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In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from
the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is
based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie
groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.
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I. INTRODUCTION

Small-angle scattering of electromagnetic, acoustic, or
elastic waves constitutes the basic tool to characterize porous
media �1�, solid suspensions �2�, or Earth’s lithosphere �3� to
cite a few examples only. In many cases, the probing wave is
assumed to undergo single scattering only and multiple scat-
tering is often considered as a nuisance. The main reason is
that in the single-scattering regime, the diffraction pattern of
intensity, i.e., the phase function is related to the power spec-
trum of the medium heterogeneities in a simple manner �4�.
In the field of optics, some solutions have been proposed to
invert for the size of particles in the multiple-scattering re-
gime �5� based on various small-angle approximations of the
radiative transfer equation �6�.

In this work, we develop an alternative approach based on
the compound Poisson process �CPP� model of wave mul-
tiple scattering in random media. Our model is generic and
makes little assumption on the underlying wave equation.
The random medium is described by its heterogeneity power
spectrum that refers to the Fourier transform of the spatial
two-point correlation function. This enables us to treat on the
same footing turbid media such as earth’s crust or the atmo-
sphere, aggregates of particles, and porous media �7�. The
finer details of the microstructure encapsulated in higher mo-
ments of the random field ��2� are not considered in our
approach.

We consider waves propagating in a turbid medium de-
scribed by the Von Karman correlation function, which is
commonly used to represent geophysical media. We demon-
strate the possibility to estimate the power spectrum of the
random fluctuations from the angular distribution of intensity
transmitted through a slab of material. We find that the CPP
model is effective before the diffusive regime sets in, i.e.,
when the slab thickness is less than one transport mean free
path.

The organization of the paper is as follows. In Sec. II, the
necessary mathematical background on noncommutative har-

monic analysis is provided. In Sec. III, we develop the Pois-
son process approach to multiple scattering. In Sec. IV, we
validate the model through comparisons with Monte Carlo
simulations of the radiative transfer equation. The inverse
problem is examined in Sec. V, where we propose an estima-
tor of the power spectrum of heterogeneities and discuss its
statistical properties. In Sec. VI, the inverse method is vali-
dated for realistic examples of random media through nu-
merical simulations.

II. NONCOMMUTATIVE HARMONIC ANALYSIS

In this section, we summarize noncommutative harmonic
analysis results that are important for the present work. We
are interested in the harmonic analysis of probability density
functions �pdfs� over compact Lie groups to develop a non-
parametric approach for the estimation of their characteristic
functions �8�, i.e., their Fourier transform, in Sec. V.

Consider the direction of propagation of a particle or a
wave represented by the normalized vector ��S2, where S2

is the unit sphere in R3. We denote by �N the direction of
propagation of the particle after N scattering events. Such
scattering events are considered random so that �N is a ran-
dom variable on S2. The relation between the direction after
N−1 scattering events, i.e., �N−1, and the direction after N
scattering events �N can be written as

�N = rN�N−1, �1�

where rN is a random element of the rotation group SO�3�.
This follows from the transitive action of SO�3� on S2. As-
suming that a particle enters the random medium with initial
direction of propagation �0, its direction of propagation after
N scattering events in the medium is given by

�N = rNrN−1 ¯ r2r1�0 = �
n=1

N

rn�0, �2�

where each rn represents the random action of the nth scat-
terer, i.e., the rn are SO�3�-valued random variables. In the
sequel, we present some results about the pdf of random
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variables of form �2�. We make use of known results in har-
monic analysis on compact Lie groups �9–11�.

A. Harmonic analysis on SO(3) and S2

Let us denote by L2(SO�3� ,dr) the space of square inte-
grable functions on SO�3� with respect to the Haar measure
dr �9�. A pdf on SO�3� is a function f �L2�SO�3� ,dr� that
obeys the constraint �SO�3�f�r�dr=1. A pdf on SO�3� can
be decomposed over the complete orthonormal basis of
Wigner-D functions Dl

pq�r�, with r�SO�3�, l�Z+, and
p ,q�Z. This means that given a random variable
r�SO�3�, its pdf f�r�, can be expressed as the infinite series

f�r� = �
l�0

�
p,q=−l

l

�2l + 1� f̂ l
pqDl

pq�r� , �3�

where

f̂ l
pq = �

SO�3�
f�r�Dl

pq�r�dr �4�

and the overbar means complex conjugation. The set

of coefficients f̂ l
pq are sometimes called the “Fourier

transform” of f�r� �12�. Note that it is possible to use a

matrix notation, namely, f̂l, in which case, the elements of the

�2l+1�� �2l+1� matrix f̂l are 	f̂l
pq= f̂ l
pq.

