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Abstract

Let X be a one dimensional positive recurrent diffusion observed in continuous time
on [0, t]. We consider a non parametric estimator of the drift function on the given
interval. Our estimator, obtained using a penalized least square approach, belongs to a
finite dimensional functional space, whose dimension is selected according to the data.
The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when
t → ∞. The main point of our work is that we do not suppose the process to be in
stationary regime neither to be exponentially β mixing. This is possible thanks to the use
of a new polynomial inequality in the ergodic theorem [19].

Key words : diffusion process, adaptive estimation, regeneration method, continuous time
Markov processes, model selection, deviation inequalities.
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1 Introduction

Let Xt be a one-dimensional diffusion process given by

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x, (1.1)

where W is a standard Brownian motion. Assuming that the process is positive recurrent but
not in the stationary regime, i.e. not starting from the invariant measure, and not exponentially
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†Département de Mathématiques, Université d’Evry-Val d’Essonne, Bd François Mitterrand, 91025 Evry,

France. E-mail: dasha.loukianova@univ-evry.fr
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β- mixing, we want to estimate the unknown drift function b on a fixed interval K from
observations of X during the time interval [0, t], for fixed t. We do not require any knowledge
about smoothness of the drift function : b is not supposed to belong to some known Besov or
Sobolev ball. Hence we aim at studying nonparametric adaptive estimators for the unknown
drift b.

Nonparametric estimation in continuous time of the drift coefficient of diffusion processes has
been widely studied over the last decades. To mention just a few, let us cite Banon, [1],
Prakasa Rao, [21], Pham, [20], Jacod, [13], Galtchouk and Pergamenschikov, [9], Dalalyan
and Kutoyants, [7], Delattre, Hoffmann and Kessler, [8], Loukianova and Loukianova, [17],
Löcherbach and Loukianova, [18] and the extensive book of Kutoyants, [14].

The adaptive estimation for the drift at a fixed point has been studied by Spokoiny, [22], who
uses Lepskii’s method (see [15]) in order to construct an adaptive procedure. Dalalyan, [6],
uses kernel-type estimators and considers a weighted L2−risk, where the weight is given by
the invariant density. In majority of cited papers authors work under quite strong ergodicity
assumptions.

Our aim in this paper is twofold. Firstly, we aim at introducing a simple nonparametric
estimation procedure based on model selection. Our estimator is obtained by minimizing a
contrast function within a fixed finite-dimensional sub-space of L2(K, dx) – quite in the spirit of
mean square estimation and following ideas presented by Comte et al. [5], for discretely observed
diffusions. These finite-dimensional sub-spaces include spaces such as piecewise polynomials
or compactly supported wavelets. The risk we consider for a given estimator b̂ of b is the
expectation of an empirical L2−norm defined by

Ex‖b̂− b‖2
t , where ‖b̂− b‖2

t =
1

t

∫ t

0

(b̂− b)2(Xs)ds.

The dimension of the space is chosen by a data-driven method using a penalization.

Secondly, we aim at working under the less restrictive assumptions on the ergodicity properties
of the process that seem to be possible. We do not impose the diffusion to be exponentially
β-mixing and hence do not work under the condition which implies the existence of exponential
moments for the invariant measure, though we do have to impose the existence of a certain
number of moments. Finally, note that we do not work in the stationary regime: the process
starts from a fixed point x ∈ K, and is not yet in equilibrium. Note also that our approach
is non-asymptotic in time. But we have to suppose that t ≥ t0 for some fixed time horizon t0
that is needed for theoretical reasons and defined precisely later in the text (see theorem 5.2
and in corollary 7.1).

Some results that we use in this paper are interesting as well from a probabilistic point of view.
A main ingredient of the proofs is a new polynomial inequality ensuring that empirical norm
and theoretical L2−norm are not too far away. This inequality given in Loukianova et al.,
[19] – see also the references therein for a background on this subject. The important point in
the present text is that we can use the so-called regeneration method in order to obtain the
inequalities – which is a method that could be extended as well to the case of multi-dimensional
diffusions by using Nummelin splitting. Moreover, it is important to have the precise form of
all constants appearing in the inequality. This needs some cumbersome work. Some results are
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needed comparing empirical norms to theoretical ones in a more direct way using local time
(see proposition 5.1). These results are purely one-dimensional in spirit.

The paper is organized as follows. In section 2, we describe our framework and give some
examples for possible models. Section 3 deals with non-adaptive and section 4 with adaptive
drift estimation. In section 5, we collect the necessary probabilistic results : comparison of
theoretical and empirical norms and deviation inequality. Section 6, 7 and 8 contain proofs.
Finally, section 9 presents some numerical simulations.

Acknowledgments. The subject of this paper has been proposed to the authors by Fabi-
enne Comte and Valentine Genon-Catalot during their research period at the University Paris-
Descartes in spring 2008. The authors thank both of them for their kindness, their patience,
and last, but not least for all the time spent on discussions and explanations on the paper.

Eva Löcherbach has been partially supported by an ANR projet : Ce travail a bénéficié d’une
aide de l’Agence Nationale de la Recherche portant la référence ANR-08-BLAN-0220-01.

2 Model assumptions

Let Xt be a solution of (1.1). We would like to estimate the drift function b on a fixed interval
K, say K = [0, 1]. We shall say that b belongs to the class of models M(M0, b0, γ), if the
following assumptions are fulfilled.

Assumption 2.1 1. b and σ are locally Lipschitz and there is some C > 0, such that
|b(x)| ≤ C(1 + |x|).

2. There exist 0 < σ2
0 ≤ σ2

1 <∞ such that for all x, σ2
0 ≤ σ2(x) ≤ σ2

1.

