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ABSTRACT 

The non-receptor tyrosine kinase Src is frequently overexpressed and/or activated in human 

colon carcinoma (CRC) and its increased activity has been associated with a poor clinical 

outcome. Src has been then implicated in growth and invasion of these cancer cells by still not 

well known mechanisms. Here we addressed these Src oncogenic signaling using quantitative 

phosphoproteomics. Src overexpression increased growth and invasiveness of the metastatic 

SW620 CRC cells. Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) in 

combination with LC-MS/MS allowed the identification of 136 proteins which exhibited a 

significant increased and/or association with tyrosine phosphorylation upon Src expression. 

These mainly include signaling, cytoskeleton and vesicular-associated proteins. Interestingly, 

Src also phosphorylated a cluster of tyrosine kinases, ie the receptors Met and EphA2, the 

cytoplasmic tyrosine kinase Fak and pseudo-tyrosine kinase SgK223, which were required for 

its invasive activity. Similar results were obtained with the metastatic Colo205 CRC cells that 

exhibit high endogenous Src activity. We concluded that Src uses a tyrosine kinases network 

to promote its invasive activity in CRC and this implicates a reverse signaling via tyrosine 

kinase receptors. Targeting these tyrosine kinases may be of significant therapeutic value in 

this cancer. 
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INTRODUCTION 

The non receptor tyrosine kinase Src plays important roles in cell proliferation, 

survival and migration induced by extracellular stimuli including growth factors and integrins 

(1). It also shows oncogenic activity when deregulated, a situation originally found with v-

Src, the transforming product of the avian retrovirus RSV (2). Since then, Src has been 

reported deregulated in human cancer (3). Remarkably, elevated kinase activity has been 

found in more than 80% of CRC as compared to the normal counterpart and this has been 

associated with a poor clinical outcome (3). How Src is deregulated in this cancer has not 

been clearly established yet. An activating mutation has been reported in a minority of 

advanced tumors, suggesting the existence of alternative mechanisms for kinase deregulation 

(4). Accordingly, kinase activation often correlates with protein overexpression (2). This 

molecular event is however not sufficient in a normal cellular context as Src is subjected to 

strict regulation that keeps the enzyme in an inactive form. Therefore, it has been postulated 

that Src activation additionally implicates alteration of important Src regulators by genetic or 

epigenetic mechanisms, including the inhibitory C-terminal Src tyrosine kinase Csk (2). 

A large body of evidence points to Src deregulation as an important event for colon 

tumorigenesis and metastasis (3). For instance, Src regulates growth, survival and invasion of 

some CRC cell-lines in vitro (3, 5). Moreover, it contributes to tumor growth, angiogenesis 

and metastasis in xenografts nude mouse models (3). Therefore, Src has become an attractive 

therapeutic target in this cancer and several small inhibitors are under clinical trials. 

Intriguingly, these Src oncogenic signaling have been unraveled only partially. While Src 

interacts with components of the focal contacts and the adherent junctions for cell migration 

(2), substrates important for cellular growth and invasiveness have been poorly described. 

MS-based quantitative phosphoproteomics has been a valuable tool to decipher signaling 

pathways initiated by a given tyrosine kinase (6). Among these, the Stable Isotope Labeling 
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with Amino acids in Cell culture (SILAC) has been employed for the identification of 

oncogenic tyrosine kinase signaling such as HER2  (7) and Bcr-Abl (8). Here we used this 

approach to address Src oncogenic signaling in advanced CRC cells. By overexpressing Src in 

SW620 cells, we identified 136 substrates and/or tyrosine phosphorylation-associated 

proteins. These include proteins with signaling, cytoskeleton and vesicular trafficking 

functions, which may be important for the high Src invasiveness observed in these cells. 

Additionally, we identified a small cluster of tyrosine kinases that mediates this Src oncogenic 

signaling, uncovering a tyrosine kinases network important for the induction of cellular 

invasion. Targeting these tyrosine kinases may therefore be of significant value in advanced 

CRC therapy. 

