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NONUNIFORM TRANSFORMATION FIELD ANALYSIS:
A REDUCED MODEL FOR MULTISCALE NONLINEAR
PROBLEMS IN SOLID MECHANICS

Jean-Claude Michéland Pierre Suquet

L.M.A./ C.N.R.S. 31 Chemin Joseph Aiguier.
13402. Marseille. Cedex 20. France.
*michel@Ima.cnrs-mrs.fr

This chapter is devoted to tidonuniform Transformation Field Analysighich

is a reduction technique introduced in the realm of Multiscale Problems in Non-
linear Solid Mechanics to achieve scale transition for materials exhibing-a non
linear behaviour. It is indeed well recognized that the nonlinearity intesa
strong coupling between the problems at the different scales whichl nigfar,
remain coupled.

To avoid the computational cost of the scale coupling, reduced modeds ha
been developed. To improve on the predictions of Transformation FiedyA
sis where the plastic strain field is assumed to be uniform in each domain, the
authors (Michel and Suqué) have proposed another reduced model, called the
Nonuniform Transformation Field Analysishere the plastic strain fields follow
shape functions which are not piecewise uniform.

The model is presented for individual phases exhibiting an elasto-
viscoplastic behavior. A brief account on the reduction technique i divst.
Then the time-integration of the model at the level of a macroscopic mlateria
point is performed by means of a numerical scheme.

This reduced model is applied to structural problems. The implementation
of the model in a Finite Element code is discussed. It is shown that thelmode
predicts accurately the effective behavior of nonlinear composite ralstarith
just a few internal variables. Another worth-noting feature of the meihtiat
the local stress and strain fields can be determined simply by postpracéss
output of the structural (macroscopic) computation performed with théemn
The flexibility and accuracy of the method are illustrated by assessing the life
time of a plate subjected to cyclic four-point bending. Using the distribution in
the structure of the energy dissipated locally in the matrix by viscoplasticity as
fatigue indicator, the life-time prediction for the structure is seen to be in good
agreement with large scale computations taking into account all hetesitigen
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1.1. Introduction

A common engineering practice in the analysis of compositesires is to usef-
fectiveorhomogenizecthaterial properties instead of taking into account all itieta
of the individual phase properties and geometrical arnanege (fiber and matrix
in the case of a fiber-reinforced composite). These effegiioperties are some-
times difficult to measure and this difficulty has motivatbeé development of
mathematicahomogenizationechniques which provide a rational way of deriv-
ing effectivematerial properties directly from those of the individuahstituents
and from their arrangement amicrostructure A further interest of such predic-
tive schemes is that material or geometrical parameterbe&aried easily which
opens the way for tayloring of new materials for a given aggilon. Although ho-
mogenization has been developed for both periodic (Sarehkncid®) or ran-
dom composites (Miltoff), the present study is focused on periodic composites.

Periodic homogenization dfnear properties of composites is now well-
established and the reader is referred to Bensouetsalfi or Sanchez-Palen&a
for the general theory, and to Sugtfedr Guedes and KikucHi (among others)
for computational aspects. The central theoretical rdsullinear properties is
that, provided that the scales are well separated, therlafézctive properties of
a composite are completely determined by solving a finite memof unit-cell
problems. These unit-cell problems are solved once forrall their resolution
yields the effective properties of the composite. Then thedyesis of a structure
comprised of such a composite material can be performed) ukase effective
linear properties. In summary, for linear problems, thelysig consists of two
completely independent steps, an homogenization steg atrit-cell level only,
and a standard structural analysis performed at the steuldvel only.

In comparison, the situation for nonlinear composites iser@mmplicated.
For composites governed by a single nonquadratic butIgtigonvex potential
(elastic potential or dissipation potential) homogenaratesults can be estab-
lished to define an effective behavior, deriving from an @ffe potential (pro-
vided that the scales are well separated). However, excery specific cases,
this effective potential cannot be found by solving a snalleven a finite, num-
ber of unit-cell problems. Teachmacroscopic stress or strain state corresponds
a unit-cell problem which has to be solved independentihefunit-cell problem
for a different macroscopic state. Therefore, althoughetlegists a homogenized
behavior for the composite, the rigorous analysis of a caitpstructure con-
sists of twocoupledcomputational problems: 1) a structural problem where the
(unknown) effective constitutive relations express thatiens between the mi-
croscopic stress and strain fields solution of the secondigmg 2) a unit-cell
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problem whose loading conditions are imposed by the (unkfowacroscopic
stress or strain (or their rates).

Exactly the same type of complication occurs when the coitgds made
of individual constituents governed by two potentials.efenergy and dissipa-
tion potential, accounting for reversible and irreversiprocesses respectively.
The most common examples of such materials are elastoplasta or elasto-
plastic materials. It has long been recognized by Rid#andel or Suquet?
that the exact description of the effective constitutidatiens of such composites
requires the determination of all microscopic plasticiesat the unit-cell level
For structural computations, the consequence of this étieai result is that the
number of integration points required in the analysis issbtpthe product of the
number of integration points at all scales, which is praiibly large. With the
increase in computational power, numerical strategiesdtring these coupled
problems have been proposed (see Feyel and Chabocfierada and Kikuch#
for instance) but are so far limited by the formidable sizeha corresponding
problems.

In order to derive constitutive models of the effective hatiaof composites
which are both useable and reasonably accurate, one hasotb e approxima-
tions. TheTransformation Field AnalysiéTFA) originally proposed by Dvorak
and Benvenisteis an elegant way of reducing the number of macroscopic-inter
nal variables by assuming tineicroscopicfields of internal variables to be piece-
wise uniform. It has been extended by Fishaf to periodic composites using
asymptotic expansions. Assuming the eigenstrains to Heramiwithin each in-
dividual constituent, Fisht aP derived an approximate scheme which they called,
for a two-phase material, the “two-point homogenizationesne”. The original
scheme and this extended scheme have been incorporatesssiudly in struc-
tural computations®®!). However, it has been notice®¢29 that the appli-
cation of the TFA to two-phase systems may require, in aeacumstances,
a subdivision of each individual phase into several (andeibnes numerous)
sub-domains to obtain a satisfactory description of thectiffe behavior of the
composite. The need for a finer subdivision of the phasesssfiemm the intrinsic
nonuniformity of the plastic strain field which can be highlgterogeneous even
within a single material phase. As a consequence, the nuofibeernal variables
needed to achieve a reasonable accuracy in the effectigtittive relations, al-
though finite, is prohibitively high.

In order to reproduce accurately the actual effective bieha¥ the composite,
it is important to capture correctly the heterogeneity efpifastic strain field. This
observation has motivated the introductiof®it of nonuniform transformation
fields More specifically the (visco)plastic strain within eachapl is decom-
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posed on a finite set gflastic modeswvhich can present large deviations from
uniformity. An approximate effective model for the comgestan be derived
from this decomposition where the internal variables asedbmponents of the
(visco)plastic strain field on the (visco)plastic modes.isTtheory is called the
Nonuniform Transformation Field Analys{BTFA). For two-phase composites
(nonlinear matrix and elastic fibers), comparison of thesitzal TFA, and of the
NTFA with numerical simulations of the response of a unit-aader monotone
or cyclic loadings, has shown the accuracy of the N¥FAThe present study is
devoted to presentation of the NTFA and to its implementsitito a macroscopic
structural Finite Element analysis. It will be shown that thTFA not only pro-
vides accurate predictions for the effective behavior ofiposite materials, which
is its initial goal, but also provides an accurate approxiomeof the local fields
which are the quantities of interest in predicting the lifet of structures.

1.2. Structural problems with multiple scales

1.2.1. Homogenization and two-scale expansions

Structures made of composite materials naturally involwe very different
length-scales. The largest scale (thacroscopicscale) is related to the structure
itself and is characterized by a length(Figure 1.1). The second and smallest
scale (themicroscopicscale) is related to the size of the heterogeneities in the
composite material (typically the fiber scale in fiber-reited structures). The
typical length at this scale is denoted tby In fiber-reinforced laminateg, is of
the order of the fiber diameter, wherefass typically related to the thickness, or
length, of the layered structure. When the scales are “veglagated”j.e. when
the ration = d/L is small § < 1), one can expect all details about the mi-
crostructure to be “smeared out”. In other words, the resparf the structure at
the macro-scale can be computed by replacing the very ctatt@hysical prop-
erties of the individual constituents lgjfective or homogenized propertigd the
macro-scale).

The aim of the mathematical theoriesf@mogenizatioris to determine ex-
actly or to bound these effective properties from the infation available, often
partially, on the individual constituents themselves andheir arrangement (mi-
crostructure). However, if effective properties are sigfit for analysis performed
in the linear range (stiffness of a composite structure fimteigenfrequencies...)
where the structure responds macroscopically as a whategity problems of en-
gineering interest it is essential to take into consideratiot only averaged fields,
or effective properties, but also fubcal fields Damage or fracture for instance
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are dramatically dependent on the local details of therswaistress fields. The
procedure by which the local fluctuations of fields are retroged from their

macroscopic average is sometimes caltazhlizationand one important objec-
tive of the present approach is to propose a simple locaizatile for strain and

stress fields.
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Fig. 1.1. Composite structure (left) and unit-cell (right).