3. There exist positive constants M0 and b0 such that K ⊂ [−M0,M0] and, for all x with
|x| ≤M0, |b(x)| ≤ b0.

4. We suppose that there is a positive constant γ satisfying 2γ > 31σ2
1 such that for all x

with |x| ≥M0,

xb(x) ≤ −γ.

Under this assumption, the diffusion admits a unique invariant probability measure which is
given as follows. Define the scale density

s(x) = exp

(
−2

∫ x

0

b(u)

σ2(u)
du

)
,

let m(x) = 1/(s(x)σ2(x))dx and M =
∫ +∞
−∞ m(x)dx. Then

µ(dx) = p(x)dx, where p(x) = M−1m(x).
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It follows from the above assumptions that the invariant density p is bounded from above and
below on any compact interval. So we have

0 < p0 ≤ p(x) ≤ p1 <∞ for all x ∈ [0, 1]. (2.2)

Note that the assumption 2.1.4, 2γ > 31σ2
1, implies that hitting times for the diffusion admit a

moment of order p = 16, which will be needed in the sequel (see theorem 6.1).

The following condition will be needed for results concerning adaptive estimators.

Assumption 2.2 1. Nesting condition. (Sm)m∈Mt is a collection of models Sm ⊂ L2(K, dx)
such that there exists a space denoted by St, belonging to the collection, such that Sm ⊂ St
for all m ∈Mt. We denote by Dm the dimension of Sm, and by Dt the dimension of St.
Moreover, we suppose that |Mt| ≤ Dt.

2. We suppose moreover that there exists Φ0 > 0 such that for all m ∈Mt, for all h ∈ Sm,

||h||∞ ≤ Φ0D
1/2
m ||h||.

Here, ‖h‖2 =
∫
K
h2(x)dx is the usual L2(K, dx)−norm.

3. We suppose that ∑
m∈Mt

e−Dm ≤ C,

where the constant C does not depend on t.

4. Dimension condition.

Dt ≤ t.

5. Let {ϕ1, . . . , ϕDt} be an orthonormal basis of St ⊂ L2(K, dx). We assume that there exists
a positive constant Φ1 such that for all i,

card{j : ||ϕiϕj||∞ 6= 0} ≤ Φ1.

2.1 Example for models

We present a collection of models that can be used for estimation. We consider the space
of piecewise polynomials, as introduced for example in Baraud et al. (2001) and Comte et
al. (2007). Fix an integer r ≥ 0. For p ∈ IN, consider the dyadic subintervals Ij,p = [(j −
1)2−p, j2−p], for any 1 ≤ j ≤ 2p. On each subinterval Ij,p, we consider polynomials of degree
less or equal to r, so we have polynomials ϕj,l, 0 ≤ l ≤ r of degree l, such that ϕj,l is zero
outside Ij,p. Then the space Sm, for m = (r, p), is defined as the space of all functions that can
be written as

t(x) =
2p∑
j=1

r∑
l=0

tj,lϕj,l(x).
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Hence, Dm = (r + 1)2p. Then the collection of spaces (Sm,m ∈Mt) is such that

Mt = {m = (r, p), p ≥ 1, r ∈ {0, . . . , rmax}, 2p(rmax + 1) ≤ Dt}.

It is well known, see for instance Comte et al. (2007), that for this model the assumption of
norm connection 2.2 2. is satisfied. Note moreover that for a fixed ϕj,l ∈ St,

card{(j′, l′) : ϕj′,l′ ϕj,l 6= 0} = card{(j, l′) : ϕj,l′ ϕj,l 6= 0} ≤ rmax + 1,

which does not depend on t. Hence assumption 2.2 5. is satisfied. Finally, it is easy to check
that also assumption 2.2 3. holds:

∑
m∈Mt

e−Dm =
rmax∑
r=0

∑
p:2p(rmax+1)≤Dt

e−(r+1)2p

≤
rmax∑
r=0

∑
p:2p(rmax+1)≤Dt

e−2p

≤ (rmax + 1)
∑
k≥0

e−k < +∞,

where the last quantity does not depend on t.

We could also consider spaces generated by compactly supported wavelets, as considered in
Baraud et al. (2001) or in Hoffmann (1999). The most restrictive assumption that we need
to guaranty is assumption 2.2 5. It is for that reason that we cannot consider trigonometric
spaces for instance.

3 Non-adaptive drift estimation

Recall that K = [0, 1]. We want to estimate the unknown drift function b on the interval K. Fix
a subspace Sm ⊂ L2(K, dx) of dimension Dm with orthonormal basis {ϕ1, . . . , ϕDm}. Denote by
‖h‖ the L2(K, dx)-norm, and ‖h‖2

µ =
∫
K
h2(x)µ(dx). We shall write shortly bK(x) := b(x)1K(x)

for the restriction of the function b to the interval K. In what follows, all functions ϕi, ψi will
be restricted to K, i.e. zero outside K.

The estimator b̂m of b on K is a minimizer on Sm of the following contrast function:

γt(h) =
1

t

∫ t

0

h2(Xs) ds−
2

t

∫ t

0

h(Xs) dXs. (3.3)

Put

‖h‖2
t =

1

t

∫ t

0

h2(Xs) ds (3.4)

and denote the corresponding quadratic form on Sm by

Tm(h, f) =
1

t

∫ t

0

h(Xs)f(Xs) ds for all f, h ∈ Sm.
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To insure the existence of b̂m we need some condition under which Tm is positive-definite. Let

At =
{
∀m ∈Mt; ρm ≥ t−1/2

}
, (3.5)

where ρm = infh∈Sm;‖h‖=1 Tm(h, h). We finally define

b̂m = arg min
h∈Sm

γt(h) on At and b̂m = 0 on Act . (3.6)

Since Tm is not degenerated on At, the minimizer exists and is unique on At.

