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L.M.A./ C.N.R.S. 31 Chemin Joseph Aiguier.
13402. Marseille. Cedex 20. France.

∗michel@lma.cnrs-mrs.fr

This chapter is devoted to theNonuniform Transformation Field Analysiswhich
is a reduction technique introduced in the realm of Multiscale Problems in Non-
linear Solid Mechanics to achieve scale transition for materials exhibing a non-
linear behaviour. It is indeed well recognized that the nonlinearity introduces a
strong coupling between the problems at the different scales which, in full rigor,
remain coupled.

To avoid the computational cost of the scale coupling, reduced models have
been developed. To improve on the predictions of Transformation Field Analy-
sis where the plastic strain field is assumed to be uniform in each domain, the
authors (Michel and Suquet18) have proposed another reduced model, called the
Nonuniform Transformation Field Analysis, where the plastic strain fields follow
shape functions which are not piecewise uniform.

The model is presented for individual phases exhibiting an elasto-
viscoplastic behavior. A brief account on the reduction technique is given first.
Then the time-integration of the model at the level of a macroscopic material
point is performed by means of a numerical scheme.

This reduced model is applied to structural problems. The implementation
of the model in a Finite Element code is discussed. It is shown that the model
predicts accurately the effective behavior of nonlinear composite materials with
just a few internal variables. Another worth-noting feature of the methodis that
the local stress and strain fields can be determined simply by postprocessing the
output of the structural (macroscopic) computation performed with the model.
The flexibility and accuracy of the method are illustrated by assessing the life-
time of a plate subjected to cyclic four-point bending. Using the distribution in
the structure of the energy dissipated locally in the matrix by viscoplasticity as
fatigue indicator, the life-time prediction for the structure is seen to be in good
agreement with large scale computations taking into account all heterogeneities.
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1.1. Introduction

A common engineering practice in the analysis of composite structures is to useef-
fectiveorhomogenizedmaterial properties instead of taking into account all details
of the individual phase properties and geometrical arrangement (fiber and matrix
in the case of a fiber-reinforced composite). These effective properties are some-
times difficult to measure and this difficulty has motivated the development of
mathematicalhomogenizationtechniques which provide a rational way of deriv-
ing effectivematerial properties directly from those of the individual constituents
and from their arrangement ormicrostructure. A further interest of such predic-
tive schemes is that material or geometrical parameters canbe varied easily which
opens the way for tayloring of new materials for a given application. Although ho-
mogenization has been developed for both periodic (Sanchez-Palencia25) or ran-
dom composites (Milton20), the present study is focused on periodic composites.

Periodic homogenization oflinear properties of composites is now well-
established and the reader is referred to Bensoussanet al2 or Sanchez-Palencia25

for the general theory, and to Suquet29 or Guedes and Kikuchi10 (among others)
for computational aspects. The central theoretical resultfor linear properties is
that, provided that the scales are well separated, the linear effective properties of
a composite are completely determined by solving a finite number of unit-cell
problems. These unit-cell problems are solved once for all and their resolution
yields the effective properties of the composite. Then the analysis of a structure
comprised of such a composite material can be performed using these effective
linear properties. In summary, for linear problems, the analysis consists of two
completely independent steps, an homogenization step at the unit-cell level only,
and a standard structural analysis performed at the structure level only.

In comparison, the situation for nonlinear composites is more complicated.
For composites governed by a single nonquadratic but strictly convex potential
(elastic potential or dissipation potential) homogenization results can be estab-
lished to define an effective behavior, deriving from an effective potential (pro-
vided that the scales are well separated). However, except in very specific cases,
this effective potential cannot be found by solving a small,or even a finite, num-
ber of unit-cell problems. Toeachmacroscopic stress or strain state corresponds
a unit-cell problem which has to be solved independently of the unit-cell problem
for a different macroscopic state. Therefore, although there exists a homogenized
behavior for the composite, the rigorous analysis of a composite structure con-
sists of twocoupledcomputational problems: 1) a structural problem where the
(unknown) effective constitutive relations express the relations between the mi-
croscopic stress and strain fields solution of the second problem, 2) a unit-cell
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problem whose loading conditions are imposed by the (unknown) macroscopic
stress or strain (or their rates).

Exactly the same type of complication occurs when the composite is made
of individual constituents governed by two potentials, free-energy and dissipa-
tion potential, accounting for reversible and irreversible processes respectively.
The most common examples of such materials are elasto-viscoplastic or elasto-
plastic materials. It has long been recognized by Rice,21 Mandel14 or Suquet,28

that the exact description of the effective constitutive relations of such composites
requires the determination of all microscopic plastic strains at the unit-cell level.
For structural computations, the consequence of this theoretical result is that the
number of integration points required in the analysis is equal to the product of the
number of integration points at all scales, which is prohibitively large. With the
increase in computational power, numerical strategies forsolving these coupled
problems have been proposed (see Feyel and Chaboche7 or Terada and Kikuchi32

for instance) but are so far limited by the formidable size ofthe corresponding
problems.

In order to derive constitutive models of the effective behavior of composites
which are both useable and reasonably accurate, one has to resort to approxima-
tions. TheTransformation Field Analysis(TFA) originally proposed by Dvorak
and Benveniste5 is an elegant way of reducing the number of macroscopic inter-
nal variables by assuming themicroscopicfields of internal variables to be piece-
wise uniform. It has been extended by Fishet al8 to periodic composites using
asymptotic expansions. Assuming the eigenstrains to be uniform within each in-
dividual constituent, Fishet al8 derived an approximate scheme which they called,
for a two-phase material, the “two-point homogenization scheme”. The original
scheme and this extended scheme have been incorporated successfully in struc-
tural computations (6,9,11). However, it has been noticed (4,16,30) that the appli-
cation of the TFA to two-phase systems may require, in certain circumstances,
a subdivision of each individual phase into several (and sometimes numerous)
sub-domains to obtain a satisfactory description of the effective behavior of the
composite. The need for a finer subdivision of the phases stems from the intrinsic
nonuniformity of the plastic strain field which can be highlyheterogeneous even
within a single material phase. As a consequence, the numberof internal variables
needed to achieve a reasonable accuracy in the effective constitutive relations, al-
though finite, is prohibitively high.

In order to reproduce accurately the actual effective behavior of the composite,
it is important to capture correctly the heterogeneity of the plastic strain field. This
observation has motivated the introduction in16,18 of nonuniform transformation
fields. More specifically the (visco)plastic strain within each phase is decom-
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posed on a finite set ofplastic modeswhich can present large deviations from
uniformity. An approximate effective model for the composite can be derived
from this decomposition where the internal variables are the components of the
(visco)plastic strain field on the (visco)plastic modes. This theory is called the
Nonuniform Transformation Field Analysis(NTFA). For two-phase composites
(nonlinear matrix and elastic fibers), comparison of the classical TFA, and of the
NTFA with numerical simulations of the response of a unit-cell under monotone
or cyclic loadings, has shown the accuracy of the NTFA18 . The present study is
devoted to presentation of the NTFA and to its implementation into a macroscopic
structural Finite Element analysis. It will be shown that the NTFA not only pro-
vides accurate predictions for the effective behavior of composite materials, which
is its initial goal, but also provides an accurate approximation of the local fields
which are the quantities of interest in predicting the lifetime of structures.

1.2. Structural problems with multiple scales

1.2.1. Homogenization and two-scale expansions

Structures made of composite materials naturally involve two very different
length-scales. The largest scale (themacroscopicscale) is related to the structure
itself and is characterized by a lengthL (Figure 1.1). The second and smallest
scale (themicroscopicscale) is related to the size of the heterogeneities in the
composite material (typically the fiber scale in fiber-reinforced structures). The
typical length at this scale is denoted byd. In fiber-reinforced laminates,d is of
the order of the fiber diameter, whereasL is typically related to the thickness, or
length, of the layered structure. When the scales are “well-separated”,i.e. when
the ratioη = d/L is small (η ≪ 1), one can expect all details about the mi-
crostructure to be “smeared out”. In other words, the response of the structure at
the macro-scale can be computed by replacing the very contrasted physical prop-
erties of the individual constituents byeffective or homogenized properties(at the
macro-scale).

The aim of the mathematical theories ofhomogenizationis to determine ex-
actly or to bound these effective properties from the information available, often
partially, on the individual constituents themselves and on their arrangement (mi-
crostructure). However, if effective properties are sufficient for analysis performed
in the linear range (stiffness of a composite structure, fewfirst eigenfrequencies...)
where the structure responds macroscopically as a whole, inmany problems of en-
gineering interest it is essential to take into consideration not only averaged fields,
or effective properties, but also fulllocal fields. Damage or fracture for instance
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are dramatically dependent on the local details of the strain or stress fields. The
procedure by which the local fluctuations of fields are reconstructed from their
macroscopic average is sometimes calledlocalizationand one important objec-
tive of the present approach is to propose a simple localization rule for strain and
stress fields.
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Fig. 1.1. Composite structure (left) and unit-cell (right).

The microstructure of periodic composites is completely known as soon as the
geometry of a single unit-cellV is prescribed. For such composites, homogeniza-
tion results can be obtained heuristically by means of two-scale expansions mak-
ing use of the fact that the parameterη = d/L is small and that the geometry (and
therefore the fields) are periodic at the microscopic scale (Sanchez-Palencia24 ,
Bensoussanet al2). Rigorous mathematical techniques have been developed toes-
tablish convergence theorems which usually confirm that homogenization results
obtained by asymptotic expansions usually hold true (see for instance Tartar31).

A brief reminder (by no means exhaustive) about two-scale expansions is
given now. A functionf defined on the macroscopic structure has variations at
the two different spatial scales and can be denoted asf(X,x) to highlight this
dependence on both variables, whereX denotes the macroscopic spatial vari-
able (structural scale) whereasx denotes the microscopic variable (at the unit-cell
level). A dependence of a function on the microscopic variable x corresponds to
fast oscillations of this function at the macroscopic scale, whereas a dependence
on the macroscopic variableX corresponds to slower variations at the structural
level.