 

MATERIAL AND METHODS 

Reagents. Human Src has been subcloned in pMX-pS-CESAR. Construct expressing 

Pragmin (a gift of Dr Negishi, Kioto University) and PragminY397F that was generated by 

mutagenesis have been subcloned into pBABE retroviral vectors. pRETRO-SUPER 

expressing shRNA used in this study were from TRANSAT (Saint-Priest, France). Targeting 

sequences inserted in shRNA constructs were GACACTCGGTAGTCTATAC (control), 

GATGAGTTATTAGCAGAAG (Syk), GAAGTCTAACTATGAAGTA (Fak), 

GCAGTATACGGAGCACTTC (EphA2), GTCACAGGCCAAGATAGAA (SgK223) and 

TAAGAGCTGTGAGAATATA (Met). siRNA targeting sequence were form Darmacon and 

incuded AATTCTCCGAACCTGTCACGT (control), AAAGATAAACCTCTCATAATG 

(met), AATGACATGCCGATCTACATG (EphA2) and AAGCTAGTGACGTATGGATGT 

(Fak).  13C6
15N4-Arg and 13C6

15N2-Lys were from Invitrogen (Cergy, France) and Sigma 

Aldrich (St Quentin, France) respectively, anti-pTyr column from Upstate Inc 

(Charlottesville, USA), SU6656 and PP1 and PP2 from Calbiochem (La Jolla, CA), SU11274 
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and BAY 61-3606 from Sigma Aldrich. Antibodies used in this study were 4G10 (42), pY100 

(CST, Danvers, MA), ARAP3 (33), anti-Calponin (34), anti-p130Cas (Upstate Inc, 

Charlottesville, USA), anti-α−δ Catenin (BD Biosciences), anti-Cbl (sc-170, Santa Cruz 

Biotech, CA) anti-CHC X22 (Alexis Biochemicals, San Diego, CA), anti-EphA2 (sc-924, 

Santa Cruz Biotech), anti-EphB2 (sc-28980, Santa Cruz Biotech), anti-ezrin (35), anti-Fak 

(Upstate Inc), anti-pY861Fak, (sc-16663, Santa Cruz Biotech), anti-Hrs A-5 (Alexis 

Biochemicals), anti-IRSp53 (36), anti-Met (sc-161, Santa Cruz Biotech), anti-

pY1234/1235Met (Invitrogen, CA), anti-Moesin was generated against the purified protein as 

in (35), anti-Odin (37), anti-Radixin was generated against the purified protein as in (35), anti-

Sam68 (38), anti-SgK223 (29) was raised against the GST-Pragmin N-terminus, anti-SgK269 

3G6 (Abnova GmbH, Heidelberg, Germany), anti-SHIP1 (39), anti-SHP2 (sc-280, Santa Cruz 

Biotech), anti-Src family kinases (40), anti-p85α subunit of PI3K (41), anti-PLCγ (42), anti-

pY418Src (Biosource), anti-Stam1/2  (43), anti-Syk (sc-1240, Santa Cruz Biotech), anti-

pY325Syk and anti-pY524/525Syk (CST, Danvers, MA),  anti-tubulin (42), anti-Vav2 (sc-

20803, Santa Cruz Biotech), anti-Wave2 (36), anti-ZO1 (sc-10804, Santa Cruz Biotech), anti-

ZO2 (sc-11448, Santa Cruz Biotech). 

. 

Cell infections, growth, migration and invasion. SW620 and Colo205 cells (ATCC, 

Rockville, MD) were grown, infected and selected as described in (44). This procedure allows 

the generation of stable expressors in a polyclonal background. Src expressors were isolated 

by FACS and shRNA expressing cells by puromycin (1 μg/ml) selection. Standard cell 

growth was performed in 2% serum medium and measured by Sulforhodamide B staining 

(Sigma Aldrich). Soft-agar cell growth was performed as in (44). After 18-21 days colonies 

having >50 cells were scored as positive. Cells were treated every day for standard conditions 

and every week for soft-agar assays, with vehicle or indicated drug. Cell migration and 



 6

invasion assays were performed in Boyden chambers (BD Bioscience, Le Pont de Claix, 

France) using 50,000 and 100,000 cells respectively, and in the presence of 100 μl of Matrigel 

(2 mg/ml) (BD Bioscience) for invasion assays.  

