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Abstract

Let X be a one dimensional positive recurrent diffusion continu-
ously observed on [0, t]. We consider a non parametric estimator of
the drift function on a given interval. Our estimator, obtained us-
ing a penalized least square approach, belongs to a finite dimensional
functional space, whose dimension is selected according to the data.
The non-asymptotic risk-bound reaches the minimax optimal rate of
convergence when t → ∞. The main point of our work is that we
do not suppose the process to be in stationary regime neither to be
exponentially β - mixing. This is possible thanks to the use of a new
polynomial inequality in the ergodic theorem [16].
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‡Département Informatique, IUT de Fontainebleau, Université Paris-Est, route Hur-
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1 Introduction

Let Xt be a one-dimensional diffusion process given by

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x,

where W is a standard Brownian motion. Assuming that the process is pos-
itive recurrent but not necessarily in the stationary regime (i.e. not starting
from the invariant measure) and not necessarily exponentially β-mixing, we
want to estimate the unknown drift function b on a fixed interval K from
observations of X during the time interval [0, t], for fixed t. We do not require
any knowledge about smoothness of the drift function : b is not supposed
to belong to some known Besov or Sobolev ball. Hence we aim at studying
nonparametric adaptive estimators for the unknown drift b.

Nonparametric estimation in continuous time of the drift coefficient of
diffusion processes has been widely studied over the last decades. To mention
just a few, let us cite Banon [1], Prakasa Rao [18], Pham [17], Galtchouk and
Pergamenschikov [9], Dalalyan and Kutoyants [7], Delattre, Hoffmann and
Kessler [8], Loukianova and Loukianov [14], Löcherbach and Loukianova [15]
and the extensive book of Kutoyants [11].

The adaptive estimation for the drift at a fixed point has been studied by
Spokoiny [20], who uses Lepskii’s method (see [12]) in order to construct an
adaptive procedure. Dalalyan [6], uses kernel-type estimators and considers
a weighted L2-risk, where the weight is given by the invariant density. He
has to work under quite strong ergodicity assumptions.

Our aim in this paper is twofold. Firstly, we aim at introducing a non-
parametric estimation procedure based on model selection. Our estimator is
obtained by minimizing a contrast function within a fixed finite-dimensional
linear sub-space of L2(K, dx) – quite in the spirit of mean square estimation
and following ideas presented by Comte et al. [5], for discretely observed
diffusions. These finite-dimensional sub-spaces include spaces such as piece-
wise polynomials or compactly supported wavelets. The risk we consider for
a given estimator b̂ of b is the expectation of an empirical L2−norm defined
by

Ex‖b̂− b‖2
t , where ‖b̂− b‖2

t =
1

t

∫ t

0

(b̂− b)2(Xs)ds.

The dimension of the space is chosen by a data-driven method using a pe-
nalization.
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Secondly, we aim at working under the less restrictive assumptions on
the ergodicity properties of the process that seem to be possible. We do not
impose the diffusion to be exponentially β-mixing and do not assume the
existence of exponential moments for the invariant measure, though we do
have to impose the existence of a certain number of moments. Finally, note
that we do not work in the stationary regime : the process starts from a fixed
point x ∈ K, and is not yet in equilibrium. Note also that our approach is
non-asymptotic in time. But we have to suppose that t ≥ t0 for some fixed
explicitly given time horizon t0 that is needed for theoretical reasons and
defined precisely later in the text (see Proposition 3.4). A main ingredient
of the proofs is a new polynomial inequality ensuring that empirical norm
and theoretical L2-norm are not too far away. This inequality is given in
Loukianova et al. [16].

The paper is organized as follows. In section 2 we describe our frame-
work and give the main results : in section 2.1 we give precise assumptions on
the diffusion model, explain these assumptions and give some examples for
models satisfying them. In section 2.2 we introduce both the non-adaptive
and adaptive estimator, section 2.3 gives assumptions on the approximation
spaces and section 2.4 provides some examples of approximation spaces veri-
fying these assumptions. The main results (rate of convergence of estimators)
are given in section 2.5. Section 3 presents probabilistic tools and auxiliary
results necessary for the proof of the main results. Section 4 is devoted to the
proofs of the main results : section 4.1 deals with non-adaptive and section
4.2 with adaptive drift estimation. Finally, section 5 is an appendix, where
we give the proof of one technical result (Lemma 4.2).

Acknowledgments. The subject of this paper has been proposed to the
authors by Fabienne Comte and Valentine Genon-Catalot during their re-
search period at the University Paris-Descartes in spring 2008. The authors
thank both of them for their kindness, their patience, and last, but not least
for all the time spent on discussions and explanations on the paper.

The authors are also grateful to the referees for comments that helped to
significantly improve the paper.

Eva Löcherbach has been partially supported by an ANR project : Ce
travail a bénéficié d’une aide de l’Agence Nationale de la Recherche portant
la référence ANR-08-BLAN-0220-01.
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2 Framework, assumptions and main results.

2.1 Assumptions on the diffusion.

Let Xt be a one-dimensional diffusion process given by

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x. (2.1)

We would like to estimate the drift function b on a fixed interval K, say
K = [0, 1]. To insure the existence and the unicity of a strong non exploding
solution of (2.1) we suppose

Assumption 2.1 1. b and σ are locally Lipschitz and b is at most of
linear growth.

2. There exist 0 < σ2
0 ≤ σ2

1 <∞ such that for all x, σ2
0 ≤ σ2(x) ≤ σ2

1.

A more particular assumption is needed for the drift function to guarantee
some “speed” of ergodicity of X.

Assumption 2.2 1. There are two known constants M0 and b0 such
that K ⊂ [−M0,M0] and for all x with |x| ≤M0, |b(x)| ≤ b0.

2. We suppose that there is a positive constant γ such that for all x with
|x| ≥M0,

xb(x) ≤ −γ.