We define the risk of the estimator b̂m as

Ex||b̂m − bK ||2t = Ex

(
1

t

∫ t

0

(b̂m − bK)2(Xs)ds

)
.

Thus, our risk is the expectation of an empirical norm.

Let bm be the L2(K, dx)-projection of bK onto Sm. We have the following first result.

Proposition 3.1 Suppose that t ≥ t0 where t0 is given by corollary 7.1. Under our assumptions
2.1 and 2.2, for all b ∈M(M0, b0, γ),

Ex‖b̂m − bK‖2
t ≤ 3κ‖bm − bK‖2 + 16σ2

1

κ

p0

Dm

t

+C
(
b2

0 + σ2
1Φ2

0

)
t−1. (3.7)

Here, κ = κ(t) = 2
σ2
0
(2
t
+ 2σ1√

t
+2b0 +

σ2
1

2
) (see proposition 5.1 below), and C is a positive constant.

Proof The proof follows ideas of Comte et al. (2007). From the definition of γt it follows that
on At,

b̂m =
Dm∑
i=1

α̂iϕi,

with α̂ satisfying

T α̂ =
1

t

∫ t

0

ϕ(Xs) dXs, Tij =
1

t

∫ t

0

ϕi(Xs)ϕj(Xs) ds. (3.8)

Here, ∫ t

0

ϕ(Xs) dXs =


∫ t

0
ϕ1(Xs)dXs

...∫ t
0
ϕDm(Xs)dXs

 .

Define

Ωt =

{
h ∈ St,

1

2
µ(h2) ≤ ‖h‖2

t ≤
3

2
µ(h2)

}
. (3.9)
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Let bm =
∑Dm

i=1 αiϕi be the L2(K, dx)-projection of bK onto Sm. In what follows it will be useful
to pass to an orthonormal basis {ψ1, . . . , ψDm} of Sm viewed as a subspace of L2(K, dµ). Hence,
our estimator can be rewritten as

b̂m =
Dm∑
i=1

β̂iψi, and bm =
Dm∑
i=1

βiψi.

Then for any two functions h and g,

γt(h)− γt(g) = ‖h− bK‖2
t − ‖g − bK‖2

t −
2

t

∫ t

0

(h− g)(Xs)σ(Xs) dWs,

whence

‖b̂m − bK‖2
t1At ≤ ‖bm − bK‖2

t1At + 2
Dm∑
i=1

(β̂i − βi)
(

1

t

∫ t

0

ψi(Xs)dWs

)
1At . (3.10)

We will investigate this equation on At∩Ωt on the one hand and on At∩Ωc
t on the other hand.

We start by treating (3.10) on At ∩ Ωt. Using Cauchy-Schwartz’s inequality, and noting that∑Dm
i=1(β̂i − βi)2 = ‖b̂m − bm‖2

µ, we have

‖b̂m − bK‖2
t1Ωt∩At ≤ ‖bm − bK‖2

t1Ωt∩At + 2
Dm∑
i=1

(β̂i − βi)
(

1

t

∫ t

0

ψi(Xs)σ(Xs) dWs

)
1Ωt∩At

≤ ‖bm − bK‖2
t +

1

8
‖b̂m − bm‖2

µ1Ωt∩At

+8
Dm∑
i=1

(
1

t

∫ t

0

ψi(Xs)σ(Xs) dWs

)2

. (3.11)

Then on Ωt ∩ At,

1

8
‖b̂m − bm‖2

µ1Ωt∩At ≤
1

2
(‖b̂m − bK‖2

t + ‖bm − bK‖2
t )1Ωt∩At .

Plugging this into (3.11) gives

‖b̂m − bK‖2
t1Ωt∩At ≤ 3‖bm − bK‖2

t + 16
Dm∑
i=1

(
1

t

∫ t

0

ψi(Xs)σ(Xs) dWs

)2

.

We have

Ex‖b̂m − bK‖2
t1Ωt∩At ≤

3

t
Ex

∫ t

0

(bm − bK)2(Xs)ds+
16σ2

1

t2

Dm∑
i=1

Ex

∫ t

0

ψ2
i (Xs) ds.

Using proposition 5.1, we can write for any positive function f having support on K,

Ex

∫ t

0

f(Xs)ds ≤ κt

∫
K

fdλ,
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where the constant κ is explicitly given in proposition 5.1 and does only depend on the model
constants b0, σ0, σ1. Using this estimation, we obtain the following bound for the integrated risk
restricted on Ωt ∩ At:

Ex‖b̂m − bK‖2
t1Ωt∩At ≤ 3κ‖bm − bK‖2 + 16σ2

1

κ

p0

Dm

t
. (3.12)

We now consider the risk restricted on Ωc
t ∩At. Let b̃m be the almost surely defined orthogonal

projection of bK onto Sm w.r.t. ‖.‖t. We have

‖bK − b̂m‖2
t1Ωct∩At = ‖bK − b̃m‖2

t1Ωct∩At+‖b̃m − b̂m‖
2
t1Ωct∩At

≤ ‖bK‖2
t1Ωct

+ ‖b̃m − b̂m‖2
t1Ωct∩At . (3.13)

From the definition of b̃m it follows that b̃m =
∑Dm

i=1 α̃iϕi, with α̃ satisfying

T α̃ =
1

t

∫ t

0

ϕ(Xs)b(Xs)ds. (3.14)

Recall that on At, b̂m =
∑Dm

i=1 α̂iϕi, with α̂ given by (3.8). Hence on At, we can write α̂− α̃ =
T−1Mt, where

Mt =
1

t

∫ t

0

ϕ(Xs)σ(Xs) dWs =


1
t

∫ t
0
ϕ1(Xs)σ(Xs)dWs

...
1
t

∫ t
0
ϕDm(Xs)σ(Xs)dWs

 .