 

Growth of SW620 xenografts in nude mice. In vivo experiments were performed in 

compliance with the French guidelines for experimental animal studies (Direction des 

Services Vétérinaires, Ministère de l'Agriculture, agreement no. B 34-172-27) and fulfil the 

U.K. Coordinating Committee on Cancer Research guidelines for the welfare of animals in 

experimental neoplasia. Swiss nu/nu (nude) mice (Charles River, L’Arbresle, France) were 

injected s.c. with 2.106 of SW620 cells infected with the control virus in one flank and with 

the same amount of cells infected with the Src virus on the opposite side. Tumor growth was 

assessed by tumor volume and tumor mass measurement at indicated days. 

  

Mass Spectrometry analysis. SILAC (13C6
15N4-Arg- and 13C6

15N2-Lys as heavy labeling), 

phosphotyrosine immunoaffinity purification (using a mixture of a mixture of 4G10 and 

pY100 antiboies), and tryptic digests were essentially performed as described in (11) except 

that cells (2.108) were treated with the tyrosine phosphatases inhibitor orthovanadate (1 mM) 

for 1 h before lysis to increase tyrosine phosporylation content. 50 mM β-octylglucoside was 

also added in the 1% Triton X-100 lysis buffer to increase protein solubilization. Purified 

proteins were next separated on a SDS-PAGE gel. Trypsin-digested samples (1 µl) obtained 

from 44 cut gel slices were next analyzed online using nanoflow HPLC-nano-electrospray 

ionization on a  quadrupole time-of-flight (Q-TOF) mass spectrometer (QSTAR Pulsar-i, 

Applied Biosystems, Foster City, CA) coupled with an Ultimate 3000  HPLC (Dionex, 

Amsterdam, Netherland). Desalting and pre-concentration of samples were effectued on-line 

on a Pepmap® precolumn (0.3 mm x 10 mm). A gradient consisting of 0-40% B in 60 mn, 
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80% B in 15 min (A = 0.1% formic acid, 2% acetonitrile in water ; B = 0.1 % formic acid in 

acetonitrile) at 300 nl/min was used to elute peptides from the capillary (0.075 mm x 150 mm) 

reverse-phase column (Pepmap®, Dionex), fitted with an uncoated silica PicoTip Emitter 

(NewOjective, Woburn, USA) with an outlet diameter of 8 µm. Spectra were recorded using 

the Analyst QS 1.1 software (Applied Biosystems). Parameters were adjusted as follows: ion 

spray voltage (IS), 1800 V; curtain gas (CUR), 25; declustering potential (DP), 75 V; focusing 

potential (FP), 265 V; declustering potential 2 (DP2), 15 V.  Spectra were acquired with the 

instrument operating in the information dependant acquisition mode throughout the HPLC 

gradient. Every 7 s, the instrument cycled through acquisition of a full-scan spectrum (1 s) 

and two MS/MS spectra (3 s each). Peptides fragmentation was performed using nitrogen gas 

on the most abundant doubly or triply charged ions detected in the initial MS scan, with a 

collision energy profile optimized according to peptide mass (using manufacturer parameters), 

and an active exclusion time of 0.60 min. All MS/MS spectra were searched against the Homo 

sapiens entries of either Swiss-Prot or Trembl databases (release 53.0: http://www.expasy.ch), 

by using the Mascot v 2.1 algorithm (http://www.matrixscience.com). Search parameters were 

mass accuracy 0.1 Da for MS and MS/MS data ; 1 miscleavage ; variable modifications: 

oxidized methionine, Phospho (Y), SILAC-labels : Lys-8 and Arg-10. All significant hits 

(p<0.05) were manually inspected. Quantification was performed by using MSQuant v1.4.1 

software developed by Mann and colleagues (http://msquant.sourceforge.net). Data were 

manually inspected and corrected when necessary. All significant hits were manually 

inspected. 

