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Dispersive Stabilization

Ill posed linear and nonlinear initial value problems may be stabilized, that it converted to to well posed initial value problems, by the addition of purely nonscalar linear dispersive terms. This is a stability analog of the Turing instability. This idea applies to systems of quasilinear Schrödinger equations from nonlinear optics.

Introduction

In nonlinear optics, one commonly encounters coupled systems of scalar Schrödinger equations (1.1) ∂ t u j + iλ j ∆ x u j = N k=1 b j,k (u, ∂ x )u k , j ∈ {1, . . . , N }, (t, x) ∈ R 1+d , where the λ j are real and the b j,k are first order partial differential operators with coefficients depending smoothly on u (see [START_REF] Colin | On a quasilinear Zakharov system describing laser-plasma interaction[END_REF] and the references therein). The nonlinear terms usually depend on u and u,

(1.2) ∂ t u j + iλ j ∆ x u j = N k=1 c j,k (u, ∂ x )u k + d j,k (u, ∂ x )u k ,
where the c j,k and d j,k are first order in ∂ x . Introducing u and u as unknowns reduces to the form (1.1) for a doubled real system. For the local in time existence of smooth solutions, the easy case is when the first order part, B(u, ∂ x )u on the right hand side is symmetric. In this 1 symmetric case there are easy L 2 estimates, followed by H s estimates obtained by commutations, which imply the local well-posedness of the Cauchy problem for (1.1) in Sobolev spaces H s (R d ) for s > 1 + d 2 . In many applications, B(u, ∂ x ) is not symmetric and even more ∂ t -B(u, ∂ x ) is not hyperbolic and the Cauchy problem for ∂ t u -B(u, ∂ x )u = 0 can be as ill posed as the Cauchy problem for the Laplacian. However, the Cauchy problem for (1.1) may be well posed even if it is ill posed for the first order part. This is so even though the dispersive terms iλ j ∆ are not at all dissipative. We call this phenomenon dispersive stabilization.

Example 1.1. With x ∈ R the Cauchy problem for the system,

∂ t u + i ∂ 2 u ∂x 2 + ∂ x v = 0, ∂ t v -i ∂ 2 u ∂x 2 -∂ x u = 0,
is well posed in H s even though the first order part defines a badly ill posed initial value problem. This is proved by Fourier transformation in x. The amplification matrix is

exp t iξ 2 -iξ iξ -iξ 2
For large ξ the matrix has purely imaginary eigenvalues close to ±iξ 2 and is uniformly diagonalisable showing that the amplification matrix is uniformly bounded for ξ ∈ R and t belonging to compact sets. The bound grows exponentially in time. The growth comes from |ξ| ≤ R.

The fact that the addition of a term diag (i∂ 2 x , -i∂ 2 x ) whose evolution is neutrally stable can stabilize a stongly ill posed Cauchy problem is not intuitively clear. There are many related results of this sort. The simplest is the following assertion about linear constant coefficient ordinary differential equaitons in the plane.

Example 1.2. If A and B are 2 × 2 real matrices, knowing the stability origin as equilibrium of

X ′ = A X,
and,

X ′ = B X,
one can draw no conclusion about the stability of the equilibrium X ′ = (A + B)X. The best know is the Turing instability [START_REF] Turing | The chemical basis of morphogenesis[END_REF] for which A and B have eigenvalues with strictly negative real part so the input dynamics are exponentially stable and the sum dynamics can be unstable. Each of the stable dynamics is dissipative for certain scalar products. When the scalar products are different the Turing instability is possible. One but not both of the matrices A, B can be symmetric.

A related example is the two dimensional wave equation.