So on At we have b̂m − b̃m = ϕ∗(α̂− α̃) = ϕ∗T−1Mt, where ϕ∗ = (ϕ1, . . . ϕDm), and (we denote
by ∗ the matrix-transposition operation),

(b̂m − b̃m)2(Xs) = M∗
t (T ∗)−1ϕϕ∗(Xs)T

−1Mt.

So,

‖b̃m − b̂m‖2
t =

1

t

∫ t

0

(b̃m − b̂m)2(Xs)ds = M∗
t (T ∗)−1TT−1Mt = M∗

t T
−1Mt =< T−1Mt,Mt >,

which gives

‖b̃m − b̂m‖2
t1Ωct∩At ≤

1

t−1/2
‖Mt‖21Ωct

= t1/2
Dm∑
i=1

(
1

t

∫ t

0

ϕi(Xs)σ(Xs) dWs

)2

1Ωct
. (3.15)

Using our assumptions on b we have

Ex‖bK‖2
t1Ωct

≤ b2
0Px(Ω

c
t).
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Using Burkholder-Davis-Gundy inequalities and the hypothesis ‖ϕ2
i ‖∞ ≤ Φ2

0Dm, it follows from
(3.15),

Ex‖b̃m − b̂m‖2
t1Ωct∩At ≤

t1/2

t2

Dm∑
i=1

Ex

(
(

∫ t

0

ϕi(Xs)σ(Xs) dWs)
21Ωct

)

≤ t−3/2

Dm∑
i=1

√
Ex

(∫ t

0

ϕi(Xs)σ(Xs) dWs

)4

Px(Ωc
t)

≤ t−3/2

Dm∑
i=1

√
C(4)Ex

(∫ t

0

ϕ2
i (Xs)σ2(Xs) ds

)2

Px(Ωc
t).

Here, C(4) is a Burkholder-Davis-Gundy constant. But∫ t

0

ϕ2
i (Xs)σ

2(Xs) ds ≤ Φ2
0Dmσ

2
1t,

hence

Ex‖b̃m − b̂m‖2
t1Ωct∩At ≤

√
C(4) t−3/2

Dm∑
i=1

√
Φ4

0D
2
mσ

4
1t

2 Px(Ωc
t)

≤
√
C(4)σ2

1Φ2
0 t
−1/2D2

m

√
Px(Ωc

t). (3.16)

From (3.13), the integrated risk on Ωc
t ∩ At satisfies

Ex‖bK − b̂m‖2
t1Ωct∩At ≤

(
b2

0 + Cσ2
1Φ2

0 t
−1/2 D2

m

)√
Px(Ωc

t) (3.17)

≤
(
b2

0 + Cσ2
1Φ2

0

)
t−1/2 D2

m

√
Px(Ωc

t). (3.18)

As a consequence, the full integrated risk satisfies, on At, since D2
m ≤ t2,

Ex‖b̂m − bK‖2
t1At ≤ 3κ‖bm − bK‖2 + 16σ2

1

κ

p0

Dm

t

+
(
b2

0 + Cσ2
1Φ2

0

)
t3/2
√
Px(Ωc

t). (3.19)

This - together with corollary 7.1 and with theorem 6.1, applied with p = 12 - finishes our
proof. •

Remark 3.2 In the case when X is in the stationary regime, i.e. starting from the invariant
measure µ, the above estimation can be improved to

Eµ‖b̂m − bK‖2
t ≤ 3p1‖bm − bK‖2 + 16σ2

1

Dm

t
+C

(
b2

0 + σ2
1Φ2

0

)
t−1. (3.20)
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Let us finish this section with some comments on (3.7). It is natural to choose the dimension
Dm that balances the bias term ||bm − bK ||2 and the variance term which is of order Dm/t.
If one assumes that bK belongs to some Besov space Bα

2,∞([0, 1]), then it can be shown that
||bm− bK ||2 ≤ CD−2α

m , see for example Hoffmann (1999). Thus the best choice of Dm is to take

Dm = t
1

2α+1

and then we obtain

Ex(||b̂m − bK‖2
t ) ≤ Ct−

2α
2α+1 + C

(
b2

0 + σ2
1Φ2

0

)
t−1,

and this yields exactly the classical non-parametric rate t−
2α

2α+1 . This choice however supposes
the knowledge of the regularity α of the unknown drift function, and that is why we have to
introduce an adaptive estimation scheme, in order to choose automatically the best dimension
Dm in the case when we do not know the regularity α.

4 Adaptive drift estimation

We now introduce an adaptive scheme of estimation that ensures an automatic choice of the
best linear subspace Sm, i.e. the best dimension Dm adapted to the estimation procedure. We
do this by adding a penalization term pen(m) that will be chosen later. So put

m̂ := arg min
m∈Mt

[
γt(b̂m) + pen(m)

]
. (4.21)

Then the estimator that we propose is the following adaptive estimator

b̂m̂ :=

{ ∑
n 1{m̂=n}b̂n on At

0 on Act
. (4.22)

We have the following theorem.

Theorem 4.1 Suppose that assumptions 2.1 and 2.2 are satisfied. Suppose that t ≥ t0, where
t0 is defined in corollary 7.1. Let

pen(m) = χσ2
1

Dm

t
,

where χ is a universal constant that will be given explicitely in (4.29) below. Then we have for
all b ∈M(M0, b0, γ),

Ex||b̂m̂ − bK ||2t ≤ 3κ inf
m∈Mt

(
||bm − bK ||2 + pen(m)

)
+
K ′

t
, (4.23)

where κ = κ(t) = 2
σ2
0
(2
t

+ 2σ1√
t

+ 2b0 +
σ2
1

2
) (compare to proposition 5.1).