The microstructure of periodic composites is completelgviin as soon as the
geometry of a single unit-cell is prescribed. For such composites, homogeniza-
tion results can be obtained heuristically by means of tealesexpansions mak-
ing use of the fact that the parametes d/L is small and that the geometry (and
therefore the fields) are periodic at the microscopic sca#n¢hez-Palendii,
Bensoussaat af). Rigorous mathematical techniques have been developesd to
tablish convergence theorems which usually confirm thatdgemization results
obtained by asymptotic expansions usually hold true (semétance Tartat).

A brief reminder (by no means exhaustive) about two-scafgaesions is
given now. A functionf defined on the macroscopic structure has variations at
the two different spatial scales and can be denotefi(38, ) to highlight this
dependence on both variables, whefedenotes the macroscopic spatial vari-
able (structural scale) whereaslenotes the microscopic variable (at the unit-cell
level). A dependence of a function on the microscopic védgiabcorresponds to
fast oscillations of this function at the macroscopic scaleereas a dependence
on the macroscopic variabl¥ corresponds to slower variations at the structural
level.

The scale ratio; is finite and different from 0 in the actual structure (even
though it is convenient mathematically to consider thagiitds to 0). Therefore
all mechanical fields (stress, strain, displacement.théractual structure depend
on this ratio. For instance the displacement field and ttesstiield in the actual
structure will be denoted by ando”. The homogenized relations are obtained
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by taking the limit ofu” ando” asn goes to 0 and by studying the set of equations
satisfied by these limits. These limits can be determined bsims of two-scale
expansions. For any functioff’ defined on the composite structure with finite
scale ratiay, its two-scale expansion is defined as:

+oo
) =Y g (X, X) 7 (1.1)
j=0 K

where, by virtue of the periodicity of the microstructurt fanctions f* (X, x)'s
are periodic with respect to the microscopic variableTherefore, for a macro-
scopic pointX, the argumeni /7 of the functionsf’, denotes the location oX
in the unit-cell at the microscopic scale.

Let us recall that, setting”(X) = ¢ (%) whereg is periodic over the unit-
cell, the limit of ¢ asn goes to 0 is the average gfover the unit-cell. The
convergence is weak (only in average) and not pointwise s€qurently the limit
of f7 asn goes to 0 is the average with respectrtof the zero-th order term in
the expansion (1.1):

im f" -7 :i 0 x) dx
fim /(%) = 7'(X) = 7 [ 1(X.2) da.

n—0

The homogenized (or effective) relations for the compaoaitetherefore the re-
lations between the limits aggoes to 0 of the fields” ande”, or equivalently
between the averages of the zero-th order terms in the expasithe stress field
and strain field (or strain-rate field), and additional intdrvariablesx, depend-
ing on the constitutive relations of the individual constitts which remain to be
specified (see section 1.2.2).

To understand how these zero-th order terms behave, on® lexpand the
unknown displacement, strain and stress fieltis="” ando” in powers ofy), after
due account of the equations satisfied by these fields. Itiaddh the constitutive
equations (to be specified), these equations are the cdilipaquations and the
equilibrium equations:

1 du? du” do}!
- (“z+ f), I L =0, (1.2)

U2 \dx; T dX; dX;

whereF' denote the body forces applied to the structure. The dérivaf a two-
scale functionf(X, ) which is periodic with respect t@ with x = X /5 is
performed according to the chain-rule:

d 0 10

iX ~0X 'noz
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Applying this derivation rule to the double-scale expansiéu”, €7 ando":

X - :

u(X)=u (X, ) = anuk(X,a:),
" k=0
X o0

e"(X):e:(X, ) :an‘ek(x,m), (1.3)
g k=0
X o0

oc'(X)=0o <X, ) = ano'k(X7w),
" k=0

one obtains the expansion of the compatibility and equilibrequations in pow-
ers ofy:

Order — 1 : ex(u’) =0, diveo® =0,

Order0 : e¥ = ex (u’) + e (ul),
(1.4)
divxo® +divyo! + F =0,

o, € anda’ satisfy the constitutive relations

Similar equations corresponding to higher-order term$iendxpansions can be
obtained in the same way. The operategsand diy, in (1.4) stand for the defor-
mation and divergence operators with respect to the miopswariablex (with
similar conventions for these operators with respect tontheroscopic variable
X). The constitutive equations of the phases may involveriaievariables, in
which case the zero-th order terms of these internal vasahlso enter the rela-
tions betweewr® ande®.

It follows from the first equation of the first line in (1.4) tha®(X,z) =
u’(X). u° has no dependence on the microscopic variable (no fastaigwils
in the displacement field). In addition, taking the averager ¢he unit-cell of the
first equation at order O (second line in (1.4)), and taking account the fact that
the average of the gradient of a periodic function vanistiestically, one obtains
that:

ex(u’)(X) =€%(X), (1.5)
where an overlined letter denotes an averaged quantity:

_ . 1
(X)) = ("(X,.)) with <f>:m/vf(:c)d:c.

In other words the macroscopic straig (u’) is the average over the unit-cell of
the zero-th order term in the expansion of the strain #&ld
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Unlike the displacement field, the zero-th order temisande® of the stress
and strain fields have microscopic fluctuationg.( they depend on both the
macroscopic and the microscopic variables). It followsfrthe second equa-
tion in the first line of (1.4) that is self-equilibrated at the microscopic scale,
whichever body forced™ are applied to the structure at the macroscopic scale.
Taking the average over the unit-cell of the third line imd{1and noting that the
average of the divergence of a periodic field vanishes idalhfj one finds that
the average stregg’ = (o) satisfies the macroscopic equilibrium equations:

divxa’ + (F) = 0. (1.6)

The two equations (1.5) and (1.6) are valid irrespectivénefdonstitutive behav-
ior of the phases. The homogenized, or effective, constiuelations relate the
average stresg’ and the average straiif. The determination of these relations
requires, in principle, a complete knowledge of the fietdsande® with all their
microscopic fluctuations. The dependence of these fieldseomacroscopic vari-
able X is known by solving the equilibrium problem for the struewubjected
to the imposed macroscopic loading and where the effectimstiutive relations
are used for the composite material. Their dependence omittrescopic vari-
able is known by solving the so-callétal problem(or unit-cell problem), where
the macroscopic variablX is only a parameter and will be omitted for clarity:

e(z) =&° + ex(ul(x))inV whereu! is periodic
div,a® =0inV, o%n anti-periodic ooV, .7
o', €% anda? are related by the constitutive equations of the phages

The anti-periodicity condition for the tractiam’.n on OV derives from the pe-
riodicity of o° and the anti-periodicity of. on opposite sides of the unit-céfl.

The first line in (1.7) can be replaced By’) = ° and periodicity conditions.
The constitutive relations of the phases have to be spedifiedler to further ex-
ploit these relations. For simplicity, the zero-th ordense® anda® will simply

be denoted by ande in the rest of the paper and the dependence on the variable
X will be omitted in the rest of this section.

1.2.2. Individual constituents

As already noted, the microstructure of periodic compasgecompletely spec-
ified by the knowledge of a unit-celf, which plays, for periodic media, a role
parallel to that of aepresentative volume elemédnt.e) in homogenization the-
ories for random media. The unit-céll is occupied byN homogeneous phases
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V(") with characteristic functiory (" () and volume fractior(":

: lifee VO : :
(r) - ) () — (1)
X" (@) { 0 otherwise ¢ <X >

The average of a field over the unit-cellV and over each individual pha3&”)
are denoted by overlined lettefandf":

N

F_p mFr w1

F=(n= ;c ==y ), f@) 4
The composite structures of interest for this study may ligested to thermo-
mechanical loadings. Therefore the validity of the couostie relations of the
individual constituents must cover a wide range of tempeeaaind strain-rates.
For simplicity, attention will be restricted here to isqifo materials.

We shall adopt in the sequel a viscoplastic model with neairkinematic

hardening proposed by Chabochgeneralizing the Armstrong-Fredericks con-
stitutive relations:

o=0L:(e—ey),
3. s—X% .

Evp = =Pp——mi, =¢
vp 2p(0_:{)eq p 0

: 2 . .
ngHEfogxp’ R:R(p)a

n

((o — %)eq _ R)+
) (1.8)

0o

where(.)™ denotes the Mc Cauley bracket (positive part):
AT =AifA>0, AT =0ifA<0.

When the phases are isotropic, their elastic propertieshanacterized by a bulk
modulusk and a shear modulus. Kinematic hardening effects are characterized
by the back-stresX whereas isotropic hardening manifests itself through the d
pendence of the yield stresgp) on the cumulated viscoplastic strairdefined
asp = (2/3éyp : €yp)'/2. To simplify notations it is useful to introduce the
viscoplastic potential:

n+1

N
(Aeq = F) , (1.9)

0o

Uoéo
n+1

(A, R) =

by means of which the second line of the constitutive retetid..8) can be written
as

. 0 ) 0
Evp = %(U —-X,R), p= —%(a —X,R). (1.10)
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The model (1.8) (and subsequent refinements which will nobibsidered here) is
commonly used in the analysis of the lifetime of metallic otymeric structures
under repeated thermomechanical loadings (see Samralff and Amiableet
al among others). The material parameters of the model, naimekglastic mod-
uli L, the rate-sensitivity exponent the flow-stresg, the isotropic hardening
function R(p), the kinematic hardening modulug and the spring-back coef-
ficient ¢, are strongly temperature-dependent. For simplicityrntia loadings
and thermal strains will not be considered in the preseriiysisa but the strong
temperature-dependence of the material parameters wakteunted for. For in-
stance the rate-sensitivity exponentan vary from 5 to 20 for Aluminum alloys
when the temperature varies from’ZBto 500 C. The method proposed here will
make use of certain objects, called plastic modes, idedhtifiea given tempera-
ture but used over the whole range of temperature with theogpipte material
parameters. In other words, these plastic modes do not oeleel identified at
each temperature.

1.2.3. Unit-cell problem. Effective response of heterogeneousterals

As seen in section 1.2.1, the first order terms of the stredsain field solve a
unit-cell problem (also called tHecal problen) consisting of the equilibrium and
compatibility equations (1.7) and the constitutive relat (1.10). All material

properties are assumed to be uniform in each individualgshas

N N
Lx) =Y LV x"(x), ¢z, A R) =Y (A R)x" ().

r=1

The overall stres& and the overall strai@ are the averages of their local
counterparter ande (for simplicity the dependence on the macroscopic variable
X of all fields will be omitted):

o= (o), E=/e). (1.11)

The homogenized effective relations are the relations éetmthe macroscopic
stresso (and its time-derivatives) and the overall stran(and its time-
derivatives).

To find these relations, an history of macroscopic st&ir is prescribed on
a time interval[0, 7] generating a time-dependent local stress fee(d, ¢). Its
averageo (t) is the macroscopic stress whose history is therefore celat¢he
history of&(t).
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The local problem to be solved to determimé&) reads:

o(x,t) = L(x) : (e(x,t) — evp(z, 1)),

oy

a(a(mat) *%(m,t),R(.’B,t)), (112)

évp(m, t) =

divyo(z,t) =0, (e(t)) =2(t), boundary conditions

In view of the local periodicity of the structure, periodioundary conditions are
assumed on the boundary of the unit-cell.

The average of the local stress fiet@z, t) is the macroscopic stress response
of the composite to a prescribed history of macroscopiars#fg). Unfortunately,
except in very specific situations.g.laminates), these effective relations for non-
linear materials cannot be given in closed form. They aressible only numer-
ically, along a prescribed path. An important consequeficei® observation for
the computational analysis of a composite structure, isttteamacroscopic and
microscopic levels are intimately coupled. At the struatigvel, the macroscopic
straing( X, t) is a function of position and a problem similar to (1.12) habé
solved at every macroscopic poiX or, in a computational analysis, at every
macroscopic integration point. As pointed out by Fish andi&h history data
has to be updated at a humber of integration points equalet@rbduct of the
numbers of integration points at all scales at each timesment.

To avoid the computational difficulty associated with theigiing of scales,
approximations are introduced to render the resolutioh@fdcal problem (1.12)
possible in closed form or amenable to simple algebra.

1.2.4. An auxiliary elasticity problem

Before introducing approximate resolution schemes fotldhal problem (1.12),
it is important to emphasize that the stress and strain faglelsolution ofa linear
elasticity problenon the unit-cell when the fields of internal variables arevano
Indeed, assuming that the viscoplastic part of the strapréscribed, the stress
and strain fields in the r.v.e. solve the following linearséilaproblem, with ap-
propriate boundary conditions (for simplicity the time dagence of the fields is
omitted):

o(x) =L(z): (e(x) —ew(x)), dve(x)=0, () =¢c. (1.13)

Assume thag,p(x) is known. It plays the role of a thermal strain in thermoe-
lasticity when the temperature is prescribed, or that waasformation strairin
phase transformation problems.
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The solution of (1.13) can be expressed in termsgfande by a straight-
forward application of the superposition principle. Cagsifirst the case where
evp is identically0. Problem (1.13) is then a standard elasticity problem and it
solution can be expressed by means of the elastic straafization tensord (x)
as:

e(x)=A(x) : €. (1.14)

Consider next the case wheFe= 0 ande,p(x) is arbitrary. Problem (1.13)
can then be written as an elasticity problem with eigenst(esmetimes called
polarization stressy(x) = —L(x) : eyp(x)

o(x)=L(z):e(x)+7(x), dvo(x)=0, () =0. (1.15)

Introducing the nonlocal elastic Green operdt¢x, «’) of the nonhomogeneous
elastic medium, the solution of (1.15) can be expressed as:

def 1

e(x) = -Tx7(x) where T'x7(x) = 7 /.

[(z,z'): 7(z) dz’.

(1.16)
The superposition principle applied to (1.14) and (1.16ggithat the solution of
(1.13) reads as:

e(x)=A(x) g+ |—‘1/| /v D(z,2) : eyp(x’) da’ = A(z) : €+ D xeyp(x),
(1.17)

where the nonlocal operatdd(x,z’) = T'(z,z’) : L(2’) gives the strain at
pointx created by a transformation strain at paifit

1.3. Nonuniform transformation field analysis (NTFA)

1.3.1. Motivation: approximate resolution of the local problem

The Transformation Field Analysi€TFA), originally developed by Dvor&k(see
also references herein), is based on the assumption thastiaplastic strains are
uniformwithin each individual domaif ("):

N
ew(@,1) = Y2y (1) X" (). (1.18)
r=1

The determination of the fielel, (x) is therefore reduced to the determination of
the tensorial variableg\(,;), r = 1,...N. Using this decomposition, the macro-
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scopic stress reads as:

N
T = Zc("’)ﬁ("), ) = (o), = L0 & — g\%))’ (1.19)
r=1
where
N
g = (e), = AT g4 ZD(TS) : E\(,‘;)), r=1,...,N, (1.20)
s=1
and
A" = (A) | (1.21)
(rs) _ 1 1

1 / / (r) / N (8) (! /
= — x\"(x)T(x,x") : L(x")x"¥ (") de’'dx. (1.22)

The evolution OE\(,’{,) is governed by the constitutive relations of the individual
phases applied to the average stresses and thermodynangs fin the phases.
Assuming that these constitutive relations take the for8)(for (1.10)), with
material properties labelled by the phas¢he evolution equations for the gener-
alized variableg\(,,ﬁ) read as:

) _ oyl
T 94

—~(r) 2 N o (r N ==(7) (7 —(r .
X — gI_I(v) E\(/p) _5(7) x( )ﬁ( )7 R( ) _ R(v)(ﬁ(r))

=<(7) —(r - (7 0 () =<(7) —=(r
@@ — % 7, 5 = é/)R @ — %" 7,

(1.23)
When a prescribed pa#{t), t € [0, 7] is prescribed in the space of macroscopic
strains, the corresponding history of the average str@(iﬁ$t) and viscoplastic
strainsa(,,ﬁ) (t) in each phase can be obtained by integrating in time theragsbé
differential equations (1.19) (1.20) and (1.23).

A nice feature of the TFA is that its implementation is relaly easy. However
applying the TFA to two-phase systems using plastic strahish are uniform in
each phase yields predictions of the overall behavior ottimposite which can
be unreasonably stiff (Suqiiet, Chabochest at*). The origin of this excessive
stiffness is to be seeked in the intrinsic nonuniformity gjpace) of the actual
plastic strain field which can be highly heterogeneous evthima single material
phase, a feature which is disregarded by the TFA. Dveta have obtained
better results by subdividing each phase into several snhihs. Unfortunately,
although the refinement does improve the predictions, ardthe subdivision
of the phases is often necessary to achieve a satisfactoegragnt (see Michel,
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Galvanetto and Suquéj, resulting in a prohibitive increase of the number of
internal variables entering the effective constitutiviatiens. These observations
have motivated the development of alternative approxireaiemes (Michel and
Suquetd).

1.3.2. Nonuniform transformation fields

The aim of the NTFA is to account for the nonuniformity of tHagtic strain field.
The field of anelastic strains is decomposed on a set of fiegddledplastic modes

M

ew(@,t) =Y e (1) p® (). (1.24)
k=1

Unlike in the classical Transformation Field Analysis, thedesu*) arenonuni-
form (not even piecewise uniform) and depend on the spatialblaria The idea
is that their spatial variations capture the salient festwf the plastic flow in the
unit-cell. They can be determined either analytically omeuically. Their total
number,M, can be different (larger or smaller) from the numBérof phases.
The u(®)’s are tensorial fields whereas the corresponding varialf):ﬁésire scalar
variables.
Further assumptions will be made to simplify the theory:

H1: The support of each mode is entirely contained in a singleri@iphase
It follows from this assumption that one can attach to eacterachar-
acteristic functiony(®), elastic moduliL®) and a dissipation potential
¥(®) which are those of the phase supporting this madé:) will de-
note the number of modes with support in a given pHase.

H2: The modes are incompressible:

tr (mk)) — 0. (1.25)

This assumption stems from the fact that (Hé&) are meant to represent
(visco)plastic strain fields. As a consequence of this aptiom the field
evp given by the decomposition (1.24) is incompressible, etqugavith
no restriction on the componem&‘;).

H3: The modes are orthogonal:

<p,(k) : u<‘f)> —0 whenk # 0. (1.26)
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This condition is obviously met when the modes have theipstpin
different material phases but has to be imposed to the motles their
support are in the same material phase.

H4: The modes are normalized:

<u£’$)> — 1. (1.27)

1.3.3. Reduced variables and influence factors

Using the decomposition (1.24) into (1.17), one obtains tha
M
e(xr)=A(x) g+ Z ' (x) 5\(,?, (1.28)
=1

wheren®(x) = D x u¥)(z) is the strain at poink due to the presence of an
eigenstrainu(®) (x') at pointa’, the average strai being zero.