The scale ratioη is finite and different from 0 in the actual structure (even
though it is convenient mathematically to consider that it tends to 0). Therefore
all mechanical fields (stress, strain, displacement...) inthe actual structure depend
on this ratio. For instance the displacement field and the stress field in the actual
structure will be denoted byuη andση. The homogenized relations are obtained
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by taking the limit ofuη andση asη goes to 0 and by studying the set of equations
satisfied by these limits. These limits can be determined by means of two-scale
expansions. For any functionfη defined on the composite structure with finite
scale ratioη, its two-scale expansion is defined as:

fη(X) =

+∞∑

j=0

ηjf j

(
X,

X

η

)
, (1.1)

where, by virtue of the periodicity of the microstructure, all functionsfk(X,x)’s
are periodic with respect to the microscopic variablex. Therefore, for a macro-
scopic pointX, the argumentX/η of the functionsf j , denotes the location ofX
in the unit-cell at the microscopic scale.

Let us recall that, settinggη(X) = g
(

X

η

)
whereg is periodic over the unit-

cell, the limit of gη asη goes to 0 is the average ofg over the unit-cell. The
convergence is weak (only in average) and not pointwise. Consequently the limit
of fη asη goes to 0 is the average with respect tox of the zero-th order term in
the expansion (1.1):

lim
η→0

fη(X) = f
0
(X) =

1

|V |

∫

V

f0(X,x) dx.

The homogenized (or effective) relations for the compositeare therefore the re-
lations between the limits asη goes to 0 of the fieldsση andεη, or equivalently
between the averages of the zero-th order terms in the expansion of the stress field
and strain field (or strain-rate field), and additional internal variablesα, depend-
ing on the constitutive relations of the individual constituents which remain to be
specified (see section 1.2.2).

To understand how these zero-th order terms behave, one has to expand the
unknown displacement, strain and stress fieldsuη, εη andση in powers ofη, after
due account of the equations satisfied by these fields. In addition to the constitutive
equations (to be specified), these equations are the compatibility equations and the
equilibrium equations:

εη
ij =

1

2

(
duη

i

dXj
+
duη

j

dXi

)
,

dση
ij

dXj
+ Fi = 0, (1.2)

whereF denote the body forces applied to the structure. The derivation of a two-
scale functionf(X,x) which is periodic with respect tox with x = X/η is
performed according to the chain-rule:

d

dX
=

∂

∂X
+

1

η

∂

∂x
.
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Applying this derivation rule to the double-scale expansion of uη, εη andση:

uη(X) = u

(
X,

X

η

)
=

∞∑

k=0

ηkuk(X,x),

εη(X) = ε

(
X,

X

η

)
=

∞∑

k=0

ηkεk(X,x),

ση(X) = σ

(
X,

X

η

)
=

∞∑

k=0

ηkσk(X,x),





(1.3)

one obtains the expansion of the compatibility and equilibrium equations in pow-
ers ofη:

Order − 1 : εx(u0) = 0, divxσ0 = 0,

Order0 : ε0 = εX(u0) + εx(u1),

divXσ0 + divxσ1 + F = 0,

σ0, ε0 andα0 satisfy the constitutive relations.





(1.4)

Similar equations corresponding to higher-order terms in the expansions can be
obtained in the same way. The operatorsεx and divx in (1.4) stand for the defor-
mation and divergence operators with respect to the microscopic variablex (with
similar conventions for these operators with respect to themacroscopic variable
X). The constitutive equations of the phases may involve internal variables, in
which case the zero-th order terms of these internal variables also enter the rela-
tions betweenσ0 andε0.

It follows from the first equation of the first line in (1.4) that u0(X,x) =

u0(X). u0 has no dependence on the microscopic variable (no fast oscillations
in the displacement field). In addition, taking the average over the unit-cell of the
first equation at order 0 (second line in (1.4)), and taking into account the fact that
the average of the gradient of a periodic function vanishes identically, one obtains
that:

εX(u0)(X) = ε0(X), (1.5)

where an overlined letter denotes an averaged quantity:

ε0(X) =
〈
ε0(X, .)

〉
with 〈f〉 =

1

|V |

∫

V

f(x) dx.

In other words the macroscopic strainεX(u0) is the average over the unit-cell of
the zero-th order term in the expansion of the strain fieldεη.
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Unlike the displacement field, the zero-th order termsσ0 andε0 of the stress
and strain fields have microscopic fluctuations (i.e. they depend on both the
macroscopic and the microscopic variables). It follows from the second equa-
tion in the first line of (1.4) thatσ0 is self-equilibrated at the microscopic scale,
whichever body forcesF are applied to the structure at the macroscopic scale.
Taking the average over the unit-cell of the third line in (1.4), and noting that the
average of the divergence of a periodic field vanishes identically, one finds that
the average stressσ0 =

〈
σ0
〉

satisfies the macroscopic equilibrium equations:

divXσ0 + 〈F 〉 = 0. (1.6)

The two equations (1.5) and (1.6) are valid irrespective of the constitutive behav-
ior of the phases. The homogenized, or effective, constitutive relations relate the
average stressσ0 and the average strainε0. The determination of these relations
requires, in principle, a complete knowledge of the fieldsσ0 andε0 with all their
microscopic fluctuations. The dependence of these fields on the macroscopic vari-
ableX is known by solving the equilibrium problem for the structure subjected
to the imposed macroscopic loading and where the effective constitutive relations
are used for the composite material. Their dependence on themicroscopic vari-
able is known by solving the so-calledlocal problem(or unit-cell problem), where
the macroscopic variableX is only a parameter and will be omitted for clarity:

ε0(x) = ε0 + εx(u1(x)) in V whereu1 is periodic,
divxσ0 = 0 in V , σ0.n anti-periodic on∂V,

σ0, ε0 andα0 are related by the constitutive equations of the phases.



 (1.7)

The anti-periodicity condition for the tractionσ0.n on ∂V derives from the pe-
riodicity of σ0 and the anti-periodicity ofn on opposite sides of the unit-cellV .
The first line in (1.7) can be replaced by

〈
ε0
〉

= ε0 and periodicity conditions.
The constitutive relations of the phases have to be specifiedin order to further ex-
ploit these relations. For simplicity, the zero-th order termsε0 andσ0 will simply
be denoted byε andσ in the rest of the paper and the dependence on the variable
X will be omitted in the rest of this section.

1.2.2. Individual constituents

As already noted, the microstructure of periodic composites is completely spec-
ified by the knowledge of a unit-cellV , which plays, for periodic media, a role
parallel to that of arepresentative volume element(r.v.e) in homogenization the-
ories for random media. The unit-cellV is occupied byN homogeneous phases
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V (r) with characteristic functionχ(r)(x) and volume fractionc(r):

χ(r)(x) =

{
1 if x ∈ V (r),

0 otherwise,
c(r) =

〈
χ(r)

〉
.

The average of a fieldf over the unit-cellV and over each individual phaseV (r)

are denoted by overlined lettersf andf
(r)

:

f = 〈f〉 =
N∑

r=1

c(r)f
(r)
, f

(r)
= 〈f〉

r
=

1

|V (r)|

∫

V (r)

f(x) dx.

The composite structures of interest for this study may be subjected to thermo-
mechanical loadings. Therefore the validity of the constitutive relations of the
individual constituents must cover a wide range of temperature and strain-rates.
For simplicity, attention will be restricted here to isotropic materials.

We shall adopt in the sequel a viscoplastic model with nonlinear kinematic
hardening proposed by Chaboche,3 generalizing the Armstrong-Fredericks con-
stitutive relations:

σ = L : (ε − εvp),

ε̇vp =
3

2
ṗ

s − X

(σ − X)eq
, ṗ = ε̇0

[
((σ − X)eq −R)

+

σ0

]n

,

Ẋ =
2

3
H ε̇vp − ξ X ṗ, R = R(p),





(1.8)

where(.)+ denotes the Mc Cauley bracket (positive part):

A+ = A if A ≥ 0, A+ = 0 if A ≤ 0.

When the phases are isotropic, their elastic properties are characterized by a bulk
modulusk and a shear modulusG. Kinematic hardening effects are characterized
by the back-stressX whereas isotropic hardening manifests itself through the de-
pendence of the yield stressR(p) on the cumulated viscoplastic strainp defined
as ṗ = (2/3ε̇vp : ε̇vp)

1/2. To simplify notations it is useful to introduce the
viscoplastic potential:

ψ(A, R) =
σ0ε̇0
n+ 1

[
(Aeq −R)

+

σ0

]n+1

, (1.9)

by means of which the second line of the constitutive relations (1.8) can be written
as

ε̇vp =
∂ψ

∂A
(σ − X, R), ṗ = − ∂ψ

∂R
(σ − X, R). (1.10)
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The model (1.8) (and subsequent refinements which will not beconsidered here) is
commonly used in the analysis of the lifetime of metallic or polymeric structures
under repeated thermomechanical loadings (see Samroutet al23 and Amiableet
al1 among others). The material parameters of the model, namelythe elastic mod-
uli L, the rate-sensitivity exponentn, the flow-stressσ0, the isotropic hardening
functionR(p), the kinematic hardening modulusH and the spring-back coef-
ficient ξ, are strongly temperature-dependent. For simplicity, thermal loadings
and thermal strains will not be considered in the present analysis, but the strong
temperature-dependence of the material parameters will beaccounted for. For in-
stance the rate-sensitivity exponentn can vary from 5 to 20 for Aluminum alloys
when the temperature varies from 200C to 5000C. The method proposed here will
make use of certain objects, called plastic modes, identified at a given tempera-
ture but used over the whole range of temperature with the appropriate material
parameters. In other words, these plastic modes do not need to be identified at
each temperature.

1.2.3. Unit-cell problem. Effective response of heterogeneous materials

As seen in section 1.2.1, the first order terms of the stress and strain field solve a
unit-cell problem (also called thelocal problem) consisting of the equilibrium and
compatibility equations (1.7) and the constitutive relations (1.10). All material
properties are assumed to be uniform in each individual phases:

L(x) =

N∑

r=1

L(r) χ(r)(x), ψ(x,A, R) =

N∑

r=1

ψ(r)(A, R) χ(r)(x).

The overall stressσ and the overall strainε are the averages of their local
counterpartsσ andε (for simplicity the dependence on the macroscopic variable
X of all fields will be omitted):

σ = 〈σ〉, ε = 〈ε〉. (1.11)

The homogenized effective relations are the relations between the macroscopic
stressσ (and its time-derivatives) and the overall strainε (and its time-
derivatives).

To find these relations, an history of macroscopic strainε(t) is prescribed on
a time interval[0, T ] generating a time-dependent local stress fieldσ(x, t). Its
averageσ(t) is the macroscopic stress whose history is therefore related to the
history ofε(t).
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The local problem to be solved to determineσ(t) reads:

σ(x, t) = L(x) : (ε(x, t) − εvp(x, t)),

ε̇vp(x, t) =
∂ψ

∂A
(σ(x, t) − X(x, t), R(x, t)),

divxσ(x, t) = 0, 〈ε(t)〉 = ε(t), boundary conditions.





(1.12)

In view of the local periodicity of the structure, periodic boundary conditions are
assumed on the boundary of the unit-cell.

The average of the local stress fieldσ(x, t) is the macroscopic stress response
of the composite to a prescribed history of macroscopic strain ε(t). Unfortunately,
except in very specific situations (e.g. laminates), these effective relations for non-
linear materials cannot be given in closed form. They are accessible only numer-
ically, along a prescribed path. An important consequence of this observation for
the computational analysis of a composite structure, is that the macroscopic and
microscopic levels are intimately coupled. At the structural level, the macroscopic
strainε(X, t) is a function of position and a problem similar to (1.12) has to be
solved at every macroscopic pointX or, in a computational analysis, at every
macroscopic integration point. As pointed out by Fish and Shek8 , history data
has to be updated at a number of integration points equal to the product of the
numbers of integration points at all scales at each time increment.

To avoid the computational difficulty associated with the coupling of scales,
approximations are introduced to render the resolution of the local problem (1.12)
possible in closed form or amenable to simple algebra.

1.2.4. An auxiliary elasticity problem

Before introducing approximate resolution schemes for thelocal problem (1.12),
it is important to emphasize that the stress and strain fieldsare solution ofa linear
elasticity problemon the unit-cell when the fields of internal variables are known.
Indeed, assuming that the viscoplastic part of the strain isprescribed, the stress
and strain fields in the r.v.e. solve the following linear elastic problem, with ap-
propriate boundary conditions (for simplicity the time dependence of the fields is
omitted):

σ(x) = L(x) : (ε(x) − εvp(x)), divσ(x) = 0, 〈ε〉 = ε. (1.13)

Assume thatεvp(x) is known. It plays the role of a thermal strain in thermoe-
lasticity when the temperature is prescribed, or that of atransformation strainin
phase transformation problems.
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The solution of (1.13) can be expressed in terms ofεvp andε by a straight-
forward application of the superposition principle. Consider first the case where
εvp is identically0. Problem (1.13) is then a standard elasticity problem and its
solution can be expressed by means of the elastic strain-localization tensorA(x)

as:

ε(x) = A(x) : ε. (1.14)

Consider next the case whereε = 0 and εvp(x) is arbitrary. Problem (1.13)
can then be written as an elasticity problem with eigenstress (sometimes called
polarization stress)τ (x) = −L(x) : εvp(x)

σ(x) = L(x) : ε(x) + τ (x), divσ(x) = 0, 〈ε〉 = 0. (1.15)

Introducing the nonlocal elastic Green operatorΓ(x,x′) of the nonhomogeneous
elastic medium, the solution of (1.15) can be expressed as:

ε(x) = −Γ ∗ τ (x) where Γ ∗ τ (x)
def
=

1

|V |

∫

V

Γ(x,x′) : τ (x′) dx′.

(1.16)
The superposition principle applied to (1.14) and (1.16) gives that the solution of
(1.13) reads as:

ε(x) = A(x) : ε +
1

|V |

∫

V

D(x,x′) : εvp(x
′) dx′ = A(x) : ε + D ∗ εvp(x),

(1.17)
where the nonlocal operatorD(x,x′) = Γ(x,x′) : L(x′) gives the strain at
pointx created by a transformation strain at pointx′.

1.3. Nonuniform transformation field analysis (NTFA)

1.3.1. Motivation: approximate resolution of the local problem

TheTransformation Field Analysis(TFA), originally developed by Dvorak6 (see
also references herein), is based on the assumption that theviscoplastic strains are
uniformwithin each individual domainV (r):

εvp(x, t) =
N∑

r=1

ε
(r)
vp (t) χ(r)(x). (1.18)

The determination of the fieldεvp(x) is therefore reduced to the determination of

the tensorial variablesε(r)
vp , r = 1, ...N . Using this decomposition, the macro-
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scopic stress reads as:

σ =
N∑

r=1

c(r)σ(r), σ(r) = 〈σ〉
r

= L(r) : (ε(r) − ε
(r)
vp ), (1.19)

where

ε(r) = 〈ε〉r = A(r) : ε +

N∑

s=1

D(rs) : ε
(s)
vp , r = 1, ..., N, (1.20)

and

A(r) = 〈A〉r, (1.21)

D(rs) =
1

c(r)
1

|V |
1

|V |

∫

V

∫

V

χ(r)(x)Γ(x,x′) : L(x′)χ(s)(x′) dx′dx. (1.22)

The evolution ofε(r)
vp is governed by the constitutive relations of the individual

phases applied to the average stresses and thermodynamic forces on the phases.
Assuming that these constitutive relations take the form (1.8) (or (1.10)), with
material properties labelled by the phaser, the evolution equations for the gener-
alized variablesε(r)

vp read as:

ε̇
(r)

vp =
∂ψ(r)

∂A
(σ(r) − X

(r)
, R

(r)
), ṗ

(r)
= −∂ψ

(r)

∂R
(σ(r) − X

(r)
, R

(r)
),

Ẋ
(r)

=
2

3
H(r) ε̇

(r)

vp − ξ(r) X
(r)

ṗ
(r)
, R

(r)
= R(r)(p(r)).





(1.23)
When a prescribed pathε(t), t ∈ [0, T ] is prescribed in the space of macroscopic
strains, the corresponding history of the average strainsε(r)(t) and viscoplastic
strainsε(r)

vp (t) in each phase can be obtained by integrating in time the systems of
differential equations (1.19)2, (1.20) and (1.23).

A nice feature of the TFA is that its implementation is relatively easy. However
applying the TFA to two-phase systems using plastic strainswhich are uniform in
each phase yields predictions of the overall behavior of thecomposite which can
be unreasonably stiff (Suquet30 , Chabocheet al4). The origin of this excessive
stiffness is to be seeked in the intrinsic nonuniformity (inspace) of the actual
plastic strain field which can be highly heterogeneous even within a single material
phase, a feature which is disregarded by the TFA. Dvoraket al6 have obtained
better results by subdividing each phase into several subdomains. Unfortunately,
although the refinement does improve the predictions, a rather fine subdivision
of the phases is often necessary to achieve a satisfactory agreement (see Michel,
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Galvanetto and Suquet16), resulting in a prohibitive increase of the number of
internal variables entering the effective constitutive relations. These observations
have motivated the development of alternative approximateschemes (Michel and
Suquet18).

1.3.2. Nonuniform transformation fields

The aim of the NTFA is to account for the nonuniformity of the plastic strain field.
The field of anelastic strains is decomposed on a set of fields,calledplastic modes,
µ(k):

εvp(x, t) =
M∑

k=1

ε
(k)
vp (t) µ(k)(x). (1.24)

Unlike in the classical Transformation Field Analysis, themodesµ(k) arenonuni-
form (not even piecewise uniform) and depend on the spatial variablex. The idea
is that their spatial variations capture the salient features of the plastic flow in the
unit-cell. They can be determined either analytically or numerically. Their total
number,M , can be different (larger or smaller) from the numberN of phases.
Theµ(k)’s are tensorial fields whereas the corresponding variablesε

(k)
vp are scalar

variables.
Further assumptions will be made to simplify the theory:

H1: The support of each mode is entirely contained in a single material phase.
It follows from this assumption that one can attach to each mode a char-
acteristic functionχ(k), elastic moduliL(k) and a dissipation potential
ψ(k) which are those of the phase supporting this mode.M(r) will de-
note the number of modes with support in a given phaseV (r).

H2: The modes are incompressible:

tr
(
µ(k)

)
= 0. (1.25)

This assumption stems from the fact that theµ(k) are meant to represent
(visco)plastic strain fields. As a consequence of this assumption, the field
εvp given by the decomposition (1.24) is incompressible, expected, with

no restriction on the componentsε(k)
vp .

H3: The modes are orthogonal:
〈
µ(k) : µ(ℓ)

〉
= 0 when k 6= ℓ. (1.26)
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This condition is obviously met when the modes have their support in
different material phases but has to be imposed to the modes when their
support are in the same material phase.

H4: The modes are normalized:
〈
µ

(k)
eq

〉
= 1. (1.27)

1.3.3. Reduced variables and influence factors

Using the decomposition (1.24) into (1.17), one obtains that:

ε(x) = A(x) : ε +

M∑

ℓ=1

η(ℓ)(x) ε
(ℓ)
vp , (1.28)

whereη(ℓ)(x) = D ∗ µ(ℓ)(x) is the strain at pointx due to the presence of an
eigenstrainµ(ℓ)(x′) at pointx′, the average strainε being zero.

Upon multiplication of equation (1.28) byµ(k) and averaging overV , one
obtains

e(k) = a(k) : ε +

M∑

ℓ=1

D
(kℓ)
N ε

(ℓ)
vp , (1.29)

where thereduced strainse(k), the reduced localization tensorsa(k) and the in-
fluence factorsD(kℓ)

N (N stands for NTFA) are defined as

e(k) =
〈
µ(k) : ε

〉
, a(k) =

〈
µ(k) : A

〉
, D

(kℓ)
N =

〈
µ(k) : η(ℓ)

〉
. (1.30)

By analogy with the equation defining the reduced straine(k) in (1.30), one can
define:

e
(k)
vp =

〈
µ(k) : εvp

〉
=
〈
µ(k) : µ(k)

〉
ε
(k)
vp (no summation overk). (1.31)

Reduced stresses can be associated by duality to the generalized viscoplastic
strainsε(k)

vp (the notations are chosen so as to highlight the analogy between the
reduced stressτ (k) and the resolved shear stress on the k-th system in crystal
plasticity):

τ (k) =
〈
µ(k) : σ

〉
, x(k) =

〈
µ(k) : X

〉
. (1.32)
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1.3.4. Constitutive relations for the reduced variables

It remains to specify thereduced constitutive relationsrelating the reduced strains
and stresses.