 

Biochemistry. Immunoprecipitation, Western blotting and siRNA transfections were 

performed as described in (44). Imunoprecipitates (ip, when indicated) or 20 to 50 µg of 

proteins of a whole cell lysate were loaded per lane on 9% SDS-PAGE gels and then 
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transferred onto Immobilon membranes (Milllipore) as previously described. Detection was 

performed using the ECL system (Amersham). Optimal exposure times of membranes were 

used and protein expression and phosphorylation was quantified using ImageQuant TL 

software (Molecular Dynamics), and adjusted for background noise and protein loading. 

 

RESULTS 

Src promotes growth and invasiveness of the SW620 CRC cells. 

We first transduced wild-type Src retrovirally in the metastatic CRC SW620 cells that exhibit 

a moderate level of endogenous Src as compared to the metastatic Colo205 cells (9). A >5 

fold increase in Src protein level was obtained (Fig. 1A), which induced a strong increase in 

tyrosine phosphorylation content (Fig. 2A) together with significant cellular oncogenic 

activity: increased cell growth was observed both in standard (Fig. 1B) and soft agar 

conditions (Fig. 1C). Similarly, Src increased tumor growth by 3 fold in mouse xenograft 

assays (Supplementary Fig. S1). While Src moderately increased cell motility (Fig. 1D, left 

panel), it induced remarkable cell invasiveness (Fig. 1D, right panel). This cellular activity 

was still dependent upon Src activity as it was inhibited by the Src-like inhibitor SU6656 (10) 

(Fig. 1D, right panel). This data supports the hypothesis that the induction of the Src level is 

sufficient to induce its oncogenic activity even at late stage of tumorigenesis 

 

Quantitative Src phosphoproteomics in CRC cells. 

 We next sought Src substrates important for oncogenic signaling by quantitative 

phosphoproteomics using the SILAC approach. SW620-Src cells were labeled with “heavy” 

13C6
15N4-Arg- and 13C6

15N2-Lys-containing medium while SW620 cells were cultured in 

“light” normal conditions. Cell lysates were next combined, and phosphotyrosine-containing 

proteins were purified using anti-phosphotyrosine antibodies. Proteins were separated by 
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SDS/PAGE, digested with trypsin, and subjected to liquid chromatography–tandem MS (11). 

Quantification was made from the relative intensities of Arg/Lys labeled tryptic peptides. 

With this approach, we obtained 467 proteins, 136 of which exhibiting increased, and 13 

reduced, tyrosine phosphorylation, upon Src expression (Fig. 2B and Supplementary Table 

S1). The small number of reduced phosphorylations was attributed to the cellular treatment of 

the tyrosine phosphatases inhibitor orthovanadate performed shortly before lysis in order to 

increase tyrosine phosphorylation content. Src-induced phosphorylation was next confirmed 

biochemically for 32/35 of them (Fig. 3 and 4A), suggesting that more than 90% of the 

identified candidates are indeed Src substrates and thus validates the SILAC analysis. The 

absence of increased tyrosine phosphorylation content for 3 of them may be due to an 

increased association with Src substrates or/and the inability of the used antibodies to 

recognize the phosphorylated form of the protein. 41 of identified proteins have signaling, and 

31 cytoskeletal functions (supplementary Table S2). Of some note are the CDCP1/PKCδ 

transmembrane signaling complex involved in survival (12), the E-cadherin/catenins 

complexes in mesenchyme induction and cell motility (2), and proteins of the ERM family in 

cell invasion (13). Additionally, Src targets the Wave2 and the alpha6/beta4 integrin 

complexes, recently identified as novel players of epithelial cell motility/invasion (14, 15). 

We also noticed a subgroup of signaling proteins that regulate the small GTPases of the Rho 

family, and which may modulate actinic cytoskeleton occurring during cell invasion (13). 