3. The constant γ satisfy 2γ > 31σ2
1.

To clarify the meaning of Assumptions 2.2 let us recall some well-known
facts about linear diffusions. We refer the reader to the book of Revuz and
Yor [19]. The scale density of X is given by

s(x) = exp

(
−2

∫ x

0

b(u)

σ2(u)
du

)
,

and the scale function by S(x) =
∫ x

0
s(t)dt. X is recurrent if and only

if limx→±∞ S(x) = ±∞. In the case of recurrence the diffusion admits a
unique up to a constant multiple invariant measure m(dx), given by m(dx) =
1/(s(x)σ2(x))dx. Denote M =

∫ +∞
−∞ m(dx). The diffusion is positively recur-

rent if and only if M <∞. In this case put

µ(dx) = p(x)dx, where p(x) =
1

Ms(x)σ2(x)
.
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The probability µ is called invariant or stationary probability of X.
Using Assumptions 2.1.2 and 2.2.1, 2.2.2 we see that for any x such that

|x| ≤M0,

s−1(x) ≤ e
2M0b0
σ2
0 ,

and for |x| ≥M0,

s−1(x) ≤ e
2M0b0
σ2
0

(
M0

|x|

) 2γ

σ2
1
.

This shows that S(x) → ±∞, when x → ±∞. Hence X is recurrent. The
same estimation gives M < ∞ (and X is positively recurrent) as soon as
2γ > σ2

1.
Actually Assumption 2.2.3: 2γ > 31σ2

1 guarantees more than positive
recurrence. It is well known that the positive recurrence of X is equivalent
to ExTa < ∞ for all a ∈ R, x ∈ R, where Ta is the hitting time of level
a. Under Assumptions 2.1.2 and 2.2.1, 2.2.2 the moments of hitting times
of X satisfy ExT

n
a < ∞ for n < γ/σ2

1 + 1/2, for all x ∈ R, a ∈ R, see
Loukianova et al. [16], Theorem 5.5. Thus under Assumption 2.2.3 we have
ExT

n
a < ∞ for n ≤ 16. This means that the “speed of recurrence” of X is

polynomial of order 16 and will be used to bound the speed of convergence
of our estimator. Though we do not use the mixing coefficient, note that
Assumption 2.2 guarantees that the diffusion is polynomially β-mixing (see
Veretennikov [21]).

It follows from the above assumptions that the invariant density p is con-
tinuous and hence bounded from above and below on any compact interval.
So we have

0 < p0 ≤ p(x) ≤ p1 <∞ for all x ∈ [0, 1].

In the sequel we need to fix p0. We get immediately that

M =

∫ +∞

−∞
(s(x)σ2(x))−1dx ≤ 2M0

σ2
0

e
2M0b0
σ2
0

[
2γ

2γ − σ2
1

]
=: M+.

This yields the following lower bound for all x ∈ [0, 1],

p(x) ≥ 1

M+

1

σ2
1

e−2b0/σ2
0 := p0. (2.2)

In conclusion of this subsection, let us give an example of a diffusion
process which fulfills Assumptions 2.2. Consider the solution of

dXt = − γXt

1 +X2
t

dt+ dWt, X0 = x, γ >
31

2
.
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It is positive recurrent with stationary distribution

µ(dx) ∼ dx

(1 + x2)γ

and satisfies all the assumptions of 2.2. Remark that there is no evidence
whether this diffusion is exponentially β-mixing.

2.2 Construction of the estimator.

In this section we introduce a nonparametric estimator of the unknown drift
function b on an interval K. We use the penalized least-squares based ap-
proach, where an estimator is constructed as a “projection” on some finite
dimensional approximation space. We firstly address the non-adaptive case,
where the statistician chooses himself the dimension of the approximation
space. This choice can be done in an optimal way for example if the smooth-
ness of the unknown function b is known. Secondly we address the adaptive
estimation procedure. In this case the dimension of the approximation space
is chosen automatically using some penalization procedure, based on the
data.

Consider a collection {Sm;m ∈ Mt} of approximation spaces. Each of
these spaces is a linear finite dimensional subspace of L2(K, dx). Here Mt

is a set of indices. We suppose that there exists a space denoted by St,
belonging to the collection, such that Sm ⊆ St for all m ∈ Mt. Denote by
Dm the dimension of Sm and by Dt the dimension of St.

Put

‖h‖2
t =

1

t

∫ t

0

h2(Xs) ds

and denote the corresponding quadratic form by

TX(h, f) =
1

t

∫ t

0

h(Xs)f(Xs) ds for all f, h ∈ St.

We firstly construct the non-adaptive estimator. To this end fix a linear
subspace Sm ⊂ St. We shall write shortly bK(x) := b(x)1K(x) for the re-
striction of the function b to the interval K. The estimator b̂m of bK will be
defined as trajectorial minimizer on Sm of the following contrast function :

γt(h) = ‖h‖2
t −

2

t

∫ t

0

h(Xs) dXs.
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To insure the existence of b̂m we impose some condition under which TX
is a.s. positive-definite on St and hence on each Sm, m ∈ Mt. Denote by
‖h‖ the L2(K, dx)-norm, and let

ρt(X) = inf
h∈St;‖h‖=1

TX(h, h).

Put
At =

{
ρt(X) ≥ t−1/2

}
. (2.3)

Note that, since St is finite-dimensional, γt is almost surely defined for all
h ∈ St (see remark 2.3 below). We finally put

b̂m = arg min
h∈Sm

γt(h) on At and b̂m = 0 on Act .

Clearly, for all ω ∈ At, TX is a strictly positive-definite quadratic form on
Sm, m ∈ Mt, and γt is a difference between this strictly positive quadratic
form and a linear form. Hence the minimizer of γt exists and is unique on
Sm, m ∈ Mt. As it was explained, in the non-adaptive case the statistician
chooses himself the approximation space.

In the adaptive case the dimension is chosen automatically using a model
selection procedure. In order to describe this procedure, we have to define
properly γt(b̂m). Fix some basis {ϕ1, . . . , ϕDm} of Sm. From the definition of
γt it follows that on At,

b̂m =
Dm∑
i=1

α̂iϕi,

with random α̂ = (α̂1, . . . , α̂Dm)∗ (we denote by ∗ the usual matrix transpo-
sition) satisfying

Tϕα̂ =
1

t

∫ t

0

ϕ(Xs)dXs, (2.4)

where Tϕ is the Dm ×Dm random matrix with elements

Tϕij =
1

t

∫ t

0

ϕi(Xs)ϕj(Xs) ds

and where ∫ t

0

ϕ(Xs) dXs =


∫ t

0
ϕ1(Xs)dXs

...∫ t
0
ϕDm(Xs)dXs

 .
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Define on At

γt(b̂m) := ‖b̂m‖2
t −

2

t

Dm∑
i=1

α̂i

∫ t

0

ϕi(Xs) dXs. (2.5)

Now we are able to introduce the adaptive estimator. Define

m̂ := arg min
m∈Mt

[
γt(b̂m) + pen(m)

]
,

where the penalization term pen(m) will be given later, see (2.7). Then the
estimator that we propose is the following adaptive estimator

b̂m̂ :=

{ ∑
n 1{m̂=n}b̂n on At

0 on Act
.