A first set of equations is obtained upon substitution of the stress-strain relation
(1.12)1 into the definition (1.32)1 of the reduced stressesτ (k):

τ (k) =
〈
µ(k) : L : (ε − εvp)

〉
.

Elastic isotropy of the phases and assumptions H1 and H2 for the modesµ(k) lead
to:

τ (k) = 2G(k)(e(k) − e
(k)
vp ), (1.33)

whereG(k) denotes the shear modulus of phaser containing the support of mode
k.

The second set of equations concerns the evolution of the generalized variables
e
(k)
vp andx(k). Using the definition (1.31) ofe(k)

vp and equations (1.9) and (1.10)
for the evolution of the viscoplastic strain fieldεvp(x), one obtains that:

ė
(k)
vp =

〈
µ(k) : ε̇vp

〉
=

3

2

〈
ṗ

µ(k) : A

Aeq

〉
, A = σ − X, ṗ = − ∂ψ

∂R
(Aeq, R).

(1.34)
At this stage an additional approximation must be introduced to derive a relation
between thėe(k)

vp ’s, theτ (ℓ)’s andx(ℓ)’s. Different approximations are discussed
in Michel and Suquet18 (uncoupled and coupled models) to which the reader is
referred for further details. It follows from this work thatthe most accurate model
is the so-calledcoupled modelwhere the force acting on a mode is the quadratic
average of all the generalized forces acting on all modes contained in the same
phase. For a given phaser, the generalized forceA(r) is defined as

A(r) =




M(r)∑

k=1

∣∣∣τ (k) − x(k)
∣∣∣
2




1/2

. (1.35)

In this relationM(r) denotes the number of modes having their support in phase
r. Then the relation (1.34) is modified by replacingAeq byA(r) andR by R(r):

ė
(k)
vp =

3

2
ṗ(r) τ

(k) − x(k)

A(r)
, ṗ(r) = −∂ψ

(r)

∂R

(
A(r),R(r)

)
, R(r) = R(r)(p(r)),

(1.36)
where, again,r is the phase containing the support ofµ(k). The plastic multiplier
ṗ(r) is the same for all modes having their support in the same phase r.
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Finally, in order to obtain an evolution equation for thex(k)’s the last equation
in (1.8) is multiplied byµ(k) and averaged overV :

ẋ(k) =
〈
µ(k) : Ẋ

〉
=

2

3
H(k)ė

(k)
vp −

〈
ṗ ξ µ(k) : X

〉
. (1.37)

Then, replacing as previouslyAeq byA(r) andR byR(r) in the expression of the
plastic multiplierṗ, one obtains:

ẋ(k) =
2

3
H(k)ė

(k)
vp − ṗ(r)ξ(k)x(k). (1.38)

In summary the constitutive relations for the model are:

e(k) = a(k) : ε +

M∑

ℓ=1

D
(kℓ)
N ε

(ℓ)
vp ,

τ (k) = 2G(k)(e(k) − e
(k)
vp ),

A(r) =




M(r)∑

k=1

∣∣∣τ (k) − x(k)
∣∣∣
2




1/2

, R(r) = R(r)(p(r)),

ė
(k)
vp =

3

2
ṗ(r) τ

(k) − x(k)

A(r)
, ṗ(r) =

∂ψ(r)

∂Aeq

(
A(r),R(r)

)
,

ẋ(k) =
2

3
H(k)ė

(k)
vp − ṗ(r)ξ(k)x(k).





(1.39)

The systems of differential equations (1.39) is to be solvedat each integration
point of the structure (macroscopic level). At each time increment, knowing the
increment in macroscopic strain, the resolution of the system yields thee(k)

vp ’s from

which theε(k)
vp ’s can be obtained by inversion of (1.31).

Once the internal variablesε(k)
vp are determined, the local stress field in the

composite resulting from (1.13) and (1.28) reads as:

σ(x, t) = L(x) : A(x) : ε(t) +

M∑

k=1

ρ(k)(x)ε
(k)
vp (t),

where ρ(k)(x) = L(x) :
(
η(k)(x) − µ(k)(x)

)
.





(1.40)

The effective constitutive relations for the composite areobtained by averaging
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this stress field:

σ(t) = L̃ : ε(t) +
M∑

k=1

〈
ρ(k)

〉
ε
(k)
vp (t). (1.41)

The localization tensorsa(k), the influence factorsD(kℓ)
N , the effective stiffness̃L

and the tensors
〈
ρ(k)

〉
are computed once for all.

1.3.5. Choice of the plastic modes

The plastic modes are essential for the accuracy of the method. However there
is no universal choicefor these modes and they should rather be chosen accord-
ing to the type of loading which the structure is likely to be subjected to. This
implies that the user has ana priori idea of the triaxiality of the macroscopic
stress field, as well as of its intensity and its time history.For instance when
the structure schematically depicted in Figure 1.1 is subjected to pure bending,
the macroscopic stress is expected to have a strong uniaxialcomponent. There-
fore the plastic modes should incorporate information about the response of the
unit-cell under uniaxial tension (and compression if the response is not symmet-
ric in tension/compression). But close to points where the plate is supported, the
macroscopic stress will likely exhibit a non negligible amount of transverse shear
and transverse normal stress so that plastic modes accounting for the unit-cell re-
sponse under transverse shear and transverse tension-compression should also be
present in the set of modes. Similarly if one is interested inthe response of the
structure under monotone loading with limited amplitude, the information about
the response of the unit-cell will be limited to certain monotone loading paths in
stress space up to a limited amount of deformation.

Given the complexity of the microstructures under consideration, the plastic
modes are not determined analytically but numerically fromactual viscoplastic
strain fieldsin the unit-cell. Different unit-cell responses along the different load-
ing paths of macroscopic stresses stemming from the above qualitative analysis are
determined numerically. Second, the plastic modes are extracted from the micro-
scopic viscoplastic strain fields at a given macroscopic strain, which depends on
the range of macroscopic strains which is expected in the structural computation.
Different or additional loadings can be considered, depending on the problem and
keeping in mind that it is desirable to approach as closely aspossible the macro-
scopic loading paths expected at the different integrationpoints of the composite
structure.

One of the building assumption of the NTFA is the mode orthogonality (hy-
pothesis H3). If this prerequisite is obviously met when themodes have their
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support in different material phases, it has to be imposed tothe modes which have
their support in the same material phase. Letθ(k)(x), k = 1, ...,MT (r) be poten-
tial candidates to be plastic modes in phaser. The procedure used to obtain these
fields will be detailed in due time but they will not satisfy assumption H3 in gen-
eral. The Karhunen-Lòeve decomposition (also known as theproper orthogonal
decompositionor as theprincipal component analysis) is used to construct a set
of (visco)plastic modesµ(k)(x), k = 1, ...,MT (r) from these fieldsθ(k)(x):

µ(k)(x) =

MT (r)∑

ℓ=1

v
(k)
ℓ θ(ℓ)(x), (1.42)

wherev(k) andλ(k) are the eigenvectors and eigenvalues of the correlation matrix
g:

MT (r)∑

j=1

gij v
(k)
j = λ(k) v

(k)
i , gij =

〈
θ(i) : θ(j)

〉
. (1.43)

It is straightforward to check that the resulting modes are orthogonal (as any set
of eigenvectors of symmetric matrices):

〈
µ(k) : µ(ℓ)

〉
= λ(k) if k = ℓ, otherwise 0. (1.44)

Another advantage of the Karhunen-Loève decomposition is that the NTFA model
is almost insensitive to modes with small intensity, or in other words to modes
µ(k) corresponding to small eigenvaluesλ(k). Therefore, in practice, among the
totalMT (r) modes, it is sufficient to consider in the model the firstM(r) modes
corresponding to the largest eigenvalues (see Roussetteet al22 for more details).

1.3.6. Reduced localization tensors and influence factors.

Once the plastic modes are chosen, the localization and influence tensors can be
determined by solving only linear problems. The strain localization tensorA is
obtained by solving successively 6 linear elasticity problemsa:

σ(x) = L(x) : ε(u(x)), div (σ(x)) = 0, 〈ε〉 = ε, (1.45)

whereε is taken to be equal successively to one of the second-order tensorsi(ij)

with components

i(ij)mn =
1

2
(δimδjn + δinδjm) .

a6 problems in dimension 3, but only 3 problems in plane strain problems and 4 problems in general-
ized plane strain problems, see Michelet al15 for further details.
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Let u(ij) andσ(ij) denote the displacement field and the stress field solution of
(1.45) with ε = i(ij). The components of the fourth-order strain-localization
tensorA, of the fourth-order effective stiffness tensorL̃ and of the second-order
reduced strain-localization tensora(k) read as:

Aijmn(x) = εij(u
(mn)(x)), L̃ijmn =

〈
σ

(mn)
ij

〉
, a

(k)
ij =

〈
µ(k) : ε(u(ij))

〉
.

(1.46)
To obtain the influence factorsD(kℓ)

N and the second-order tensorsρ(k),M linear
elasticity problems have to be solved:

σ(x) = L(x) : (ε(u(x)) − µ(x))) , div (σ(x)) = 0, 〈ε〉 = 0, (1.47)

with µ = µ(k). Let u(ℓ) denote the displacement field solution of (1.47) with
µ = µ(ℓ). Note thatρ(ℓ) is the stress field solution of (1.47). Then:

D
(kℓ)
N =

〈
µ(k) : ε(u(ℓ))

〉
. (1.48)

The Finite Element Method (FEM) was used in the two examples presented in
section 1.3.9 and 1.4.4 to solve the linear elasticity problems (1.45) and (1.47).

1.3.7. Time-integration of the NTFA model. Strain control

This section is devoted to the time-integration of the NTFA model at the level of
a single macroscopic material point when the individual constituents are elasto-
viscoplastic (the reader is referred to Michel and Suquet19 for rate-independent
elasto-plasticity). The history of macroscopic strainε(t) is prescribed on the time
interval[0, T ].

The equations (1.39) to be solved form a system of nonlinear differential equa-
tions. Its time-integration requires a time-discretization and an iterative procedure
within each time-step. The time interval[0, T ] is decomposed into a finite number
of time-steps[t, t+∆t]. All reduced variables at timet are assumed to be known.
The reduced variables and the macroscopic stress at timet + ∆t are obtained as
follows.

Time stept+ ∆t, iterate i+ 1:

The reduced strains(e(k))i
t+∆t, k = 1, ..,M being known,

• Step 1: Compute the plastic multipliers(p(r))i
t+∆t, r = 1, ..., N , the

reduced stresses(τ (k))i
t+∆t and the reduced back-stresses(x(k))i

t+∆t,
k = 1, ..,M (see following paragraph).
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• Step 2: Compute the reduced viscoplastic strains(e
(k)
vp )i

t+∆t and

(ε
(k)
vp )i

t+∆t. Fork = 1, ..,M :

(e
(k)
vp )i

t+∆t = (e(k))i
t+∆t −

(τ (k))i
t+∆t

2G(k)
, (ε

(k)
vp )i

t+∆t =
(e

(k)
vp )i

t+∆t〈
µ(k) : µ(k)

〉 .

• Step 3: Compute the macroscopic stressσi
t+∆t:

σi
t+∆t = L̃ : εt+∆t +

M∑

k=1

〈
ρ(k)

〉
(ε

(k)
vp )i

t+∆t.

• step 4: Update the reduced strains(e(k))i
t+∆t. Fork = 1, ..,M :

(e(k))i+1
t+∆t = a(k) : εt+∆t +

M∑

ℓ=1

D
(kℓ)
N (ε

(ℓ)
vp )i

t+∆t.

Go to 1.

The convergence test reads:

Max

k = 1, ...,M

∣∣∣(e(k))i+1
t+∆t − (e(k))i

t+∆t

∣∣∣ < δ‖εt+∆t − εt‖.

A typical value forδ is δ = 10−6. The norm for second-order tensors used in the
right-hand-side of the convergence test is‖a‖ = maxi,j |aij | .

Step 1 in details.

In order to determine the plastic multipliers(p(r))i
t+∆t, the reduced stresses

(τ (k))i
t+∆t and the reduced back-stresses(x(k))i

t+∆t at step 1 of the above de-
scribed procedure, the last four equations (1.39) are re-written in the form of a
first-order differential equation for these three unknowns. This is done for each
phase separately. For a given phaser, the differential system to be solved in the
time interval[t, t+ ∆t] can be written as:

ẏ = f(y), (1.49)

where the initial data at timet (beginning of the time interval) is known from the
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previous time step, and where:

y = {ys}s=1,2M(r)+1, f = {fs}s=1,2M(r)+1,

{ys}s=1,M(r) = {τ (k)}k=1,M(r),

{fs}s=1,M(r) =

{
2G(k)

(
ė(k) − 3

2
ṗ(r) τ

(k) − x(k)

A(r)

)}

k=1,M(r)

,

{ys}s=M(r)+1,2M(r) = {x(k)}k=1,M(r),

{fs}s=M(r)+1,2M(r) =

{(
H(k) τ

(k) − x(k)

A(r)
− ξ(k)x(k)

)
ṗ(r)

}

k=1,M(r)

,

{ys}s=2M(r)+1 = {p(r)}, {fs}s=2M(r)+1 =
{
ṗ(r)
}
.





(1.50)
In (1.50), the generalized forceA(r) is known according to theτ (k)’s and the
x(k)’s, k = 1, ..,M(r), by (1.35), the plastic multiplieṙp(r) according toA(r) and
p(r) by (1.36), and the strain-ratesė(k), k = 1, ..,M(r), are given by:

ė(k) =
(e(k))i

t+∆t − (e(k))t

∆t
. (1.51)

A Runge-Kutta scheme of order 4 with step control is used to solve the sys-
tem (1.49-1.50). The solution in a sub-interval[t0, t1] contained in[t, t + ∆t]

is determined by a trial and error procedure. A first trial solution y(t1) is
computed with the time-stept1 − t0. Then a second solutiony′(t1) is com-
puted with two time-steps of equal size(t1 − t0)/2. The differenced =

maxs(|y′s(t1) − ys(t1)| / |y′s(t1)|) is evaluated. Ifd > δ, the solution is dis-
carded and the time-step is reduced by a factor which dependson the ratiod/δ.
If d ≤ δ, the solutiony′(t1) is retained and the next time-step is multiplied by
a factor which depends on the ratioδ/d. The sub-interval[t0, t1] is initialized as
[t, t+ ∆t]. A typical value forδ is δ = 10−4.

1.3.8. Time-integration of the NTFA model. Stress control

It is often convenient (or necessary) to imposethe directionof the macroscopic
stressσ:

σt = λ(t)Σ0, (1.52)

whereΣ0 is the imposed direction of stress. This is typically the situation which
is met in the simulation of the response of a composite to uniaxial tension.
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In rate-independent plasticity, especially in ideal plasticity, or in viscoplastic-
ity with power-law materials such as those considered in section 1.3.9, it is not
appropriate to control directly the level of stressλ(t). An arc-length method is
preferable (Michelet al15,17) and the loading is applied by imposing:

εt : Σ0 = Ė0 t.

whereĖ0 is the imposed strain-rate (in the direction of the applied stress). As
in the strain-controlled method, all reduced variables at time t are assumed to be
known. At timet + ∆t, the conditionεt+∆t : Σ

0 = Ė0 (t + ∆t) is imposed.
The macroscopic stressλ(t + ∆t) is to be determined in addition to the reduced
variables. An iterative procedure is used to impose the direction of stress (1.52)
as follows:

Time stept+ ∆t, iterate i+ 1:

The reduced strain(e(k))i
t+∆t, k = 1, ..,M being known and a macroscopic

strainεi
t+∆t meeting the conditionεi

t+∆t : Σ0 = Ė0 (t+ ∆t) being known:

• 1, 2: Perform steps 1, 2 of the procedure described in section 1.3.7.
• 3, 4: Perform steps 3 and 4 of the same algorithm usingεi

t+∆t in place
of εt+∆t.

• 5: Compute the level of macroscopic stress:

λi
t+∆t =

Σ
0 : L̃−1 : σi

t+∆t

Σ
0 : L̃−1 : Σ0 ,

and updateεi
t+∆t:

εi+1
t+∆t = εi

t+∆t + L̃−1 :
(
λi

t+∆tΣ
0 − σi

t+∆t

)
.

Go to 1.

The test used to check convergence now reads:

Max

k = 1, ...,M

∣∣∣(e(k))i+1
t+∆t − (e(k))i

t+∆t

∣∣∣ < δ
∥∥εi+1

t+∆t − εt

∥∥,

∥∥εi+1
t+∆t − εi

t+∆t

∥∥ < δ
∥∥εi+1

t+∆t

∥∥.
A typical value forδ is δ = 10−6.

1.3.9. Example 1: Effective response of a dual-phase inelastic composite

The composite materials under consideration in this section are two-phase com-
posites where the two phases play similar (interchangeable) roles in the mi-
crostructure.
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1.3.9.1. Material data

Both phases are elastoviscoplastic with linear elasticityand a power-law viscous
behavior (corresponding to the dissipation potential (1.9) with R = 0). The mate-
rial characteristics of phase 1 and 2 read respectively:

E(1) = 100 GPa, ν(1) = 0.3, σ
(1)
0 = 250 MPa, ε̇0 = 10−5 s−1, n1 = 1,

and

E(2) = 180 GPa, ν(2) = 0.3, σ
(2)
0 = 50 MPa, ε̇0 = 10−5 s−1.

The rate-sensitivity exponentn2 of phase 2 is varied from1 to 8. This variation
corresponds to the fact that the rate-sensitivity exponentvaries significantly with
temperature and our objective here is to assess the accuracyof the NTFA used
with a single set of plastic modes determined independentlyfor an intermediate
value of the rate-sensitivity exponent.

1.3.9.2. Microstructure

The two-dimensional unit-cell consists of 80 “grains” in the form of regular and
identical hexagons. The material properties of these hexagons are prescribed ran-
domly to be either that of phase 1 or that of phase 2 under the constraint that both
phases have equal volume fraction (c1 = c2 = 0.5). 25 different configurations
have been generated (same configurations as in Michelet al15). One configura-
tion has been selected among these 25 realizations, namely the one which gives,
whenn1 = n2 = 1 and when the phases are incompressible, an effective response
which the closest to the exact result for interchangeable microstructures (given by
the self-consistent scheme). This configuration is shown inFigure 1.2 (phase 1 is
the darkest phase). Each hexagon is discretized into 64 eight-node quadratic finite
elements with 4 Gauss points (5120 quadratic elements and 15649 nodes in to-
tal). The unit-cell is subjected to an in-plane simple shearloading with a uniform
strain-rateγ̇ =

√
3 ε̇0:

ε(t) =
γ(t)

2
(e1 ⊗ e2 + e2 ⊗ e1), γ(t) = γ̇ t. (1.53)

Periodic boundary conditions are applied on the boundary ofthe unit-cell. All
computations are performed with the same global time-step∆t = 2/

√
3 s.

1.3.9.3. Plastic modes

The plastic modes retained for application of the NTFA are given by the
Karhunen-Lòeve procedure from two initial fieldsθ(k)(x) in each phase corre-
sponding respectively to viscoplastic strain fields determined numerically at small
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Fig. 1.2. Covering of the unit-cell by regular hexagons of phase 1 (dark) and phase 2. Realization
used for the implementation of the NTFA.

strains (γ = 0.03%) and at large strains (γ = 12%). The procedure delivers
four orthogonal modes, two modes with support in phase 1 and two modes with
support in phase 2. Snapshots of the equivalent strainµ

(k)
eq of the four modes are

shown in Figures 1.3 and 1.4.

1.3.9.4. Discussion of the results

The macroscopic stress-strain response (σ12 versusγ) is shown in Figure 1.5 when
n2 = 1 andn2 = 8. The full-field computation which serves as the reference is
shown as a solid line. NTFA(1) refers to the NTFA model witha single modein
each phase (the viscoplastic strain field at large strains) whereas NTFA(2) refers
to the NTFA model with two modes per phase. If the model NTFA(1) predicts
accurately the asymptotic stress response at large strains, the model NTFA(2) is
required for a better agreement in the transient regime where elastic and viscous
effects are of comparable order, since, as can be seen in Figures 1.3 and 1.4, the
features of the modes for small and large strains are rather different.

The variation of the macroscopic asymptotic stress (creep stress at constant
strain-rate) is shown in Figure 1.6 as a function of the rate-sensitivity exponent
m2 = 1/n2 of phase 2. The full-field computations are shown as stars. The solid
line corresponds to the NTFA model implemented with plasticmodes which vary
with n2 (viscoplastic strain fields are computed for each value ofn2 and the corre-
sponding plastic modes are deduced by means of the Karhunen-Loève procedure).
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Fig. 1.3. Dual-phase material. Plastic modes for phase 1. Snapshot of the equivalent strainµ(k)
eq ,

k = 1, 2. At top: n2 = 1. At bottom:n2 = 8. From left to right: modes for small and large strains.
The look-up table is the same for all four snapshots.

The results shown as NTFA(n2 = n) were obtained by considering a single set
of modes identified once for all withn2 = n. NTFA(n2 = 1) overestimates the
macroscopic creep stress of the composite for large values of n2. The snapshot
of the modes forn2 = 8 shows a rather significant amount of strain localization
in phase 2. NTFA(n2 = 8) overestimates the creep stress for small nonlinearity
(which is consistent with the property of minimization of the dissipation poten-
tial). NTFA(n2 = 3) is a reasonable compromise.

1.4. Application of the NTFA to structural problems

1.4.1. Implementation of the NTFA method

The implementation of the NTFA method consists of four different steps. The
first two steps are “material steps” in the sense that they areconcerned only with
computations performed at the unit-cell level, independently of any macroscopic
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Fig. 1.4. Dual-phase material. Plastic modes for phase 2. Snapshot of the equivalent strainµ(k)
eq ,

k = 3, 4. At top: n2 = 1. At bottom:n2 = 8. From left to right: modes for small and large strains.
The look-up table is the same for all four snapshots.

structural problem, except for the choice of the modes whichis influenced by the
type of macroscopic stress that the material is likely to sustain (as explained in
section 1.3.5). These two first steps can be performed once for all. The two last
steps are the structural computation itself and a localization step which is essential
in the prediction of more local phenomena (such as the lifetime of the structure in
fatigue). The four steps are as follows:

Step A: Prior to the resolution of any structural problem, choices and preliminary
computations have to be made following sections 1.3.5 and 1.3.6:

a) Choose the plastic modesµ(k).
b) Compute the local fieldsη(k) and the strain localization tensorA defined

in (1.28)-(1.46) and used in the localization step D below. Then compute
the reduced localization tensorsa(k), the influence factorsD(kℓ)

N entering
the constitutive relations (1.39), the effective stiffness L̃ and the tensors
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Fig. 1.5. Dual-phase material. Response of the unit-cell under macroscopic shear deformation (1.53).
At left: n2 = 1. At right: n2 = 8.

0.2 0.4 0.6 0.8 1.0
m2

1.5

1.75

2.0

2.25

2.5

2.75

0ho
m

/
0(2

)

NTFA(n2)
Reference

NTFA(n2=8)
NTFA(n2=3)

NTFA(n2=1)

Fig. 1.6. Dual-phase material. Dependence of the creep stress on the rate-sensitivity exponentm2 =

1/n2 of the second phase.
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〉
entering the expression of the macroscopic stress (1.41). This is

done once for all by solving linear elasticity problems on the unit-cell
(see section 1.3.6).

Step B: Set up a time-integration scheme to integrate the constitutive relations
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(1.39) along a prescribed path of macroscopic strainε(t) or macroscopic stress
σ(t). This can be done using the schemes proposed in sections 1.3.7 and 1.3.8.

Step C: Incorporate the NTFA model (or more specifically the time-integration
scheme of step B) into a Finite Element code. Find the historyof macroscopic
stressesσ(X, t) and strainsε(X, t) at every macroscopic material pointX in
the structure.

Step D: It is often useful to determine the local strains and stresses ε(X,x) and
σ(X,x) in the actual composite structure and not only the macroscopic strain
and stressε(X) andσ(X) (which are a smoother fields, being averages of the
corresponding local fields over a volume element). Thislocalization stepis greatly
simplified by the NTFA.

Unlike in the exact homogenized problem where the microscopic and macro-
scopic variables are closely coupled, all steps can be performed independently in
the present approach. Steps A and B have already been discussed in section 1.3
and we shall concentrate the discussion on steps C and D.

1.4.2. Implementation of the NTFA in a Finite Element code (step C)

This section deals with the incorporation of the NTFA in a Finite Element code to
solve a structural problem. After discretization of the structure into macroscopic
finite elements, the unknowns pertaining to the structural (i.e. macroscopic) prob-
lem are denoted by overlined letterse.g. u(X), σ(X).... Arrays of discrete un-
knowns are denoted with braces,e.g.{u} denotes the array of discrete unknowns
associated with the displacement fieldu, matrices are denoted with brackets,e.g.
[K] denotes the assembled stiffness matrix associated with theeffective stiffness
of the compositẽL.

The structural problem is solved incrementally after time discretization of the
interval of study. All significant variables (displacement, stresses) being known at
time t, the unknowns at timet+ ∆t are determined by the equilibrium equations
and the macroscopic (or homogenized) constitutive relations.

Equilibrium of the structure implies

T{v − ut+∆t} {R}t+∆t = 0, {R}t+∆t = −
{
∑

e

∫

e

T[B] {σ}t+∆t dX

}
,

(1.54)
wherev is an arbitrary kinematically admissible displacement field, [B] is the
classical FE matrix relating displacements and strains,i.e. {εe} = [B]{ue}, and
e denotes a finite element.
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Equation (1.54) is a nonlinear equation which can be solved by an iterative
Newton scheme as follows.

Time stept+ ∆t, iterate I + 1:

{∆u}I
t+∆t being known at each nodal point of the structure,

• Step a: Compute the stresses{σ}I
t+∆t at each integration point of each

finite element of the structure (see paragraph below).
• Step b: Check convergence. If convergence is not reached, solve the

linear system:

[K]
I
t+∆t {δu}I

t+∆t = {R}I
t+∆t .

• Step c: Update{∆u}I
t+∆t:

{∆u}I+1
t+∆t = {∆u}I

t+∆t + {δu}I
t+∆t .

Go to step a.

The global stiffness matrix[K]
I
t+∆t can be chosen among many different pos-

sibilities. One of the simplest one, which was used in the example presented in
section 1.4.4, is the initial elastic stiffness:

[K]
I
t+∆t = [K] =

∑

e

[ke] , where [ke] =

∫

e

T[B][L̃] [B] dX. (1.55)

No particular convergence problem was observed with this elementary method.
In the convergence test used in step b, the norm of the equilibrium residues is

checked:

max
j

{|Rj |}I
t+∆t < δmax

j′

{|Rj′ |}I
t+∆t , (1.56)

where{R}I
t+∆t denotes the array of reactions at nodal points on the boundary of

the structure. A typical value forδ is δ = 10−6.

Computation of {σ}I
t+∆t

Consider an integration pointX of a finite elemente in the structure. The strain
atX reads

{ε(X)}I
t+∆t = [B(X)] {ue}I

t+∆t , {ue}I
t+∆t = {ue}t + {∆ue}I

t+δt .

Then the iterative procedure of section 1.3.7, applied withεt+∆t = {ε(X)}I
t+∆t,

delivers the stress{σ(X)}I
t+∆t at pointX.
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Note that the procedure of section 1.3.7 requires the knowledge of the reduced
variables at timet. These variables are(pr)t, r = 1, ...N and(e(k))t, (τ (k))t,
(x(k))t, k = 1, ...M . It is therefore necessary to store these scalar variables at
each integration point of each finite element of the structure.

1.4.3. Localization rules

The strain and stress fieldsε(X) andσ(X) delivered by the structural analysis
are averaged fields. Their value at a macroscopic pointX is the average over
the microscopic variablex of the zero-th order termsε0(X,x) andσ0(X,x) in
the expansion of the strain and stress fields , whenx varies in the unit-cell. The
averaged fields do not capture the rapid oscillations (and most importantly the
peaks) of the actual strain and stress fields at the microscopic scale.

Mathematical analysis shows that these zero-th order termsin the asymptotic
expansion (1.3) provide, after rescaling, a better approximation of εη(X) and
ση(X) thanε(X) andσ(X) by setting:

ε̃η(X) = ε0

(
X,

X

η

)
, σ̃η(X) = σ0

(
X,

X

η

)
. (1.57)

In linear elasticityit has been shown theoretically (Suquet27) and observed nu-
merically (Feyel and Chaboche7) thatε̃η andσ̃η are pointwise approximations of
εη andση and not only weak approximations (as areε andσ), except in a bound-
ary layer close to the boundary of the structure where the periodicity conditions
can be in contradiction with the actual boundary conditions(boundary layer terms
must be added to have a good approximation up to the boundary).

In linear elasticitythe zero-th order termsε0 andσ0 in the expansion of the
strain and stress fields are nothing else than the local fieldsε andσ and are there-
fore related to their average by means of the localization tensorsA andB:

ε0(X,x) = A(x) : ε(X), σ0(X,x) = B(x) : σ(X). (1.58)

Therefore a good approximation of the actual strain and stress fields can be ob-
tained by solvingindependentlythe structural problem to find the macroscopic
fields ε(X) andσ(X) and six unit-cell problems to find the stress-localization
tensorsA andB. Then the two results are combined by means of (1.58) to give a
good approximation of the actual strain and stress fields in the composite structure
(with a possible exception at the boundary, as discussed in section 1.2.1). In other
words, the local fieldsε(X,x) andσ(X,x) (or good approximations of them)
can be obtained bypost-processingthe macroscopic strain and stress fieldsε(X)

andσ(X). A full decoupling of scales can be achieved.
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In nonlinear problems,and in particular in presence of viscoplasticity or plas-
ticity, no simple relation such as (1.58) exists. Rigorously speaking, there is no
explicit decoupling of scales. If no approximation is made,the microscopic fields
ε0(X,x) andσ0(X,x) are intimately coupled to the macroscopic fieldsε(X)

andσ(X) and all microscopic and macroscopic fields must be determined in the
course of a coupled computation. The field localization is not performed as a post-
processing step but as part of the structural analysis. As already underlined, the
cost of this computational procedure can be formidable.

The NTFA avoids this complication, thanks to the relations (1.28) and (1.40),
admittedly at the expense of the approximation (1.24). First, as shown in section
1.4.2 the structural problem is solved independently of theunit-cell calculations
(performed once for all). Second, the microscopic fields arededuced from their
macroscopic counterpart by means of theexplicit and linear relations(1.28) and
(1.40):

ε(X,x, t) = A(x) : ε(X, t) +
M∑

k=1

η(k)(x)ε
(k)
vp (X, t),

σ(X,x, t) = L(x) : A(x) : ε(X, t) +
M∑

k=1

ρ(k)(x)ε
(k)
vp (X, t).





(1.59)

The macroscopic state variables(ε(X), ε
(k)
vp (X)) are outputs of the structural

computation performed with the homogenized NTFA model. Therelation (1.59)
can be used to post-process these fields and obtain an accurate approximation of
the actual strain and stress fieldsεη andση by setting:

ε̃η(X, t) = A

(
X

η

)
: ε(X, t) +

M∑

k=1

η(k)

(
X

η

)
ε
(k)
vp (X, t),

σ̃η(X, t) = L

(
X

η

)
: A

(
X

η

)
: ε(X, t) +

M∑

k=1

ρ(k)

(
X

η

)
ε
(k)
vp (X, t).





(1.60)

1.4.4. Example 2: Fatigue of a metal-matrix composite structure

In this section the NTFA model is applied to a structural problem. A plate com-
posed of a inner core (thickness 4 mm), made of a metal-matrixcomposite, sur-
rounded by two outer layers of pure matrix (thickness 0.5 mm each) is subjected
to a cyclic four-point bending test. By symmetry only half ofthe plate is consid-
ered as shown in Figure 1.1 where the unit-cell generating the core of the plate by
periodicity is also shown.
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The matrix is elasto-viscoplastic with purely nonlinear kinematic hardening
(the isotropic hardening is negligibleR(p) = σy):

Em = 60 GPa, νm = 0.3, σy = 20 MPa, n = 5,

η = σ0ε̇
−

1
n

0 = 100 MPa s
1
n , H = 10 GPa, ξ = 1000 MPa.





(1.61)

The metal matrix is reinforced by long circular fibers arranged at the nodes of a
square array. The fiber volume fraction is25%. The fibers are linear elastic with
Young modulus and Poisson ratio:

Ef = 300 GPa, νf = 0.25. (1.62)

The plate is simply supported at pointsB andB′ and periodic (in time) dis-
placements at pointsA andA′ are prescribed. Depending on the amplitude of the
displacement, the structure is likely to undergo viscoplastic deformations leading
to fatigue failure. There are three possible failure mechanisms at the microscopic
scale: fiber breakage, fiber-matrix debonding and matrix failure. At high temper-
ature, when the matrix is viscoplastic as considered in thisstudy, matrix damage
is the dominant mechanism (Llorca13). Therefore a first modeling assumption is
that failure of the composite occurs by matrix failure. To predict matrix failure,
a model due to Skelton26 for low-cycle fatigue is used (a comparison of different
lifetime prediction methods including Skelton’s model canbe found in Amiable
et al1). The model is based on the energy dissipated by viscoplasticity during the
stabilized cycle:

w =

∫

cycle

σ : ε̇vp dt. (1.63)

Skelton’s model is based on the assumption (confirmed experimentally) that the
number of cycles to failureNf for a material under cyclic thermomechanical fa-
tigue tests in the low-cycle regime is related to the energy dissipatedw by:

w Nβ
f = C, (1.64)

whereC andβ are material constants independent of the thermomechanical load-
ing.

In the framework of these two working assumptions (failure of the composite
governed by matrix failure, and matrix failure governed by the criterion (1.64)),
one can predict the lifetime of the composite structure subjected to a cyclic ther-
momechanical loading at the expense of resolving the stressand strain fields at the
smallest scale in order to apply the criterion (1.64). This procedure is extremely
heavy and the aim of this section is to demonstrate that an accurate prediction
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can be obtained by means of the NTFA at a much reduced cost, involving only
a purely macroscopic computation, followed by a proper postprocessing of the
macroscopic fields.

1.4.4.1. Meshes

The fine mesh accounting for all microstructural details of the heterogeneous
structure is shown in Figure 1.7a. The mesh of the inner core is obtained by
repeating the mesh of the unit-cell shown in Figure 1.7c which consists of 80
six-node triangular elements (3 Hammer points) in the fiber and 128 eight-node
quadrilateral elements (4 Gauss points) in the matrix, for atotal of 208 elements
and 577 nodes. The same unit-cell mesh was used for the unit-cell preliminary
computations (effective properties, plastic modes, influence factors, localization
fieldsA andη(k)). The resulting mesh for the heterogeneous structure consists of
26880 quadratic elements (6 or 8 nodes) and 71601 nodes in total. The mesh used
in the homogenized computations is shown in Figure 1.7b and consists of only
600 eight-node quadrilateral elements and 1941 nodes.

(a)

(b)

(c)

Fig. 1.7. Meshes used in the analysis of the composite plate shown in figure 1.1. (a): fine mesh of
the heterogeneous structure. (b): Coarse mesh used for the analysis of the homogenized structure by
means of the NTFA model. (c): mesh of the unit-cell generating, by periodicity, the mesh of the inner
core of the plate as shown in (a).
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1.4.4.2. Loading

The boundary conditions applied to the right half of the cross-section of the plate
are (refer to Figure 1.1 for the location of pointsA,A′,B andB′):

X1 = 0 : u1(0,X2) = 0, t2(0,X2) = 0, −h
2
≤ X2 ≤ h

2
,

Point A : t1(X
A
1 ,
h

2
) = 0, u2(X

A
1 ,
h

2
) = u,

Point A’ : t1(X
A
1 ,−

h

2
) = 0, u2(X

A
1 ,−

h

2
) = u,

Point B : t1(X
B
1 ,−

h

2
) = 0, u2(X

B
1 ,−

h

2)
= 0,

Point B’ : t1(X
B
1 ,

h

2
) = 0, u2(X

B
1 ,

h

2
) = 0,

X1 = L : t1(L,X2) = 0, t2(L,X2) = 0, −h
2
≤ X2 ≤ h

2
,




(1.65)

with h = 5 mm, L = 30 mm, XA
1 = 10 mm, XB

1 = 25 mm. The traction on
the boundary of the structure is denoted byt = σ.N . The vertical displacement
u imposed at pointsA andA′ is periodic in time with periodT . It is a piecewise
linear function of time, varying linearly betweenumax and−umax as shown in
Figure 1.8. The loading frequencyf = 1/T is prescribedf = 0.1 Hz, whereas
the maximal displacement at pointsA andA′ is variedumax= 0.15, 0.2, 0.25,
0.35 and 0.5 mm. The loading frequency being kept constant inthe different
loading cases, varying the maximal displacement prescribed toA andA′ results
in different velocities for these points and therefore in different strain-rates in
the structure. All computations were performed with a global time-step∆t =(

0.25

umax

)
10−2 s.

t

u(t)

umax

-umax

cycle 1 cycle 2

T T

Fig. 1.8. History of the prescribed displacements at pointsA andA′.
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1.4.4.3. Plastic modes

The choice of the modes depend in general on the type of loading that the structure
is likely to undergo. Although it is expected that the dominant stress will be uni-
axial tension-compression in the horizontal direction, transverse shear and even
transverse normal stress cannot be excluded. So the three types of stress (horizon-
tal, vertical and shear) will be considered in the analysis leading to the choice of
the modes.

The NTFA model is implemented with five plastic modes in the matrix, and
the macroscopic model has therefore five internal variables. These modes were
obtained by subjecting the unit-cell to cyclic loading along three different direc-
tions of macroscopic stress:

Σ
(1) = e1 ⊗ e1 + Σ

(1)
33 e3 ⊗ e3, ε33 = 0,

Σ
(2) = e1 ⊗ e2 + e2 ⊗ e1 + Σ

(2)
33 e3 ⊗ e3, ε33 = 0,

Σ
(3) = e2 ⊗ e2 + Σ

(3)
33 e3 ⊗ e3, ε33 = 0.





(1.66)

The componentsΣ(i)
33 are a priori left free and determineda posteriori as the

reactions to the constraintε33 = 0. The computations at the unit-cell level are
performed in plane strains, in concordance with the plane strain conditions which
prevail at the structural level.

The unit-cell is subjected to a cyclic loading along each of the three stress
directions (1.66). The problem is strain-controlled (as described in section 1.3.8).
The macroscopic strain in the imposed stress direction varies betweenεmax : Σ(i)

and−εmax : Σ
(i), with εmax : Σ

(i) = 0.0025, i = 1, 2, 3. The variation of the
macroscopic strain in time is a triangular profile similar tothat shown in Figure
1.8 where the prescribed strain-rate isε̇ : Σ

(i) = 10−3 s−1, i = 1, 2, 3. All
computations are performed with the same global time-step∆t = 10−2 s until the
response of the material point undergoing the largest viscoplastic dissipation (as
defined through the scalar quantity (1.63)) reaches a stabilized cycle.

For each of the three loading cases (1.66) the viscoplastic strain fields at each
quarter of all cycles are stored. In other words, for a given cycle c beginning
at timetc and with periodT , the viscoplastic strain fields at timetc, tc + T /4,
tc + T /2 andtc + 3T /4 are stored. This is done for all cycles until the “hottest”
point in the unit-cell reaches a stabilized cycle.

