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Abstract

We design and investigate a sequential discontinuous Galerkin method to ap-
proximate two-phase immiscible incompressible flows in heterogeneous porous
media with discontinuous capillary pressures. The nonlinear interface con-
ditions are enforced weakly through an adequate design of the penalties on
interelement jumps of the pressure and the saturation. An accurate recon-
struction of the total velocity is considered in the Raviart–Thomas(–Nédélec)
finite element spaces, together with diffusivity-dependent weighted averages
to cope with degeneracies in the saturation equation and with media het-
erogeneities. The proposed method is assessed on one-dimensional test cases
exhibiting rough solutions, degeneracies, and capillary barriers. Stable and
accurate solutions are obtained without limiters.

Key words: two-phase flows, heterogeneous porous media, discontinuous
capillary pressure, discontinuous Galerkin, interface condition, velocity
reconstruction, weighted averages, secondary oil recovery
PACS: 02.70.Dh, 47.56.+r, 02.60.Cb

Email addresses: ern@cermics.enpc.fr (A. Ern), Igor.Mozolevski@mtm.ufsc.br
(I. Mozolevski), lucianes@ime.usp.br (L. Schuh)

1Partially supported by the Groupement MoMaS (PACEN/CNRS, ANDRA, BRGM,
CEA, EdF, IRSN), France

2Partially supported by CNPq, Brazil

Preprint submitted to CMAME March 13, 2009



2000 MSC: 65M60, 65N30, 76T99, 76S05

1. Introduction

Two-phase immiscible incompressible flows through porous media are im-
portant in many applications, e.g., secondary oil recovery in petroleum en-
gineering [2]. Swift changes of rock properties in an oil reservoir lead to
capillary pressure discontinuities which can considerably reduce the recovery
factor and even cause oil trapping; see, e.g., [7, 23, 27]. For such applica-
tions, the development of numerical methods that can cope satisfactorily with
two-phase flows in heterogeneous porous media with discontinuous capillary
pressures is a relevant and challenging problem.

The physical principles governing two-phase immiscible incompressible
flows in porous media and the corresponding mathematical models can be
found, e.g., in [6, 13, 15, 25]. The governing equations generally consist of
an elliptic Darcy-type equation for the pressure and a nonlinear degenerate
parabolic equation with a nonlinear advective term for the saturation. The
dependent variables are either the total or the wetting-phase pressure and
either the wetting or the non-wetting phase saturation. The governing equa-
tions are often solved sequentially: at each time step, the pressure equation
is solved first, then the total velocity is computed from the pressure gradi-
ent, and finally, the saturation equation is advanced in time using the total
velocity in the advective term. This approach substantially alleviates the
nonlinearities in the coupled system of governing equations. Furthermore,
working with the global pressure instead of the wetting-phase pressure offers
the advantage of less strongly coupled equations, since the capillary pressure
no longer enters explicitly the pressure equation.

Discontinuous Galerkin methods (DG) offer an attractive tool to approx-
imate (in space) two-phase flows in porous media. Advantages of such meth-
ods include their local (elementwise) conservation property, their flexibility
in using non-matching meshes and variable polynomial degrees, and their po-
tential to capture shocks sharply while maintaining high accuracy in smooth
regions. A mathematical analysis of DG methods applied to Friedrichs’ sys-
tems encompassing both elliptic and hyperbolic PDE’s can be found in [19].
Different versions of DG methods have been considered for the sequential
pressure-saturation formulation of two-phase flows. In [5], the nonsymmet-
ric interior penalty DG method was applied to the pressure equation and to
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the diffusive term in the saturation equation, upwinding was used for the
advective term, and the total velocity was recovered using the postprocess-
ing proposed in [4]. Similar techniques together with further variants of DG
methods for the diffusive terms were investigated numerically in [26] in the
context of adaptive methods. In [24], a compressible air-water two-phase
problem was studied numerically using various variants of DG methods for
the pressure equation and the so-called Local DG method for the saturation
equation. In general, when approximating rough solutions by DG methods,
spurious oscillations triggered by Gibbs-type phenomena occur and, in the
context of two-phase flows, can become significant. To control them, slope
limiters can be used, as advocated for instance in [5]. However, slope limiters
are fairly complicated to be designed for unstructured meshes and there is no
analysis available in two or three space dimensions. One possibility proposed
and assessed numerically in [18] to avoid spurious oscillations is to consider
a fully implicit DG method for the complete coupled system of pressure and
saturation equations, but this entails substantial computational costs.