Similarly, let us denote by L2�S2 ,d�� the space of square
integrable functions on the unit sphere S2 with respect to the
invariant measure on the sphere d�. A pdf w�L2�S2 ,d��
also satisfies �S2w���d�=1. Similar to Eq. �3�, a pdf w on S2

can be decomposed into an infinite series using the well-
known spherical harmonics Yl

p��� with ��S2, l�Z+, and
p�Z. Thus, given a random variable ��S2, its pdf w���
can be written as

w��� = �
l�0

�
p=−l

l

�2l + 1�ŵl
pYl

p��� , �5�

with

ŵl
p = �

S2
w���Yl

p���d� . �6�

In this case, it is also possible to use a vector representation,
where the elements of the �2l+1� vectors ŵl are
ŵl

p�p=−l , . . . ,0 , . . . , l�. Again, ŵl
p is called the Fourier trans-

form of w���.
We now make use of the following fundamental property:

the action of SO�3� on S2 is transitive �10�. As a conse-
quence, for any r�SO�3� and ��S2, we have r��S2. This
Lie group action of the rotation group on the unit sphere
implies that, given two pdfs f�r� and w��� taking, respec-
tively, values on SO�3� and S2, their convolution is a pdf
over S2 and reads as

h��� = �f * w���� = �
SO�3�

f�r�w�r−1��dr , �7�

for any ��S2, where * means convolution. A very impor-
tant and interesting consequence of the Peter-Weyl theorem

�9� is that this convolution equation is transformed into a
multiplication in the “frequency domain” as follows:

h��� = �
l�0

�
p=−l

l

�2l + 1�ĥl
pYl

p��� . �8�

Using the matrix or vector notation introduced previously,
we obtain the following relation:

ĥl = f̂lŵl ∀ l , �9�

which is a matrix-vector multiplication taking place for each
degree l. As explained in �11�, the pdf of r=r1r2, is the
convolution of the pdfs of r1 and r2, namely, f1�r1� and
f2�r2�, where convolution is again defined with respect to the
group action:

f�r� = �
SO�3�

f2�t�f1�t−1r�dt . �10�

In Eq. �10�, t denotes an element of SO�3� and dt stands for
the Haar measure. Consequently, an N-times product of in-
dependent random elements of SO�3�, i.e., N consecutive
random rotations, consists in a random rotation which pdf is
the N-times convolution of the pdfs of the elementary rota-
tions. Thus, if we denote by r=rNrN−1¯r2r1 the outcome of
N successive rotations, the Fourier transform of r can be
expressed as follows:

f̂l = �
n=1

N

�f̂n�l ∀ l . �11�

which is a simple product of matrices. In Eq. �11�, �f̂n�l de-
notes the matrix of Fourier coefficients of degree l of fn, the
pdf of rn.

B. Symmetries

Using Eqs. �9� and �11�, it is possible to obtain the Fourier
coefficients of any distribution on S2 that was multiply con-
volved by pdfs on SO�3�. In what follows, we will derive
more specific results for distributions on S2 which are func-
tions of cos � only, with � as the scattering angle. Such func-
tions are called zonal functions on S2 �9�. This simplification
relies on the property of statistical isotropy of the random
medium. As a consequence, the Fourier transform over S2

reduces to a Legendre expansion over �−1;1� for zonal func-
tions. In anisometric random media where the correlation
length depends on space direction, this simplification is not
permitted.

To obtain simple results, we further impose that the initial
distribution of directions of propagation �0 is a zonal func-
tion. Such an assumption is not too restrictive and covers for
example the case of an incident plane wave, i.e., �0 has a
Dirac distribution. Using the XZX parametrization of SO�3�
�12�, any rotation r�SO�3� can be parametrized using Euler
angles � , � and �. Elements of S2 are parametrized by �
�azimuth� and � �coelevation�. In the sequel, we use the Eu-
ler angle in the parametrization of pdfs.

The symmetry of the scattering process around the direc-
tion of propagation implies that the pdf w���� of the direc-
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tion of propagation �, parametrized using coelevation �
�with respect to direction of propagation� and azimuth �, is
invariant with respect to �. This allows us to expand
w��� ,�� as follows:

w���,�� = �
l�0

�2l + 1�ŵl
0Yl

0��,�� = �
l�0

�2l + 1�ŵlPl�cos �� ,

�12�

where ŵl are scalar quantities. The rotational symmetry of
the scattering process also implies that the pdf fr�� ,� ,�� of
random elements r�SO�3� must be bi-invariant, i.e., invari-
ant by left and right actions on SO�3� �see �9� for details�.
Such a bi-invariant pdf fr depends on the single variable �,
i.e., fr�� ,� ,��= fr���, and can therefore be expanded as

fr��� = �
l�0

�2l + 1� f̂ l
00Dl

00��,�,�� = �
l�0

�2l + 1� f̂ lPl�cos �� .

�13�

Considering the successive action of N independent and
identically distributed random rotations rn�SO�3� with bi-
invariant pdf on the initial distribution of propagation direc-
tions �0 leads to the following expression of the pdf h�N

���
of the random variable �N=rNrN−1¯r2r1�0:

h�N
��� = �

l�0
�2l + 1�� f̂ l�NŵlPl�cos �� . �14�

Note that the pdf of the direction of propagation �N after N
scattering events h�N

is a function of �, only.
In the special case of an incident plane wave or a highly

collimated beam, the initial direction obeys the following
simple probability distribution w�0

���=	�cos �−cos �0�,
where �0 is the direction of propagation of the incident wave.
For convenience, we set �0=0, which yields

h�N
��� = �

l�0
�2l + 1�� f̂ l�NPl�cos �� . �15�

The pdf of �N possesses a simple Legendre expansion
with coefficients equal to the Nth power of the Legendre

coefficients f̂ l of the SO�3� random variables.
Note that Eq. �15� could have been obtained using the

well-known summation formula for Jacobi polynomials �see
Chapter 2 in �9�� in the case of zonal functions on the sphere.
The approach developed in this section is more general be-
cause it could be applied to less symmetrical distributions,
thereby allowing the modeling of more complicated scatter-
ing processes.

III. COMPOUND POISSON PROCESS MODEL
FOR MULTIPLE SCATTERING

In this section, we develop the multiple-scattering model.
We begin with a summary of useful results about CPPs on
compact Lie groups �13�. Note that we use the term pdf
when we refer to the function describing the angular pattern
of scattering. In Sec. IV, we will substitute it with phase
function which is the usual terminology in the field of scat-
tering in random media.

A. Model

The implementation of the CPP model for the study of
multiple scattering of particles or waves has already been
described in �14�. In �14�, the authors were mostly interested
in formulating the direct problem, i.e., in the way a CPP can
be used to predict the output distribution of scattering angles
in a scattering experiment. They demonstrated the ability of
the CPP to model the multiple scattering of electrons and
used some recursive integral equations to obtain the pdf of
the CPP. The CPP model introduced in �14� is based on the
cumulative scattering angle, which is a real-valued random
process defined as a sum of real-valued random variables. In
this work, we introduce a CPP on a compact Lie group,
namely, the rotation group SO�3�. Our approach is more gen-
eral and does not rely on an a priori small-angle approxima-
tion.

Let us consider a particle or wave entering a random me-
dium at time t=0, with initial direction of propagation
�0�S2, as illustrated in Fig. 1. For the moment we neglect
the possibility that the wave may escape the random me-
dium. We consider a slab of random material with mean free
time 
 and velocity c=1 for simplicity. The normalization of
the velocity implies 
=� where � is the mean free path. We
seek to model the time evolution of the direction of propa-
gation ��t�. Denoting by N�t� the random number of scatter-
ing events that have occurred after propagation during time t
in the random medium, the direction of propagation ��t� can
be written as

��t� = �
n=0

N�t�

rn�0. �16�

To model wave scattering, N�t� is chosen as a Poisson pro-
cess with parameter � �15� and is independent of the rn. To
be fully consistent, we must impose r0=I, where I denotes
the identity in SO�3�. This simply means that the unscattered
energy propagates in the direction imposed by the source.
Clearly, the rn, n�1 are independent and identically distrib-

FIG. 1. Position of the problem. A plane wave or a narrow beam
are normally incident on a slab of random heterogeneous material
with thickness z expressed in transport mean-free-path units. The
transmitted intensity probability distribution is I���. The gray level
fluctuations reflect the inhomogeneity of the random medium.
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uted random rotations described by the pdf fr. Our choice for
N�t� implies the usual exponential distribution of times
of flight between two scattering events, with parameter
�=1 /
.

B. Probability density function of the CPP

To complete our task, we need to relate the pdf of ��t�,
denoted by p��t�, to the scattering properties of the medium.
Keeping in mind the iid assumption for rn and using condi-
tional probability decomposition with respect to the Poisson
process N�t�, one gets

p��t���� = �
n=0

�

e−�t ��t�n

n!
�fr

�n
* w�0

���� , �17�

where �n denotes the n-times convolution, fr is the common
distribution of the rn, and w�0

is the distribution of �0. Mak-
ing use of the notation introduced in Sec. II A for the mul-
tiple action of ri: �n=rnrn−1¯r2r1r0�0, the pdf of �n can be
rewritten as

f�n
��� = �fr

�n
* w�0

���� . �18�

Assuming again that the distribution of �0 is a Dirac at
the north pole, the pdf of ��t� simplifies to

p��t���� = �
n=0

�
��t�n

n!
e−�t fr

�n��� . �19�

The assumption about �0 is not very strong since in many
practical cases the direction of propagation of the incoming
wave is either known or controlled. For an isotropic random
medium, we recall that the pdfs of ri can be considered
zonal. Therefore, the pdf fr can be expanded in a Legendre

series with coefficients denoted by f̂ k. Using Eq. �15� the pdf
of ��t� takes the form

p��t���� = �
n=0

�
��t�n

n!
e−�t�

l�0
�2l + 1�� f̂ l�nPl�cos ��

= e−�t�
l�0

�2l + 1�e�t f̂ lPl�cos �� . �20�

This provides an expression of the distribution of ��t� of
the form

p��t���� = �
l�0

�2l + 1�e�t� f̂ l−1�Pl�cos �� . �21�

Expanding p��t� in a Legendre series

p��t���� = �
l�0

�2l + 1��̂lPl�cos �� , �22�

a term-by-term identification in Eqs. �21� and �22� yields

�̂l = e�t� f̂ l−1�. �23�

Result �23� relates directly the Legendre coefficients �̂l of
the pdf of the scattering process ��t� to the Legendre coef-

ficients f̂ l of the pdf of the random rotations caused by the

scatterers. This close link between the Fourier coefficients of
these pdfs is the cornerstone of our approach as it enables us

to develop a statistical estimator of the Fourier coefficients f̂ l
from the observations of the pdf of ��t�.

IV. VALIDITY OF THE CPP MODEL

A. Models of random media

To show the applicability of our statistical approach, we
consider the following experiment �see Fig. 1�: a plane wave
or narrow beam is normally incident on a slab of random
material described by Von Karman or Gaussian spectra,
which are commonly used to describe geophysical media
�16�. The angular pattern of intensity transmitted through the
slab is measured on output. In the slab geometry with strong
forward scattering, we expect that most of the energy will be
collected in the forward direction and therefore the CPP
should give some useful predictions of the pattern of trans-
mitted intensity. In fact, this idea is confirmed by the agree-
ment between CPP formula �21� and small-angle scattering
approximations of the radiative transfer equation �6�. It is to
be noted that formula �21� was obtained under the hypothesis
that we are able to collect all the energy at a given time t but
is totally free from a small-angle scattering assumption.

In the CPP approach, the building block for multiple scat-
tering is the pdf of the random rotations that scatter the initial
direction of the incoming beam. In the language of scattering
theory, the function that describes the angular scattering pat-
tern is called the phase function and will be denoted by f���,
where �=cos � is the cosine of the scattering angle and does
not represent a vector in this section. For sufficiently weak
fluctuations, the phase function can be obtained from the
Born approximation �4� and depends of the power spectrum
of heterogeneities  as follows:

f��� = ��2k sin��/2�� , �24�

where k denotes the central wave number of the probing
wave and � is a normalization constant. For the sake of
clarity, we review basic results on random media of special
interest.