Remark 2.3 The above considerations and in particular the definition
of γt(b̂m) of (2.5) do not depend on the special choice of bases.

Indeed, let {ϕ1, . . . , ϕn} and {ψ1, . . . , ψn} be two bases of St (or Sm),
with n = Dt (resp. Dm), and let A = (aij) be the n × n matrix such that
ϕi =

∑
j aijψj, for any 1 ≤ i ≤ n. We then have for a function h

h =
n∑
i=1

αiϕi =
n∑
i=1

βiψi,

where β = A∗α.

1. Hence, given a version of the stochastic integrals
∫
ϕi(Xs)dXs, 1 ≤ i ≤

Dt, the equalities

∫ t

0

h(Xs)dXs =
Dt∑
i=1

αi

∫ t

0

ϕi(Xs)dXs = α∗
∫ t

0

ϕ(Xs)dXs

= α∗A

∫ t

0

ψ(Xs)dXs =
Dt∑
i=1

βi

∫ t

0

ψi(Xs)dXs

determine automatically a version of any stochastic integral
∫
h(Xs)dXs

on St, that does not depend on the choice of the basis.
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2. From the definition (2.5) of γt(b̂m), we have

γt(b̂m) = ‖b̂m‖2
t −

2

t

(
α̂∗
∫ t

0

ϕ(Xs)dXs

)
= ‖b̂m‖2

t −
2

t

(
α̂∗A

∫ t

0

ψ(Xs)dXs

)
= ‖b̂m‖2

t −
2

t

(
β̂∗
∫ t

0

ψ(Xs)dXs

)
where β̂ = A∗α̂. The equality (2.4) yields

Tψβ̂ = A−1Tϕ(A−1)∗A∗α̂ =
1

t

∫ t

0

ψ(Xs) dXs,

hence β̂ satisfies (2.4), when replacing all ϕi by ψi. This implies that
the definition of b̂m and of γt(b̂m) does not depend on the choice of a
basis in Sm.

2.3 Assumptions on linear subspaces of L2(K, dx).

We assume that the approximation spaces satisfy the following conditions :

Assumption 2.4 1. We suppose that there exists Φ0 > 0 such that
for all m ∈Mt, for all h ∈ Sm,

||h||∞ ≤ Φ0D
1/2
m ||h||.

Recall that ‖h‖2 =
∫
K
h2(x)dx is the usual L2(K, dx)−norm.

2. We suppose that ∑
m∈Mt

e−Dm ≤ C,

where the constant C does not depend on t.

3. Dimension condition.
Dt ≤ t.

4. We suppose that there exists an orthonormal basis {ϕ1, . . . , ϕDt} of
St ⊂ L2(K, dx) and a positive constant Φ1 such that for all i,

card {j : ||ϕiϕj||∞ 6= 0} ≤ Φ1.
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5. We suppose that the cardinality of Mt satisfies

cardMt ≤ Dt.

2.4 Example for approximation spaces.

We present a collection of models that can be used for estimation. We con-
sider the space of piecewise polynomials, as introduced for example in Baraud
et al. [2], [3] and Comte et al. [5].

Take K = [0, 1] and fix an integer r ≥ 0. For p ∈ N, consider the dyadic
subintervals Ij,p = [(j− 1)2−p, j2−p], for any 1 ≤ j ≤ 2p. On each subinterval
Ij,p, we consider polynomials of degree less or equal to r, so we have polyno-
mials ϕj,l, 0 ≤ l ≤ r of degree l, such that ϕj,l is zero outside Ij,p. Then the
space Sm, for m = (r, p), is defined as the space of all functions that can be
written as

t(x) =
2p∑
j=1

r∑
l=0

tj,lϕj,l(x).

Hence, Dm = (r + 1)2p. Then the collection of spaces {Sm,m ∈Mt} is such
that

Mt = {m = (r, p), p ≥ 0, r ∈ {0, . . . , rmax}, 2p(rmax + 1) ≤ Dt}.

One possible choice of St and Dt is as follows : Take

pmax := max{p : 2p(rmax + 1) ≤ t}, Dt = 2pmax(rmax + 1),

and let St be the space of piecewise polynomials associated to mmax :=
(rmax, pmax). Then it is evident that any of the spaces Sm,m ∈ Mt, is con-
tained in St. Furthermore, cardMt = (pmax + 1)(rmax + 1) ≤ Dt ≤ t.

It is well known, see for instance Comte et al. [5], that for this model the
assumption of norm connection 2.4.1 is satisfied. Note moreover that for a
fixed ϕj,l ∈ St,

card {(j′, l′) : ϕj′,l′ ϕj,l 6= 0} = card {(j, l′) : ϕj,l′ ϕj,l 6= 0} ≤ rmax + 1,

which does not depend on t. Hence assumption 2.4.4 is satisfied. Finally, it
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is easy to check that also assumption 2.4.2 holds :

∑
m∈Mt

e−Dm =
rmax∑
r=0

∑
p:2p(rmax+1)≤Dt

e−(r+1)2p

≤
rmax∑
r=0

∑
p:2p(rmax+1)≤Dt

e−2p

≤ (rmax + 1)
∑
k≥0

e−k < +∞,

where the last quantity does not depend on t.
Spaces generated by compactly supported wavelets, similar to those con-

sidered by Hoffmann [10] and Baraud et al. [2] or [3] are also covered by
Assumption 2.4. On the other hand, spaces spanned by the trigonometric
basis do not fulfill Assumption 2.4.4 and therefore do not fit to our set-up.