Remark 4.2 Compare (4.23) to (3.7). (4.23) means that the adaptive estimator b̂m̂ achieves
automatically the bias-variance equilibrium (not exactly, of course, but almost).
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Proof Put

νt(f) :=
1

t

∫ t

0

f(Xs)σ(Xs)dWs.

The same argument that yields (3.10) in the non-adaptive case gives for any m ∈Mt,

||b̂m̂ − bK ||2t1At ≤ ||bm − bK ||2t1At + 2νt(b̂m̂ − bm)1At + (pen(m)− pen(m̂)) 1At . (4.24)

Here, a special attention has to be paid to the term νt(b̂m̂ − bm), since it is not a priori clear
that this stochastic integral is well-defined. On m̂ = n, b̂m̂−bm is an element of Sn+Sm viewed
as linear subspace of L2(K,µ). Put k = dim(Sn + Sm) and let {ψ1, . . . , ψk} be an orthonormal
basis of this subspace. Then 1{m̂=n}(b̂m̂ − bm) = 1{m̂=n}

∑k
i=1 β̂iψi, and we define on m̂ = n,

νt(b̂m̂ − bm) :=
k∑
i=1

β̂iνt(ψi).

Hence, νt(b̂m̂ − bm) is well-defined and linear. Thus we may write

νt(b̂m̂ − bm) ≤ ||b̂m̂ − bm||µ · νt

(
b̂m̂ − bm
||b̂m̂ − bm||µ

)
≤ ||b̂m̂ − bm||µ · sup

h∈Sm+Sm̂,||h||µ=1

|νt(h)|.

Write for short
Gm(m′) := sup

h∈Sm+Sm′ ,||h||µ=1

|νt(h)|.

We now investigate (4.24). First, on At ∩ Ωt, using that 2ab ≤ 1
8
a2 + 8b2,

||b̂m̂ − bK ||2t ≤ ||bm − bK ||2t + 2||b̂m̂ − bm||µ Gm(m̂) + [pen(m)− pen(m̂)]

≤ ||bm − bK ||2t +
1

8
||b̂m̂ − bm||2µ + 8 G2

m(m̂) + [pen(m)− pen(m̂)]

≤ ||bm − bK ||2t +
1

2

(
||b̂m̂ − bK ||2t + ||bK − bm||2t

)
+8 G2

m(m̂) + [pen(m)− pen(m̂)]

≤ 3

2
||bm − bK ||2t +

1

2
||b̂m̂ − bK ||2t + 8 G2

m(m̂) + [pen(m)− pen(m̂)] . (4.25)

This yields finally, on At ∩ Ωt,

||b̂m̂ − bK ||2t ≤ 3||bm − bK ||2t + 16 G2
m(m̂) + 2 [pen(m)− pen(m̂)] . (4.26)

Now, as in Comte et al. (2007), put p(m,m′) := p(m) + p(m′), where

p(m) := χσ2
1

Dm

t
(4.27)

and where χ is a universal constant. Then

G2
m(m̂)1Ωt ≤

[
(G2

m(m̂)− p(m, m̂))1Ωt

]
+

+ p(m, m̂)

≤
∑
n∈Mt

[
(G2

m(n)− p(m,n))1Ωt

]
+

+ p(m, m̂).
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Now we choose pen(m) such that 8p(m,m′) ≤ pen(m) + pen(m′), i.e.

pen(m) := 8χσ2
1

Dm

t
.

We have (see also Baraud et al. (2001)):

Proposition 4.3 Under the assumptions of theorem 4.1,

Ex
(
(G2

m(m′)− p(m,m′))1Ωt

)
+
≤ 1, 6χσ2

1

1

t
e−Dm′ , (4.28)

where χ is given by

χ = 3c(δ0)(1 + 2δ0)(1 + 15δ0), c(δ0) = max(2 ln 2 + 1, ln(
9

2δ2
0

)). (4.29)

Here, 0 < δ0 < 1 is a free parameter. For the choice δ0 = 0, 0138 this yields a constant χ = 38.

The proof of proposition 4.3 will be given in section 8 below.

For any n, let {ϕn1 , . . . , ϕnDn} be an orthonormal basis of Sn. On At∩Ωc
t , using (3.13) and (3.15),

we have

||b̂m̂ − bK ||2t1{At∩Ωct} =
∑
n∈Mt

1{m̂=n;At∩Ωct}||b̂n − bK ||
2
t

≤ ‖bK‖2
t1Ωct

+
∑
n∈Mt

1{m̂=n}‖b̃n − b̂n‖2
t1Ωct∩At

≤ ‖bK‖2
t1Ωct

+
∑
n∈Mt

1{m̂=n}t
1/2

Dn∑
i=1

(
1

t

∫ t

0

ϕni (Xs)σ(Xs) dWs

)2

1Ωct

≤ ‖bK‖2
t1Ωct

+
∑
n∈Mt

t1/2
Dn∑
i=1

(
1

t

∫ t

0

ϕni (Xs)σ(Xs) dWs

)2

1Ωct
,

The same calculus that yields (3.17) now gives

Ex||b̂m̂ − bK ||2t1{At∩Ωct} ≤ C
(
b2

0 + σ2
1Φ2

0

)
t−1/2D2

t |Mt|
√
Px(Ωc

t). (4.30)

(4.26), (4.28) and (4.30) yield finally, for any m, using assumption 2.2,

Ex||b̂m̂ − bK ||2t1At ≤ 3Ex||bm − bK ||2t + 4pen(m) + 16
∑
n∈Mt

1, 6χσ2
1

1

t
e−Dn

+C
(
b2

0 + σ2
1Φ2

0

)
t−1/2D2

t |Mt|
√
Px(Ωc

t)

≤ 3κ||bm − b||2 + 4pen(m) + Cχσ2
1

1

t
+C(b2

0, σ
2
1) t−1/2 D3

tPx(Ω
c
t)

1/2.

12



Now, recall that by theorem 6.1, since D3
t ≤ t3, taking p = 16,

Px(Ω
c
t)

1/2 ≤ Ct−7/2

and by corollary 7.1,
Px(A

c
t) ≤ Ct−1.

As a consequence,

Ex||b̂m̂ − bK ||2t ≤ 3κ inf
m∈Mt

(
||bm − b||2 + pen(m)

)
+ Cχσ2

1

1

t
+ C(b2

0, σ
2
1)t−1.

This finishes the proof. •

5 Probabilistic tools

In this section, we give some probabilistic results that are needed for the proofs.

5.1 Comparing empirical and theoretical norms

It is important to be able to compare empirical and theoretical norms. One way of doing this
is given by the next proposition.

Proposition 5.1 For any positive function f having support on K we have

1

t
Ex

∫ t

0

f(Xs)ds ≤ κ(t)

∫ 1

0

f(x)dx,

where κ(t) = 2
σ2
0
(2
t

+ 2σ1√
t

+ 2b0 +
σ2
1

2
).

Proof By the occupation time formula and since f has support in K = [0, 1],

Ex

∫ t

0

f(Xs)ds =

∫ 1

0

f(y)
2

σ2(y)
ExL

y
t dy.

We will derive a bound on ExL
y
t for y ∈ [0, 1]. We have

ExL
0
t − Ex|L

y
t − L0

t | ≤ ExL
y
t ≤ ExL

0
t + Ex|Lyt − L0

t | (5.31)

and

|Lyt − L0
t | ≤ |y|+ |

∫ t

0

1{0<Xs<y}σ(Xs)dWs|+
∫ t

0

1{0<Xs<1}|b(Xs)|ds. (5.32)

Taking expectation we obtain

Ex

∫ t

0

1{0<Xs<1}|b(Xs)|ds ≤ t b0, (5.33)
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and by norm inclusion and isometry,

Ex|
∫ t

0

1{0<Xs<y}σ(Xs)dWs| ≤
(
Ex(

∫ t

0

1{0<Xs<y}σ(Xs)dWs)
2

)1/2

≤
(
Ex(

∫ t

0

1{0<Xs<1}σ
2(Xs)ds)

)1/2

≤ σ1

√
t. (5.34)

In conclusion,
ExL

y
t ≤ ExL

0
t + 1 + σ1

√
t+ tb0 = C0 + L, (5.35)

where L := 1 + σ1

√
t+ tb0 and C0 = ExL

0
t . We also have C0 − L ≤ ExL

y
t ≤ C0 + L, so

t ≥ Ex

∫ t

0

1[0,1](Xs)ds =

∫ 1

0

2ExL
y
t

σ2(y)
dy ≥ 2(C0 − L)

σ2
1

,

whence
C0 ≤ L+ σ2

1t/2,

and thus finally,
ExL

y
t ≤ 2L+ σ2

1t/2 = 2(1 + σ1

√
t+ tb0) + σ2

1t/2.

This concludes the proof. •

5.2 Deviation inequality

In this section, we give a useful deviation inequality for the one-dimensional ergodic diffusion
process X. It is a consequence of deviation inequalities obtained by Loukianova et al. (2009),
paying in particular attention to all constants, which – in view of statistical applications – is
crucial.

Theorem 5.2 Let f be measurable bounded function with compact support K = [0, 1] such that
µ(f) > 0. Suppose that there exists p > 1 such that

2γ > (2p− 1)σ2
1. (5.36)

Then for any 0 < ε ≤ 1, we have the following polynomial bound.

Px

(∣∣∣∣1t
∫ t

0

f(Xs)ds− µ(f)

∣∣∣∣ > ε

)
≤ K(p)t−p/2ε−pµ(|f |)p, (5.37)

where K(p) is positive and finite, depending on the coefficients of the diffusion.

Remark 5.3 The proof of the above theorem relies on the regeneration method, that consists
in cutting the trajectory of the process into independent excursions out of a fixed point. More
precisely, let 0 ≤ a < b ≤ 1 and define a sequence of stopping times (Sn)n, (Rn)n as follows.
S0 = R0 = 0,

S1 = inf{t ≥ 0 : Xt = b}, R1 = inf{t ≥ S1 : Xt = a}, (5.38)

and for any n ≥ 1, Sn+1 = Rn +S1 ◦ θRn , Rn+1 = Rn +R1 ◦ θRn . Then the sequence of stopping
times (Rn)n defines the sequence of successive excursions of the process out of the point a. The
method applies if we dispose of a moment of order p for the regeneration time Rn+1 −Rn, and
this moment exists under the condition (5.36).
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6 Control of Ωt

Recall the definition of Ωt in (3.9). We use the above deviation theorem 5.2 in order to control
the decay of Ωc

t .

Theorem 6.1 Grant assumption 2.2 and suppose that

2γ > (2p− 1)σ2
1.

Then we have that
Px(Ω

c
t) ≤ Ct−

1
2

(p−2),

where C denotes a universal constant not depending on the dimension.

Proof Recall that ||f || denotes the usual L2(K, dx)−norm. For any function f, write

Zt(f) :=
1

t

∫ t

0

f(Xs)ds− µ(f).

Since ||f ||2µ = 1 implies that ||f ||2 ≤ p−1
0 , we have that

Px(Ω
c
t) ≤ Px( sup

f∈St,||f ||≤1

|Zt(f 2)| > 0, 5p0).

Let {ϕ1, . . . , ϕDt} be an orthonormal basis of St ⊂ L2(K, dx) and note that any function f with
||f || ≤ 1 can be written as

f =
Dt∑
i=1

aiϕi with
∑

a2
i ≤ 1.

Therefore,

Px(Ω
c
t) ≤ Px( sup

||f ||≤1

|Zt(f 2)| > 0, 5p0)

= Px

(
supP
a2
i≤1

∑
i,j

aiaj|Zt(ϕiϕj)| > 0, 5p0

)
.

Write
Cij := µ(|ϕiϕj)|

and fix some positive number ε. On the set

{|Zt(ϕiϕj)| ≤ Cijε, ∀i, j} ,

we have that
supP
a2
i≤1

aiaj|Zt(ϕiϕj)| ≤ ε%(C),

where %(C) is the biggest eigenvalue of the matrix C. Then choosing ε := p0/(4%(C)), we
conclude that

Px(Ω
c
t) ≤ Px (∃i, j : |Zt(ϕiϕj)| > Cijε) .
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By theorem 5.2, we have the upper bound

Px (|Zt(ϕiϕj)| > Cijε) ≤ K(p)%(C)p t−p/2.

Note that due to assumption 2.2, 5. and since µ(|ϕiϕj|) ≤ p1, we have that

%(C) ≤ Φ1p1

where the upper bound does not depend on t. Indeed, using that 2uiuj ≤ u2
i +u2

j , we have that

%(C) = sup
u∈RDt ,||u||≤1

< Cu, u >= sup
u∈RDt ,||u||≤1

∑
i,j

Cijuiuj

≤ sup
u∈RDt ,||u||≤1

∑
i,j

Ciju
2
i

= sup
u∈RDt ,||u||≤1

∑
i

u2
i

∑
j:ϕiϕj 6=0

µ(|ϕiϕj|)

≤ sup
u∈RDt ,||u||≤1

∑
i

u2
iΦ1p1 ≤ Φ1p1.

Using once more that ∑
i

∑
j

1{ϕiϕj 6=0} ≤ Dt · Φ1,

due to assumption 2.2, 5., we conclude that

Px(Ω
c
t) ≤ C Dtt

−p/2 ≤ Ct−(p/2−1),

where C denotes a universal constant not depending on the dimension. •

7 Control of At

It still remains to control the probability of Act . Note that by definition of At and of Ωt, if we
take t sufficiently large such that

p0 ≥ 2t−1/2 or equivalently t ≥ 4

p2
0

,

obviously Act ⊂ Ωc
t . But we have to be able to put hands on the lower bound p0 of the invariant

density on [0, 1].

Our approach relies on fine estimations of the scale density under our model assumptions 2.1.
Suppose w.l.o.g. that the constant M0 of assumption 2.1.3 is greater or equal to 1. Then it is
easy to see that for any x such that |x| ≤M0,

s−1(x) ≤ e
2M0b0
σ2
0 .

and for |x| ≥M0,

s−1(x) ≤ e
2M0b0
σ2
0

(
M0

|x|

) 2γ

σ2
1
.
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Then we get immediately that

M =

∫ +∞

−∞
(s(x)σ2(x))−1dx ≤ 2M0

σ2
0

e
2M0b0
σ2
0

[
2γ

2γ − σ2
1

]
=: M+.

This yields the following lower bound for all x ∈ [0, 1],

p(x) ≥ 1

M+

1

σ2
1

e−2b0/σ2
0 .

Hence a possible choice is

p0 =
1

M+

1

σ2
1

e−2b0/σ2
0 . (7.39)

This yields the following corollary.

Corollary 7.1 Suppose that
2γ > 5σ2

1.

Under our model assumptions 2.1, let p0 be as in (7.39). Then for all t ≥ t0 := 4
p20
, we have

that
Px(A

c
t) ≤ Ct−1.

Proof This follows immediately from the above considerations, noting that Px(A
c
t) ≤ Px(Ω

c
t) ≤

Ct−1, applying theorem 6.1 with p = 3. •

8 Proof of proposition 4.3

We finally give the proof of proposition 4.3. In what follows, we shall also need a Bernstein
inequality for martingales. Write

νt(f) :=
1

t

∫ t

0

f(Xs)σ(Xs)dWs.

Using the classical Bernstein inequality for continuous martingales (see for instance Dzhaparidze
and van Zanten (2001)), we recall that

Px(νt(f) ≥ a, ||f ||2t ≤ v2) ≤ exp

(
− ta2

2σ2
1v

2

)
. (8.40)

Recall that ||f ||2t = 1
t

∫ t
0
f 2(Xs)ds and ||f ||2µ = µ(f 2).

The proof of proposition 4.3 follows a chaining argument as developed in Baraud et al. (2001),
pages 45–47. By Lorentz et al . (1996), for any linear subspace S of L2([0, 1], µ) of dimension
d one can find a set Tδ ⊂ B, where B is the unit ball of S ⊂ L2([0, 1], µ), such that

card(Tδ) ≤
(

3

δ

)d
, and ∀ f ∈ B ∃fδ ∈ Tδ : ||f − fδ||µ ≤ δ.
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Apply this to the linear space Sm + Sm′ of dimension d(m′) ≤ Dm + Dm′ . Consider δk−sets
Tk = Tδk where δk = δ02−k, where δ0 < 1 is to be chosen later. Set Hk := log card(Tk). Write
Bm′ := {f ∈ Sm + Sm′ : ||f ||µ ≤ 1}. Then for any f ∈ Bm′ , one can find a sequence (fk)k with
fk ∈ Tk such that ||f − fk||µ ≤ δk. Hence we get

f = f0 +
∑
k≥1

(fk − fk−1).

Then as in Baraud et al. (2001),

||f0||µ ≤ 1, ||fk − fk−1||2µ ≤ 5δ2
k−1/2.