All of the above DG methods for two-phase flows cannot cope satisfacto-
rily with capillary pressure discontinuities produced at the interface between
two subdomains with different rock properties. Indeed, such discontinuities
require a nonlinear interface condition for the pressure and the saturation,
and both variables can exhibit a nonzero jump at the interface; see [6, 7, 17]
for a detailed discussion. As a result, the usual paradigm in the penalty
strategy of DG methods must be revisited. Formulating a suitable penalty
strategy to incorporate weakly the nonlinear interface conditions on the pres-
sure and on the saturation in the context of sequential pressure-saturation
formulations constitutes the first novel contribution of this work. From a
mathematical viewpoint, existence and uniqueness of the weak solution to
the coupled system of pressure-saturation equations with general interface
conditions was analyzed in [1, 8] using vanishing viscosity and homogeniza-
tion techniques. Moreover, in the past few years, two-phase flows with cap-
illary pressure discontinuities have been studied extensively in the context
of Finite Volume methods (FV). An interface problem for a nonlinear de-
generate parabolic equation, representative of the saturation equation with
discontinuous capillary pressure, was analyzed in [17]. A FV scheme for the
approximation of the solution was proposed and shown to converge to a weak
solution. A more general formulation of the interface conditions was consid-
ered in [10, 12], where a new definition of a weak solution for such interface
conditions was introduced; existence and uniqueness of the weak solution
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was proven. Interface problems for degenerate parabolic equations including
a nonlinear advective term with a discontinuity at the interface for the flux
function were analyzed in [11]. The above FV schemes solely handle the sat-
uration equation with a prescribed total velocity field, whereas the present
work will address the coupled system of pressure-saturation equations where
the total velocity is also an unknown.

The second contribution of the present work is to propose some possible
improvements in the implementation of DG methods for two-phase flows in
heterogeneous porous media. These improvements concern the total veloc-
ity reconstruction and the use of weighted averages in the formulation of the
DG method. Firstly, we consider the total velocity reconstruction introduced
in [21] for elliptic problems and extended to two-phase flow problems in [20].
This velocity reconstruction offers various advantages with respect to the re-
construction proposed in [4]. While both reconstructions enforce continuity
of the normal component of the total velocity at mesh interfaces and hence
produce a total velocity field in the space H(div) defined below, the present
reconstruction exploits all the degrees of freedom in the DG method and,
as such, produces an optimal approximation of the divergence of the total
velocity. As a result, it leads to more accurate and stable calculations, as
illustrated numerically in [20]. A further advantage is that even for piece-
wise affine discrete pressures, the reconstructed velocity already belongs to
the first-order Raviart–Thomas(–Nédélec) finite element space defined be-
low. Therefore, it is possible to consider the natural setting of equal-order
interpolation (e.g., piecewise affine) for the pressure and the saturation. In
the present work, we extend this reconstruction to the more complex situa-
tion where the pressure and the saturation can exhibit nonzero jumps at an
interface owing to capillary pressure discontinuity. Secondly, following previ-
ous work on DG methods for advection–diffusion equations in heterogeneous
media [16, 22], we formulate the consistency terms in the DG method us-
ing weighted averages instead of the more usual arithmetic averages, thereby
allowing to use the harmonic average of the corresponding diffusivity to pe-
nalize interelement jumps. Weighted averages are used in both pressure and
saturation equations, and are particularly important in the latter because of
possible degeneracies.

The paper is organized as follows. In §2, we briefly restate the governing
equations for two-phase flows in porous media in the coupled total pres-
sure/fractional flow formulation and present the interface conditions induced
by capillary pressure discontinuities. In §3, we present the sequential DG dis-
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cretization of the governing equations with weighted averages, the penalty
strategy to incorporate the interface conditions, and the accurate total ve-
locity reconstruction. Finally, §4 contains the numerical results. No limiters
are used in this work.

2. Problem formulation

2.1. The setting

Let Ω be a bounded, open, polyhedral domain in R
d, d ≥ 1, with bound-

ary ∂Ω and outward normal n∂Ω. The domain Ω is divided into two open,
polyhedral subdomains Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅.
Let Γ := ∂Ω1 ∩ ∂Ω2 denote the interface between the two subdomains. More
general situations with more than two subdomains can also be considered.

Each subdomain Ωβ, β ∈ {1, 2}, represents a porous medium with poros-
ity φβ and intrinsic (absolute) permeability Kβ; both quantities are assumed
to be constant in each subdomain for simplicity. The mobility of the wetting
(α = w) and of the non-wetting phase (α = n) in the subdomain Ωβ is de-

noted by λαβ, the sum λβ := λwβ +λnβ being the total mobility and fβ :=
λnβ

λβ

the fractional flux. Let πβ be the capillary pressure in the subdomain Ωβ.
In the sequel, the index β is used to indicate the restriction of a function
defined on Ω to the subdomain Ωβ.

The capillary pressure and the mobilities are in each subdomain given
smooth functions of the non-wetting phase saturation. The non-wetting
phase saturation takes values in the interval [Snr, 1− Swr], and up to rescal-
ing, we can assume that the same interval is used in both subdomains. Here,
Snr and Swr respectively denote the residual saturation of the wetting and
non-wetting phase. In each subdomain Ωβ, β ∈ {1, 2}, the capillary pressure
πβ : [Snr, 1 − Swr) → [0, +∞) is an increasing, continuously differentiable
function. We assume that

∀s ∈ [Snr, 1 − Swr), π1(s) < π2(s). (1)

Moreover, we assume that π2(Snr) < lims→1−Swr
π1(s). As a result, there is

a critical value S∗ of the non-wetting phase saturation such that

π1(S
∗) = π2(Snr). (2)

This situation is illustrated in Figure 1. The value πβ(Snr) is called an entry
pressure and corresponds to the capillary pressure needed to displace the
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Figure 1: Capillary pressures in subdomains Ω1 and Ω2 and critical non-wetting phase
saturation s

∗.

non-wetting phase from the largest pore in the subdomain Ωβ. The difference
between entry pressures in Ω1 and Ω2 is at the origin of the oil trapping effect
[7]. Finally, regarding the mobilities, we assume that λnβ : [Snr, 1 − Swr] →
[0, +∞) and λwβ : [Snr, 1−Swr] → [0, +∞) are monotone Lipschitz functions
such that λnβ(Snr) = 0 and λwβ(1 − Swr) = 0. We also assume that the
fractional fluxes fβ : [Snr, 1− Swr] → [0, 1] are increasing functions. Usually,
these functions have a so-called S-shape.

2.2. Governing equations

The governing equations for two-phase immiscible incompressible flows
through the heterogeneous porous medium Ω in the global pressure/fractional
flow formulation and in the absence of gravity forces can be written as follows:
For a given simulation time T > 0, find (p, s) that satisfy in Ωβ × [0,T] for
each β ∈ {1, 2},

−∇· (λβ(sβ)Kβ∇pβ) = qwβ + qnβ, (3)

uβ = −λβ(sβ)Kβ∇pβ, (4)

φβ∂tsβ + ∇· (uβfβ(sβ)) −∇· (ǫβ(sβ)∇πβ(sβ)) = qnβ, (5)

where the dependent variables p and s respectively denote the global pressure
(in short, the pressure) and the non-wetting phase saturation (in short, the
saturation), while u denotes the total velocity. In addition, we have set
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ǫβ := λwβfβKβ, and qα, α ∈ {w, n}, denotes volumetric sources or sinks of the
corresponding phase in the medium. Observe that the pressure equation does
not degenerate, whereas the saturation equation does in the limits s → Snr

and s → 1 − Swr.
Interface conditions on Γ are discussed in the following subsection. The

initial condition prescribes the saturation over the subdomains Ωβ at initial
time. We assume that the wetting phase is initially present in the whole
domain. Boundary conditions can be of Dirichlet or Neumann type for both
the pressure and the saturation. Dirichlet boundary conditions are enforced
on the sets ∂ΩD

p and ∂ΩD
s for the pressure and the saturation, respectively,

both sets being assumed to have nonzero (d−1)-dimensional measure. In ad-
dition, ∂ΩD

s coincides with the inflow boundary defined such that u·n∂Ω < 0.
Neumann boundary conditions enforce the normal component of the total
velocity, namely λ(s)K∇p·n∂Ω, or the normal component of the saturation
diffusive flux, namely ǫ(s)∇π(s)·n∂Ω. For simplicity, we only consider homo-
geneous Neumann boundary conditions. For a further discussion of practi-
cally important boundary conditions in the global pressure/fractional flow
formulation, we refer to [13, 14].

2.3. Interface conditions

We follow here the formulation of interface conditions in [13, 17]. The
interface conditions for the saturation enforce the continuity of the normal
component of the total advective–diffusive flux, prescribe the value of s2 to
Snr if s1 ∈ [Snr, S

∗], and enforce the continuity of the capillary pressure if
s1 ∈ [S∗, 1 − Swr). This yields on Γ,

(u1f1(s1) − ǫ1(s1)∇π1(s1)) ·nΓ = (u2f2(s2) − ǫ2(s2)∇π2(s2)) ·nΓ, (6)

where nΓ is a unit normal vector to Γ, along with

s2 = Snr if s1 ∈ [Snr, S
∗], (7)

π1(s1) = π2(s2) if s1 ∈ [S∗, 1 − Swr). (8)

Introducing the function J : [Snr, 1 − Swr) → [0, +∞) such that

J(s) =

{

s if s1 ∈ [Snr, S
∗],

s − π−1
2 (π1(s)) if s1 ∈ [S∗, 1 − Swr),

(9)
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where π−1
2 denotes the reciprocal function of π2, the interface conditions (7)–

(8) yield
s1 − s2 = J(s1). (10)

Observe that J is continuous at S∗.
The interface conditions for the pressure enforce the continuity of the

normal component of the total velocity and prescribe the continuity of the
wetting phase pressures pwβ if s1 ∈ [Snr, S

∗] and that of the non-wetting
phase pressures pnβ if s1 ∈ [S∗, 1− Swr). In the latter case, continuity of the
capillary pressures holds owing to (8), thereby implying also the continuity
of the wetting phase pressures. Thus, the wetting-phase pressure is always
continuous, in agreement with the fact that this phase is always present in
both subdomains. Altogether, this yields on Γ,

−λ1K1∇p1·nΓ = −λ2K2∇p2·nΓ, (11)

along with

p1 − p2 = g(s1) if s1 ∈ [Snr, S
∗], (12)

p1 − p2 = ĝ(s1, s2) if s1 ∈ [S∗, 1 − Swr), (13)

where we have introduced the functions

g(s1) :=

∫ s1

Snr

f1(ξ)π
′
1(ξ)dξ + π1(Snr) − π2(Snr), (14)

ĝ(s1, s2) :=

∫ s1

Snr

(f1(ξ) − 1) π′
1(ξ)dξ −

∫ s2

Snr

(f2(ξ) − 1) π′
2(ξ)dξ. (15)

Conditions (12) and (13) can be readily linked to the continuity of the wetting
and non-wetting phase pressures, respectively, using the definition of the
global pressure

pβ = pwβ +

∫ s

Snr

fβ(ξ)π′
β(ξ)dξ+πβ(Snr) = pnβ +

∫ s

Snr

(fβ(ξ)−1)π′
β(ξ)dξ, (16)

and the fact that πβ = pnβ − pwβ. Finally, observe that the pressure jump
(p1 − p2) is a continuous function of s1 since g(S∗) = ĝ(S∗, Snr).
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3. The sequential DG method with total velocity reconstruction

3.1. The discrete setting

Let {tn}0≤n≤N be a sequence of discrete times with t0 = 0 and tN = T

and time steps τn := tn+1 − tn. Let {Th}h>0 be a family of shape-regular
meshes of the domain Ω. For simplicity, meshes are kept fixed in time.
A generic element of Th is denoted by T , hT stands for its diameter, and
h := maxT∈Th

hT represents the mesh size. We say that F is an interior face
of the mesh if F has nonzero (d − 1)-dimensional measure and if there are
distinct T− and T+ in Th such that F = ∂T− ∩ ∂T+. We say that F is a
boundary face if F has nonzero (d − 1)-dimensional measure and if there is
T ∈ Th such that F = ∂T ∩ ∂Ω. Interior faces are collected in the set F i

h

and boundary faces are collected in the set F∂
h . We also set Fh := F i

h ∪ F∂
h ,

and for F ∈ Fh, hF denotes the diameter of F . Meshes can possess so-called
hanging nodes, resulting for instance from the fact that the subdomains Ω1

and Ω2 have been meshed independently; in this case, we make the usual
assumption that there is κ > 0 independent of h such that hF ≥ κhT for all
F ∈ Fh and for all T ∈ Th such that F ⊂ ∂T .

We assume that the meshes are fitted to the partition of Ω into Ω1 ∪ Ω2.
In other words, we assume that the interface Γ is exactly covered by a set of
faces that is denoted by FΓ

h . For further use, we define F i∗
h := F i

h \ F
Γ
h . We

also assume that the sets ∂ΩD
p and ∂ΩD

s where Dirichlet boundary conditions
are enforced on the pressure and on the saturation, respectively, are exactly
covered by boundary faces, and we denote by FD

hp and FD
hs the corresponding

sets of faces. Since the sets Γ, ∂ΩD
p , and ∂ΩD

s are known a priori, the above
are mild assumptions on the meshes.

For a scalar- or vector-valued function v that is possibly two-valued at
F ∈ F i

h, we define its jump and average at F as

[[v]] := v− − v+, {v} := 1
2
(v− + v+), v± := v|T± . (17)

These definitions are extended to boundary faces F ∈ F∂
h by setting

[[v]] = {v} := v|F . (18)

For F ∈ F i
h, we define nF as the unit normal vector to F pointing from T−

toward T+, whereas for F ∈ F∂
h , nF coincides with n∂Ω. The arbitrariness in

the orientation of nF is irrelevant in the sequel. For F ∈ FΓ
h , it is convenient

to choose nF pointing from Ω1 toward Ω2 so that [[v]] = v1 − v2 (recall that
vβ := v|Ωβ

, β ∈ {1, 2}).
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3.2. Weighted averages

In the sequel, we consider weighted averages prompted by heterogeneous
diffusivity [16, 22]. Let a be a scalar-valued function representing the diffu-
sivity; a can be two-valued on F ∈ F i

h with values aT−,F and aT+,F associated
with T− and T+, respectively, whereas a is single-valued on F ∈ F∂

h . Then,
for all F ∈ F i

h, introducing the weights

ωT−,F :=
aT+,F

aT−,F + aT+,F

, ωT+,F :=
aT−,F

aT−,F + aT+,F

, (19)

such that ωT−,F + ωT+,F = 1, the weighted average of a function v is defined
as

{v}ω := ωT−,F v− + ωT+,F v+. (20)

We also denote the harmonic mean of a at F as

〈a〉F :=
aT−,F aT+,F

aT−,F + aT+,F

. (21)

The above definitions are extended to boundary faces by setting {v}ω := v
and 〈a〉F := a. Thus, the definitions (19) and (21) can still be used for
F ∈ F∂

h upon formally setting aT−,F := a and aT+,F := +∞. When working
with possibly degenerate problems, such as two-phase flow problems, the
diffusivity a takes nonnegative (and not necessarily positive) values. The
definitions (19) and (21) can still be used if only one of the quantities aT±,F

vanishes. If both quantities vanish, the weights are set to 1
2
; for further use,

the harmonic mean is set to a global reference value for a specified below.

3.3. The sequential DG scheme

Let k ≥ 1 be an integer. At each discrete time tn with n ∈ {1, . . . , N},
approximations to the pressure, pn

h, and to the saturation, sn
h, are sought in

the DG finite element space

V k
h := {vh ∈ L2(Ω); ∀T ∈ Th, vh|T ∈ Pk(T )}, (22)

where Pk(T ) denotes the vector space of polynomials with total degree ≤ k
on T . Observe that approximations for the pressure and the saturation are
sought using the same polynomial order. Taking different polynomial orders
is also possible, but the present choice appears to be more natural. At the
initial time, an approximate saturation s0

h is constructed by considering, for
instance, the L2-orthogonal projection onto V k

h of the initial datum for the
saturation.
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3.3.1. Step 1: pressure equation

For n ∈ {0, · · · , N − 1}, with sn
h ∈ V k

h given from the previous time step
(n ≥ 1) or by the initial datum (n = 0), we first solve the pressure equation
using an interior penalty DG method, that is, we solve for pn+1

h ∈ V k
h such

that for all zh ∈ V k
h ,

∑

T∈Th

∫

T

λ(sn
h)K∇pn+1

h ·∇zh

−
∑

F∈F i
h
∪FD

hp

∫

F

(

nF ·{λ(sn
h)K∇pn+1

h }ω[[zh]] + θnF ·{λ(sn
h)K∇zh}ω[[pn+1

h ]]
)

+
∑

F∈F i
h
∪FD

hp

γF

σF

hF

[[pn+1
h ]][[zh]] =

∑

T∈Th

∫

T

(qw + qn) zh

+
∑

F∈FΓ
h

∫

F

(

−θnF ·{λ(sn
h)K∇zh}ω + γF

σF

hF

[[zh]]

)

G(sn
h)

+
∑

F∈FD
hp

∫

F

(

−θnF ·λ(sn
h)K∇zh + γF

σF

hF

zh

)

pD, (23)

where pD is the Dirichlet datum for the pressure. Notice that (23) is a linear
problem for pn+1

h . The interface operator G(sn
h) is defined as

G(s) =

{

g(sn
h1), if sn

h1 ∈ [Snr, S
∗],

ĝ(sn
h1, s

n
h2), if sn

h1 ∈ [S∗, 1 − Swr),
(24)

where sn
hβ, β ∈ {1, 2}, denotes the restriction of sn

h to the subdomain Ωβ.
The parameter θ ∈ {−1, 0, +1} allows to select the so-called nonsymmetric,
incomplete, or symmetric version of the interior penalty DG method, and
σF > 0 is a positive parameter that must be taken larger than a minimal
threshold depending on mesh regularity if θ 6= −1. This dependency on mesh
regularity can be avoided by penalizing liftings of jumps instead of jumps as
detailed in [3, 16].

The penalty coefficient γF and the weights ω in the consistency terms
are evaluated as described in §3.2. For F ∈ F i

h, F = ∂T− ∩ ∂T+, we set
aT±,F = ‖(λ(sn

h)K)|T±‖L∞(F ) and for F ∈ F∂
h , F = ∂T ∩ ∂Ω, we set a =

‖(λ(sn
h)K)|T‖L∞(F ). Then, for F ∈ F i∗

h ∪ FD
hp, we set

γF = 〈a〉F . (25)
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Recall that the pressure equation does not degenerate, so that the sole moti-
vation for using weighted averages in this equation is media heterogeneities.

It is interesting to recast (23) in a weak residual form by integrating by
parts the first term. Observing that for all F ∈ F i

h,

[[λ(sn
h)K∇pn+1

h zh]] = {λ(sn
h)K∇pn+1

h }ω[[zh]] + [[λ(sn
h)K∇pn+1

h ]]{zh}ω̄, (26)

with {zh}ω̄ := ωT+,F zh|T− + ωT−,F zh|T+ , and rearranging terms yields

∑

T∈Th

∫

T

−(∇·(λ(sn
h)K∇pn+1

h ) + qw + qn)zh

+
∑

F∈F i
h

∫

F

nF ·[[λ(sn
h)K∇pn+1

h ]]{zh}ω̄ +
∑

F∈F∂
h
\FD

hp

∫

F

nF ·λ(sn
h)K∇pn+1

h zh

+
∑

F∈F i
h
∪FD

hp

∫

F

(

−θnF ·{λ(sn
h)K∇zh}ω + γF

σF

hF

[[zh]]

)

[[pn+1
h ]]′ = 0, (27)

where for compact notation we have set

[[pn+1
h ]]′ =











[[pn+1
h ]] if F ∈ F i∗

h ,

[[pn+1
h ]] − G(sn

h) if F ∈ FΓ
h ,

pn+1
h − pD if F ∈ FD

hp.

(28)

Then, it is readily seen that the first term in (27) weakly enforces the vol-
umetric PDE residual, the second one the flux continuity, the third one the
Neumann boundary condition, and the last one the pressure continuity inside
Ω1 ∪ Ω2, the interface condition on Γ, and the Dirichlet boundary condition
on ∂ΩD

p . Notice in particular that the interface condition enforced weakly is

[[pn+1
h ]] = G(sn

h), (29)

which is an O(τn)-approximation of (12)–(13).

3.3.2. Step 2: total velocity reconstruction

Once the approximate pressure pn+1
h has been computed, the total velocity

un+1
h is reconstructed in the Raviart–Thomas(–Nédélec) finite element space

of degree l, l ∈ {k − 1, k}, where

RTl(Th) := {uh ∈ H(div); ∀T ∈ Th, uh|T ∈ [Pl(T )]d + xPl(T )}, (30)
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Figure 2: Local degrees of freedom for the spaces RT0 and RT1.

where H(div) = {v ∈ [L2(Ω)]d; ∇·v ∈ L2(Ω)} and x = (x1, . . . , xd)
t. The

reconstruction is presented in the case of matching (that is, without hanging
nodes), simplicial meshes. In the more general case, the reconstruction is
performed on a matching, simplicial refinement of the original mesh Th.

The reconstruction prescribes locally on each mesh element T ∈ Th the
local degrees of freedom of un+1

h as follows: For all F ∈ Fh with F ⊂ ∂T and
for all q ∈ Pl(F ),

∫

F

(un+1
h ·nF )q =

∫

F

(

−nF ·{λ(sn
h)K∇pn+1

h }ω + γF

σF

hF

[[pn+1
h ]]′

)

q, (31)

except on Neumann boundary faces where there is no jump contribution, and
for all r ∈ [Pl−1(T )]d (there is no condition if k = 1 and l = 0),
∫

T

un+1
h ·r = −

∫

T

λ(sn
h)K∇pn+1

h ·r + θ
∑

F⊂∂T

∫

F

ωT,F λ(sn
h)nF ·K·r[[pn+1

h ]]′. (32)

These conditions fully prescribe the degrees of freedom of the vector field
un+1

h [9]. The local degrees of freedom for the spaces RT0 and RT1 are
illustrated in Figure 2. Furthermore, the computation of un+1

h is explicit,
and thus extremely cheap. Moreover, it is readily seen that the divergence
of un+1

h is optimally convergent in the sense that for all ξ ∈ Pl(T ),
∫

T

(∇·un+1
h )ξ =

∫

T

(qw + qn)ξ. (33)

We refer to [21] for more details.

3.3.3. Step 3: saturation equation

To compute sn+1
h , we use a backward Euler scheme in time, together

with a spatial discretization of the diffusion term by an interior penalty DG
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method and a DG method with Godunov flux (or, equivalently, an upwind
flux since the fractional flux function is monotone) for the nonlinear advective
term. Hence, we solve for sn+1

h ∈ V k
h such that for all vh ∈ V k

h ,

∑

T∈Th

∫

T

φτ−1
n sn+1

h vh −
∑

T∈Th

∫

T

un+1
h f(sn+1

h )·∇vh +
∑

F∈Fh

∫

F

(un+1
h ·nF )Φn+1

hF [[vh]]

+
∑

T∈Th

∫

T

ǫ(sn
h)π′(sn

h)∇sn+1
h ·∇vh

−
∑

F∈F i
h
∪FD

hs

(

nF ·{ǫ(s
n
h)π′(sn

h)∇sn+1
h }ω[[vh]] + θnF ·{ǫ(s

n
h)π′(sn

h)∇vh}ω[[sn+1
h ]]

)

+
∑

F∈F i
h
∪FD

hs

δF

σF

hF

[[sn+1
h ]][[vh]] =

∑

T∈Th

∫

T

φτ−1
n sn

hvh +
∑

T∈Th

∫

T

qnvh

+
∑

F∈FΓ
h

∫

F

(

−θnF ·{ǫ(s
n
h)π′(sn

h)∇vh}ω + δF

σF

hF

[[vh]]

)

J(sn
h1)

+
∑

F∈FD
hs

∫

F

(

−θnF ·ǫ(s
n
h)π′(sn

h)∇vh + δF

σF

hF

vh

)

sD, (34)

where sD is the Dirichlet datum for the saturation. Although many terms
have been linearized by evaluating them at sn

h, (34) is still a nonlinear problem
because of the fractional flux being evaluated at sn+1

h .
The penalty coefficient δF and the weights ω in the consistency terms

are evaluated as described in §3.2. For F ∈ F i
h, F = ∂T− ∩ ∂T+, we set

aT±,F = ‖(ǫ(sn
h)π′(sn

h))|T±‖L∞(F ) and for F ∈ F∂
h , F = ∂T ∩ ∂Ω, we set

a = ‖(ǫ(sn
h)π′(sn

h))|T‖L∞(F ). Then, for F ∈ F i∗
h ∪ FD

hs, we set γF = 〈a〉F , and
the reference value for a is taken to be a∗

β := maxs∈[Snr,1−Swr)(ǫβ(s)π′
β(s))

where β ∈ {1, 2} is such that F ⊂ Ωβ. For F ∈ FΓ
h , the above penalty

strategy is revised by setting the weights to 1
2

and δF = a∗
1a

∗
2/(a

∗
1 + a∗

2). This
way, the interface condition is weakly enforced even in the degenerate case.