2.5 Main results.

We have the following first result concerning the non-adaptive estimator.
Recall that bK(x) = b(x)1K(x) is the restriction of the function b to the
interval K. We define the risk of the estimator b̂m as

Ex‖b̂m − bK‖2
t = Ex

(
1

t

∫ t

0

(b̂m − bK)2(Xs)ds

)
.

Let bm be the L2(K, dx)-projection of bK onto Sm. Then the following holds.

Theorem 2.5 Suppose that t ≥ t0 := 4/p2
0. Suppose that X satisfies

Assumptions 2.1 and 2.2. Suppose that the collection of the approximation
spaces satisfies Assumptions 2.4.1, 2.4.3–5. Then

Ex‖b̂m − bK‖2
t ≤ 3κ‖bm − bK‖2 + 16σ2

1

κ

p0

Dm

t
+ Ct−1. (2.6)

Here, κ = κ(t) = 2
σ2
0
(2diam(K)

t
+ 2σ1√

t
+ 2b0 +

σ2
1

2
) (see Proposition 3.1), and C

is a positive constant depending on b0, σ1 and Φ0.

Let us give some comments on (2.6). It is natural to choose the dimension
Dm that balances the bias term ||bm − bK ||2 and the variance term which is
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of order Dm/t. Assume that bK belongs to some Besov space Bα
2,∞([0, 1]) and

consider the space of piecewise polynomials Sm such that r > α− 1. Then it
can be shown that ||bm − bK ||2 ≤ CD−2α

m , see for example Barron et al. [4],
Lemma 12. Thus the best choice of Dm is to take

Dm = t
1

2α+1

and then we obtain

Ex(||b̂m − bK‖2
t ) ≤ Ct−

2α
2α+1 + C1t

−1,

and this yields exactly the classical nonparametric rate t−
2α

2α+1 (compare for
example to Hoffmann [10]). This choice however supposes the knowledge of
the regularity α of the unknown drift function, and that is why an adaptive
estimation scheme has to be used, in order to choose automatically the best
dimension Dm in the case when the regularity α is not known.

Concerning the adaptive drift estimator, we have the following theorem.

Theorem 2.6 Suppose that X satisfies Assumptions 2.1 and 2.2. Sup-
pose that the collection of the approximation spaces satisfies Assumption 2.4.
Suppose that t ≥ t0, where t0 := 4/p2

0. Let

pen(m) = χσ2
1

Dm

t
, (2.7)

where χ is a universal constant that will be given explicitly in (4.11). Then
we have

Ex||b̂m̂ − bK ||2t ≤ 3κ inf
m∈Mt

(
||bm − bK ||2 + pen(m)

)
+
C

t
,

where κ = κ(t) = 2
σ2
0
(2diam(K)

t
+ 2σ1√

t
+ 2b0 +

σ2
1

2
) (compare to Proposition 3.1)

and where C is a positive constant not depending on t.

3 Probabilistic tools and auxiliary results.

In this section, we collect some probabilistic results and auxiliary lemmas
that are needed for the proofs of the main results.
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3.1 Probabilistic tools.

In what follows we often need to compare empirical and theoretical norms.
One way of doing this is given by the next proposition.

Proposition 3.1 For any positive function f having support on a com-
pact interval K, we have

1

t
Ex

∫ t

0

f(Xs)ds ≤ κ(t)

∫
K

f(x)dx,

where κ(t) = 2
σ2
0
(2diam(K)

t
+ 2σ1√

t
+ 2b0 +

σ2
1

2
).

Proof By the occupation time formula and since f has support in K,

Ex

∫ t

0

f(Xs)ds =

∫
K

f(y)
2

σ2(y)
ExL

y
t dy.

We will derive a bound on ExL
y
t for y ∈ K. Let y0 be the leftmost point

of K. We have

ExL
y0
t − Ex|Lyt − L

y0
t | ≤ ExL

y
t ≤ ExL

y0
t + Ex|Lyt − L

y0
t |

and

|Lyt − L
y0
t | ≤ |y − y0|+ |

∫ t

0

1{y0<Xs<y}σ(Xs)dWs|+
∫ t

0

1{Xs∈K}|b(Xs)|ds.

Taking expectation we obtain

Ex

∫ t

0

1{Xs∈K}|b(Xs)|ds ≤ t b0,

and by norm inclusion and isometry,

Ex|
∫ t

0

1{y0<Xs<y}σ(Xs)dWs| ≤
(

Ex(

∫ t

0

1{y0<Xs<y}σ(Xs)dWs)
2

)1/2

≤
(

Ex(

∫ t

0

1{Xs∈K}σ
2(Xs)ds)

)1/2

≤ σ1

√
t.

In conclusion,

ExL
y
t ≤ ExL

y0
t + diam(K) + σ1

√
t+ tb0 = C0 + L,
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where L := diam(K) + σ1

√
t + tb0 and C0 = ExL

y0
t . We also have C0 − L ≤

ExL
y
t , so

t ≥ Ex

∫ t

0

1K(Xs)ds =

∫
K

2ExL
y
t

σ2(y)
dy ≥ 2(C0 − L)

σ2
1

,

whence
C0 ≤ L+ σ2

1t/2,

and thus finally,

ExL
y
t ≤ 2L+ σ2

1t/2 = 2(diam(K) + σ1

√
t+ tb0) + σ2

1t/2.

This concludes the proof. •

Now we give a useful deviation inequality for the one-dimensional ergodic
diffusion process X, which is an immediate consequence of deviation inequal-
ity obtained by Loukianova et al. [16]. For f : R → R denote as usually
µ(f) =

∫
R fdµ.

Theorem 3.2 (Deviation inequality.)
Let f be a measurable bounded function with compact support such that

µ(f) 6= 0. Suppose that X satisfies Assumptions 2.1 and 2.2.1, 2.2.2. Then
for all n ∈ N such that

n <
γ

σ2
1

+
1

2

and any 0 < ε ≤ 1, we have the following polynomial bound

Px
(∣∣∣∣1t

∫ t

0

f(Xs)ds− µ(f)

∣∣∣∣ >≥) ≤ K(n)t−n/2ε−nµ(|f |)n,

where K(n) is positive and finite, depending on the coefficients of the diffusion
and on n but not depending on f, t, ε.