These include the Rho GAP ARAP1, 3 and p200 Rho GAP, and the Rho GEF Vav2 and 

FGD5, which has not been previously identified as a Src substrate. Unexpectedly, we found a 

third group of 23 Src targets with vesicular trafficking functions (supplementary Table S2). 

This was exemplified with components of the COPII complex of the secretory pathway (16) 

and VHS-containing proteins (Hrs and Tom1L1), involved in transmembrane proteins 

trafficking/signaling (17). 
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Src phosphorylates a cluster of tyrosine kinases important for cell invasiveness. 

The SILAC analysis confirmed a 6 fold increase in Src expression showing accuracy 

of the method, but it additionally identified a cluster of 7 protein tyrosine kinases and pseudo-

tyrosine kinases as potential Src substrates (Table 1). This included the receptors Met, EphA2 

and EphB2, and the cytoplasmic tyrosine kinases Fak and Syk and pseudokinases SgK223 

and SgK269. Increased tyrosine phosphorylation was confirmed for 5 of them biochemically, 

ie Met, EphA2, Fak, Syk and SgK223 (Fig. 4A), and this correlated with a Src complex 

formation (not shown). Similar results were obtained from cells that were not treated with the 

phosphatase inhibitor orthovanadate, indicating that these phosphorylations were specific to 

Src expression (Supplementary Fig. S2A). We next investigated their role in Src-induced 

tyrosine phosphorylation. To this end, respective tyrosine kinase was inactivated by stably 

expressing a shRNA leading to >50% reduction of both mRNA (not shown) and protein levels 

(Fig. 4B) in SW620-Src cells. We observed that tyrosine phosphorylation was significantly 

reduced in cells with inactive SgK223 and Syk, and at a lower level in cells with inactive Met. 

Accordingly, Src induced Met and Syk activation as shown by the increase level in the 

phosphorylated and activated form of these kinases (Supplementary Fig. S2B). Therefore Src 

may use these TyrK activities to induce maximal phosphorylation in these CRC cells. 

Surprisingly, Src specific activity was also reduced in these cells with inactive Met, EphA2, 

Syk and SgK223, suggesting the existence of interplay between Src and these TyrK for 

signaling (Fig. 4C). The function for these kinases was next evaluated on Src oncogenic 

activity. We found that Src-induced anchorage–independent cell growth was strongly 

inhibited in all cell-lines, except for Met (Fig. 4D). However, none of them had a significant 

role in Src-induced cell proliferation (Supplementary Fig. S3), indicating that these TyrK may 
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impact on survival signaling rather than cell-cycle progression, the later being probably 

ensured by phosphorylation of direct Src substrates. 

 The role for these TyrK was next evaluated on Src-induced invasiveness. We found 

that this cellular activity was strongly inhibited in all cell-lines with down-regulated tyrosine 

kinases, except Syk (Fig. 5A, left panel). Similar results were obtained from SW620-Src cells 

that were transiently transfected with specific siRNA targeting Met, EphA2 and Fak, 

indicating that these inhibitory effects were not due to off-targets and/or long-term depletion 

of these kinases (Supplementary Fig. S4C and S4D). In contrast, they had a low impact on the 

residual invasiveness of SW620 cells, confirming that their role is tightly related to Src 

activity (Fig S4A and B). The absence of Syk function was next confirmed with the orally 

available Syk catalytic inhibitor BAY 61-3606 (18), that did not affect invasiveness (Fig. 5A, 

right panel), while reducing Syk tyrosine phosphorylation (Fig. 6C, bottom panel). In contrast, 

the Met inhibitor SU11274 (19) (Fig. 6C, upper panel) blocked this cellular response (Fig. 

5A, right panel), confirming the requirement of Met in this Src oncogenic function. It should 

be mentioned that BAY 61-3606 strongly inhibited cellular proliferation, in contrast to what 

observed in cells with reduced Syk (Supplementary Fig. S3). This compound may therefore 

target an additional kinase important for cellular proliferation to be identified.  

Since very few information is available on SgK223, we wished to address its invasive 

function in more details. To this end, the rat ortholog Pragmin was reintroduced in SW620-

Src cells with reduced Sgk223, which was not targeted with the used shRNA sequence. 