In the following, we shall work in restriction to the set Ωt. Write Pt for the measure Px(· ∩Ωt).
Put as in Baraud et al. (2001),

∆ :=
√

3σ1

(
√
x0 +

∑
k≥1

δk−1

√
5xk/2

)
,

then we have that

Pt

(
sup
f∈Bm′

νt(f) ≥ ∆

)
= Pt

(
∃(fk)k, fk ∈ Tk : νt(f0) +

∑
k≥1

νt(fk − fk−1) ≥ ∆

)
≤ P1 + P2,

where
P1 =

∑
f0∈T0

Pt
(
νt(f0) ≥

√
3x0σ1

)
,

and
P2 =

∑
k≥1

∑
fk∈Tk,fk−1∈Tk−1

Pt

(
νt(fk − fk−1) ≥ σ1δk−1

√
15xk/2

)
.

Recall (8.40) : Since on Ωt, ||f ||2t ≤ 3
2
||f ||2µ, we have for all x > 0,

Pt

(
νt(f) ≥

√
3σ1

√
x||f ||µ

)
≤ exp(−tx).

We apply this inequality, remarking that ||f0||µ ≤ 1, hence

P1 ≤ card(T0) exp(−tx0) = exp(H0 − tx0)

and, since ||fk − fk−1||2µ ≤ 5δ2
k−1/2,

P2 ≤
∑
k≥1

exp(Hk−1 +Hk − txk).

Now, choose x0 such that
tx0 = H0 +Dm′ + τ

and xk such that
txk = Hk−1 +Hk +Dm′ + kd(m′) + τ.
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Then, if d(m′) ≥ 1, we obtain as in Baraud et al. (2001),

Pt

(
sup
f∈Bm′

νt(f) ≥ ∆

)
≤ 1, 6e−τe−Dm′ . (8.41)

Else, d(m′) = 0, hence Sm + Sm′ = {0}, and (8.41) holds trivially. Exactly as in Baraud et al.
(2001), it can be shown that

t∆2 ≤ χσ2
1(Dm′ +Dm + τ),

where χ is the constant given in (4.29), and then we conclude as there

Ex

[(
G2
m(m′)− χσ2

1

Dm′ +Dm

t

)
+

1Ωt

]
≤ 1, 6χσ2

1

1

t
e−Dm′ .

9 Simulations

We have not made intensive numeric simulations for our estimator, since they would be re-
dundant with respect to existing estimation schemes. Indeed, though it is possible to simulate
“exactly” a sampled diffusion’s trajectory (see Beskos et al [4]), the discretization of stochastic
integrals, needed to construct our estimator, produces the estimator studied in Comte et al [5].

Nevertheless, our results apply to a larger than in [5] class of diffusions. To give an example,
we take

dXt = − γXt

1 +X2
t

dt+ dWt, X0 = x, γ >
1

2
.

This diffusion is positive recurrent with stationary distribution

µ(dx) ∼ dx

(1 + x2)γ
.

Note that we do not assume the existence of exponential moments, neither the β-mixing of Xt

as in [5]. Moreover, the initial distribution has not to be stationary.

To produce a realization at time t of Xt started at x, the algorithm EA1 of [4] requires (in our
example) that

α(u) = − γXt

1 +X2
t

be C1, and that

α2(u) + α′(u) =
(γ2 + γ)x2 − γ

(1 + x2)2

be bounded, which is the case here. Moreover, setting A(y) =
∫ y
α(u) du, the function

h(y) = exp

(
A(y)− (y − x)2

2t

)
=

C

(1 + x2)γ/2
exp

(
−(y − x)2

2t

)
must be integrable, and an exact realization of a r.v. with a density proportional to h must be
possible. All these conditions being fulfilled here, we can generate a trajectory of Xt sampled
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at discrete moments k∆, k = 0, 1, . . . , n. The integrals involved in the construction of the
estimator are then approximated by Stieltjes sums.

To fulfill the assumption 2.1.4, we take γ = 16. A sampled trajectory of Xt with X0 = 1 was
generated using 100000 equidistant time moments, with a step ∆ = 0.01, hence t = 1000. The
estimation has been made on an interval covering 98% of the generated data points.

We have chosen the family of Legendre dyadic polynomials, with rmax = 4, to construct an
estimator. The dimension Dm = 2p(r+ 1) for m = (p, r) was bounded by 20 to ensure that the
sampled process has visited the support of every polynomial. The penalty pen(m) was taken
equal to 4Dm/t.

2

1

3

0.0-0.2

0

4

0.4-0.6

5

0.2 0.6

-1

-2

-3

-4

-5
-0.4

Figure 1: Solid line: estimated drift; dashed line: true drift. The adaptive estimation algorithm
on the interval [−0.56, 0.58] selects m̂ = (0, 3).

Remark 9.1 The quality of estimation is quite satisfactory on the intervals K with the lower
bound p0 of the invariant density p(·) large enough. Interestingly enough, we have never suc-
ceeded to get a good approximation on intervals with nearly vanishing p0. This is quite in
accordance with the statement of the proposition 3.1.
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[19] Loukianova, D.; Loukianov, O.; Löcherbach, E. Polynomial bound in the ergodic the-
orem for one-dimensional diffusions and integrability of hitting times. Submitted 2009,
http://arXiv.org/abs/0903.2405

[20] Pham, T.D., Nonparametric estimation of the drift coefficient in the diffusion equation,
Math. Operationsforsch. Statist., Ser. Statistics, 1 (1981), pp61-73.

[21] Prakasa Rao B.L.S.(1999) Statistical Inference for Diffusion Type Processes. London: Ed-
ward Arnold. MR1717690

[22] Spokoiny, V. G. Adaptive drift estimation for nonparametric diffusion model. Ann. Stat.
28, No. 3, 815-836 (2000).

22