1. Gaussian media

The phase function of a Gaussian random medium is de-
fined by the following formula:

f��� =
k2a2

2�1 − e−k2a2
�
e−k2a2��1−��/2�, �25�

where a is the correlation length of heterogeneities. The an-
isotropy parameter or mean cosine of the scattering angle is
defined as

g = �
−1

1

f����d� . �26�

This parameter plays a crucial role in the definition of the
transport mean free path l�= l / �1−g�. The transport mean
free path is the typical length scale beyond which multiple
scattering can be described by a diffusion equation. In the
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common case of strong forward scattering it can be much
larger than the mean free path. As will be shown below, our
approach is useful in this regime. For Gaussian random me-
dia, one obtains g=coth� k2a2

2 �− 2
k2a2 . The Legendre coeffi-

cients of the phase function are given by

f̂ l =� f���Pl���d� . �27�

In the high-frequency limit �large ka�, the Legendre coeffi-
cients of the Gaussian phase function can be approximated as

f̂ l � gl�l+1�/2, �28�

with g�1−1 /2k2a2.

2. Von Karman media

The Von Karman spectrum implies the following angular
dependence of the phase function:

f��� =
2k2a2�� − 1�

�1 − �4k2a2 + 1�1−���1 − 2k2a2�� − 1��� , �29�

where � is an exponent which controls the small-scale
roughness of the medium. Note that the phase function is
normalized ��−1

1 f���d�=1�. The special cases �=3 /2,2 cor-
respond to the well-known Henyey-Greenstein �HG� and ex-
ponential phase functions, respectively.

Using integration by parts, the coefficients of the expan-
sion can be expressed as

f̂ l =
1

2nn!
�

−1

1

�1 − �2�l f �l����d� , �30�

where f �l���� denotes the lth derivative of the phase function.
Using tables of integrals, Eq. �30� yields the following com-
pact form for the Legendre coefficients of the Von Karman
correlation function:

f̂ l =
2���� − 1��1 + 2ka2�−�l+����l + ��

�3

2
+ l������1 − �1 + 4ka2�1−��

� 2F1� l + �

2
,
1 + l + �

2
;
3

2
+ l;

4ka4

�1 + 2ka2�2� , �31�

where the definition of the hypergeometric function 2F1 can
be found in �17�. As noted before, in the case �=3 /2, we
recover the HG phase function which is a classically used
approximation to the Mie theory for spherical scatterers. The

Legendre coefficients can be put in the form f̂ l=gl, with
g= �1+2k2a2−�1+4k2a2� /2k2a2, i.e., the Legendre coeffi-
cients are simply powers of the anisotropy parameter, valid
for any g� �0,1�. A remarkable property of HG random me-
dia is that the convolution on the sphere of unit directions of
n HG phase functions with same parameter g is a itself a HG
phase function with parameter gn:

fHG
�n ��� = �

l=0

�

�2l + 1�glnPl��� . �32�

B. Numerical results

To appreciate the strengths and weaknesses of our statis-
tical model we show direct comparisons between the CPP
and the radiative transfer equation for a Henyey-Greenstein
random medium in the strong forward-scattering regime. The
anisotropy factor is g=0.98 and the slab thickness takes the
values H=25 /8,25 /4,25 /2,25�, where � is the mean free
path of the waves in the random medium �the transport mean
free path �� equals 50��. For simplicity, we assume that the
index of the slab matches that of the surrounding medium.
The equation of radiative transfer is solved using the Monte
Carlo code developed by �18� in the framework of statisti-
cally anisotropic media. Figure 2 shows that the CPP model
gives a nonuniform approximation to the exact distribution
of intensity transmitted through the slab of random material.
It is noticeable that the CPP model is always wrong in a cone
of directions perpendicular to the direction of incidence of
the wave. The width of the cone of direction increases with
the slab thickness H. When H becomes of the order of the
transport mean free path, typically, the CPP model fails to
give reliable predictions of the angular distribution of inten-
sity. One obvious reason is that in the CPP model, we do not
prescribe any boundary condition, whereas in the slab geom-
etry, the intensity must of course vanish in the lower hemi-
sphere of propagation directions.

We further remark that in the slab geometry the distribu-
tion of scattering events does not follow a simple Poisson
law, which also limits the validity of our model. To illustrate
this point, we examine the validity of the model in Fig. 3,
where we show the comparison between the CPP and radia-
tive transfer theory for a Gaussian medium with anisotropy
parameter g=0.98. The slab thickness takes the values
H=25 /16,25 /8,25 /4,25 /2�. The distribution of transmitted
intensity differs markedly from the HG case �see Fig. 2 for
comparison�. Because the Gaussian medium is extremely
smooth, the single scattering pattern is concentrated in a
small cone of directions and large-angle scattering is ex-

0.0 0.2 0.4 0.6 0.8 1.0
10�6

10�5

10�4

0.001

0.01

0.1

Cosine of Scattering Angle

In
te

ns
ity

FIG. 2. Comparison between Monte Carlo simulations �dots�
and CPP model for the intensity transmitted through a slab
of random medium with Heynyey-Greenstein phase function.
The four curves correspond to increasing slab thickness
H=25 /8,25 /4,25 /2,25�, with � as the mean free path. The agree-
ment is very good in a cone around the forward direction and de-
grades as the scattering angle approaches grazing angles.
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cluded. Propagation at large angle can only occur for suffi-
ciently high-order multiple scattering. This entails a signifi-
cant deviation of the statistics of the number of scattering
events from the simple Poisson distribution. This point is
illustrated in Fig. 4, where we plot the distribution of scat-
tering events around the forward direction �0.8���1� and
at large angles �0.3���0.5� for particles propagating
through a slab of thickness H=25 /8�. While in the forward
direction the agreement between the calculated distribution
of number of scattering events and Poisson statistics is ex-
cellent, at large angles a clear discrepancy is observed. The
distribution is biased toward larger number of scattering
events, and we verified empirically that it is in fact much
better fitted by a normal distribution. The standard deviation
and mean of the Gaussian distribution have been adjusted by
trial and error. The main point is to illustrate the large devia-

tion from the Poisson distribution. Note however that the
Poisson law will always be well approximated by a normal
distribution �with equal mean and variance� if the number of
scattering events becomes very large.

We now discuss briefly the transition toward the diffusive
regime. The case of strongly anisotropic scattering has been
treated analytically in �19�, where it is shown that the pattern
of transmitted intensity is almost universal, independent of
the type of scatterers. In Fig. 5, we show the profile of trans-
mitted intensity obtained with the radiative transfer approach
with the slab thickness H=�� /2 for the Gaussian and HG
phase functions with the same anisotropy parameter
g=0.98. The curves for the two different phase functions are
hardly distinguishable. For comparison, we have also plotted
the simple outcome of the diffusion approximation
I���=��1 /2+3� /2�. Our numerical study confirms the gen-
eral conclusions of �19� and also demonstrates that the dif-
fusive regime sets in for a slab thickness of the order of ��

but not more.
In spite of all its deficiencies, the CPP model gives a

simple, almost analytical solution of the multiple-scattering
problem and explains accurately the angular distribution of
most of the forward-scattered energy.

V. ESTIMATION: THE INVERSE PROBLEM

In this section, we consider the problem of estimating the
Legendre coefficients of the phase function f of the scatterers
from the measurement of the output angular distribution
p��T� at a given depth in the random medium. Using the CPP
model, we can construct an estimator for the Legendre coef-

ficients of the phase function f̂ l, using a “decompounding”
formula. Note that the mean free time 
 or equivalently
�thanks to velocity normalization� the mean free path � has
to be known in the decompounding approach. Techniques to
estimate the mean free path of waves in transmission geom-
etry are described for instance in �20�. The estimators we
derive below are extensions of the work done in �21,22� for
real valued random variables to the specific case of random
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FIG. 3. Comparison between Monte Carlo simulations �dots�
and CPP model for the intensity transmitted through a slab of ran-
dom medium with Gaussian phase function. The four curves corre-
spond to increasing slab thicknesses H=25 /16,25 /8,25 /4,25 /2�,
with � as the mean free path. The agreement is very good in a cone
around the forward direction and degrades as the scattering angle
approaches grazing angles.
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�0.3���0.5�. Solid line: Poisson distribution with parameter
�=3.125. Dashed line: Gaussian distribution with mean �=7 and
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FIG. 5. Transmitted intensity profile through a slab of thickness
H=�� /2 and anisotropy parameter g=0.98. Squares: Gaussian ran-
dom medium. Solid line: HG random medium. Dashed line: diffu-
sion approximation. The difference between the Gaussian and HG
medium is only noticeable close to the forward direction ��=1�.
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variables taking values over the rotation group and having
zonal pdfs.

