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Introduction

Consider the continuous alloy type (or Anderson) random Schrödinger operator:

(1.1)

H ω = -∆ + V 0 + V ω where V ω (x) = γ∈Z d ω γ V (x -γ) on R d , d ≥ 1,
where

• V 0 is a periodic potential;
• V is a compactly supported single site potential;

• (ω γ ) γ∈Z d are independent identically distributed random coupling constants.

Let Σ be the almost sure spectrum of H ω and E -= inf Σ. When V has a fixed sign, it is well known that the E -= inf(σ(-∆ + V b )) if V ≤ 0 and E -= inf(σ(-∆ + V a )) if V ≥ 0. Here, x is the constant vector x = (x) γ∈Z d . Moreover, for E a real energy, one defines the integrated density of states by (1.2)

N (E) = lim L→+∞ #{eigenvalues of H N ω,L ≤ E} L d where (1.3) H N ω,L = -△ + V 0 + V ω on L 2 (C L (0))
with Neumann boundary conditions, where C L (0) is defined by (1.4). It is well-known that N (E) exists and is non-random, i.e., N (E) is independent of ω, almost surely; it has been the object of a lot of studies.

In particular, it is well known that the integrated density of states of the Hamiltonian admits a Lifshitz tail near E -, i.e., lim

E→E + - log | log N (E)| log(E -E -) < 0.
Actually, the limit can often be computed and in many cases is equal to -d/2; we refer to [START_REF] Carmona | Spectral Theory of Random Schrödinger Operators[END_REF][START_REF] Kirsch | Random Schrödinger operators[END_REF][START_REF] Kirsch | Random Schrödinger operators and the density of states[END_REF][START_REF] Pastur | Spectra of random and almost-periodic operators[END_REF][START_REF] Stollmann | Caught by disorder : bound states in random media[END_REF][START_REF] Veselić | Integrated density of states and Wegner estimates for random Schrödinger operators[END_REF][START_REF] Veselić | Existence and regularity properties of the integrated density of states of random Schrödinger operators[END_REF] for extensive reviews and more precise statements.

In the present paper, we mainly consider a generalized Bernoulli alloy type model that we define below: we allow the single site potential to have various function forms (with a discrete distribution). We give a necessary and sufficient condition to have Lifshitz tail under a symmetry assumption on the single site potentials. The results we obtain are then applied to the random displacement models studied recently by Baker, Loss and Stolz ( [START_REF] Baker | Minimizing the ground state energy of an electron in a randomly deformed lattice[END_REF][START_REF] Baker | Low energy properties of the random displacement models[END_REF]), and also to complete the study of the occurrence of Lifshitz tails for alloy type models initiated in [START_REF] Klopp | Spectral extrema and Lifshitz tails for non monotonous alloy type models[END_REF].

The model

Let us now describe our model. We let d ≥ 1 and we study operators on H = L 2 (R d ). We denote (1.4) C ℓ (x) = y ∈ R d 0 ≤ y j -x j ≤ ℓ, j = 1, . . . , d be the cube with the size ℓ > 0 and x as a corner. Let V 0 ∈ C 0 (R d ) be a background potential, which is periodic with respect to Z d . Let v k ∈ C 0 c (C 1 (0)), k = 1, . . . , M , be single site potentials where M ∈ N. We consider the random Schrödinger operator:

H ω = -△ + V 0 + V w on H = L 2 (R d ),
where

V ω (x) = γ∈Z d v ω(γ) (x -γ)
is the random potential and ω(γ) γ ∈ Z d are independent identically distributed (i.i.d.) random variables with values in {1, . . . , M }.

To fix ideas, let us assume

(1.5) inf σ(H ω ) = 0, a.s. ω
which can always be achieved by shifting V 0 by a constant.

We denote

H N k = -△ + V 0 + v k on L 2 (C 1 (0)) with Neumann boundary conditions on the boundary ∂C 1 (0). Define Assumption A. (1) V 0 is symmetric about the plane x x d = 1/2 . ( 2 
) There exists m ∈ {1, . . . , M } such that inf σ(H N k ) = 0 for k = 1, . . . , m,
and inf σ(H N k ) > 0 for k > m.
(3) Moreover, for k = 1, . . . , m, v k (x) is symmetric about {x d = 1/2}.

Remark 1.1. Note that in this assumption, we only require symmetry with respect to a single coordinate hyperplane that we chose to be the d-th one.

If one assumes that V 0 and the (v k ) 1≤k≤M are reflection symmetric with respect to all the coordinate planes (see e.g. [START_REF] Baker | Minimizing the ground state energy of an electron in a randomly deformed lattice[END_REF][START_REF] Baker | Low energy properties of the random displacement models[END_REF][START_REF] Klopp | Spectral extrema and Lifshitz tails for non monotonous alloy type models[END_REF]), the standard characterization of the almost sure spectrum (see e.g. [START_REF] Pastur | Spectra of random and almost-periodic operators[END_REF][START_REF] Kirsch | Random Schrödinger operators[END_REF]) and lower bounding H ω by the direct sum of its Neumann restrictions to the cubes (C 1 (γ)) γ∈Z d show that, as a consequence of (1.5), one obtains

• for all m ∈ {1, . . . , M }, inf σ(H N k ) ≥ 0;
• there exists m ∈ {1, . . . , M } such that inf σ(H N m ) = 0.

The results

We study the Lifshitz singularity for the integrated density of states (IDS) at the zero energy. Recall that the IDS is defined by (1.2)

We first consider a relatively easy case:

Theorem 1.2. Suppose Assumption A with m < M . Then

(1.6) lim sup E→+0 log | log N (E)| log E ≤ - 1 2 .
We expect (1.6) holds with -d/2 in the right hand side, which is known to be optimal (see e.g Theorem 0.2 and Section 2.2 in [START_REF] Klopp | Spectral extrema and Lifshitz tails for non monotonous alloy type models[END_REF]).

If m = M , then we need further classification of the potential functions. We denote the standard basis of R d by

e j = (δ ji ) d i=1 ∈ R d , j = 1, . . . , d,
and we define an operator H N kℓ(j) on L 2 (U j ) as

(1.7) U j = C 1 (0) ∪ C 1 (e j ), j = 1, . . . , d.
We set

(1.8) H N kℓ(j) = -△ + V 0 (x) + v k (x) on C 1 (0) -△ + V 0 (x) + v ℓ (x -e j ) on C 1 (e j )
with Neumann boundary conditions on ∂U j , where k, ℓ ∈ {1, . . . , m} and j ∈ {1, . . . , d}. We define In order to obtain a more precise result on the existence and the absence of Lifshitz singularities, we make a stronger symmetry assumption on the potentials.

(1.9) v j ∼ j v ℓ def ⇐⇒ inf σ(H N kℓ(j) ) = 0. Namely, v k ∼ j v ℓ implies
Assumption B. In addition to satisfying Assumption A, V 0 and v k are symmetric about x x j = 1/2 for all j = 1, . . . , d, and k = 1, . . . , m = M . Theorem 1.4. Suppose Assumption B. Then

(i) If v k ∼ j v ℓ for some j and k = ℓ, then (1.6) holds. (ii) If v k ∼ j v ℓ
for all j and k, ℓ, then the van Hove property holds, namely, there exists C > 0 such that

(1.10) 1 C E d/2 ≤ N (E) ≤ CE d/2 .
In (1.10), the asymptotic is new only for E small; for E large, it is a consequence of Weyl's law. The example in Section 3 of [START_REF] Klopp | Spectral extrema and Lifshitz tails for non monotonous alloy type models[END_REF] is a special case of (ii) of Theorem 1.4. In a previous paper [START_REF] Klopp | Spectral extrema and Lifshitz tails for non monotonous alloy type models[END_REF], we used the concavity of the ground state energy with respect to the random parameters, and also used an operator theoretical trick to reduce the problem to monotonous perturbation case. These methods are not available under the assumptions of the present paper. Instead, we employ a quadratic inequality similar to the Poincaré inequality, and take advantage of the positivity of certain Dirichlet-to-Neumann operators to obtain a lower bound of the ground state energy for Schrödinger operators on a strip. This estimate is quasi one dimensional, and this is why we obtain Lifshitz tail estimate with the exponent corresponding to one dimensional case. We do believe that this method can be refined to obtain the optimal exponent, though we have not been successful so far.

This paper is organized as follows. We discuss the eigenvalue estimate on a strip in Section 2 and prove our main theorems in Section 3. We discuss an application to random displacement models in Section 4, and an application to the model studied in [START_REF] Klopp | Spectral extrema and Lifshitz tails for non monotonous alloy type models[END_REF] in Section 5.

Throughout this paper, we use the following notations: P(•) denotes the probability measure for the random potential, and E(•) denotes the expectation; D(A) denotes the definition domain of an operator A; •, • denotes the inner product of L 2 -spaces; ∂Ω denotes the boundary of a domain Ω; and #Λ denotes the cardinality of a set Λ.

Acknowledgment: It is a pleasure to thank Michael Loss and Gunter Stolz for valuable discussions. We also thank the organizers of the workshop "Disordered Systems: Random Schrödinger Operators and Random Matrices" at the MF Oberwolfach where part of this work was done.

Lower bounds on the ground state energy

Throughout this section, we suppose v 1 , . . . v m satisfy Assumption A. Let a > 0,

Ω 0 = [0, 1] d-1 × [-a, 0] ⊂ R d ,
and let W 0 ∈ C 0 (Ω 0 ) be a real-valued function on Ω 0 . We set

P N 0 = -△ + W 0 on L 2 (Ω 0 )
with Neumann boundary conditions. Let L ∈ N,

Ω 1 = [0, 1] d-1 × [0, L] and let W 1 ∈ C 0 (Ω 1 ) such that W 1 = V 0 + v k(ℓ) (x -ℓe d ) if x ∈ C 1 (ℓe d ), ℓ = 0, . . . , L -1,
where {k(ℓ)} L-1 ℓ=0 is a sequence with values in {1, . . . , m}. We then set

Ω = Ω 0 ∪ Ω 1 , W (x) = W 0 (x) if x ∈ Ω 0 W 1 (x) if x ∈ Ω 1
and set

P N = -△ + W on L 2 (Ω)
with Neumann boundary conditions. Then, the main result of this section is as follows.

Theorem 2.1. Suppose inf σ(P N 0 ) > 0, and suppose

v k(ℓ) ∼ d v k(ℓ ′ ) for ℓ, ℓ ′ ∈ {0, . . . , L -1}.
Then, there exists C > 0 such that C is independent of L and of the sequence {k(ℓ)}, and such that

inf σ(P N ) ≥ 1 CL 2 .
In the following, we suppose v k ∼ d v ℓ for all k, ℓ for simplicity (and without loss of generality). We prove Theorem 2.1 by a series of lemmas. First, we show a variant of the classical Poincaré inequality. Let Γ be the trace operator from

H 1 (Ω 1 ) to L 2 (S) with S = [0, 1] d-1 × {0}, i.e., Γϕ(x ′ ) = ϕ(x ′ , 0) for x ′ ∈ [0, 1] d-1 , ϕ ∈ C 0 (Ω 1 ),
and Γ extends to a bounded operator from

H 1 (Ω 1 ) to L 2 (S). Lemma 2.2. Let ϕ ∈ H 1 (Ω 1 ). Then 2 L Γϕ 2 L 2 (S) + ∇ϕ 2 L 2 (Ω 1 ) ≥ 1 L 2 ϕ 2 L 2 (Ω 1 ) .
Proof. It suffices to show the estimate for ϕ ∈ C 1 (Ω 1 ). Since

ϕ(x ′ , t) = ϕ(x ′ , 0) + t 0 ∂ x d ϕ(x ′ , s)ds, x ′ ∈ [0, 1] d-1 , t ∈ [0, L],
we have

|ϕ(x ′ , t)| ≤ |ϕ(x ′ , 0)| + t 0 |∂ x d ϕ(x ′ , s)|ds ≤ |ϕ(x ′ , 0)| + √ t L 0 |∇ϕ(x ′ , s)| 2 ds 1/2
by the Cauchy-Schwarz inequality. This implies

ϕ 2 L 2 (Ω 1 ) ≤ L 0 |ϕ(x ′ , 0)| + √ t L 0 |∇ϕ(x ′ , s)| 2 ds 1/2 2 dtdx ′ ≤ 2 L 0 |ϕ(x ′ , 0)| 2 dsdx ′ + 2 L 0 tdt × ∇ϕ 2 L 2 (Ω 1 ) = 2L Γϕ 2 L 2 (S) + L 2 ∇ϕ 2 L 2 (Ω 1 )
and the claim follows.

For k ∈ {1, . . . , M }, we set

q k (ϕ, ψ) = C 1 (0) ∇ϕ • ∇ψ + v k ϕψ dx, ϕ, ψ ∈ H 1 (C 1 (0)),
which is the quadratic form corresponding to H N k . Let Ψ k be the positive ground state for H N k , which is unique up to a constant. Since inf σ(H N k ) = 0, we expect ϕ/Ψ k is close to a constant if q k (ϕ, ϕ) is close to 0, and this observation is justified by the following lemma.

Lemma 2.3. There exists

c 1 > 0 such that ∇(ϕ/Ψ k ) 2 L 2 (C 1 (0)) ≤ c 1 q k (ϕ, ϕ), ϕ ∈ H 1 (C 1 (0)), k = 1, . . . , m.
Proof. This is a consequence of the so-called ground state transform. It suffices to show the inequality when ϕ ∈ C 1 (C 1 (0)). We set f = ϕ/Ψ k . Then we have

q k (ϕ, ϕ) = ∇(f Ψ k ), ∇(f Ψ k ) + v k f Ψ k , f Ψ k = Ψ k (∇f ) 2 + Ψ k ∇f, f ∇Ψ k + f ∇Ψ k , Ψ k ∇f + f ∇Ψ k , f ∇Ψ k + v k f Ψ k , f Ψ k = Ψ k (∇f ) 2 + ∇(|f | 2 Ψ k ), ∇Ψ k + v k |f | 2 Ψ k , Ψ k = Ψ k (∇f ) 2 + q k (|f | 2 Ψ k , Ψ k ). Since q k (|f | 2 Ψ k , Ψ k ) = (H N k ) 1/2 |f | 2 Ψ k , (H N k ) 1/2 Ψ k = 0, we have q k (ϕ, ϕ) = Ψ k (∇f ) 2 ≥ (inf |Ψ k |) 2 ∇f 2 ,
and we may choose

c 1 = (min k inf |Ψ k |) -2 . Lemma 2.4. Suppose v k ∼ d v ℓ . Then, there exists µ 1 , µ 2 > 0 such that µ 1 Ψ k (x ′ , 0) = µ 2 Ψ ℓ (x ′ , 0), for x ′ ∈ [0, 1] d-1 .
Proof. Consider H N kℓ(d) in U d (see (1.7) and (1.8) in Section 1), and let Φ ∈ L 2 (U d ) be the positive ground state of H N kℓ(j) . We set

ϕ 1 = Φ⌈ C 1 (0) , ϕ 2 (•) = Φ(• + e d )⌈ C 1 (0) .
Then ϕ 1 , ϕ 2 are positive and q k (ϕ 1 , ϕ 1 ) = q ℓ (ϕ 2 , ϕ 2 ) = 0. By the variational principle and the uniqueness of the ground states, we learn

ϕ 1 = µ 1 Ψ k , ϕ 2 = µ 2 Ψ ℓ
with some µ 1 , µ 2 > 0. By Assumption A, Ψ k and Ψ ℓ are symmetric about {x d = 1/2}, and hence

µ 1 Ψ k (x ′ , 0) = µ 1 Ψ k (x ′ , 1) = ϕ 1 (x ′ , 1) = ϕ 2 (x ′ , 0) = µ 2 Ψ ℓ (x ′ , 0) for x ′ ∈ [0, 1] d-1
, where we have used the continuity of Φ on {x d = 1}. Now, let Ω 1 and W 1 be as in the beginning of Section 2, and define

P N 1 = -△ + W 1 on L 2 (Ω 1 )
with Neumann boundary conditions. We set

Q 1 (ϕ, ψ) = Ω 1 ∇ϕ • ∇ψ + W 1 ϕψ dx = (P N 1 ) 1/2 ϕ, (P N 1 ) 1/2 ψ for ϕ, ψ ∈ H 1 (Ω 1 ) = D((P N 1 ) 1/2
). Then, we have Lemma 2.5. There exists c 2 > 0 such that c 2 is independent of L and of the sequence {k(ℓ)}, and

1 L Γϕ 2 L 2 (S) + Q 1 (ϕ, ϕ) ≥ 1 c 2 L 2 ϕ 2 L 2 (Ω 1 ) for ϕ ∈ H 1 (Ω 1 ).
Proof. By Lemma 2.4, there exist µ 1 , . . . , µ m > 0 such that

µ 1 Ψ 1 (x ′ , 0) = µ 2 Ψ 2 (x ′ , 0) = • • • = µ m Ψ m (x ′ , 0). We set Ψ(x) = µ k(ℓ) Ψ k(ℓ) (x -ℓe d ) if ℓ ≤ x d ