take B =]0, 1[ as

a prolongation of the random domain. The traction modulus is taken equal to 1. The

beam is embedded at x = 0 and is submitted to a uniform and unitary body load. The

problem can be written:

d2u

dx2
(ξ, x) + 1 = 0 for x ∈]0, ξ[ , u(ξ, 0) = 0 ,

du

dx
(ξ, ξ) = 0

An exact solution u to this problem exists: u(ξ, x) = x(ξ − x
2 ) on ]0, ξ[.
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Domain B is meshed with n elements of length h = 1
n . The used level set set is

φ(ξ, x) = x − ξ. At the spatial level, we use P 1 finite elements. Figure 2 shows a 10
elements mesh of B, possible outcomes of domain Ω(ξ) and shows the node set Iout

defined in [13] for which we must suppress the associated degrees of freedom.

Iout

Ω(0.25)

Ω(0.75)

Ω(ξ)

Figure 2. Example 1: 10 elements mesh of B =]0, 1[. Outcomes of physical domain
Ω(ξ) and node set Iout whose support is almost surely outside Ω(ξ)

We first consider a generalized polynomial chaos approximation of degree p at the

stochastic level (Section 4.2.1). Basis functions of SP are Legendre polynomials. To

compare the solution uh,P of problem [12] to the exact solution u, we introduce two

error indicators:

eh,P = ‖uh,P − u‖L2(Θ;L2(Ω(ξ)) = E
(

∫

Ω(ξ)

(uh,P (ξ, x) − u(ξ, x))2 dx
)1/2

ẽh,P = ‖uh,P (ξ, ξ) − u(ξ, ξ)‖L2(Θ) = E
(

(uh,P (ξ, ξ) − u(ξ, ξ))2
)1/2

The first indicator is a true error indicator. Indeed, when eh,P → 0, the physical

part of the approximate solution (see Section 2.2 for this definition) converges toward

the physical part of the exact solution. The second indicator represent the error which

is made on a quantity of interest, namely the displacement at x = ξ (the right extremity

of the random domain). Table 1 shows the evolution of these errors with respect to the

degree (p) and mesh size (h).

We can observe a good h convergence of the approximation for both indicators,

independent of the degree p (convergence in O(h2) for eh,P and O(h) for ẽh,P ).

Since the exact solution u(ξ, x) and the exact quantity of interest u(ξ, ξ) are respec-

tively polynomials of degree 1 and 2 in ξ, it is natural to converge with h towards

the exact solution, whatever the degree p > 2. We obtain a good approximation,

especially for the quantity of interest, even with coarse meshes and a low degree of

approximation at the stochastic level. We know that within the deterministic context,

X-FEM technique leads to an approximate solution uh(x) which gives an exact

quantity of interest uh(ξ), whatever the mesh size h. We recover this property within

the stochastic context for the coarser mesh (h = 1), for which we obtain an “exact”

numerical solution.

REMARK. — For h = 1, the fact that the error increases with the degree p comes

from round-off errors which become significant when we deal with higher order

polynomials. For our purpose, we can then consider that these values of errors are

approximately zero in a numerical sense.
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Table 1. Example 1: generalized chaos approximation. Error indicators ePC
h,P and

ẽPC
h,P with respect to the degree p of the chaos and the mesh size h

ePC
h,P p = 2 p = 4 p = 6 p = 8

h = 1.0 2.22 10−2 2.22 10−2 2.22 10−2 2.22 10−2

h = 0.5 1.32 10−2 1.32 10−2 1.32 10−2 1.32 10−2

h = 0.2 2.42 10−3 2.38 10−3 2.38 10−3 2.38 10−3

h = 0.1 6.72 10−4 6.43 10−4 6.39 10−4 6.40 10−4

ẽPC
h,P p = 2 p = 4 p = 6 p = 8

h = 1.0 9.79 10−15 2.55 10−14 7.56 10−13 1.61 10−12

h = 0.5 2.34 10−3 1.35 10−3 9.66 10−4 7.56 10−4

h = 0.2 1.22 10−3 5.76 10−4 3.82 10−4 2.87 10−4

h = 0.1 5.76 10−4 2.63 10−4 1.91 10−4 1.45 10−4

However, we could have expected to obtain the exact quantity of interest for every

mesh sizes. The fact that we do not obtain this property for more than 1 element is

due to a non optimal choice of the approximation at the stochastic level. To better

understand this, we consider the corresponding parametrized problem K(ξ)u(ξ) =
f(ξ) with ξ ∈]0.25, 0.75[ for a mesh with 2 elements. Figure 3 shows the evolution of

components of K, f and u with respect to ξ.

0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5
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2.5
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3.5

ξ

K11

K22

K33

K
(ξ
)

0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2
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ξ

f(
ξ
)

f3

f2

f1

0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ξ

u
(ξ

)

u 3

u 2

u 1

Figure 3. Components of K(ξ), f(ξ) and u(ξ), ξ ∈]0.25, 0.75[, for a mesh with 2
elements of length 1

2 . Indices correspond to node numbers, numbered from left to
right

We note that these components are continuous piecewise polynomials, with a dis-

continuity point in their derivative located at ξ = 0.5. This point corresponds to the

outcome for which the extremity of the beam is located at the middle node. For exam-

ple, let us prove this for K11(ξ). The support of shape function N1 is the first element.

On this element, ∂N1

∂x = −2. Then,

K11 = 4

∫ 0.5

0

H(−φ(ξ, x)) dx = 4

∫ min(0.5,ξ)

0

dx =

{

2 for ξ > 0.5
4ξ for ξ < 0.5
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For n elements, we can also easily show that discontinuity points in the derivatives

appear for values of ξ for which the extremity of the domain is located on a node.

The use of spectral approximation is unadapted to represent non regular solutions and

leads in this case to a bad p convergence of the approximation at the stochastic level

(for a fixed mesh size h).

Following these remarks, we propose to use at the stochastic level finite elements

of degree p (see Section 4.2.2) with a mesh Θ which coincides with the non-regular

points. Of course, this mesh depends on the spatial mesh of B. Table 2 shows the

evolution of error indicators with respect to degree p and mesh size h. We observe

that with an adaptive choice of the stochastic basis, we obtain the “exact” value (in

the numerical sense) for the quantity of interest for all mesh sizes. The fact that the

error increases while h decreases or p increases is due to round-off errors (see remark

above). However, for fixed degree of approximation p at the stochastic level, the global

convergence is still in O(h2): the values taken by indicators eFE
h,P (Table 2) and ePC

h,P

(Table 1) are quite the same. In fact, non-regularities at the stochastic level which

was explained above become smoother while the mesh size h decrease. We can then

expect that for small mesh size, polynomial chaos approximation gives satisfactory

results.

Table 2. Example 1: finite element approximation of degree p at the stochastic level.
The mesh of Θ is adapted to the one of B. Error indicators eFE

h,P and ẽFE
h,P with respect

to p and h

eFE
h,P p = 2 p = 4 p = 6 p = 8

h = 1.0 2.22 10−2 2.22 10−2 2.22 10−2 2.22 10−2

h = 0.5 1.32 10−2 1.32 10−2 1.32 10−2 1.32 10−2

h = 0.2 2.39 10−3 2.39 10−3 2.39 10−3 2.39 10−3

h = 0.1 6.44 10−4 6.44 10−4 6.44 10−4 6.44 10−4

ẽFE
h,P p = 2 p = 4 p = 6 p = 8

h = 1.0 9.79 10−15 2.55 10−14 7.56 10−13 1.61 10−12

h = 0.5 8.36 10−15 2.79 10−14 9.25 10−13 1.64 10−12

h = 0.2 7.82 10−15 3.57 10−14 9.94 10−13 7.52 10−12

h = 0.1 7.88 10−15 3.72 10−14 1.03 10−12 5.62 10−12

5.2. Example 2: plate with a random hole in tension

We consider the problem of a plate with a traction-free circular hole submitted to

uniaxial tension. The plate lies in a square domain ]0, 3[×]0, 3[. The center of the

hole is located at (1.5, 1.5) and has for radius a uniform random variable R(θ) =
U(0.25, 0.35). The Young modulus is taken equal to 1 and the poisson coefficient

to zero. Classical FEM approaches use sampling techniques to solve this stochastic

problem. For each sample, corresponding to an outcome of the geometry, a new mesh
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conforming to the geometry is created and an associated finite element computation is

performed.

ec

e0

ei

Figure 4. X-SFEM mesh and 3 element groups: surely in the domain (ei), possibly cut
by the boundary of the hole (ec) and surely out the domain (eo)

With the X-SFEM method proposed here, we build a unique mesh and we solve a

unique system of Equation [12]. We use the mesh represented on Figure 4. This mesh

is obtained by meshing a plate with a hole of radius R = 0.3 (mean radius) and by

meshing also the interior of this hole. It is convenient for comparing our approach with

a classical FEM technique. A totally unstructured mesh could also have been used.

Nevertheless, creating a mesh based on outcomes of the geometry allows to better con-

trol the mesh size around zones of interest and also leads to a higher regularity of the

approximate solution at the stochastic level (see Section 4.6). On Figure 4, elements

are split into three groups: elements surely in the domain, element possibly cut by the

boundary of the hole and elements surely out the domain. We don’t associate degrees

of freedom with nodes belonging to elements of the third group and not belonging

to elements of the first two groups. At the stochastic level, we use a finite element

approximation with piecewise polynomials of degree p = 2 (see Section 4.2.2): the

mesh of Θ =]0.25, 0.35[ that we use is Tk =]0.2500, 0.2903, 0.3321, 0.3500[. This

mesh is obtained by an automatic procedure which will be detailed in a following

paper. It is useful for numerical integration [20] and it allows one to obtain a good

regularity per element of the approximate solution.

Figures 5 and 6 show a compararison of FEM and X-SFEM solutions for outcomes

of the geometry. Corresponding outcomes of the iso-zero of the level set representing

the hole are shown on the right figures. On Figure 7, we compare the response surface

of the horizontal elongation ∆u(R) = u(R, xb)− u(R, xa), where xa = (0, 1.5) and

xb = (3, 1.5). We note that X-SFEM leads to a very high precision solution within

the whole range of variation of R. We must also note that with X-SFEM, problem

[12] being solved, the solution obtained has an explicit form in terms of R(θ). Post-

processing can then be performed at a very low cost. An example of post-processing

is illustrated on Figure 8 where the probability density function of ∆u is plotted.
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Figure 5. FEM (left) and X-SFEM (right) solutions: stresses σxx for R = 0.275
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Figure 6. FEM (left) and X-SFEM (right) solutions: stresses σxx for R = 0.325

6. Conclusion

We proposed a stochastic finite element method based on X-FEM to solve stochas-

tic partial differential equations defined on a random domain without remeshings. The

random geometry is described in an implicit manner as the iso-zero of random level

sets. A Galerkin approximation technique is then introduced which leads to a high

precision approximate solution. At the stochastic level, a suitable finite element dis-

cretization is used which takes into account the lack of regularity of the approximate

solution. It allows in some particular cases to obtain the exact solution of the stochas-

tic problem and could allow in the general case to reach higher p convergence rates

than with classical spectral approximation such as polynomial chaos. Of course, the

strategy proposed here is well adapted for parametric studies, which can be viewed as

a particular case of a probabilistic study.
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Figure 7. Comparison between FEM
and X-SFEM: response surface ∆u(R)
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