Example 1.3. For the system version of the 2d wave equation,

u t + 1 0 -0 -1 u x + 0 1 1 0 u y = 0
each of the split dynamics

u t + 1 0 0 -1 u x = 0, u t + 0 1 1 0 u y = 0 defines a bounded semigroup on L ∞ (R 2
). The first (resp. second) conserves

u 1 L ∞ , and u 2 L ∞ , resp. u 1 + u 2 L ∞ , and u 1 -u 2 L ∞ .
The sum defines a dynamics so that the map

u(0, x, y) → u(t, x, y) is unbounded on L ∞ (R 2 ) for all t = 0.
This analysis in this paper resembles example 1.1. We do not use the local smoothing properties of Schrödinger equations. Instead, the Fourier transform method is extended using the paradifferential calculus. The idea is to conjugate iA -B by a change of variable I + V with V of order -1 to a normal form

(1.3) (Id + V )(iA -B)(Id + V ) -1 = iA -B
up to zero-th order terms, with

B = i[V, A]-B symmetric. The conjugation (1.
3) means that the principal symbols satisfy

(1.4) σ e B = σ B + i[σ A , σ V ].
Equivalently, the energy estimates are obtained using the pseudodifferential symmetrizers

(1.5) S = Id + V * + V
If the λ j are pairwise distinct, one can reduce B to its diagonal part to prove the following result. 

(R d ) with s > 1 + d 2 .
In the next section we give a more general statement which allows for more general nondiagonal second order terms. In particular the λ j ∆ x can be replaced by different second order elliptic operators A j (∂ x ). The idea of using pseudodifferential symmetrizers is related to the proof in [START_REF] Colin | On a quasilinear Zakharov system describing laser-plasma interaction[END_REF] where the symmetry is obtained after differentiation of the equations and clever linear recombination. This amounts to using differential symmetrizers. Our analysis is a systematic exploration of the idea. Because of the quasilinear character of the equations, we use the paradifferential calculus in place of the classical pseudodifferential version. The latter would have sufficed to treat semilinear analogues. The paradifferential methods can also be used to treat the stongly nonlinear case F (u, ∂ x u) since such a term is reduced to a quasilinear term using the paralinearization, see Section 2.

For the systems case the dispersive terms rotating at different speeds regularize an explosive first order term. For the scalar case, that is N = 1, such a stabilisation is not possible. The Cauchy problem for ∂ t -i∆ x + i∂ x 1 is ill posed. However, if Im b(x) satisfies suitable decay assumptions at infinity, then the Cauchy problem for ∂ t -i∆ x + b(x) • ∇ x is well posed (see [START_REF] Mizohata | On some Schrödinger type equations[END_REF]). Intuitively, the waves propagate to the regions where b is small and are no longer amplified. The proofs use the dispersive and local smoothing properties of Schrödinger equations. This idea has been extensively studied. Some of the foundational papers are [START_REF] Mizohata | On the Cauchy problem[END_REF], [START_REF] Kato | On the Cauchy problem for the (generalized) Korteweg -de Vries equation[END_REF], [START_REF] Constantin | Local smoothing properties of dispersive equations[END_REF], [START_REF] Kenig | Small solutions to nonlinear Schrödinger equations[END_REF], [START_REF] Kenig | On the IVP for the nonlinear Schrödinger equations[END_REF], and, references therein. It would be natural to combine such ideas with those of dispersive stabilization with the goal of extending the local existence to the case where the antisymmetric part of B has suitable decay at infinity rather than requiring that it vanish. We do not pursue this line of inquiry.

Statement of the result

Consider the general equations, (2.1)

∂ t u + iA(∂ x )u + B(t, x, u, ∂ x )u = 0,
with A second order and B first order, (2.2)

A(∂ x ) = d j,k=1 A j,k ∂ x j ∂ x k , (2.3) B(t, x, u, ∂ x ) = d j=1 B j (t, x, u)∂ x j .
The matrices B j (t, x, u) are assumed to be C ∞ functions of (t, x, Re u, Im u), so that for each α and bouded

K ⊂ C N , ∂ α t,x,Re u,Im u B ∈ L ∞ ([0, T ] × R d × K).
With the example (1.1) in mind, we assume that A is smoothly blockdiagonalizable:

Assumption 2.1. For all ξ ∈ R n \{0}, A(ξ) = A j,k ξ j ξ k is self-adjoint.
Moreover, there are smooth real eigenvalues λ p (ξ) and smooth self-adjoint eigenprojectors Π p (ξ) such that

A(ξ) = p λ p (ξ)Π p (ξ).
This assumption is satisfied if A is self-adjoint with eigenvalues of constant multiplicity. The assumption allows for regular crossing of eigenvalues. The conditions on B involve,

Im B := 1 2i (B -B * ).
Assumption 2.2. For all p and q,

λ p (ξ) = λ q (ξ) =⇒ Π p (ξ) Im B(t, x, u, ξ) Π q (ξ) = 0 .
In addition, there are smooth matrix valued functions V p,q (t, x, u, ξ) so that

(2.4) Π p (ξ) Im B(t, x, u, ξ) Π q (ξ) = λ p (ξ) -λ q (ξ) V p,q (t, x, u, ξ).
Remark 2.3. The condition (2.4) is automatic where λ p (ξ) = λ q (ξ), it defines V p,q . Assumption (2.2) contains two types of information.