Let θ
(k)
i (x), k = 1, ...,M

(i)
T , i = 1, 2, 3 denote the whole set of fields stored

according to this procedure.M (i)
T denotes the total number of fields stored along

the i-th loading directionΣ(i). The number of modes is first reduced for each
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loading direction by applying the Karhunen- Loève procedure described in section
1.3.5 separately to the three family of fieldsθ

(k)
i (x), i = 1, 2, 3. The modes with

the highest intensity (corresponding to the highest eigenvalue of the correlation
matrix) are extracted for each loading case. The five modes finally retained for
further use in the NTFA are the shear mode (macroscopic stress being a pure
shear) with the highest intensity and the two modes with highest intensity for
the two other loading cases (tension-compression in the horizontal and vertical
direction respectively). Taken separately, these modes are sufficient for the NTFA
to reproduce accurately the response of the unit-cell alongthe loading direction
from which they were extracted. Lastly, since these five modes were selected
independently, they do not necessarily meet the orthogonality condition (1.44).
Another application of the Karhunen-Loève procedure is made, leading finally to
five modes satisfying all the desirable requirements. Snapshots of the equivalent
strain of the five modes are given in Figure 1.9.

Fig. 1.9. Snapshots of the equivalent strainµ
(k)
eq , k = 1, ..., 5 for the five orthogonal plastic modes

in the matrix. The look-up table is the same for all five snapshots.

1.4.4.4. Accuracy of the NTFA model at the level of a material point

A first check of the accuracy of the NTFA model with these five modes can be
performed at the level of a macroscopic material point by comparing the overall
response of the unit-cell as predicted by the NTFA with full-field FEM computa-
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tions. The comparison for uniaxial tension-compression and pure shear is shown
in Figure 1.10 and the agreement between the model and the reference results is
seen to be excellent.
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Fig. 1.10. Unit-cell response. Comparison between full-field FEM computations (black solid line)
and the NTFA model with the five modes shown in Figure 1.9 (grey dashed line). Overall stress-strain
response of the unit cell. At left: Traction-compression in the horizontal direction (loading casei = 1

in (1.66)). At right: Pure shear (loading casei = 2 in (1.66)).

A more local comparison can be performed by examining the stress-strain
response, not of the whole unit-cell as was done in Figure 1.10, butat the material
point in the unit-cell undergoing the largest dissipated energy (1.63). This is done
for uniaxial tension-compression in the horizontal direction in Figure 1.11. Again
the agreement is seen to be excellent.

Finally, it is also of interest to compare the prediction of the model for the
energy dissipated along the stabilized cycle with full-field simulations. This is
done in Figure 1.12. The model makes use of the localization rules (1.60) to
estimate the energy (1.63). The NTFA model captures well thelocal distribution
of the energy dissipated in the unit-cell. The energy turns out to be maximal at the
fiber-matrix interface. The reference FEM simulation giveswmax= 2.134 MPa,
whereas the NTFA model predictswmax= 2.231 MPa.

1.4.4.5. Accuracy of the NTFA model at the structure level

The accuracy of the NTFA at the structure level is assessed first by comparing the
force-displacement response and second by comparing the distribution of the en-
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Fig. 1.11. Unit-cell response. Comparison between full-field FEM computations (black solid line)
and the NTFA model with the five modes shown in Figure 1.9 (grey dashed line). Stress-strain response
at the hottest point in the unit-cell. Tension-compression in the horizontal direction (loading casei = 1

in (1.66)).

Fig. 1.12. Unit-cell response. Snapshot of the energyw dissipated in the unit-cell by viscoplasticity
along the stabilized cycle. Uniaxial horizontal tension-compression. At left: Reference full-field FEM
simulation. At right: Prediction of the NTFA model. The look-up table is the same for both snapshots.

ergy dissipated along the stabilized cycle, for two different structural simulations:

a) The first simulation is performed with a very fine mesh of thehetero-
geneous structure (Figure 1.7a) and accounts for all detailed hetero-
geneities. It is considered as theexactresponse of the composite structure
with a small but non-vanishing value ofη.
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b) The second simulation is performed on a coarse mesh, usingat each in-
tegration point of the mesh the homogenized NTFA model.

A first element of comparison is provided in Figure 1.13 wherethe force-
displacement (the force is the sum of the reactions at pointsA andA′) response
of the structure predicted by the homogenized NTFA model (grey dashed line) is
compared to the detailed simulation with full account of theheterogeneities (black
solid line). The two graphs correspond to three different values of the maximal
displacementumax= 0.25 mm (at left) andumax= 0.15 and 0.5 mm (at right). The
agreement is good in all cases.
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Fig. 1.13. Four-point bending. Comparison between the heterogeneous Finite Element analysis
(black solid line) and the NTFA homogenized model (grey dashedline). Global force-displacement
response. At left:umax= 0.25 mm. At right:umax= 0.15 and 0.5 mm.

A more local comparison can be made by examining the responseof the most
severely loaded unit-cell in the structure (where the energy dissipated is maximal).
The stress and strain fields for the NTFA model are obtained bymeans of relations
(1.60). The quantities used for comparison in Figure 1.14 are the stress and strain
averaged on this particular unit-cell. The agreement in thestress level is rather
good, but the NTFA seems to slightly overestimate the amountof local strain.

Finally, as exposed in the introduction of this section, thequantity of interest
here is the lifetime of the structure which is directly related to the energy dissi-
pated at the “hottest” point in the structure through the relation (1.64). The use of
the NTFA model raises two questions:

1) Is the location of the hottest point correctly predicted by the model?
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Fig. 1.14. Four-point bending. Comparison between the heterogeneous Finite Element analysis
(black solid line) and the NTFA homogenized model (grey dashedline). Average-stress/average-strain
response of the most solicited unit-cell in the structure. Atleft: umax= 0.25 mm. At right:umax=
0.15 and 0.5 mm.

2) Is the amount of energy dissipated correctly estimated bythe model?

To answer these questions, the heterogeneous Finite Element analysis and the
macroscopic structural simulation using the homogenized NTFA model are run
until the structure reaches a stabilized cycle. The energy dissipated along this sta-
bilized cycle is directly available in the heterogeneous simulation. In the NTFA
model it can be directly deduced from the macroscopic results by means of the
localization rules (1.60). To answer the first question, thetwo snapshots (full-
field computation and NTFA model) of the energyw over the whole structure are
shown in Figure 1.16 (umax= 0.25 mm). This very local quantity is reasonably
well predicted by the NTFA model. A close-up of the same energy distribution in
the region wherew is maximal is shown in Figure 1.17. As can be seen from these
figures, the location of the hottest point is well predicted by the NTFA model. To
answer the second question, the stabilized cycles at the hottest point in the struc-
ture are shown in Figure 1.15. Given the very local characterof this information,
the agreement of the model’s prediction with the detailed computation can be
considered as good, the model overestimating the amount of strain at this hottest
point. A further pointwise comparison of the maximumwmax of the energy is
shown in Figure 1.18. Independently of maximal displacement prescribed to the
structure, the NTFA overestimates by about25% the maximum of the dissipated
energy (this estimation is related to the overestimation ofthe strain at the hottest
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Fig. 1.15. Four-point bending. Stress/strain response at the hottest point in the structure. Comparison
between the heterogeneous Finite Element analysis (black solid line) and the NTFA homogenized
model (grey dashed line). At left:umax= 0.25 mm. At right:umax= 0.15 and 0.5 mm.

Fig. 1.16. Four-point bending. Comparison between the heterogeneous Finite Element analysis and
the NTFA homogenized model. Snapshot of the energyw dissipated in the structure along the stabi-
lized cycle (normalized by its maximum).umax= 0.25 mm. At top: Full heterogeneous simulation
(reference). At bottom: Prediction of the NTFA model using thelocalization rules. The look-up table
is the same for both snapshots.

point). Therefore the lifetime of the structure will be underestimated by a sim-
ilar amount, which is a quite reasonable error (on the safe side), given the fact
that no coupled multiscale computation is required by the NTFA model but only
a postprocessing of a purely macroscopic simulation.

1.5. Conclusion

The Nonuniform Transformation Field Analysisis a newly proposed microme-
chanical scheme for multiscale problems with nonlinear phases. This model is
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Fig. 1.17. Four-point bending. Distribution of the dissipated energyw (normalized by its maximum).
Stabilized cycle.umax= 0.25 mm. Close-up in the most severely loaded region. At left: Full hetero-
geneous simulation (reference). At right: Prediction of theNTFA model using the localization rules.
The look-up table is the same for both snapshots.
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Fig. 1.18. Influence of the maximal displacementumax on the maximum of the dissipated energy.
Stabilized cycle. Reference heterogeneous simulation (black solid line) and prediction of the NTFA
model (grey dashed line).

based on a drastic reduction of the number of variables describing the microscopic
(visco)plastic strain field performed by means of the Karhunen-Lòeve procedure
(proper orthogonal decomposition). It delivers effectiveconstitutive relations for
nonlinear composites expressed in terms of a small number ofinternal variables
which are the components of the microscopic plastic field over a finite set of plas-
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tic modes.
This reduced model can be easily incorporated in a structural computation. A

numerical scheme is proposed to integrate in time the homogenized constitutive
relations at each integration point of the structure. The predictions of the model
compare well to results of large-scale computations over the whole composite
structure, accounting for all detailed information. The agreement is good not only
in terms of global quantities (force/displacement) but also in terms of local quan-
tities. For instance the lifetime of a structure subjected to cyclic loading has been
predicted with a fatigue criterion based on the energy dissipated along a cycle in
the matrix. The agreement between the model and the large-scale heterogeneous
computation is very good.
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Springer-Verlag, Wien, 1972.

15. J.C. Michel, H. Moulinec, and P. Suquet. Effective properties of composite materials
with periodic microstructure: a computational approach.Comp. Meth. Appl. Mech.
Engng., 172:109–143, 1999.

16. J.C. Michel, U. Galvanetto, and P. Suquet. Constitutive relations involving internal
variables based on a micromechanical analysis. In G.A. Maugin, R. Drouot, and
F. Sidoroff, editors,Continuum Thermomechanics: The Art and Science of Modelling
Material Behaviour, pages 301–312. Klüwer Acad. Pub., 2000.
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editors,Computing methods in applied sciences and engineering, volume704of Lec-
ture Notes in Mathematics, pages 364–373. Springer Verlag, Berlin, 1977.

32. K. Terada and N. Kikuchi. A class of general algorithms for multi-scale analyses of
heterogeneous media.Comp. Meth. Appl. Mech. Engng, 190:5427–5464, 2001.