Upon multiplication of equation (1.28) by(*) and averaging oveY’, one
obtains

M
e®) =a .54 Z D%CZ) e\(,é), (1.29)
=1

where thereduced straing(*), the reduced localization tensoes”) and the in-
fluence factorsDE\’f’Z) (IV stands for NTFA) are defined as

eF) = <u(k) :z=:>7 a®) = <u(k) : A>7 D%M) = </J,(k) : n(l)>. (1.30)

By analogy with the equation defining the reduced stedin in (1.30), one can
define:

e = <H(k) : evp> = <u(’“) : H(k>> &) (no summation ovek).  (1.31)

Reduced stresses can be associated by duality to the geedralscoplastic
strainsa(,’;) (the notations are chosen so as to highlight the analogydsstwhe
reduced stress(*) and the resolved shear stress on the k-th system in crystal
plasticity):

= (u9 ), a® = () x). (132)
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1.3.4. Constitutive relations for the reduced variables

It remains to specify theeduced constitutive relationglating the reduced strains
and stresses.

Afirst set of equations is obtained upon substitution of thess-strain relation
(1.12) into the definition (1.32) of the reduced stresse§"):

k) = <H<k> :L:(e— svp)>~

Elastic isotropy of the phases and assumptions H1 and HRdanbdeg:(*) lead
to:

7B = 2G 0 (e®) — e\g’;)))’ (1.33)

whereG*) denotes the shear modulus of phasmntaining the support of mode
k.

The second set of equations concerns the evolution of thergkred variables
etr) andz(¥). Using the definition (1.31) of{%) and equations (1.9) and (1.10)
for the evolution of the viscoplastic strain fiedg, (), one obtains that:

(k . 3/ 4™ A : oy
(1.34)

At this stage an additional approximation must be introducederive a relation
between the\(,'g)’s, ther(©’s andz(“)’s. Different approximations are discussed
in Michel and Suqué® (uncoupled and coupled models) to which the reader is
referred for further details. It follows from this work thite most accurate model

is the so-calleatoupled modelvhere the force acting on a mode is the quadratic
average of all the generalized forces acting on all modetagwed in the same
phase. For a given phasgethe generalized forcd (") is defined as

M(r) 1/2

AN =[S ’Tm _ 0
k=1

2
] (1.35)
In this relationM (r) denotes the number of modes having their support in phase
7. Then the relation (1.34) is modified by replacidg, by A and R by R("):
(k) _ (k) 9™
(k) _ 3. T Ly OY ™) 2\ R — p) ()
evp 2p A(T) y D 3R (A 7R ) ’ R R (p )7
(1.36)

where, againy is the phase containing the supporydf’). The plastic multiplier
p(") is the same for all modes having their support in the sameephas
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Finally, in order to obtain an evolution equation for tHé&)’s the last equation
in (1.8) is multiplied by %) and averaged ovér:

&) = <u<k> : 35> - §H<’“>e5’;) - <p§ MOk x> (1.37)

Then, replacing as previousieq by A andR by R(") in the expression of the
plastic multiplierp, one obtains:

2
Pk — gH(k)é\(/g) — pM W) (k) (1.38)
In summary the constitutive relations for the model are:
M
e®) —a® 243" DL,
(=1
7®) = 2G k) (ek) — 6\(,’?)7

M(r) 9 1/2
AN =3 ‘T(m_x(k)‘ . RM = RO (pr)y, (1.39)

k=1

k k r
) _ 3T —a® ey 090 (A=)
T A D )

: 2 . o
k) — §H<k>e§’;) _ pm gk g (),

The systems of differential equations (1.39) is to be soledach integration
point of the structure (macroscopic level). At each timeéneent, knowing the
increment in macroscopic strain, the resolution of thessystields thezf,f,)’s from
which thes\(,lg)’s can be obtained by inversion of (1.31).

Once the internal variabl&é’;) are determined, the local stress field in the
composite resulting from (1.13) and (1.28) reads as:

M
o(@,t) = L(x) : A(z) :&(t) + Y pP(@)ely (1),
k=1 (1.40)

where p®)(z) = L(z) : (n™(x) — p* () .

The effective constitutive relations for the composite alpgained by averaging
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this stress field:
_ M
s)=L:e)+ > <p(’“>>55’;) (). (1.41)
k=1

The localization tensorgé*), the influence factorﬁ)g\’fz), the effective stiffnes&
and the tensorép(®)) are computed once for all.

1.3.5. Choice of the plastic modes

The plastic modes are essential for the accuracy of the metHowever there
is no universal choicdor these modes and they should rather be chosen accord-
ing to the type of loading which the structure is likely to hécted to. This
implies that the user has anpriori idea of the triaxiality of the macroscopic
stress field, as well as of its intensity and its time histoBor instance when
the structure schematically depicted in Figure 1.1 is suibgeto pure bending,
the macroscopic stress is expected to have a strong un@igbonent. There-
fore the plastic modes should incorporate information albioel response of the
unit-cell under uniaxial tension (and compression if trgpmse is not symmet-
ric in tension/compression). But close to points where flagegs supported, the
macroscopic stress will likely exhibit a non negligible ambof transverse shear
and transverse normal stress so that plastic modes acegdatithe unit-cell re-
sponse under transverse shear and transverse tensiomessiop should also be
present in the set of modes. Similarly if one is interestethnresponse of the
structure under monotone loading with limited amplitudes information about
the response of the unit-cell will be limited to certain mame loading paths in
stress space up to a limited amount of deformation.

Given the complexity of the microstructures under consitien, the plastic
modes are not determined analytically but numerically fractual viscoplastic
strain fieldsin the unit-cell. Different unit-cell responses along tliéedent load-
ing paths of macroscopic stresses stemming from the ab@li¢ajive analysis are
determined numerically. Second, the plastic modes araaetl from the micro-
scopic viscoplastic strain fields at a given macroscopairstwhich depends on
the range of macroscopic strains which is expected in thetsiral computation.
Different or additional loadings can be considered, depgndn the problem and
keeping in mind that it is desirable to approach as closelyossible the macro-
scopic loading paths expected at the different integratimints of the composite
structure.

One of the building assumption of the NTFA is the mode ortimadjty (hy-
pothesis H3). If this prerequisite is obviously met when thedes have their
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support in different material phases, it has to be imposéaeonodes which have
their support in the same material phase. 8%t (z), k = 1, ..., M (r) be poten-
tial candidates to be plastic modes in phas&he procedure used to obtain these
fields will be detailed in due time but they will not satisfysagption H3 in gen-
eral. The Karhunen-L&ve decomposition (also known as h@per orthogonal
decompositioror as theprincipal component analy9igs used to construct a set
of (visco)plastic modeg®) (x), k = 1, ..., My (r) from these field®™ (x):

M (r)
p®)(x) = Z vék) 09 (x), (1.42)
/=1
wherev®) and\(*) are the eigenvectors and eigenvalues of the correlatiorixnat
g:
M (r)
Z Gij vj(-k) = \k) vfk)7 Gij = <0(i) : B(j)>. (1.43)
j=1

It is straightforward to check that the resulting modes atkagonal (as any set
of eigenvectors of symmetric matrices):

<u(’“) : ,N>> —A® if k=¢ otherwise 0. (1.44)

Another advantage of the Karhunenéwe decomposition is that the NTFA model
is almost insensitive to modes with small intensity, or ihestwords to modes
%) corresponding to small eigenvalud¥). Therefore, in practice, among the
total M (r) modes, it is sufficient to consider in the model the fivstr) modes
corresponding to the largest eigenvalues (see Rousstetfé for more details).

1.3.6. Reduced localization tensors and influence factors.

Once the plastic modes are chosen, the localization ancimfeutensors can be
determined by solving only linear problems. The strain liaedéion tensorA is
obtained by solving successively 6 linear elasticity peots?:

o(x) = L(x):e(u(x)), dv(o(x))=0, (e)=F¢, (1.45)

whereg is taken to be equal successively to one of the second-cedsors; (/)
with components

o1
i) = 5 (Gim0jn + dindjm) -

36 problems in dimension 3, but only 3 problems in plane straiblpros and 4 problems in general-
ized plane strain problems, see Miclkell!® for further details.
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Let (") ande() denote the displacement field and the stress field solution of
(1.45) withe = i) The components of the fourth-order strain-localization
tensorA, of the fourth-order effective stiffness tensbrand of the second-order
reduced strain-localization tensef®) read as:

Ajmn(®) = £3;(u™(2)), Lijmn = <ff§§-””)>7 aly) = <N(k) : E(U(ij))>-
(1.46)
To obtain the influence factoy,“e) and the second-order tens@@), M linear
elasticity problems have to be solved:

o(z) = L(z) : (e(u(x)) — p(®))), div(o(x)) =0, (e)=0, (1.47)

with = p®). Let u® denote the displacement field solution of (1.47) with
= p. Note thatp'®) is the stress field solution of (1.47). Then:

DY = <u(’“) : €<u<e>)>. (1.48)

The Finite Element Method (FEM) was used in the two examplesgnted in
section 1.3.9 and 1.4.4 to solve the linear elasticity protd (1.45) and (1.47).

1.3.7. Time-integration of the NTFA model. Strain control

This section is devoted to the time-integration of the NTFAdal at the level of
a single macroscopic material point when the individualstibments are elasto-
viscoplastic (the reader is referred to Michel and Sufuferr rate-independent
elasto-plasticity). The history of macroscopic stra{n) is prescribed on the time
interval[0, 7.

The equations (1.39) to be solved form a system of nonlinéfareintial equa-
tions. Its time-integration requires a time-discretiaatand an iterative procedure
within each time-step. The time intenjal 7'] is decomposed into a finite number
of time-stepgt, t + At]. All reduced variables at timeare assumed to be known.
The reduced variables and the macroscopic stress at timAt are obtained as
follows.

Time stept + At, iterate ¢ + 1:
The reduced straing®)):_ »,, k = 1, .., M being known,

e Step 1: Compute the plastic multiplierg™):, ,, r = 1,..., N, the
reduced stresses )i, ., and the reduced back-stresge$”):, .,,
k=1,.., M (see following paragraph).



Nonuniform Transformation Field Analysis 21

e Step 2: Compute the reduced viscoplastic strai(té';))§+At and
(e\(,’;));{+At. Fork =1,..,M:

(k)N (T(k))t+At ((k))i (e\(/p))t+At

(k)yi - )i — = At
(evp ixar = (€")ipae YO Evp Jt4+At <N(k) :H(k)>'

e Step 3: Compute the macroscopic Stress, »,:

M
—i T = c k)i
Oiint =L :Epne+ Z <P(k)> (E\SD))HAr
k=1

e step 4:Update the reduced straifs'®):, .,. Fork =1, .., M:

M
i _ k) . (O)\i
(e(k))tilm =a® 7+ Z DEV ) (5\(/p))t+At-

=1
Goto 1.
The convergence test reads:
Max (€M)t ar = @)y ac| < dlErsar —&ll.

k=1,...,M

A typical value ford is § = 1075, The norm for second-order tensors used in the
right-hand-side of the convergence tesfdd| = max; ; |a;;] .

Step 1 in details.

In order to determine the plastic multipliefs(™):, ,,, the reduced stresses
(r®M)i, A, and the reduced back-stresges”)):, ., at step 1 of the above de-
scribed procedure, the last four equations (1.39) are iewrin the form of a
first-order differential equation for these three unknowmhis is done for each
phase separately. For a given phasthe differential system to be solved in the
time interval[t, t + At] can be written as:

¥ = f(y), (1.49)

where the initial data at time(beginning of the time interval) is known from the
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previous time step, and where:

Y= {ys}szl,ZJV[(r)+1> f= {fs}s:1,2M(r)+1a

{ys}szl,l\ff(r) = {T(k)}kzlaM(T)’

3 F(&) _ (k)
{fS}s:LM r)y = {QG(k) (é(k) — ,p(r) )} 7
(r) 2 A(r) L)

{ys}s:M(r)-i-l,QM(r) = {fﬁ(k>}k:1,M(r),

2 _ (k)

{fsto=mryr1,2m(r) = { (H(k)m - f(k)ﬂ?(k)> P(T)} ;
k=1,M(r)

{ys}s:QM(r)—i-l = {p(T)}7 {fs}s:2M(r)+l = {p(r)} .

(1.50)

In (1.50), the generalized forcd(") is known according to the*)’s and the
+®)'s k= 1,.., M(r), by (1.35), the plastic multipligs") according ta4(") and
p") by (1.36), and the strain-rate§), k = 1,.., M(r), are given by:

k) _ (e(k))i+At — (e™), (1.51)

At ' '

A Runge-Kutta scheme of order 4 with step control is used teesthe sys-
tem (1.49-1.50). The solution in a sub-interyal, ¢;] contained int, ¢ + At]
is determined by a trial and error procedure. A first trialuioh y(t;) is
computed with the time-stefy — ¢,. Then a second solutiog/(¢,) is com-
puted with two time-steps of equal siZe; — to)/2. The differenced =
max,(|y/s(t1) — ys(t1)| / |yts(t1)]) is evaluated. Ifd > ¢, the solution is dis-
carded and the time-step is reduced by a factor which depemdse ratiod/o.
If d < ¢, the solutiony/(t1) is retained and the next time-step is multiplied by
a factor which depends on the rafigd. The sub-intervalty, ¢1] is initialized as
[t,t + At]. Atypical value ford is 6 = 10~

1.3.8. Time-integration of the NTFA model. Stress control

It is often convenient (or necessary) to impdke directionof the macroscopic
stress:

T, = \t)X°, (1.52)

whereX’ is the imposed direction of stress. This is typically theaion which
is met in the simulation of the response of a composite toxieditension.
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In rate-independent plasticity, especially in ideal ptast, or in viscoplastic-
ity with power-law materials such as those considered itiged.3.9, it is not
appropriate to control directly the level of stres&@). An arc-length method is
preferable (Michekt at>'?) and the loading is applied by imposing:

gt : EO = EQ t.
where E, is the imposed strain-rate (in the direction of the appligdss). As
in the strain-controlled method, all reduced variablesraét are assumed to be
known. At timet + At, the conditiong,, 5, : X° = F, (t + At) is imposed.
The macroscopic stresgt + At) is to be determined in addition to the reduced
variables. An iterative procedure is used to impose thectiae of stress (1.52)
as follows:

Time stept + At, iterate ¢ + 1:

The reduced straite®)):, 1,, k = 1,.., M being known and a macroscopic
straing;, 5, meeting the conditiod, , : ° = F; (¢ + At) being known:
e 1, 2: Perform steps 1, 2 of the procedure described in sectioi.1.3.
e 3, 4: Perform steps 3 and 4 of the same algorithm ugihgﬁt in place
Of §t+At-
e 5: Compute the level of macroscopic stress:
i _EO:IN}_1:E§+N
HALT 50 T-1, 30

and update;, 5,:

—itl =i F—1. (yi 0 —i
Eirar =CEynr T L7 ( tHALD — 0't+At) .

Goto 1.
The test used to check convergence now reads:
Max [(e®)i1h, = (€®)isa
k=1,...,.M

€ Ar — Etaadll < 8llE A

A typical value ford is § = 1076,

< dl[Eith — &l

)

1.3.9. Example 1: Effective response of a dual-phase inelastic qusite

The composite materials under consideration in this sectie two-phase com-
posites where the two phases play similar (interchanggables in the mi-
crostructure.
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1.3.9.1. Material data

Both phases are elastoviscoplastic with linear elastanitg a power-law viscous
behavior (corresponding to the dissipation potential)(vigh R = 0). The mate-
rial characteristics of phase 1 and 2 read respectively:

EW =100 GPa vV = 0.3, 0§ =250 MPa &y =107 s !, n; = 1,
and
E® =180 GPa v® =03, ¢(?) =50MPa &y =10 s !,

The rate-sensitivity exponent, of phase 2 is varied fronh to 8. This variation
corresponds to the fact that the rate-sensitivity expowearies significantly with
temperature and our objective here is to assess the acoofrélog NTFA used
with a single set of plastic modes determined independdotian intermediate
value of the rate-sensitivity exponent.

1.3.9.2. Microstructure

The two-dimensional unit-cell consists of 80 “grains” iretform of regular and
identical hexagons. The material properties of these hansagre prescribed ran-
domly to be either that of phase 1 or that of phase 2 under thsticint that both
phases have equal volume fractien & c; = 0.5). 25 different configurations
have been generated (same configurations as in Mathalt®). One configura-
tion has been selected among these 25 realizations, nahgetnt which gives,
whenn; = ny, = 1 and when the phases are incompressible, an effective respon
which the closest to the exact result for interchangeabteasiructures (given by
the self-consistent scheme). This configuration is showfigare 1.2 (phase 1 is
the darkest phase). Each hexagon is discretized into 6&4edgle quadratic finite
elements with 4 Gauss points (5120 quadratic elements ad49150des in to-
tal). The unit-cell is subjected to an in-plane simple sheading with a uniform
strain-ratey = /3 £¢:

E(t) = @ (e1®ex+ey®er), F(t)=7t. (1.53)

Periodic boundary conditions are applied on the boundathefunit-cell. All
computations are performed with the same global time-Ateg- 2//3 s.

1.3.9.3. Plastic modes

The plastic modes retained for application of the NTFA areegiby the
Karhunen-L&ve procedure from two initial field8'") () in each phase corre-
sponding respectively to viscoplastic strain fields deteeth numerically at small
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Fig. 1.2. Covering of the unit-cell by regular hexagons oAgh 1 (dark) and phase 2. Realization
used for the implementation of the NTFA.

strains § = 0.03%) and at large strainsy(= 12%). The procedure delivers
four orthogonal modes, two modes with support in phase 1andiodes with
support in phase 2. Snapshots of the equivalent sﬂ%i)nof the four modes are
shown in Figures 1.3 and 1.4.

1.3.9.4. Discussion of the results

The macroscopic stress-strain respoage yersusy) is shown in Figure 1.5 when
ne = 1 andny = 8. The full-field computation which serves as the reference is
shown as a solid line. NTFA(1) refers to the NTFA model watkingle modeén
each phase (the viscoplastic strain field at large straihgy@as NTFA(2) refers
to the NTFA model with two modes per phase. If the model NTHAdedicts
accurately the asymptotic stress response at large stthgsnodel NTFA(2) is
required for a better agreement in the transient regime evlkastic and viscous
effects are of comparable order, since, as can be seen ireBigws and 1.4, the
features of the modes for small and large strains are ratfierat.

The variation of the macroscopic asymptotic stress (crégssat constant
strain-rate) is shown in Figure 1.6 as a function of the smtesitivity exponent
mo = 1/ns of phase 2. The full-field computations are shown as stars.sbhd
line corresponds to the NTFA model implemented with plastodies which vary
with ny (viscoplastic strain fields are computed for each value,aind the corre-
sponding plastic modes are deduced by means of the KarHio®re procedure).
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Fig. 1.3. Dual-phase material. Plastic modes for phase 1. sBoapf the equivalent stramé?,

k =1,2. Attop: ng = 1. At bottom: ny = 8. From left to right: modes for small and large strains.
The look-up table is the same for all four snapshots.

The results shown as NTFA{ = n) were obtained by considering a single set
of modes identified once for all with, = n. NTFA(ny = 1) overestimates the
macroscopic creep stress of the composite for large values.oThe snapshot

of the modes fon, = 8 shows a rather significant amount of strain localization
in phase 2. NTFA{, = 8) overestimates the creep stress for small nonlinearity
(which is consistent with the property of minimization oktHissipation poten-
tial). NTFA(n, = 3) is a reasonable compromise.

1.4. Application of the NTFA to structural problems

1.4.1. Implementation of the NTFA method

The implementation of the NTFA method consists of four défe steps. The
first two steps are “material steps” in the sense that theg@meerned only with
computations performed at the unit-cell level, indepetigledf any macroscopic
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5.0
25

0.0

Fig. 1.4. Dual-phase material. Plastic modes for phase 2. sBoapf the equivalent straiué’l;),

k = 3,4. Attop: ng = 1. At bottom: ny = 8. From left to right: modes for small and large strains.
The look-up table is the same for all four snapshots.

structural problem, except for the choice of the modes whic¢hfluenced by the
type of macroscopic stress that the material is likely tdangas explained in
section 1.3.5). These two first steps can be performed omadlforhe two last
steps are the structural computation itself and a locatimatep which is essential
in the prediction of more local phenomena (such as theiifetf the structure in
fatigue). The four steps are as follows:

Step A: Prior to the resolution of any structural problem, choiced preliminary
computations have to be made following sections 1.3.5 a®\é:1.

a) Choose the plastic modgs$").

b) Compute the local fieldg(*) and the strain localization tensdrdefined
in (1.28)-(1.46) and used in the localization step D beloheT compute
the reduced localization tensar§", the influence factors)g\',d) entering
the constitutive relations (1.39), the effective stiffadsand the tensors
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Fig. 1.5. Dual-phase material. Response of the unit-cekuntacroscopic shear deformation (1.53).
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Fig. 1.6. Dual-phase material. Dependence of the creessirethe rate-sensitivity exponent, =
1/n2 of the second phase.

{p*)) entering the expression of the macroscopic stress (1.41i}.iJ
done once for all by solving linear elasticity problems oa tmit-cell
(see section 1.3.6).

Step B: Set up a time-integration scheme to integrate the conisttuelations
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(1.39) along a prescribed path of macroscopic stedi) or macroscopic stress
@ (t). This can be done using the schemes proposed in sectiosahe1.3.8.

Step C: Incorporate the NTFA model (or more specifically the timeegration
scheme of step B) into a Finite Element code. Find the hisbénpacroscopic
stressesr (X, t) and straing(X,¢) at every macroscopic material poiif in
the structure.

Step D: It is often useful to determine the local strains and sties&X , «) and
o(X,x) in the actual composite structure and not only the macrascipain
and stresg(X) anda (X)) (which are a smoother fields, being averages of the
corresponding local fields over a volume element). Tddalization steps greatly
simplified by the NTFA.

Unlike in the exact homogenized problem where the microscapd macro-
scopic variables are closely coupled, all steps can be peeid independently in
the present approach. Steps A and B have already been diddassection 1.3
and we shall concentrate the discussion on steps C and D.

1.4.2. Implementation of the NTFA in a Finite Element code (step C)

This section deals with the incorporation of the NTFA in aitéiiElement code to
solve a structural problem. After discretization of theusture into macroscopic
finite elements, the unknowns pertaining to the structimalhacroscopic) prob-
lem are denoted by overlined letteggy. w(X), o(X).... Arrays of discrete un-
knowns are denoted with bracesg. {u} denotes the array of discrete unknowns
associated with the displacement figidmatrices are denoted with brackets;.
[K] denotes the assembled stiffness matrix associated withffibetive stiffness
of the compositeL.

The structural problem is solved incrementally after tineektization of the
interval of study. All significant variables (displacemesttesses) being known at
time t, the unknowns at time+ At are determined by the equilibrium equations
and the macroscopic (or homogenized) constitutive raiatio

Equilibrium of the structure implies

T{i - Et+At} {R}t+At =0, {R}t+At = {Z/T[B] {E}t-t,-At dX} )

(1.54)
wherew is an arbitrary kinematically admissible displacementfi¢B] is the
classical FE matrix relating displacements and straias{*} = [B]{u°}, and
e denotes a finite element.
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Equation (1.54) is a nonlinear equation which can be solyedrbiterative
Newton scheme as follows.

Time stept + At, iterate I + 1:
{Aﬁ}erAt being known at each nodal point of the structure,

e Step a: Compute the stressé?}f 4+ at each integration point of each
finite element of the structure (see paragraph below).

e Step b: Check convergence. If convergence is not reached, solve the
linear system:

[K}tl-&-At {55};—& = {R}f—s-At :

o Step c:Update{Ag};, »,:

I I I
{Au}tiit = {AU}H-At + {6u}t+At :
Go to step a.

The global stiffness matri*K]erAt can be chosen among many different pos-
sibilities. One of the simplest one, which was used in thargla presented in
section 1.4.4, is the initial elastic stiffness:

K]l a = (K] = SO [(kF], where [k = / TBJ[L][B] dX. (155)

e e

No particular convergence problem was observed with tleisehtary method.
In the convergence test used in step b, the norm of the equititresidues is
checked:

I 1
m]aX{|Rj|}t+At < 6H1J.E}X{|Rj"}t+At ) (156)
where{R}/ +a, denotes the array of reactions at nodal points on the boyrdar
the structure. A typical value faris § = 1076,
Computation of {7}, A,

Consider an integration poiX of a finite element in the structure. The strain
at X reads

(B(X) e = BX){T Y nr s {8 Hn = {8}, + {AT Y, -

Then the iterative procedure of section 1.3.7, applied @i, = {E(X)}er,
delivers the stresﬁ?(X)}erAt at pointX.
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Note that the procedure of section 1.3.7 requires the kradye®f the reduced
variables at time. These variables ar@,);, r = 1,...N and(e®),, (7(?),,
(z(®),, k = 1,...M. Itis therefore necessary to store these scalar variables a
each integration point of each finite element of the strgctur

1.4.3. Localization rules

The strain and stress fiel@$X ) anda (X)) delivered by the structural analysis
are averaged fields. Their value at a macroscopic pXins the average over
the microscopic variable of the zero-th order terms’( X, z) ande’( X, z) in
the expansion of the strain and stress fields , wheries in the unit-cell. The
averaged fields do not capture the rapid oscillations (ansit fingportantly the
peaks) of the actual strain and stress fields at the micrassogle.

Mathematical analysis shows that these zero-th order terithe asymptotic
expansion (1.3) provide, after rescaling, a better appretibn ofe”(X) and
o"(X) thang(X) andea (X)) by setting:

ENX)=¢€ (X, )77() , ¢(X)=a" (X f) ) (1.57)

In linear elasticityit has been shown theoretically (Sugifgtand observed nu-
merically (Feyel and ChabocRethaté” and&” are pointwise approximations of
€" ando” and not only weak approximations (as arenda), except in a bound-
ary layer close to the boundary of the structure where thegieity conditions
can be in contradiction with the actual boundary conditigrmindary layer terms
must be added to have a good approximation up to the boundary)

In linear elasticitythe zero-th order terms”’ ando® in the expansion of the
strain and stress fields are nothing else than the local fiedaiglo- and are there-
fore related to their average by means of the localizatinedesA and B:

(X,x) = A(x) : §(X), o°(X,z)=B(z):a(X). (1.58)

Therefore a good approximation of the actual strain andstields can be ob-
tained by solvingndependentlythe structural problem to find the macroscopic
fieldsg(X) and&(X) and six unit-cell problems to find the stress-localization
tensorsA and B. Then the two results are combined by means of (1.58) to give a
good approximation of the actual strain and stress fieldsdrcbomposite structure
(with a possible exception at the boundary, as discussezgtiios 1.2.1). In other
words, the local fielde(X, ) ando (X, x) (or good approximations of them)
can be obtained byost-processinghe macroscopic strain and stress fiegfX )
anda(X). A full decoupling of scales can be achieved.
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In nonlinear problemsand in particular in presence of viscoplasticity or plas-
ticity, no simple relation such as (1.58) exists. Rigorgisgpeaking, there is no
explicit decoupling of scales. If no approximation is mathe, microscopic fields
e’(X,z) ando® (X, z) are intimately coupled to the macroscopic fiek&sX)
andea (X)) and all microscopic and macroscopic fields must be detedriméhe
course of a coupled computation. The field localization ipeoformed as a post-
processing step but as part of the structural analysis. ady underlined, the
cost of this computational procedure can be formidable.

The NTFA avoids this complication, thanks to the relatich28) and (1.40),
admittedly at the expense of the approximation (1.24).tFas shown in section
1.4.2 the structural problem is solved independently ofuhié-cell calculations
(performed once for all). Second, the microscopic fieldsde@uced from their
macroscopic counterpart by means of éxglicit and linear relationg1.28) and
(1.40):

M
e(X,z,t) = Alx) : E(X, 1) + > 0™ (x)ely (X, 1),
k=1 (1.59)

M
o(X,xt) = L(z): A(z)  8(X, 1)+ D pP(@)eyy) (X, 1).
k=1

The macroscopic state variablés(X ),5\(,’;)(X )) are outputs of the structural
computation performed with the homogenized NTFA model. fidiation (1.59)
can be used to post-process these fields and obtain an a&capmbximation of
the actual strain and stress fiekdsando” by setting:

b'e M X
(X, t)=A <n> E(X 1)+ n® (n) (X, 1),
k=1

Xt =L ()n() LA <)§> L5(X 1) + ip(k) <)n(> 5 (X, 1),
k=1
(1.60)

1.4.4. Example 2:; Fatigue of a metal-matrix composite structure

In this section the NTFA model is applied to a structural peah A plate com-
posed of a inner core (thickness 4 mm), made of a metal-metrixposite, sur-
rounded by two outer layers of pure matrix (thickness 0.5 raghgis subjected
to a cyclic four-point bending test. By symmetry only halftbé plate is consid-
ered as shown in Figure 1.1 where the unit-cell generatiagdtine of the plate by
periodicity is also shown.



Nonuniform Transformation Field Analysis 33

The matrix is elasto-viscoplastic with purely nonlineanénatic hardening
(the isotropic hardening is negligibR(p) = o,):

En,=60GPa uv,=03, o0,=20MPa n=5,
(1.61)
1
n=00y" =100MPas, H=10GPa ¢=1000MPa

The metal matrix is reinforced by long circular fibers arreti@t the nodes of a
square array. The fiber volume fractior2s%. The fibers are linear elastic with
Young modulus and Poisson ratio:

E; =300 GPa vy = 0.25. (1.62)

The plate is simply supported at poinfisand B’ and periodic (in time) dis-
placements at pointd and A’ are prescribed. Depending on the amplitude of the
displacement, the structure is likely to undergo viscaptateformations leading
to fatigue failure. There are three possible failure meidms at the microscopic
scale: fiber breakage, fiber-matrix debonding and matrlriai At high temper-
ature, when the matrix is viscoplastic as considered inghidy, matrix damage
is the dominant mechanism (Llofé Therefore a first modeling assumption is
that failure of the composite occurs by matrix failure. Tegtict matrix failure,

a model due to Skeltdh for low-cycle fatigue is used (a comparison of different
lifetime prediction methods including Skelton’s model danfound in Amiable
et al). The model is based on the energy dissipated by viscogitystiuring the
stabilized cycle:

w = / o Eypdt. (1.63)
cycle

Skelton’s model is based on the assumption (confirmed exgetally) that the
number of cycles to failuréV; for a material under cyclic thermomechanical fa-
tigue tests in the low-cycle regime is related to the energgipatedw by:

w Ny =C, (1.64)

whereC andj are material constants independent of the thermomechéoack
ing.

In the framework of these two working assumptions (failuréhe composite
governed by matrix failure, and matrix failure governed by triterion (1.64)),
one can predict the lifetime of the composite structureesttbf to a cyclic ther-
momechanical loading at the expense of resolving the strebstrain fields at the
smallest scale in order to apply the criterion (1.64). Thizcpdure is extremely
heavy and the aim of this section is to demonstrate that anratecprediction
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can be obtained by means of the NTFA at a much reduced costying only
a purely macroscopic computation, followed by a proper grosessing of the
macroscopic fields.

1.4.4.1. Meshes

The fine mesh accounting for all microstructural details heé heterogeneous
structure is shown in Figure 1.7a. The mesh of the inner combtained by
repeating the mesh of the unit-cell shown in Figure 1.7c tvtdonsists of 80
six-node triangular elements (3 Hammer points) in the filmel 528 eight-node
guadrilateral elements (4 Gauss points) in the matrix, ftmtal of 208 elements
and 577 nodes. The same unit-cell mesh was used for the elhjireliminary
computations (effective properties, plastic modes, imbeefactors, localization
fields A andn(*)). The resulting mesh for the heterogeneous structure st
26880 quadratic elements (6 or 8 nodes) and 71601 nodesinTbe mesh used
in the homogenized computations is shown in Figure 1.7b andists of only
600 eight-node quadrilateral elements and 1941 nodes.

(©

(b)

Fig. 1.7. Meshes used in the analysis of the composite platersin figure 1.1. (a): fine mesh of
the heterogeneous structure. (b): Coarse mesh used forahesiarof the homogenized structure by
means of the NTFA model. (c): mesh of the unit-cell generatipgédriodicity, the mesh of the inner
core of the plate as shown in (a).
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1.4.4.2. Loading

The boundary conditions applied to the right half of the s¥esction of the plate
are (refer to Figure 1.1 for the location of poiMs A’, B and B’):

_ h h
X1 =0: w(0,X5) =0, %(0,Xy) =0, 5 <X, < 5
. - h h
Point A : tl(Xfl, 5) = 07 EQ(XiAa 5) =,

. - h h
Point A : 4 (X{', —2) =0, wW(X{,-5) =1,

P

PointB:El(XlB,—§) =0, ﬂg(XlB,——) =0,
: - h h
Point B’ : tl(XlB,§) =0, @(XF,E) =0,
_ _ h h
X1 =1L: tl(L,Xg) == 07 tQ(L,XQ) = O7 —5 S X2 S 57

(1.65)
with h = 5mm, L = 30 mm, X{* = 10 mm, X = 25 mm. The traction on
the boundary of the structure is denotedtby o.IN. The vertical displacement
7 imposed at pointsl and A’ is periodic in time with period’. It is a piecewise
linear function of time, varying linearly betweeén, ., and —u,., as shown in
Figure 1.8. The loading frequengy= 1/7 is prescribedf = 0.1 Hz, whereas
the maximal displacement at pointsand A’ is varied@,,,,= 0.15, 0.2, 0.25,
0.35 and 0.5 mm. The loading frequency being kept constattiérdifferent
loading cases, varying the maximal displacement prestiibel and A’ results
in different velocities for these points and therefore iffedlent strain-rates in
the structure. All computations were performed with a gldbae-stepAt =

0.25
( ) 1072 s.
umax

a(t)

Umax

cycle 1 cycle 2

“Umax

Fig. 1.8. History of the prescribed displacements at paihtsd A’.



36 J.-C. Michel and P. Suquet

1.4.4.3. Plastic modes

The choice of the modes depend in general on the type of Igakat the structure
is likely to undergo. Although it is expected that the domihstress will be uni-
axial tension-compression in the horizontal directioansverse shear and even
transverse normal stress cannot be excluded. So the thredf stress (horizon-
tal, vertical and shear) will be considered in the analysisling to the choice of
the modes.

The NTFA model is implemented with five plastic modes in therimaand
the macroscopic model has therefore five internal variablBlsese modes were
obtained by subjecting the unit-cell to cyclic loading ajahree different direc-
tions of macroscopic stress:

W =e ®e + E;%)es ®es, &33=0,
22 e @es+e; e + Eé?e?, ®es, €33=0, (1.66)

) ey @ey + Eg‘?es ®es, &33=0.

The component§§i3) are a priori left free and determined posteriorias the
reactions to the constraigts; = 0. The computations at the unit-cell level are
performed in plane strains, in concordance with the plara@nstonditions which
prevail at the structural level.

The unit-cell is subjected to a cyclic loading along eachhef three stress
directions (1.66). The problem is strain-controlled (asatlided in section 1.3.8).
The macroscopic strain in the imposed stress directioeséetwees . : =@
and —&max : B, With Eax : =@ = 0.0025, i = 1,2, 3. The variation of the
macroscopic strain in time is a triangular profile similathat shown in Figure
1.8 where the prescribed strain-ratesis =¥ = 1073 s7!, i = 1,2,3. All
computations are performed with the same global time-Ateg 102 s until the
response of the material point undergoing the largest piastic dissipation (as
defined through the scalar quantity (1.63)) reaches a gtatbitycle.

For each of the three loading cases (1.66) the viscoplassingields at each
quarter of all cycles are stored. In other words, for a givedec beginning
at timet. and with period7, the viscoplastic strain fields at tintg, t. + 7 /4,

t. + 7 /2 andt. + 37 /4 are stored. This is done for all cycles until the “hottest”
point in the unit-cell reaches a stabilized cycle.

Let 0§k>(m), k=1,..., Mg), 1 = 1,2, 3 denote the whole set of fields stored
according to this procedurM}i) denotes the total number of fields stored along
the i-th loading directior=(”). The number of modes is first reduced for each
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loading direction by applying the Karhunen-&we procedure described in section
1.3.5 separately to the three family of fieg) (x), i = 1,2,3. The modes with
the highest intensity (corresponding to the highest eigleievof the correlation
matrix) are extracted for each loading case. The five modadiyfiretained for
further use in the NTFA are the shear mode (macroscopicsstrefg a pure
shear) with the highest intensity and the two modes with dsglintensity for
the two other loading cases (tension-compression in thizdmal and vertical
direction respectively). Taken separately, these modesidficient for the NTFA
to reproduce accurately the response of the unit-cell albadoading direction
from which they were extracted. Lastly, since these five reodere selected
independently, they do not necessarily meet the orthoggraindition (1.44).
Another application of the Karhunen-&we procedure is made, leading finally to
five modes satisfying all the desirable requirements. Smapof the equivalent
strain of the five modes are given in Figure 1.9.