• For any ξ, if λ is an eigenvalue of A(ξ) and Π(ξ) the spectral projector, then Π(ξ)B(t, x, u, ξ)Π(ξ) is self adjoint. If the eigenvalue remains of constant multiplicity for ξ near ξ, nothing more needs to be added for this polarization. In particular, if all the distinct eigenvalues λ p (ξ) of A(ξ) have constant multiplicity, the Assumption 2.2 reduces to the condition that the matrices Π p (ξ)B(t, x, u, ξ)Π p (ξ) are self-adjoint.

• If the eigenvalue λ splits into several eigenvalues λ p (ξ) for ξ near ξ, the condition (2.4) means that not only Π p (ξ)Im B(t, x, u, ξ)Π q (ξ) vanishes at ξ and on the variety {λ p = λ q }, but also that λ p (ξ)λ q (ξ) is a divisor. In particular, if Π(ξ) denotes the spectral projector on the invariant space associated to the eigenvalues close to λ, this condition is locally satisfied with V p,q = 0 whenever Π(ξ) B(t, x, u, ξ) Π(ξ) is self-adjoint. This is so since

0 = Π Im B Π = p,q Π p Im BΠ q , so, Π p Im B Π q = Π p Π Im B Π Π q = 0. Remark 2.4.
There is no assumption on the spectrum of B(t, x, u, ξ). In particular, ∂ t + B may be nonhyperbolic and thus strongly unstable in Hadamard's sense. The dispersive term A has a stabilizing effect, provided that the condition in Assumption 2.2 is satisfied. For this reason models of this type appear often in the descriptions of instabilities, for example that of Raman. The dispersive stabilisaton regularizes to a well posed causal model albeit with the possibility of growth for moderate wave numbers as in the example.

We show that under the Assumptions 2. [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] 

(R d ), there is T > 0 and a unique solution u ∈ C 0 ([0, T ]; H s (R d )) of (2.1) with u| t=0 = h. Example 2.6 (From [2]). A is block diagonal A = diag{λ p Id p }
with real λ p (ξ) homogeneous of degree two and λ p (ξ) = λ q (ξ) for p = q and ξ = 0. The second assumption is trivially satisfied if the diagonal blocks B p,p vanish.

For applications, it is interesting to make explicit the assumptions when the first order part depends on u,

(2.5) ∂ t u + iA(∂ x )u + B(t, x, u, ∂ x )u + C(t, x, u, ∂ x )u = 0
Introducing v = u as a variable and setting U = t (u, v), the equation reads:

(2.6)

∂ t U + iA(∂ x )U + B(t, x, u, ∂ x )U = 0 with (2.7) A =   A(∂ x ) 0 0 -A(∂ x )   , B =   B C C B   .
In this context, the Assumption 2.2 becomes the following.

Assumption 2.7. For all p and q, Π p (ξ)Im B(t, x, u, ξ)Π q (ξ) vanishes when λ p (ξ) = λ q (ξ) and Π p (ξ) C(t, x, u, ξ) -t C(t, x, u, ξ) Π q (ξ) vanishes when λ p (ξ) + λ q (ξ) = 0. In addition, there are smooth matrices V p,q (t, x, u, ξ) and W p,q (t, x, u, ξ) such that

Π p (Im B)Π q = (λ p -λ q )V p,q , (2.8) Π p C -t C Π q = (λ p + λ q )W p,q .
(2.9) Theorem 2.8. Under Assumptions 2.1 and 2.7, for s > d 2 + 1 and h ∈ H s (R d ), there is T > 0 and a unique solution u ∈ C 0 ([0, T ]; H s (R d )) of (2.5) with data u| t=0 = h.