Pragmin largely restored Src invasive activity, confirming a specific function for SgK223 in 

this signaling process (Fig. 5B and 5C). Whether this uncovered function was regulated by 

Src was next investigated. The phosphosite data base http://www.phosphosite.org revealed 

that SgK223 was frequently phosphorylated on Tyr413. Accordingly, we found that Src 

induced a robust phosphorylation of Pragmin in these cells, unlike PragminY391F, in which 
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the corresponding Tyr413 present in Pragmin was replaced by Phe (Fig. 5B). At the 

functional level, PragminY391F had a reduced rescuing effect in these cells (Fig. 5C). This 

set of data strongly suggested Src invasive signaling implicates phosphorylation of SgK223 

on Tyr413 in advanced CRC cells. 

Finally, we wished to confirm these data in cells expressing high endogenous Src, with 

the example of the metastatic CRC cell-line Colo205. As observed with SW620-Src, these 

cells required a Src-like activity to induce cellular invasion (Fig. 6D). We found that the 

tyrosine kinases Met, EphA2, Fak, Syk were also phosphorylated in a Src-like dependent 

manner, as suggested with the Src-like inhibitors SU6656, PP1 and PP2 (Fig. 6A). The 

variable effect of SU6656 and PP1 on these biochemical events were attributed to their 

capacity to target distinct pools of Src present in these cells rather than the targeting of 

additional kinases (not shown). SgK223 protein phosphorylation could not be assessed in 

these cells. This may probably due to the moderate efficacy of our antibodies and the low 

level of the expressed protein as observed on its mRNA level (not shown). At the functional 

level, all these phosphorylated TyrK, but not Syk, were required for cell invasion: down-

regulation of respective kinases (Fig. 6B) with the same shRNA strategy gave strong 

inhibitory effects (Fig. 6D). Thus, Src uses a similar TyrK network to induce its invasive 

activity in Colo205 cells, suggesting the existence of a common TyrK signaling network for 

oncogenic induction in advanced CRC cells. 

 

DISCUSSION 

Here we provide new insights into Src oncogenic activity in CRC. Firstly, our data 

show that normal Src overexpression can induce high invasiveness of advanced cancer cells in 

vitro, in close correlation with the proposed role for Src in CRC metastasis (3). Secondly, 

applied quantitative SILAC phosphoprotemics uncovered several features of Src signaling in 
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these cells, including phosphorylation/interaction of components of phosphoinositides and 

Rho GTPases-dependent pathways and regulators of F-actin, microtubule and vesicular 

trafficking networks. These data also show that Src targets more than a dozen of plasma 

membrane proteins, several of them having ligand, receptor/co-receptor functions related to 

cellular growth, survival and adhesion. Therefore, Src may use a wide range of reverse 

signaling processes important for its oncogenic activity as recently suggested with the Met 

receptor (5).  

Another important insight from this study relies on the interaction of Src with a cluster 

of tyrosine kinases required for cell invasion. Src may thus require additional tyrosine kinases 

to phosphorylate components of the invasive pathway. This cluster comprises the receptors 

Met and EphA2, previously reported interacting with Src (20, 21) and being implicated in 

CRC tumorigenesis (22, 23). Moreover, our functional studies demonstrate that they mediate 

Src oncogenic activity in agreement with a reverse signaling process operating in these cells. 

It also includes the cytoplasmic tyrosine kinase Fak, which has been largely implicated in Src-

induced cell motility and invasion (24). Interestingly, Fak does not impact on the global 

tyrosine phosphorylation content in contrast to the other members of the cluster, suggesting 

that either it phosphorylates a discrete group of substrates or it has an adaptor function, as 

previously reported (24). More surprisingly is the identification of Syk as a Src substrate in 

these cancer cells, which is inconsistent with its tumor suppressor role described in breast 

cancer (25). Therefore, Syk may have distinct functions dependent on the tumor origin. In 

supporting this idea, Syk regulates Src-induced tyrosine phosphorylation and anchorage-

independent growth of SW620-Src cells. This is further supported with the function recently 

reported in squamous cell carcinoma of the head and neck (26). Finally, we show that Src also 

uses SgK223 for its invasive activity. SgK223 belongs to the 10 % of catalytic-inactive 

kinases present in the human kinome (27) that nevertheless can have important oncogenic 