The numerical flux Φn+1
hF is evaluated as

Φn+1
hF =



















f(sn+1,↑
h ) if F ∈ F i∗

h ,

{f(sn+1
h )}ω if F ∈ FΓ

h ,

f(sn+1
h ) if F ∈ F∂

h \ FD
hs,

f(sD) if F ∈ FD
hs,

(35)
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where sn+1,↑
h denotes the so-called upwind value of sn+1

h , that is, for F ∈ F i
h,

F = ∂T− ∩ ∂T+, sn+1,↑
h = sn+1

h |T− if un+1
h ·nF ≥ 0 and sn+1,↑

h = sn+1
h |T+ oth-

erwise. The upwind flux is used on all faces except on those at the interface
where a weighted centered flux is used. An upwind flux could have been
used as well at the interface, but this is unnecessary since the design of the
penalty coefficient δF already ensures that the interface condition is weakly
penalized.

It is interesting to recast (34) in a weak residual form by integrating by
parts the second and fourth terms, yielding

∑

T∈Th

∫

T

(

φτ−1
n (sn+1

h − sn
h) + ∇·(un+1

h f(sn+1
h ) − ǫ(sn

h)π′(sn
h)∇sn+1

h ) − qn

)

vh

+
∑

F∈F i
h

∫

F

nF ·[[−un+1
h f(sn+1

h ) + ǫ(sn
h)π′(sn

h)∇sn+1
h ]]{vh}ω̄

+
∑

F∈F∂
h
\FD

hs

∫

F

nF ·ǫ(s
n
h)π′(sn

h)∇sn+1
h vh

+
∑

F∈F i
h
∪FD

hs

∫

F

(

−θnF ·{ǫ(s
n
h)π′(sn

h)∇vh}ω + δF

σF

hF

[[vh]]

)

[[sn+1
h ]]′

+
∑

F∈F i∗
h

∫

F

ωT ↓,F |u
n+1
h ·nF |[[vh]][[f(sn+1

h )]] +
∑

F∈FD
hs

∫

F

|un+1
h ·nF |[[vh]][[s

n+1
h ]]′ = 0,

(36)

where for compact notation we have set

[[sn+1
h ]]′ =











[[sn+1
h ]] if F ∈ F i∗

h ,

[[sn+1
h ]] − J(sn

h1) if F ∈ FΓ
h ,

sn+1
h − sD if F ∈ FD

hs.

(37)

Thus, the first term in (36) weakly enforces the volumetric PDE residual,
the second one the flux continuity, the third one the Neumann boundary
condition, and the fourth one the saturation continuity inside Ω1 ∪ Ω2, the
interface condition on Γ, and the Dirichlet boundary condition on ∂ΩD

s . We
now clearly see why the penalty coefficient δF must be nonzero at the interface
even in the degenerate case. Furthermore, the interface condition enforced
weakly is

[[sn+1
h ]] = J(sn

h1), (38)
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which is an O(τn)-approximation of (10). Finally, the two terms in the
fifth line of (36) result from upwinding. In the first of the two terms, T ↓

denotes the mesh element downwind of F ; moreover, this term is dissipative
since f is an increasing function (that is, it yields a nonnegative contribution
upon taking vh = sn+1

h ). In the second term, we have used the fact that
∂ΩD

s coincides with the inflow boundary to introduce the absolute value of
un+1

h ·nF ; moreover, this second term is also dissipative.

4. Numerical results

The DG method designed in §3 is assessed on three one-dimensional test
cases with synthetic data representative of secondary oil recovery problems
exhibiting degeneracies (the non-wetting phase saturation vanishes in some
parts of the domain) together with pressure and saturation discontinuities
at the interface between the two subdomains. The computational domain is
Ω = (0, 2) with the interface located at xintf = 1 so that Ω1 = (0, 1) and
Ω2 = (1, 2). In both subdomains, we set φ = 0.2, Snr = Swr = 0, and choose
the mobilities from Brooks-Corey model [6] with parameter θ = 2, yielding
for s ∈ [0, 1],

λw(s) = (1 − s)4, λn(s) = s2(2s − s2). (39)

The absolute permeability is specified below for each test case. The capillary
pressures are given for s ∈ [0, 1] by

π1(s) = 5s2, π2(s) = 4s2 + 1, (40)

so that the difference in entry pressures between the two subdomains is equal
to 1. The critical saturation is S∗ = 1√

5
≃ 0.4472. There are no sources or

sinks (qw = qn = 0). We enforce Dirichlet boundary conditions on the
pressure in the form p|x=0 = 1.8 and p|x=2 = 1.0, and mixed boundary
conditions on the saturation in the form s|x=0 = 0 and ǫ(s)π′(s) ds

dx
|x=2 = 0.

The initial condition is specified below for each test case.
We use a uniform mesh of Ω composed of 80 elements in each subdomain,

together with first-order polynomial approximation for both the pressure and
the saturation (k = 1 in (22)), and the total velocity is reconstructed in the
Raviart–Thomas(–Nédélec) finite element space RT1 (l = 1 in §3.3.2). The
time step is set to 0.001. We have verified that the adopted mesh size and time
step yield sufficient accuracy. Furthermore, since we are approximating rough
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solutions with possible degeneracies, spurious oscillations in the saturation
profiles triggered by Gibbs-type phenomena can and do occur. As reflected
in the results below, these oscillations always remain localized in space to
a few cells around shocks, and their amplitude is always very small. Thus,
simulations can be performed without employing limiters. To this purpose,
the mobilities and capillary pressures are extended by constant values outside
the interval [0, 1].

In test case 1, the intrinsic permeability is set to K = 1 over the whole
domain. The initial condition for the saturation is

s(x, t = 0) =

{

0.9 if x ∈ (0.1, 0.9),

0 otherwise,
(41)

so that the non-wetting phase is initially present only in the left subdo-
main. Results are presented in Figure 3. The saturation profiles are typical
of propagating fronts with degeneracies and capillary pressure effects. Some
spurious oscillations are visible in the few cells around the propagating fronts
at time t = 0.015; these oscillations always remain localized in space and are
damped out already at time t = 0.045. When the saturation reaches the
critical value S∗ at the interface, the non-wetting phase penetrates into the
right subdomain, and the saturation remains discontinuous at the interface.
Regarding the pressure profiles, the total pressure is discontinuous at the in-
terface, the capillary pressure is first discontinuous and becomes continuous
once the non-wetting phase has penetrated inside the right subdomain, in
agreement with the interface conditions, and the wetting-phase pressure is
continuous before and after penetration, again in agreement with the inter-
face conditions. In addition, it is interesting to observe that owing to the
total pressure jump at the interface, the total pressure gradient in each sub-
domain is larger than the gradient that could be expected simply from the
values of the Dirichlet boundary conditions for the pressure.

Figure 4 compares the above results, for which the total velocity is ac-
curately reconstructed, to those obtained by simply using the piecewise con-
stant pressure gradient to compute the total velocity. It is seen that this latter
procedure leads to substantial spurious oscillations and even to the forma-
tion of non-physical shocks at times t = 0.045 and t = 0.1. By comparing
the left and right columns of Figure 4, it is observed that these oscillations
are localized where the total velocity is not accurately reconstructed. Fi-
nally, at longer simulation times (e.g., t = 0.25) when the saturation profiles
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have become smoother, these spurious oscillations are damped out. These
results clearly demonstrate the need for accurate velocity reconstruction in
two-phase flow simulations.

Test case 2 extends test case 1 to the situation where the intrinsic per-
meability is heterogeneous, namely K1 = 1 and K2 = 0.1. The same initial
condition is used as in test case 1. Results are presented in Figure 5. As for
test case 1, the non-wetting phase can penetrate into the subdomain Ω2, but
because K2 is now smaller, the non-wetting phase propagates more slowly
to the right in Ω2, thereby also inducing a different saturation profile in Ω1

(compare the result at t = 0.25 with that of Figure 3). The saturation ex-
hibits a jump at the interface, and a few spurious oscillations are present in
the few cells before the propagating front. The total pressure is discontinuous
at the interface, the capillary pressure is first discontinuous and then con-
tinuous, while the wetting-phase pressure is always continuous, in agreement
with the enforced interface conditions.

Test case 3 uses the same data as test case 2 except that the initial value
of the saturation for x ∈ (0.1, 0.9) is now 0.4. Thus, when the propagating
front reaches the interface, the saturation is below the critical value so that
the non-wetting phase cannot immediately penetrate inside Ω2. The non-
wetting phase then accumulates upstream of the interface until it reaches
eventually the critical value S∗ and penetrates inside Ω2; this situation is
typical of oil trapping effects. Furthermore, the pressure profiles are again in
agreement with the the enforced interface conditions.

To conclude, the above results illustrate that the proposed DG method
is capable of tackling in a robust and accurate fashion various physical phe-
nomena relevant to two-phase flow problems in heterogeneous porous media
with discontinuous capillary pressures. The nonlinear interface conditions,
which are weakly enforced in the context of a sequential scheme, are well cap-
tured in the numerical simulations. The total velocity reconstruction and the
weighted averages are important ingredients to achieve stable computations
that can be carried over without using limiters even in degenerate cases. Our
aim is now to assess more thoroughly the proposed method in the context
of multi-dimensional heterogeneous problems in more complex and realistic
test cases related to field studies.
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Figure 3: Test case 1. Left: saturation profiles at various times; right: total pressure
(solid), capillary pressure (dashed), and wetting-phase pressure (dotted) at different times.
From top to bottom: t = 0, t = 0.008, t = 0.015, t = 0.045, and t = 0.25.
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Figure 4: Test case 1. Comparison of results obtained with (solid lines) and without
(dashed lines) velocity reconstruction: saturation (left) and total velocity (right) at differ-
ent times. From top to bottom: t = 0.008, t = 0.015, t = 0.045, t = 0.1, and t = 0.25.
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Figure 5: Test case 2. Left: saturation profiles at various times; right: total pressure
(solid), capillary pressure (dashed), and wetting-phase pressure (dotted) at different times.
From top to bottom: t = 0, t = 0.015, t = 0.018, t = 0.03, and t = 0.25.
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Figure 6: Test case 3. Left: saturation profiles at various times; right: total pressure
(solid), capillary pressure (dashed), and wetting-phase pressure (dotted) at different times.
From top to bottom: t = 0, t = 0.008, t = 0.045, t = 0.1, and t = 0.25.

25