We briefly discuss the case of equations with fully nonlinear right hand side, (2.10)

∂ t u + iA(∂ x )u + F (t, x, u, ∂ x u) = 0,
where F (t, x, u, v 1 , . . . , v d ) is a smooth function of (t, x, Re u, Im u) and of (Re v 1 , . . . , Im v d ). Our analysis relies on a paralinearization of the first order term, so that the analogues of B and C are

B(t, x, u, v, ξ) = j ξ j ∂F ∂v j (t, x, u, v) (2.11) C(t, x, u, v, ξ) = j ξ j ∂F ∂v j (t, x, u, v) (2.12) with ∂ ∂v j = 1 2 ∂ ∂Re v j - i 2 
∂ ∂Im v j , ∂ ∂v j = 1 2 
∂ ∂Re v j + i 2 ∂ ∂Im v j
as usual. The new condition is that (2.8) (2.9) are satisfied with smooth matrices V p,q (t, x, u, v) and W p,q (t, x, u, v). In this case, the Cauchy problem is well posed in H s for s > d 2 + 2.

3 Basic L 2 estimate

We solve (2.1) by Picard iteration. Consider first the linear problem, (3.1)

∂ t u + iA(∂ x )u + B(t, x, a, ∂ x )u = f, u |t=0 = h, where (3.2) a ∈ C 0 w ([0, T ]; H s (R d )), ∂ t a ∈ C 0 w ([0, T ]; H s-2 (R d ))
with s > d 2 + 1 and C 0 w ([0, T ]; H σ ) denotes the space of functions which are continuous from [0, T ] to H σ equipped with the weak topology.

Theorem 3.1. There are functions C 0 and C 1 so that the solution of (3.1) satisfies

(3.3) u(t) L 2 ≤ C 0 (K 0 )e tC 1 (K 1 ) u(0) L 2 + t 0 f (t ′ ) L 2 dt ′ with K 0 := a L ∞ ([0,T ]×R d ) , (3.4) 
K 1 := a L ∞ ([0,T ];H s (R d )) + ∂ t a L ∞ ([0,T ];H s-2 (R d )) . (3.5)
Lemma 3.2 (Conjugation). For |ξ| large, there is a smooth invertible matrix V -1 (t, x, u, ξ), homogeneous of degree -1 in ξ, such that

(3.6) B(t, x, u, ξ) -[V -1 (t, x, u, ξ), A(ξ)]
is self adjoint and homogeneous of degree 1 in ξ.

Proof. Set

V -1 := p,q 1 λ p -λ q Π p (Im B)Π p so that B -[V -1 , A] = Π p BΠ p is self adjoint.
Proof of Theorem 3.1. Use the paradifferential calculus and the notations of Section 5. a) For simplicity denote by B j (t, x) the matrix B j (t, x, a(t, x)) and by B = B(t, x, a(t, x), ξ) the symbol

ξ j B j . Because s > 1 + d 2 , (3.2) implies that B j ∈ C 0 ([0, T ]; H s ), ∂ t B j ∈ C 0 ([0, T ]; H s-2 ) and (3.7) B j L ∞ ([0,T ];H s (R d )) + ∂ t B j L ∞ ([0,T ];H s-2 (R d )) ≤ C 1 (K 1 ).
In particular, as a symbol, B belongs to the class Γ 1 1 introduced in Definition 5.11. Using the paralinearization Proposition 5.8 we see that

f 1 := B(t, x, ∂ x )u -T iB u satisfies (3.8) f 1 (t) L 2 ≤ C 1 (K 1 ) u(t) L 2 ,
and u satisfies the paralinearized equation:

(3.9)

∂ t u + iA(∂ x )u + T iB u = f + f 1 , u |t=0 = h, b) Similarly, use the simplified notation V (t, x, ξ) = V -1 (t, x, a(t, x), ξ)ζ(ξ) where ζ ∈ C ∞ (R d ) vanishes near the origin and is equal to 1 for |ξ| ≥ 1. Note that V ∈ Γ -1
1 and that for all α there are functions C 0,α and C 1,α such that for all t ∈ [0, T ] and ξ ∈ R d .