This theorem follows directly from theorem 4.3 and theorem 5.5 of [16].

Corollary 3.3 Under Assumption 2.2.3 the previous theorem is satisfied
for all n ≤ 16.
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3.2 Auxiliary results.

In what follows we also need to compare empirical and theoretical norms
through the set

Ωt =

{
∀h ∈ St,

1

2
µ(h2) ≤ ‖h‖2

t ≤
3

2
µ(h2)

}
, (3.1)

where any h ∈ St is defined as 0 outside of K. Recall that At is given by
(2.3) and p0 by (2.2).

Proposition 3.4 For all t ≥ 4/p2
0 it holds that Ωt ⊆ At.

Proof Note that by the definition of At and Ωt, under the assumption
t ≥ 4/p2

0, the inequality µ(h2)/2 ≤ ‖h‖2
t implies ‖h‖2

t ≥ p0‖h‖2/2 ≥ t−1/2, so
Ωt ⊆ At. •

Proposition 3.5 Suppose that X satisfies Assumptions 2.1, 2.2.1 and
2.2.2. Suppose that the collection of approximation spaces {Sm, m ∈ Mt}
satisfies Assumptions 2.4.3, 2.4.4. Then for all

n <
γ

σ2
1

+
1

2

and for all x ∈ R we have that

Px(Ωc
t) ≤ Ct−

1
2

(n−2),

where C depends on n, the constant Φ1 given in Assumption 2.4.4 and on
the coefficients of X, but does not depend on t.

Proof Recall that ‖f‖ denotes the usual L2(K, dx)−norm. For any function
f, write

Zt(f) :=
1

t

∫ t

0

f(Xs)ds− µ(f).

Since for f supported by K, ‖f‖2
µ = 1 implies that ||f ||2 ≤ p−1

0 , we have that

Px(Ωc
t) ≤ Px( sup

f∈St,‖f‖≤1

|Zt(f 2)| > 0, 5p0).
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Let {ϕ1, . . . , ϕDt} be an orthonormal basis of St ⊂ L2(K, dx), satisfying
Assumption 2.4.4, and note that any function f with ||f || ≤ 1 can be written
as

f =
Dt∑
i=1

aiϕi with
∑

a2
i ≤ 1.

Therefore,

Px(Ωc
t) ≤ Px( sup

||f ||≤1

|Zt(f 2)| > 0, 5p0)

≤ Px

(
supP
a2
i≤1

∑
i,j

aiaj|Zt(ϕiϕj)| > 0, 5p0

)
.

Write
Cij := µ(|ϕiϕj)|

and fix some positive number ε. On the set

{|Zt(ϕiϕj)| ≤ Cijε, ∀i, j} ,

we have that
supP
a2
i≤1

∑
aiaj|Zt(ϕiϕj)| ≤ ε%(C),

where %(C) is the biggest eigenvalue of the matrix C. Then choosing ε :=
p0/(4%(C)), we conclude that

Px(Ωc
t) ≤ Px (∃i, j : |Zt(ϕiϕj)| > Cijε) .

By theorem 3.2, we have the upper bound

Px (|Zt(ϕiϕj)| > Cijε) ≤ K(n)%(C)n t−n/2.

Note that due to assumption 2.4.4 and since µ(|ϕiϕj|) ≤ p1, we have that

%(C) ≤ Φ1p1

16



where the upper bound does not depend on t. Indeed, using that 2uiuj ≤
u2
i + u2

j , we have that

%(C) = sup
u∈RDt ,||u||≤1

< Cu, u >= sup
u∈RDt ,||u||≤1

∑
i,j

Cijuiuj

≤ sup
u∈RDt ,||u||≤1

∑
i,j

Ciju
2
i

= sup
u∈RDt ,||u||≤1

∑
i

u2
i

∑
j:ϕiϕj 6=0

µ(|ϕiϕj|)

≤ sup
u∈RDt ,||u||≤1

∑
i

u2
iΦ1p1 ≤ Φ1p1.

Using once more that ∑
i

∑
j

1{ϕiϕj 6=0} ≤ Dt · Φ1,

due to assumption 2.4.3 we conclude that

Px(Ωc
t) ≤ C Dtt

−n/2 ≤ Ct−(n/2−1),

where C = K(n)Φn+1
1 pn1 depends on n and coefficients of X, but does not

depend on t. •

4 Proofs of the main results.

4.1 Proof of Theorem 2.5.

The proof follows the lines of Comte et al. [5]. Recall that from the definition
of γt it follows that on At,

b̂m =
Dm∑
i=1

α̂iϕi,

with random α̂ = (α̂1, . . . , α̂Dm)∗ satisfying

T α̂ =
1

t

∫ t

0

ϕ(Xs)dXs,

17



where T is theDm×Dm random matrix and
∫ t

0
ϕ(Xs)dXs is theDm−dimensional

random vector with elements

Tij =
1

t

∫ t

0

ϕi(Xs)ϕj(Xs) ds,

∫ t

0

ϕ(Xs) dXs =


∫ t

0
ϕ1(Xs)dXs

...∫ t
0
ϕDm(Xs)dXs

 .

Observe that b̂m is a Ft-measurable random variable with values in Sm. If
for such a random variable

h(ω, x) =
Dm∑
i=1

αi(ω)ϕi(x)

we put

γt(h) = ‖h‖2
t −

2

t

Dm∑
i=1

αi

∫ t

0

ϕi(Xs) dXs.

Then γt(h) − γt(b̂m) ≥ 0 on At. This inequality is evidently valid for any
basis of Sm.

Finally, we define the risk of the estimator b̂m as

Ex‖b̂m − bK‖2
t = Ex

(
1

t

∫ t

0

(b̂m − bK)2(Xs)ds

)
.

Let Ωt be given by (3.1) and At given by (2.3). Recall that Ωt ⊆ At (Propo-
sition 3.4.)

Now write

Ex‖b̂m − bK‖2
t = Ex‖b̂m − bK‖2

t1Ωt + Ex‖b̂m − bK‖2
t1Ωct

.

We will treat separately the two terms on the right-hand side.
We start with the first one, recalling that Ωt = Ωt ∩ At. In what follows

it will be useful to use an orthonormal basis {ψ1, . . . , ψDm} of Sm viewed as
a subspace of L2(K, dµ). Hence, our estimator can be rewritten as

b̂m =
Dm∑
i=1

β̂iψi, and bm =
Dm∑
i=1

βiψi.

18



Observe that a.s. on At

0 ≤ γt(b̂m)− γt(bm) =

‖b̂m‖2
t − ‖bm‖2

t −
2

t

Dm∑
i=1

(β̂i − βi)
∫ t

0

ψi(Xs) (b(Xs) ds+ σ(Xs) dWs) =

TX(b̂m−bm, b̂m+bm)−2TX(b̂m−bm, bK)−2

t

Dm∑
i=1

(β̂i−βi)
∫ t

0

ψi(Xs)σ(Xs) dWs =

‖b̂m − bK‖2
t − ‖bm − bK‖2

t −
2

t

Dm∑
i=1

(β̂i − βi)
∫ t

0

ψi(Xs)σ(Xs) dWs,

whence a.s. on At

‖b̂m − bK‖2
t ≤ ‖bm − bK‖2

t + 2
Dm∑
i=1

(β̂i − βi)
(

1

t

∫ t

0

ψi(Xs)σ(Xs)dWs

)
. (4.1)

Remark that
∑Dm

i=1(β̂i − βi)2 = ‖b̂m − bm‖2
µ. Using Cauchy-Schwartz in-

equality we have

‖b̂m − bK‖2
t1Ωt ≤ ‖bm − bK‖2

t1Ωt + 2
Dm∑
i=1

(β̂i − βi)
(

1

t

∫ t

0

ψi(Xs)σ(Xs) dWs

)
1Ωt

≤ ‖bm − bK‖2
t +

1

8
‖b̂m − bm‖2

µ1Ωt

+8
Dm∑
i=1

(
1

t

∫ t

0

ψi(Xs)σ(Xs) dWs

)2

. (4.2)

Then on Ωt

1

8
‖b̂m − bm‖2

µ1Ωt ≤
1

2
(‖b̂m − bK‖2

t + ‖bm − bK‖2
t )1Ωt .

Plugging this into (4.2) gives

‖b̂m − bK‖2
t1Ωt ≤ 3‖bm − bK‖2

t + 16
Dm∑
i=1

(
1

t

∫ t

0

ψi(Xs)σ(Xs) dWs

)2

.
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We have

Ex‖b̂m − bK‖2
t1Ωt ≤

3

t
Ex

∫ t

0

(bm − bK)2(Xs)ds+
16σ2

1

t2

Dm∑
i=1

Ex

∫ t

0

ψ2
i (Xs) ds.

Using Proposition 3.1, we can write for any positive function f having support
on K,

Ex

∫ t

0

f(Xs)ds ≤ κt

∫
K

fdx,

where the constant κ is explicitly given in Proposition 3.1 and does only
depend on the model constants b0, σ0, σ1. Using this estimation, we obtain
the following bound for the integrated risk restricted on Ωt:

Ex‖b̂m − bK‖2
t1Ωt ≤ 3κ‖bm − bK‖2 + 16σ2

1

κ

p0

Dm

t
.

We now consider the risk restricted on Ωc
t . Recall that Act ⊆ Ωc

t and that
b̂m = 0 on Act , and write

‖bK − b̂m‖2
t1Ωct

= ‖bK − b̂m‖2
t1Ωct∩At + ‖bK‖2

t1Act (4.3)

Let b̃m be the almost surely defined on Ωc
t ∩ At orthogonal projection of bK

onto Sm w.r.t. ‖ · ‖t. We have

‖bK − b̂m‖2
t1Ωct∩At = ‖bK − b̃m‖2

t1Ωct∩At+‖b̃m − b̂m‖
2
t1Ωct∩At

≤ ‖bK‖2
t1Ωct∩At + ‖b̃m − b̂m‖2

t1Ωct∩At ,

which, combined with (4.3), implies

‖bK − b̂m‖2
t1Ωct

≤ ‖bK‖2
t1Ωct

+ ‖b̃m − b̂m‖2
t1Ωct∩At . (4.4)

Our Assumption 2.1.1 on b(x) yields

Ex‖bK‖2
t1Ωct

≤ b2
0Px(Ωc

t). (4.5)

From the definition of b̃m it follows that b̃m =
∑Dm

i=1 α̃iϕi, with α̃ satisfying

T α̃ =
1

t

∫ t

0

ϕ(Xs)b(Xs)ds.
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Recall that on At, b̂m =
∑Dm

i=1 α̂iϕi, with α̂ given by (2.4). Hence on At,
we can write α̂− α̃ = T−1Mt, where

Mt =
1

t

∫ t

0

ϕ(Xs)σ(Xs) dWs =


1
t

∫ t
0
ϕ1(Xs)σ(Xs)dWs

...
1
t

∫ t
0
ϕDm(Xs)σ(Xs)dWs

 .

So on At we have b̂m − b̃m = ϕ∗(α̂ − α̃) = ϕ∗T−1Mt, where ϕ∗ =
(ϕ1, . . . ϕDm), and (we denote by ∗ the matrix-transposition operation),

(b̂m − b̃m)2(Xs) = M∗
t (T ∗)−1ϕϕ∗(Xs)T

−1Mt.

So,

‖b̃m − b̂m‖2
t =

1

t

∫ t

0

(b̃m − b̂m)2(Xs)ds =

M∗
t (T ∗)−1TT−1Mt = M∗

t (T ∗)−1Mt =< T−1Mt,Mt >,

which gives, by the definition of At,

‖b̃m − b̂m‖2
t1Ωct∩At ≤

1

t−1/2
‖Mt‖21Ωct

= t1/2
Dm∑
i=1

(
1

t

∫ t

0

ϕi(Xs)σ(Xs) dWs

)2

1Ωct
. (4.6)

Using Burkholder-Davis-Gundy inequalities and the hypothesis ‖ϕ2
i ‖∞ ≤

Φ2
0Dm, it follows from (4.6),

Ex‖b̃m − b̂m‖2
t1Ωct∩At ≤

t1/2

t2

Dm∑
i=1

Ex

(
(

∫ t

0

ϕi(Xs)σ(Xs) dWs)
21Ωct

)

≤ t−3/2

Dm∑
i=1

√
Ex

(∫ t

0

ϕi(Xs)σ(Xs) dWs

)4

Px(Ωc
t)

≤ t−3/2

Dm∑
i=1

√
C(4)Ex

(∫ t

0

ϕ2
i (Xs)σ2(Xs) ds

)2

Px(Ωc
t).

Here, C(4) is a Burkholder-Davis-Gundy constant. But∫ t

0

ϕ2
i (Xs)σ

2(Xs) ds ≤ Φ2
0Dmσ

2
1t,
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hence

Ex‖b̃m − b̂m‖2
t1Ωct∩At ≤

√
C(4) t−3/2

Dm∑
i=1

√
Φ4

0D
2
mσ

4
1t

2 Px(Ωc
t)

≤
√
C(4)σ2

1Φ2
0 t
−1/2D2

m

√
Px(Ωc

t).

From (4.4) and (4.5) the integrated risk on Ωc
t satisfies

Ex‖bK − b̂m‖2
t1Ωct

≤
(
b2

0 + Cσ2
1Φ2

0 t
−1/2 D2

m

)√
Px(Ωc

t)

≤
(
b2

0 + Cσ2
1Φ2

0

)
t−1/2 D2

m

√
Px(Ωc

t). (4.7)

As a consequence, since D2
m ≤ t2, the full integrated risk satisfies

Ex‖b̂m − bK‖2
t ≤ 3κ‖bm − bK‖2 + 16σ2

1

κ

p0

Dm

t

+
(
b2

0 + Cσ2
1Φ2

0

)
t3/2
√

Px(Ωc
t).

Finally, Proposition 3.5, applied with n = 12, yields

Px(Ωc
t) ≤

C

t5

for t ≥ t0. This finishes the proof. •

Remark 4.1 In the case when X is in the stationary regime, i.e. starting
from the invariant measure µ, (2.6) can be improved to

Eµ‖b̂m − bK‖2
t ≤ 3p1‖bm − bK‖2 + 16σ2

1

Dm

t
+ Ct−1.

4.2 Proof of Theorem 2.6.

Put

νt(f) :=
1

t

∫ t

0

f(Xs)σ(Xs)dWs.

The same argument that yields (4.1) in the non-adaptive case gives for any
m ∈Mt,

||b̂m̂− bK ||2t1At ≤ ||bm− bK ||2t1At + 2νt(b̂m̂− bm)1At + (pen(m)− pen(m̂)) 1At .
(4.8)
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Here, a special attention has to be paid to the term νt(b̂m̂ − bm), since it is
not a priori clear that this stochastic integral is well-defined. On m̂ = n,
b̂m̂ − bm is an element of Sn + Sm viewed as linear subspace of L2(K,µ).
Put k = dim(Sn + Sm) and let {ψ1, . . . , ψk} be an orthonormal basis of
this subspace. Then 1{m̂=n}(b̂m̂ − bm) = 1{m̂=n}

∑k
i=1 β̂iψi, and we define on

m̂ = n,

νt(b̂m̂ − bm) :=
k∑
i=1

β̂iνt(ψi).

Hence, νt(b̂m̂ − bm) is well-defined and linear. Thus we may write

νt(b̂m̂−bm) ≤ ||b̂m̂−bm||µ·νt

(
b̂m̂ − bm
||b̂m̂ − bm||µ

)
≤ ||b̂m̂−bm||µ· sup

h∈Sm+Sm̂,||h||µ=1

|νt(h)|.

Write for short
Gm(m′) := sup

h∈Sm+Sm′ ,||h||µ=1

|νt(h)|.

We now investigate (4.8). First, on At ∩ Ωt, using that 2ab ≤ 1
8
a2 + 8b2,

||b̂m̂ − bK ||2t ≤ ||bm − bK ||2t + 2||b̂m̂ − bm||µ Gm(m̂) + [pen(m)− pen(m̂)]

≤ ||bm − bK ||2t +
1

8
||b̂m̂ − bm||2µ + 8 G2

m(m̂) + [pen(m)− pen(m̂)]

≤ ||bm − bK ||2t +
1

2

(
||b̂m̂ − bK ||2t + ||bK − bm||2t

)
+8 G2

m(m̂) + [pen(m)− pen(m̂)]

≤ 3

2
||bm − bK ||2t +

1

2
||b̂m̂ − bK ||2t + 8 G2

m(m̂) + [pen(m)− pen(m̂)] .

This yields finally, on At ∩ Ωt = Ωt,

||b̂m̂ − bK ||2t ≤ 3||bm − bK ||2t + 16 G2
m(m̂) + 2 [pen(m)− pen(m̂)] . (4.9)

Now, as in Comte et al. [5], put p(m,m′) := p(m) + p(m′), where

p(m) := χσ2
1

Dm

t

and where χ is a universal constant. Then

G2
m(m̂)1Ωt ≤

[
(G2

m(m̂)− p(m, m̂))1Ωt

]
+

+ p(m, m̂)

≤
∑
n∈Mt

[
(G2

m(n)− p(m,n))1Ωt

]
+

+ p(m, m̂).
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Now we choose pen(m) such that 8p(m,m′) ≤ pen(m) + pen(m′), i.e.

pen(m) := 8χσ2
1

Dm

t
.

We have (see also Baraud et al. [3]):

Lemma 4.2 Under the assumptions of theorem 2.6,

Ex

(
(G2

m(m′)− p(m,m′))1Ωt

)
+
≤ 1, 6χσ2

1

1

t
e−Dm′ , (4.10)

where χ is given by

χ = 3c(δ0)(1 + 2δ0)(1 + 15δ0), c(δ0) = max

(
2 ln 2 + 1, ln

(
9

2δ2
0

))
. (4.11)

Here, 0 < δ0 < 1 is a free parameter. For the choice δ0 = 0, 0138 this yields
a constant χ = 38.

The proof of Lemma 4.2 will be given in section 5 below.
For any n, let {ϕn1 , . . . , ϕnDn} be an orthonormal basis of Sn. On At ∩Ωc

t ,
using (4.4) and (4.6), we have

||b̂m̂ − bK ||2t1{At∩Ωct} =
∑
n∈Mt

1{m̂=n;At∩Ωct}||b̂n − bK ||
2
t

≤ ‖bK‖2
t1Ωct

+
∑
n∈Mt

1{m̂=n}‖b̃n − b̂n‖2
t1Ωct∩At

≤ ‖bK‖2
t1Ωct

+
∑
n∈Mt

1{m̂=n}t
1/2

Dn∑
i=1

(
1

t

∫ t

0

ϕni (Xs)σ(Xs) dWs

)2

1Ωct

≤ ‖bK‖2
t1Ωct

+
∑
n∈Mt

t1/2
Dn∑
i=1

(
1

t

∫ t

0

ϕni (Xs)σ(Xs) dWs

)2

1Ωct
,

The same calculus that yields (4.7) now gives

Ex||b̂m̂ − bK ||2t1{At∩Ωct} ≤ C
(
b2

0 + σ2
1Φ2

0

)
t−1/2D2

t |Mt|
√

Px(Ωc
t). (4.12)
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(4.9), (4.10) and (4.12) yield finally, for any m, using assumption 2.4,

Ex||b̂m̂ − bK ||2t1At ≤ 3Ex||bm − bK ||2t + 4pen(m) + 16
∑
n∈Mt

1, 6χσ2
1

1

t
e−Dn

+C
(
b2

0 + σ2
1Φ2

0

)
t−1/2D2

t |Mt|
√

Px(Ωc
t)

≤ 3κ||bm − b||2 + 4pen(m) + Cχσ2
1

1

t
+C(b2

0, σ
2
1) t−1/2 D3

tPx(Ωc
t)

1/2.

Now, recall that by Proposition 3.5, since D3
t ≤ t3, taking n = 16,

Px(Ωc
t)

1/2 ≤ Ct−7/2

and by Proposition 3.4,
Px(Act) ≤ Ct−1.

As a consequence,

Ex||b̂m̂ − bK ||2t ≤ 3κ inf
m∈Mt

(
||bm − b||2 + pen(m)

)
+ Cχσ2

1

1

t
+ C(b2

0, σ
2
1)t−1.

This finishes the proof. •

5 Appendix.

In this appendix we give the proof of Lemma 4.2. Write

νt(f) :=
1

t

∫ t

0

f(Xs)σ(Xs)dWs.

Using the classical Bernstein inequality for continuous martingales , we recall
that for all a > 0, v 6= 0

Px(νt(f) ≥ a, ||f ||2t ≤ v2) ≤ exp

(
− ta2

2σ2
1v

2

)
. (5.1)

Recall that ||f ||2t = 1
t

∫ t
0
f 2(Xs)ds and ||f ||2µ = µ(f 2).

The proof of proposition 4.2 follows Baraud et al. [3], pages 45–47. The
chaining arguments which permits to state exponential bounds on supremum
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of empirical processes can also be found in Barron et al. [4]. By Lorentz et
al. [13], for any linear subspace S of L2([0, 1], µ) of dimension d, one can find
a set Tδ ⊂ B, where B is the unit ball of S ⊂ L2([0, 1], µ), such that

card (Tδ) ≤
(

3

δ

)d
, and ∀ f ∈ B ∃fδ ∈ Tδ : ||f − fδ||µ ≤ δ.

Apply this to the linear space Sm + Sm′ of dimension d(m′) ≤ Dm + Dm′ .
Consider δk−sets Tk = Tδk where δk = δ02−k, where δ0 < 1 is to be chosen
later. Set Hk := log card (Tk). Write Bm′ := {f ∈ Sm + Sm′ : ||f ||µ ≤ 1}.
Then for any f ∈ Bm′ , one can find a sequence (fk)k with fk ∈ Tk such that
||f − fk||µ ≤ δk. Hence we get

f = f0 +
∑
k≥1

(fk − fk−1).

Then as in Baraud et al. [3],

||f0||µ ≤ 1, ||fk − fk−1||2µ ≤ 5δ2
k−1/2.

In the following, we shall work in restriction to the set Ωt. Write Pt for the
measure Px(· ∩ Ωt). Put as in Baraud et al. [3],

∆ :=
√

3σ1

(
√
x0 +

∑
k≥1

δk−1

√
5xk/2

)
,

then we have that

Pt

(
sup
f∈Bm′

νt(f) ≥ ∆

)
= Pt

(
∃(fk)k, fk ∈ Tk : νt(f0) +

∑
k≥1

νt(fk − fk−1) ≥ ∆

)
≤ P1 + P2,

where
P1 =

∑
f0∈T0

Pt
(
νt(f0) ≥

√
3x0σ1

)
,

and

P2 =
∑
k≥1

∑
fk∈Tk,fk−1∈Tk−1

Pt
(
νt(fk − fk−1) ≥ σ1δk−1

√
15xk/2

)
.
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Recall (5.1) : Since on Ωt, ||f ||2t ≤ 3
2
||f ||2µ, we have for all x > 0,

Pt
(
νt(f) ≥

√
3σ1

√
x||f ||µ

)
≤ exp(−tx).

We apply this inequality, remarking that ||f0||µ ≤ 1, hence

P1 ≤ card (T0) exp(−tx0) = exp(H0 − tx0)

and, since ||fk − fk−1||2µ ≤ 5δ2
k−1/2,

P2 ≤
∑
k≥1

exp(Hk−1 +Hk − txk).

Now, choose x0 such that

tx0 = H0 +Dm′ + τ

and xk such that

txk = Hk−1 +Hk +Dm′ + kd(m′) + τ.

Then, if d(m′) ≥ 1, we obtain as in Baraud et al. [3],

Pt

(
sup
f∈Bm′

νt(f) ≥ ∆

)
≤ 1, 6e−τe−Dm′ . (5.2)

Else, d(m′) = 0, hence Sm + Sm′ = {0}, and (5.2) holds trivially. Exactly as
in Baraud et al. [3], it can be shown that

t∆2 ≤ χσ2
1(Dm′ +Dm + τ),

where χ is the constant given in (4.11), and then we conclude as there

Ex

[(
G2
m(m′)− χσ2

1

Dm′ +Dm

t

)
+

1Ωt

]
≤ 1, 6χσ2

1

1

t
e−Dm′ .
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