A. Estimator for the Legendre coefficients

After proper normalization, the transmitted intensity pro-
file can be interpreted as a pdf p��T�, where T is the time
required for ballistic waves to propagate through the slab.
Let us denote by p̄��T� the sample pdf that corresponds to the
data. The sampling resolution of p̄��T� depends on the acqui-
sition system. Typically, a detector has finite aperture and
therefore averages the intensity over some finite solid angle
d�. This implies that p̄��T� is in fact discrete and should be
more appropriately termed probability mass function with the
usual normalization �m=1

M p̄�m�T�=1 if M samples are avail-
able.

We are interested in estimating the Legendre coefficients
of the pdf p��T� from the observation of p̄�m�T�. This can be
achieved in two different ways. One can either define di-
rectly the estimator on p̄��T� or use p̄��T� to generate some
realizations of ��T� and define an estimator with these real-
izations. In this paper, we adopt the second approach. To do
so, we use a simple linear interpolation to evaluate numeri-
cally the cumulative distribution function �cdf� and its in-
verse from the data p̄��T�. This allows us to generate as many
realizations of ��T� as desired by evaluating the inverse cu-
mulative distribution function for a collection of uniformly
distributed random numbers in �0,1�.

Let us assume that we have generated K values of ��T�
using this technique, and let us denote them by ���T� with
�=1, . . . ,K. The empirical Legendre coefficients of p��T� de-
noted by �̂l

˜ are given by

�̂l
˜ =

1

K
�
�=1

K

Pl„���T�… . �33�

Note that ���T� denotes the cosine of scattering angle ��. It
can be verified that the estimator defined in Eq. �33� is un-
biased, i.e., E��̂l

˜−�l�=0, ∀ l. Its variance can be expressed
as

E���̂l
˜ − E��̂l

˜��2� =
1

K
�E�Pl

2���� − �̂l
2� , �34�

where E�Pl
2����=�−1

1 p��T����Pl
2���d� and �=cos �.

In the Gaussian case, the variance takes a simple analyti-
cal form, in the limit case where �g−1��1. Using a Taylor
series expansion of the Legendre polynomials near �=1
yields Var��̂l

˜�= 1
K

l2�l+1�!2

4 �g−1�2.
For other random media, such as Henyey-Greenstein or

exponential, an analytical expression of the variance is not
easily obtained. This also applies to Gaussian media away
from the limiting case mentioned above. Nevertheless, the
behavior of the variance can be obtained by numerical inte-
gration. In Fig. 6, we present the variance for three different
phase functions: exponential, Gaussian, and Henyey-
Greenstein. The estimation has been made using K=1000
samples. It can be seen on Fig. 6 that the variance of the
estimator increases monotonically with l for the three differ-

ent phase functions. While the Gaussian case follows a
fourth degree polynomial growth, Henyey-Greenstein, and
exponential cases follow a more or less linear increase with
the degree of the Legendre coefficients l. The Gaussian case
is favorable for low degree coefficients while Henyey-
Greenstein exhibits the lowest variance for higher degrees.
Note that the variance has consequences on the ability of the
proposed approach to evaluate correctly the high-degree
Legendre coefficients. This will be illustrated in Sec. V B.

Back to the decompounding problem, we wish to estimate
the Legendre coefficients of f from the samples ���T�. This
is possible by inverting Eq. �23� and using our empirical
estimator �Eq. �33��. We obtain an estimate of the Legendre
coefficients of the phase function of the medium:

f̂ l
˜ =

1

�T
ln �̂l

˜ + 1. �35�

Equation �35� is the decompounding formula. It implies that

the set of Legendre coefficients f̂ l
˜ can be estimated from the

set �̂l
˜ that is directly computed from the data thanks to Eq.

�33�. Note that it is necessary that �̂l
˜�0. This is verified for

small l ��0��l, ∀l�1� but may not be verified for higher
degrees, mainly because of the increase in the variance of the
estimator �̂l

˜ with l �see Fig. 6�. As a consequence, it will be
necessary to truncate the number of Legendre coefficients
used in the decompounding approach. The truncation degree
depends on the acquisition setup and the kind of medium
investigated. This will be further illustrated in the following
Section. It must be emphasized that Eq. �35� is central as it
allows direct estimation of the heterogeneity spectrum of the
medium from the output intensity distribution measurement.