∂ α ξ V (t, •, ξ) L ∞ ≤ C 0,α (K 0 )(1 + |ξ|) |µ-α| (3.10) ∂ α ξ ∂ t V (t, •, ξ) H s-2 ≤ C 1,α (K 1 )(1 + |ξ|) |µ-α| . (3.11) Use a symmetrizer, (3.12) Σ := Id + iT V -i(T V ) * + γ(1 -∆ x ) -1 .
By Proposition 5.2 and Remark 5.7, there is a constant C 0 (K 0 ) which depends only on K 0 such that

T V u(t) H 1 ≤ C 0 (K 0 ) u(t) L 2 .
Therefore,

Σu, u L 2 ≥ u 2 L 2 -2C 0 (K 0 ) u L 2 u H -1 + γ u 2 H -1 . Choose γ = γ(K 0 ) so that (3.13) Σu, u L 2 ≥ 1 2 u 2 L 2 .
Then, with another constant C 0 (K 0 ),

(3.14) Σu(t) L 2 ≤ C 0 (K 0 ) u(t) L 2 . c) Compute (3.15) d dt Σ(t)u(t), u(t) L 2 = 2Re Σ∂ t u, u L 2 + [∂ t , Σ]u, u L 2 .
By Lemma 5.9 and Proposition 5.12,

[∂ t , Σ] = [∂ t , T V ] + [∂ t , T V ] * is bounded from L 2 to L 2 and, (3.16) [∂ t , Σ]u(t), u(t) L 2 ≤ C 1 (K 1 ) u(t) 2 L 2 .
Next, observe that

T V A(∂ x ) = A(D x )T V + [T V , A(∂ x )] = -T V A(ξ)
. Therefore, the equation and the symbolic calculus of Proposition 5.5 imply that

Σ∂ t u = -A(∂ x )u -iA(∂ x )T V A(∂ x ) + i(T V ) * A(D x ) -iT e B u + Σf + f 2
where B is the symbol B(t, x, ξ) -[V (t, x, ξ), A(ξ)] ∈ Γ 1 1 and f 2 satisfies an estimate similar to (3.8). By Lemma 3.2 B is self adjoint for |ξ| ≥ 2, and hence Proposition 5.6 implies that 

Re iT B u(t), u(t) L 2 ≤ C 1 (K 1 ) u(t) 2 L 2 . Since A(∂ x ) is self adjoint, we conclude that (3.17) d dt Σ(t)u(t), u(t) L 2 ≤ 2 Σf (t) L 2 u(t) L 2 + C 1 (K 1 ) u(t)
u(t) H s ≤ C 0 (K 0 )e tC 1 (K 1 ) u(0) H s + t 0 f (t ′ ) H s dt ′
with K 0 and K 1 defined at (3.4) and (3.5).

As in the hyperbolic theory, this estimates implies the following strong continuity result.

Proposition 4.2. Suppose that a satisfies (3.2), f ∈ L 1 ([0, T ], H s ) and h ∈ H s . If u ∈ C 0 w ([0, T ]; H s ) is a solution of (3.1), then u ∈ C 0 ([0, T ], H s ). Proof. With J ε = (1 -ε∆ x ) -1 , one checks that J ε u satisfies (4.3) ∂ t J ε u + iA(∂ x )J ε u + B(t, x, a, ∂ x )J ε u = f ε , J ε u |t=0 = J ε h, with f ε → f in L 1 ([0, T ], H s ). Applying the estimates to J ε u, one ob- tains that J ε u is a Cauchy family in C 0 ([0, T ], H s ), implying that u ∈ C 0 ([0, T ], H s ).
Turn to the proof of the main result. More details can be found in [START_REF] Métivier | Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems Ennio de Giorgi Math[END_REF].