—3.75

2.50

1.25

0.00

Fig. 1.9. Snapshots of the equivalent strpéﬁ), k =1, ..., 5 for the five orthogonal plastic modes
in the matrix. The look-up table is the same for all five snapshot

1.4.4.4. Accuracy of the NTFA model at the level of a material point

A first check of the accuracy of the NTFA model with these fivede® can be
performed at the level of a macroscopic material point by marimg the overall
response of the unit-cell as predicted by the NTFA with fidld FEM computa-
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tions. The comparison for uniaxial tension-compressiah @ure shear is shown
in Figure 1.10 and the agreement between the model and trenek results is
seen to be excellent.

80
e 30 P
60 —

20
40

20 10

IS 1% 0
-20 -10
-40
-20
-60 _— — Reference —— Reference
”””””””””””””””” NTFA B0 = ~ NTFA
-80
0003 0002 -0001 00 0001 0002 00030003 -0.002 -0.001 00 0001 0002 0003
i .0
gz gy

Fig. 1.10. Unit-cell response. Comparison between fulldfllEM computations (black solid line)
and the NTFA model with the five modes shown in Figure 1.9 (greshed line). Overall stress-strain
response of the unit cell. At left: Traction-compressiorhia horizontal direction (loading case= 1

in (1.66)). At right: Pure shear (loading caise- 2 in (1.66)).

A more local comparison can be performed by examining thesststrain
response, not of the whole unit-cell as was done in Figur@, bdtat the material
point in the unit-cell undergoing the largest dissipate@m gy (1.63) This is done
for uniaxial tension-compression in the horizontal dii@ein Figure 1.11. Again
the agreement is seen to be excellent.

Finally, it is also of interest to compare the prediction loé tmodel for the
energy dissipated along the stabilized cycle with fulldisimulations. This is
done in Figure 1.12. The model makes use of the localizatibesr(1.60) to
estimate the energy (1.63). The NTFA model captures welldb&l distribution
of the energy dissipated in the unit-cell. The energy tuutd@be maximal at the
fiber-matrix interface. The reference FEM simulation gives..= 2.134 MPa,
whereas the NTFA model predicts, .= 2.231 MPa.

1.4.4.5. Accuracy of the NTFA model at the structure level

The accuracy of the NTFA at the structure level is assessgdfircomparing the
force-displacement response and second by comparinggtrédtion of the en-
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Fig. 1.11. Unit-cell response. Comparison between fullfleEM computations (black solid line)
and the NTFA model with the five modes shown in Figure 1.9 (grejéd line). Stress-strain response
at the hottest point in the unit-cell. Tension-compresaicthé horizontal direction (loading case= 1

in (1.66)).

Fig. 1.12. Unit-cell response. Snapshot of the energlissipated in the unit-cell by viscoplasticity
along the stabilized cycle. Uniaxial horizontal tensiampression. At left: Reference full-field FEM
simulation. At right: Prediction of the NTFA model. The look-table is the same for both snapshots.

ergy dissipated along the stabilized cycle, for two différgtructural simulations:

a) The first simulation is performed with a very fine mesh of tie¢ero-
geneous structure (Figure 1.7a) and accounts for all detdiktero-
geneities. Itis considered as tleactresponse of the composite structure
with a small but non-vanishing value gf
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b) The second simulation is performed on a coarse mesh, atiegch in-
tegration point of the mesh the homogenized NTFA model.

A first element of comparison is provided in Figure 1.13 whiwe force-
displacement (the force is the sum of the reactions at peirasd A’) response
of the structure predicted by the homogenized NTFA modeay(glashed line) is
compared to the detailed simulation with full account oftileéerogeneities (black
solid line). The two graphs correspond to three differemiem of the maximal
displacementi,,,,,= 0.25 mm (at left) andi,,.,= 0.15 and 0.5 mm (at right). The
agreement is good in all cases.

30
Ormax= 0.25 I 2

20
20

10 10

£ o £ o
I I

10 -10

-20 /
-20 S 1 /
_—" — Heterogeneous | [ _— Heterogeneous
ffffffffffffffff NTFA ~ NTFA
-30
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -0.4 -0.2 0.0 0.2 0.4
0 (mm) 0 (mm)

Fig. 1.13. Four-point bending. Comparison between the bgésreous Finite Element analysis
(black solid line) and the NTFA homogenized model (grey dadimed. Global force-displacement
response. At leftimax= 0.25 mm. At righttmax= 0.15 and 0.5 mm.

A more local comparison can be made by examining the respwirie most
severely loaded unit-cell in the structure (where the gndigsipated is maximal).
The stress and strain fields for the NTFA model are obtaineddgns of relations
(1.60). The quantities used for comparison in Figure 1.#4lse stress and strain
averaged on this particular unit-cell. The agreement insthess level is rather
good, but the NTFA seems to slightly overestimate the amotilatcal strain.

Finally, as exposed in the introduction of this section,dhantity of interest
here is the lifetime of the structure which is directly rethto the energy dissi-
pated at the “hottest” point in the structure through thatreh (1.64). The use of
the NTFA model raises two questions:

1) Is the location of the hottest point correctly predictgdie model?
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Fig. 1.14. Four-point bending. Comparison between the bgéreous Finite Element analysis
(black solid line) and the NTFA homogenized model (grey dasine). Average-stress/average-strain
response of the most solicited unit-cell in the structureleftt wmax= 0.25 mm. At right:tmax=
0.15 and 0.5 mm.

2) Is the amount of energy dissipated correctly estimatetthé&ynodel?

To answer these questions, the heterogeneous Finite Elemalgsis and the
macroscopic structural simulation using the homogenizé&Amodel are run
until the structure reaches a stabilized cycle. The eneggjhted along this sta-
bilized cycle is directly available in the heterogeneousudation. In the NTFA
model it can be directly deduced from the macroscopic redyitmeans of the
localization rules (1.60). To answer the first question, tthe snapshots (full-
field computation and NTFA model) of the energyover the whole structure are
shown in Figure 1.16u,.x= 0.25 mm). This very local quantity is reasonably
well predicted by the NTFA model. A close-up of the same ep€igtribution in
the region wherev is maximal is shown in Figure 1.17. As can be seen from these
figures, the location of the hottest point is well predictgdie NTFA model. To
answer the second question, the stabilized cycles at thesh@oint in the struc-
ture are shown in Figure 1.15. Given the very local charaufténis information,
the agreement of the model's prediction with the detailethmatation can be
considered as good, the model overestimating the amoutitaif sit this hottest
point. A further pointwise comparison of the maximum,,, of the energy is
shown in Figure 1.18. Independently of maximal displacempeascribed to the
structure, the NTFA overestimates by ab@it, the maximum of the dissipated
energy (this estimation is related to the overestimatiothefstrain at the hottest
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Fig. 1.15. Four-point bending. Stress/strain respondediattest point in the structure. Comparison
between the heterogeneous Finite Element analysis (bldizk Is®) and the NTFA homogenized
model (grey dashed line). At leftimax= 0.25 mm. At right@max= 0.15 and 0.5 mm.

e

Fig. 1.16. Four-point bending. Comparison between the bgéreous Finite Element analysis and
the NTFA homogenized model. Snapshot of the enesglissipated in the structure along the stabi-
lized cycle (normalized by its maximum}imax= 0.25 mm. At top: Full heterogeneous simulation
(reference). At bottom: Prediction of the NTFA model usinglth@lization rules. The look-up table
is the same for both snapshots.

point). Therefore the lifetime of the structure will be uneitimated by a sim-
ilar amount, which is a quite reasonable error (on the safe)sgiven the fact
that no coupled multiscale computation is required by thé&ATodel but only
a postprocessing of a purely macroscopic simulation.

1.5. Conclusion

The Nonuniform Transformation Field Analysis a newly proposed microme-
chanical scheme for multiscale problems with nonlinearspha This model is
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Fig.1.17. Four-point bending. Distribution of the dissgzhenergyw (normalized by its maximum).
Stabilized cycleimax= 0.25 mm. Close-up in the most severely loaded region. At left: ifetero-
geneous simulation (reference). At right: Prediction of K&=A model using the localization rules.
The look-up table is the same for both snapshots.

l | | |

- -
-

Stabilized cycle

NTFA

Winax (Mpa)

Heterogeneous

0
01 015 02 025 03 035 04 045 05 0.55
Umax(mm)

Fig. 1.18. Influence of the maximal displacemant.x on the maximum of the dissipated energy.
Stabilized cycle. Reference heterogeneous simulatiorKlsalid line) and prediction of the NTFA
model (grey dashed line).

based on a drastic reduction of the number of variables ib@sgithe microscopic
(visco)plastic strain field performed by means of the Kagnihogve procedure
(proper orthogonal decomposition). It delivers effecthamstitutive relations for
nonlinear composites expressed in terms of a small numbiateyhal variables
which are the components of the microscopic plastic field avinite set of plas-
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tic modes.

This reduced model can be easily incorporated in a strdatoraputation. A

numerical scheme is proposed to integrate in time the honipge constitutive

relations at each integration point of the structure. Thesljotions of the model

compare well to results of large-scale computations overwhole composite

structure, accounting for all detailed information. Theesgnent is good not only
in terms of global quantities (force/displacement) bub dtsterms of local quan-

tities. For instance the lifetime of a structure subjectedytclic loading has been
predicted with a fatigue criterion based on the energy jiigsd along a cycle in
the matrix. The agreement between the model and the laajeseterogeneous
computation is very good.
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