 14

function. This has been first highlighted with the EGF receptor member HER3 in breast 

cancer. HER3 exhibits a co-receptor function that boosts signaling induced by other receptors 

of the family (28). Very few information is however available for SgK223. It belongs to the 

NFK3 sub-family that also includes SgK269, with unknown functions (27). Interestingly, 

SgK223 has been recently identified as an important effector of the small GTPase Rnd2 for 

Rho-dependent F-actin assembly (29), which would fit with its pro-invasive activity in CRC 

cells. While it does not have apparent intrinsic tyrosine kinase activity (not shown), SgK223 

strongly impacts on Src-induced tyrosine phosphorylation in cellulo. We thus hypothesize that 

it regulates Src phosphorylation events important for Rho-dependent signaling. Overall, these 

results assign an unanticipated role for SgK223 in Src oncogenic signaling and suggest an 

involvement of this pseudo-kinase in CRC advanced tumorigenesis. 

Finally, our report suggests that Src orchestrates a tyrosine kinases signaling network 

for invasiveness. This notion has been recently suggested with the example of two recent 

phosphoproteomic studies revealing the phosphorylation of cluster of the TyrK FAK, EphA2, 

Met and ACK in Src-transformed mouse fibroblasts (30) and the cluster of TyrK including 

Met and EphA2 in non small cell lung cancer lines expressing activated ROS, ALK, PDGFRα 

and EGFR(31). Nevertheless, the function for these TyrK networks has not been investigated. 

These reports together with our results thus suggest the involvement of a common TyrK 

signaling network operating during neoplastic transformation initiated by a deregulated TyrK. 

Interestingly, our data additionally indicate that Met, Syk and SgK223 may in turn further 

activate Src, uncovering an interplay between Src and these tyrosine kinases. How Src 

interacts with these tyrosine kinases is an important issue that can be addressed by 

phosphoproteomics. Similarly, these results raise the interesting idea that Src deregulation 

could originate, at least in part, from the complex array of phosphorylated/activated tyrosine 
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kinase receptors recently observed in other solid tumors with important oncogenic activities 

(32); thus targeting Src activity could be of therapeutic value in these cancers.  
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Table1. List of Tyrosine kinases targeted by Src. 

 
Tyrosine kinase           fold change with Src 

                                   expression 
__________________________________ 

Src    6.27 
Syk    4.44 
EphA2    2.52 
SgK223   2.34 
Met    2.12 
EphB2    1.74 
SgK269   1.62 

__________________________________ 
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FIGURE LEGENDS 

Figure 1. Src promotes cell growth and invasiveness of SW620 cells. 

A, Western blot analysis showing the Src level in cells infected with control (mock) and Src 

expressing retroviruses as indicated. The level of tubulin is also shown. B, C, Src expression 

promotes growth of SW620 cells in standard medium and soft-agar condition. B, time-course 

of cell growth (arbitrary units) in standard conditions. C, left, a representative example of 

colonies obtained with cells infected with control (mock) and Src expressing retroviruses in 

soft-agar medium at day 20. C, right, statistical analysis of colonies number of cells infected 

with indicated retrovirus and treated with 5μM SU6656 as shown. D, Src promotes cellular 

migration (left panel) and invasion (right panel) through matrigel of SW620 cells in vitro. 

Number of cells/field that have migrated (C) or invaded through matrigel (D) in Boyden 

chamber assays. Cells have been treated with 5 μM  SU6656 when indicated. The mean ± SD 

(n>3) is shown. 

 

Figure 2. Src phosphoproteomic analysis in SW620 cells using SILAC. 