Proof of Theorem 2.5. (i) To solve (3.1) for a satisfying (3.2) use the mollified equations (4.4)

∂ t u ε + iA(∂ x )J ε u ε + B(t, x, a, ∂ x )J ε u ε = f, u |t=0 = h,
where J ε = (1 -ε∆ x ) -1 . For fixed ε, this is a linear o.d.e in H s since A(D x )J ε and BJ ε are bounded. One checks that the proof of the estimates (4.2) for the solutions of (3.1) immediately extends to the solutions of (4.4), because {J ε } is a bounded family of pseudodifferential operators of degree 0, are the new commutators they generate are remainders in the symbolic calculus developed in section 3. Therefore, the u ε are uniformly bounded in C 0 ([0, T ]; H s ). The equation shows that they are bounded in

C 1 ([0, T ], H s-2 ).
Extracting a subsequence and passing to the weak limit yields a solution u ∈ C 0 w ([0, T ], H s ). By Proposition 4.2, u ∈ C 0 ([0, T ], H s ). (ii) Solve the nonlinear equation using the iteration scheme, (4.5)

∂ t u n+1 + iA(∂ x )u n+1 + B(t, x, u n ∂ x )u n+1 = 0, u n+1|t=0 = h.
Using the estimate (4.2), one proves that there is T > 0 such that the sequence {u n } is bounded in C 0 ([0, T ], H s ) and in C 1 ([0, T ], H s-2 ). Knowing this bound in high norm, one checks that the sequence u n converges in a low norm C 0 ([0, T ]; L 2 ). Passing to the limit gives a solution of (2.1)

u ∈ C 0 w ([0, T ], H s ), which also belongs to C 1 ([0, T ], H s-2 ). Using Proposi- tion 4.2, one obtains that u ∈ C 0 ([0, T ], H s ).

Handbook of paradifferential calculus

The symmetrizers are paradifferential operators in the variables x, depending on the parameter t. This section reviews the paradifferential calculus extended to the case of time dependent symbols.

The spatial calculus

Consider operators on R d . The variables are denoted x and the frequency variables ξ. Definition 5.1 (Symbols). Let µ ∈ R.

i) Γ µ 0 denotes the space of locally L ∞ functions a(x, ξ) on R d × R d which are C ∞ with respect to ξ and such that for all α ∈ N d there is a constant C α such that

(5.1) ∀(x, ξ) , |∂ α ξ a(x, ξ)| ≤ C α (1 + |ξ|) µ-|α| .
ii) Γ µ 1 denotes the space of symbols a ∈ Γ µ 0 such that for all j, ∂ x j a ∈ Γ µ 0 .

The paradifferential calculus in R d , was introduced by J.M.Bony [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] (see also [START_REF] Meyer | Remarques sur un théorème de J.M.Bony[END_REF], [START_REF] Hörmander | Lectures on Nonlinear Hyprbolic Differential Equations[END_REF], [START_REF] Taylor | Partial Differential EquationsIII[END_REF], [START_REF] Métivier | Stability of multidimensional shocks[END_REF]). The reference [START_REF] Métivier | Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems Ennio de Giorgi Math[END_REF] gives a detailed account of the time dependent results needed here. The calculus associates operators T a to symbols a ∈ Γ µ 0 . They act in the scale of Sobolev spaces H s (R d ). Moreover, there is a symbolic calculus at order one for symbols in Γ µ 1 . Recall here the definition, as we will need it later on.

Consider a C ∞ function ψ(η, ξ) on R n × R n such that 1) there are ε 1 and ε 2 such that 0 < ε 1 < ε 2 < 1 and

(5.2)

ψ(η, ξ) = 1 for |η| ≤ ε 1 (1 + |ξ|) ψ(η, ξ) = 0 for |η| ≥ ε 2 (1 + |ξ|) .
2) for all (α, β) ∈ N n × N n , there is C α,β such that

(5.3) ∀(η, ξ, γ) : |∂ α η ∂ β ξ ψ(η, ξ, γ)| ≤ C α,β (1 + |ξ|) -|α|-|β| .
For instance one can consider with N ≥ 3:

(5.4) (5.9) σ ψ a (η, ξ) = ψ(η, ξ) a(η, ξ).

ψ N (η, ξ) = +∞ k=0 χ k-N (η)ϕ k (ξ) where χ ∈ C ∞ 0 (R d ) satisfies 0 ≤ χ ≤ 1 and
The symbol σ ∈ Γ µ 0 and belongs to Hörmander's class S µ 1,1 . The paradifferential operator T ψ a is defined by

(5.10) T ψ a u(x) := 1 (2π) n e iξ•x σ ψ a (x, ξ) u(ξ) dξ .
We collect here the main results.

Proposition 5.2 (Action). Suppose that ψ is an admissible cut-off. i) When a(ξ) is a symbol independent of x, the operator T ψ a is equal to the Fourier multiplier a(D).

ii) For all a ∈ Γ µ 0 and s ∈ R, T ψ a is a bounded operator from H s (R d ) to H s-µ (R d ).

Proposition 5.3. If ψ 1 and ψ 2 are two admissible cut-off, then for all a ∈ Γ µ 0 and s ∈ R, T ψ 1 a -T ψ 2 a is a bounded operator from H s (R d ) to H s-µ+1 (R d ).

Remark 5.4. This proposition implies that the choice of ψ is essentially irrelevant in our analysis, as in [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]. To simplify notation, make a definite choice of ψ, for instance ψ = ψ N with N = 3 as in (5.4) and use the notation T a for T ψ a .

Proposition 5.5 (Symbolic calculus).

Consider a ∈ Γ µ 1 and b ∈ Γ µ ′ 1 . Then ab ∈ Γ µ+µ ′ 1 and for all s ∈ R, T a • T b -T ab is bounded from H s (R d ) to H s-µ-µ ′ +1 (R d ). If b is independent of x, then T a • T b = T ab .
These results extend to matrix valued symbols and operators.

Proposition 5.6 (Adjoints). Consider a matrix valued symbol a ∈ Γ µ 1 . Denote by (T a ) * the adjoint operator of T a in L 2 (R d ) and by a * (x, ξ) the adjoint of the matrix a(x, ξ). Then (T a ) * -T a * is bounded from H s (R d ) to H s-µ+1 (R d ).

Remark 5.7. The norm of the operators acting in the indicated Sobolev spaces are uniformly bounded when the symbols a and b belong to bounded subsets of the symbol classes.

Bounded functions of x are particular examples of symbols in the class Γ 0 0 , independent of the frequency variables ζ. In this case, T a is called a paraproduct in [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF].

Proposition 5.8 (Paralinearization).

There is a constant C such that for all a ∈ W 1,∞ and all u ∈ L 2 (R d )

a∂ x j u -T a ∂ x j u L 2 ≤ C a W 1,∞ u L 2 .

The time dependent case

In the sequel we consider functions of (t, x) ∈ [0, T ] × R n , considered as functions of t with values in various spaces of functions of x. In particular, denote by T a the operator acting on u so that for each fixed t, (T a u)(t) = T a(t) u(t). This yields easy estimates when ∂ t a ∈ L ∞ . However, if we want to keep the lower bound s > 1 + d 2 in Theorem 2.5 this condition need not be satisfied, since in the equation (2.1), ∂ t has the weight of two spatial derivatives. This is why we introduce a slight extension.

Using the Littlewood-Paley decomposition This space occurs in our analysis because of the the following embedding. For a ∈ Γ µ 0 , the operator T a is defined by (5.11) and the Propositions 5.2, 5.5, 5.8 apply for fixed t, yielding estimates that are uniform in t (see Remark 5.7). The commutation with ∂ t is treated as follows.

Proposition 5.12. For a ∈ Γ µ 1 , the commutator [∂ t , T a ] maps C 0 ([0, T ]; H s ) to C 0 ([0, T ]; H s-µ+1 ) and there is a constant C such that for all t ∈ [0, T ] (5.17 

(5. 5 )

 5 χ(ξ) = 1 for |ξ| ≤ 1.1 , χ(ξ) = 0 for |ξ| ≥ 1.9 , and for k ∈ Z,(5.6) χ k (ξ) = χ 2 -k ξ and (5.7) ϕ 0 = χ 0 and for k ≥ 1 ϕ k = χ kχ k-1 .A function ψ satisfying (5.2) (5.3) is an admissible cut-off. Consider next G ψ ( • , ξ) the inverse Fourier transform of ψ( • , ξ). For a ∈ Γ µ 0 define(5.8) σ ψ a (x, ξ) := G ψ (xy, ξ) a(y, ξ) dy or equivalently on the Fourier side in x,

( 5 . 11 )

 511 T a u(t, x) := 1 (2π) n e iξ•x σ a (t, x, ξ) u(ξ) dξ . with (5.12) σ a (t, x, ξ) := G(xy, ξ) a(t, y, ξ) dy This definition shows that formally (5.13) [∂ t , T a ] = T ∂ta .