B. Inverting for the random medium power spectrum

As we will now show, the CPP approach constitutes a
powerful tool to invert the power spectrum of a random me-
dium in the regime: ��H���, particularly in the regime
����. To demonstrate this, we consider a slab of material
with Von-Karman correlation function. The cases �=2 �ex-
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FIG. 6. Variance of the Legendre coefficients empirical estima-
tor for different phase functions: Gaussian �squares�, exponential
�triangles�, and Henyey-Greenstein �circles� with anisotropy param-
eter g=0.995.
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ponential correlation� and �=5 /3 �Kolmogorov spectrum�
are considered. Synthetic data are generated using Monte
Carlo simulations of the scalar radiative transfer equation in
3D. It is to be noted that the simulations provide the intensity
distribution averaged over some finite solid angle, as will be
the case in a practical experiment. In the numerical simula-
tions, we imposed d�=1 /200 to obtain sufficiently smooth
results. Due to the limited averaging, the synthetic data can
be noisy, particularly where the intensity is small but such
phenomenon is also expected in practice. To obtain the Leg-
endre coefficients of the intensity distribution, we process the
data as follows. From the numerical simulations, we deter-
mine the cumulative distribution of the intensity. Although
the original distribution can be noisy the cumulative distri-
bution is much smoother. Examples of empirical cdf for ex-
ponential and Kolmogorov spectra are shown in Fig. 7. From
the cumulative distribution, we can evaluate the coefficients
of the Legendre expansion of the intensity by drawing a
sufficiently large set of random numbers X according to

X = icdf�U� , �36�

where U is a uniformly distributed random number and icdf
denotes the intensity inverse cumulative distribution function

obtained by linear interpolation of the original cdf. Succes-
sive application of formulas �33� and �35� yields the coeffi-

cients �̂l
˜ and the desired Legendre coefficients f̂ l

˜ of the
power spectrum of heterogeneities. To obtain accurate esti-
mates we need to draw typically 105 random samples. The
comparison between the estimated coefficients and the exact
Legendre expansion for two different Von-Karman random
media with g=0.98 is shown in Fig. 8 and shows excellent
agreement. To check the accuracy of the decompounding for-
mula, it is important to analyze at least two sets of data
corresponding to two different slab thicknesses. First, this
offers a consistency check for the only parameter that enters
in the decompounding, i.e., the mean free path of the waves.
If there is a significant error on this quantity �typically more
than 20%�, the estimated Legendre coefficients of the power
spectrum will differ significantly at low degree l. Second, it
provides a test of validity of the inferred heterogeneity power
spectrum at larger degree l. Figure 8 shows that the estimated

f̂ l
˜ for two different slab thicknesses split up beyond some
degree l0. For l� l0, it is not possible to estimate reliably the
coefficients of the original distribution. It is to be noted that
this test is independent of any assumption on the random
medium.
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FIG. 7. Cumulative distribution function of the intensity trans-
mitted through a slab of random material with thicknesses
H=6.25� �dashed line�, 12.5� �solid line�, and anisotropy parameter
g=0.98. Top: exponential medium. Bottom: “Kolmogorov”
medium.

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
� � �

�

�
�

�
� � � �

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

Degree

L
eg

en
dr

e
C

oe
ff

ic
ie

nt

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

� �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

Degree

L
eg

en
dr

e
C

oe
ff

ic
ie

nt

(a)

(b)

FIG. 8. Estimated Legendre coefficients of the heterogeneity
power spectrum for two slabs of random material with thicknesses
H=6.25� �dots�, 12.5� �squares�, and anisotropy parameter
g=0.98. Top: exponential medium. Bottom: Kolmogorov medium.
The dashed line shows the exact Legendre coefficients of the
distributions.
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VI. CONCLUSION

We have developed a nonparametric method to infer the
properties of random media. Our approach relies on a generic
mathematical model and could in principle be used to probe
random media with acoustic, elastic, or electromagnetic

waves. The method also provides tests of consistency and
accuracy of the results. We show that the angular distribution
of intensity in a random medium can be decompounded to
estimate the power spectrum of heterogeneities in a random
medium. An extension of the theory to incorporate polariza-
tion measurements is currently being investigated.
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