A, Western blot showing the tyrosine phosphorylation content of cells infected with the shown 

retroviruses and treated or not with orthovanadate as indicated. Western blotting from 

indicated p-Tyr immunoprecipitations. B, quantification of phosphorylations by SILAC. 

Summary of fold change with Src for 467 proteins shown in Supplementary Table S1, with 

several individual proteins indicated. Proteins with ratio >1.3 (upper line) are considered as 

increased and <0.7 (lower line) as decreased in their tyrosine phosphorylation content. 

 

Figure 3. Validation of Src-induced protein tyrosine phosphorylation by 

immunoprecipitation and Western blotting. 
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Level and tyrosine phosphorylation content of selected Src targets as identified by 

phosphoproteomics.  Western blotting analysis of tyrosine phosphorylation content and level 

of indicated protein that was immunoprecipitated from vanadate treated cells infected with 

shown virus and using indicated antibodies. A, signaling proteins; B, cytoskeletal associated 

proteins; C, vesicular trafficking associated proteins. 

 

 

Figure 4. Src targets a cluster of tyrosine kinases important for increased tyrosine 

phosphorylation content and the promotion of anchorage-independent cell growth. 

A, Tyrosine kinases with increased tyrosine phosphorylation content upon Src expression. 

Western blot showing the tyrosine phosphorylation and the protein levels in indicated tyrosine 

kinase immunoprecipitates from cells overexpressing Src or not, as shown. B, Western blot 

showing the level of indicated tyrosine kinases obtained from lysates of SW620-Src cells 

infected with retrovirus expressing indicated shRNA. The level of tubulin is also shown. C, 

Western blot showing the tyrosine phosphorylation content of cell overexpressing or not Src 

as shown and infected with indicated shRNA. D, left, and example, right and statistical 

analysis of anchorage-independent cell growth (number of colonies) of SW620-Src cells 

infected with retroviruses expressing indicated shRNA. The mean ± SD (n>3) is shown 

 

Figure 5. Src targets a cluster of tyrosine kinases important he promotion of cellular 

invasiveness 

A, left, invasiveness of SW620-Src cells infected with retroviruses expressing indicated 

shRNA. Right, invasiveness of SW620-Src cells treated with vehicle (DMSO), 5 μM SU6656, 

2 μM SU11274 or 5 μM BAY 61-3606 as indicated. Number of cells/field that have invaded 

through matrigel in Boyden chamber assays. B, Src phosphorlyates the rat ortholog of 
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SgK223, Pragmin, at Tyr391 in SW620-Src cells. Tyrosine phosphorylation and protein 

content of immunoprecipitated Pragmin mutants that were retrovirally transduced in SW620-

Src cells expressing SgK223 specific shRNA as indicated. C, Pragmin but not PragminY391F 

restores invasiveness in SW620-Src cells with reduced SgK223. Number of cells/field that 

have invaded through matrigel in Boyden chamber assays. The mean ± SD (n>3) is shown. 

 

Figure 6. Src targets a similar cluster of tyrosine kinases for the promotion of 

invasiveness of Colo205 cells. 

A, Src phosphorylates a similar cluster of tyrosine kinases in Colo205 cells. Western blot of 

the tyrosine phosphorylation content of shown immunoprecipitated tyrosine kinases from 

cells treated with indicated drugs (5 μM). B, Western blot showing the level of indicated 

tyrosine kinase level obtained from lysates of Colo205 cells infected with retrovirus 

expressing indicated shRNA. The level of tubulin is also shown. C, inhibition of Met and Syk 

phosphorylation by SU11274 and BAY 61-3606 respectively. Western blot showing the 

tyrosine phosphorylation and protein level of indicated tyrosine kinases that were 

imunoprecipitated from Colo205 cells treated as indicated for 3 h. D, invasiveness of Colo205 

cells infected with retroviruses expressing indicated shRNA or treated with indicated drugs (5 

μM SU6656, 2 μM SU11274 or 5 μM BAY 61-3606). Number of cells/field that have 

invaded through matrigel in Boyden chamber assays. The mean ± SD (n>3) is shown.  
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