∆ 2

 2 k u, with ∆ k u := ϕ k û , as in (5.7), the Besov space B -1,∞ ∞ is defined as the space of tempered distributions u such that(-k ∆ k u L ∞ < +∞.

Lemma 5 . 9 . 1 -

 591 Functions u ∈ H s belong to B -1,∞ ∞ when s > d 2 -1.In the spirit of Definition 5.1, introduce the following notation.Definition 5.10. For µ ∈ R, let Γ µ -1 denote the space of distributions a(x, ξ) on R d × R d which are C ∞ with respect to ξ with values in B -1,∞ ∞and such that for all α ∈ N d there is a constant C α such that(5.16) ∀ξ , ∂ α ξ a(•, ξ) B -1,∞ ∞ ≤ C α (1 + |ξ|) µ-|α| .Definition 5.11 (Time dependent symbols). Let µ ∈ R and T > 0. i) Γ µ 0 denotes the space of locally continuous functions a(t, x, ξ) on [0, T ]× R d ×R d which are C ∞ with respect to ξ and such that the family {a(t, • ,• ); t ∈ [0, T ]} is bounded in Γ µ 0 . ii) Γ µ1 denotes the space of symbols a ∈ Γ µ 0 such that -the family {a(t, • , • ); t ∈ [0, T ]} is bounded in Γ µ the family {∂ t a(t, • , • ); t ∈ [0, T ]} is bounded in Γ µ -1 .

( 1 +

 1 ) [∂ t , T a ]u(t) H s-µ-1 ≤ C u H s .Moreover, the constant C depends only on the supremum for t ∈ [0, T ] of a finite number of semi-norms(5.18) sup ξ |ξ|) |α|-µ ∂ α ξ a(•, ξ) B -1,∞ ∞ .Proof. One has,(5.19) ∂ t σ a (t, • , ξ) = +∞ k=0 S k-N (D x ) ∂ t a(t, • , ξ) ϕ k (ξ).

  ∂ x ) = c k,j (u, ∂ x ) for all pairs (j, k) such that λ j + λ k = 0.Then locally in time, the Cauchy problem for (1.2) is well posed in the Sobolev spaces H s

	Theorem 1.4. If the λ j are real and pairwise distinct and if the diago-
	nal terms b j,j (u, ∂ x ) have real coeficients, then locally in time, the Cauchy
	problem for (1.1) is well posed in the Sobolev spaces H s (R d ) for s > 1 + d 2 .
	An analogous result for the systems (1.2) is the following.
	Theorem 1.5. Suppose that
	-the λ j are real and pairwise distinct
	-the diagonal terms b j,j (u, ∂ x ) have real coeficients,
	-c j,k (u,

  and 2.2 the Cauchy problem for (2.1) is well posed in H s for s > d

2 + 1, locally in time. Theorem 2.5. If Assumptions 2.1 and 2.2 hold, s > d 2 +1, and, h ∈ H s

  This implies the following estimates.

	4 Sobolev estimates and nonlinear existence
	H s estimates for the linearized equation (3.1) are obtained by differenti-
	ating the equation. The commutators [∂ α x , B(t, x, a, ∂ x ]u are estimated by
	standard nonlinear estimates as in the analysis of first order hyperbolic
	equations. Because s > d 2 + 1, for |α| ≤ s, one has,
	(4.1) x , B(t, x, a, ∂ Proposition 4.1. There are functions C 0 and C 1 such that smooth solutions ∂ α
	of (3.1) satisfy
	(4.2)

2 L 2 . Equations (3.13) and (3.14) imply estimate (3.3). x ) u(t) L 2 ≤ C 1 (K 1 ) u(t) H s
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where S j is the Fourier multiplier with symbol χ

On the support of ϕ k , that is |ξ| ≈ 2 k . With similar estimates for the derivatives, this shows that ∂ t a(t, •, •) is a bounded family of symbols in S µ+1 1,1 . By construction, the spectral property that ∂ t σa (t, η, ξ) is supported in |η| ≤ ε(1 + |ξ|) for some ε > 0 is satisfied and therefore the operator (∂ t a)(t, x, D x ) is bounded from H s to H s-µ-1 for all s.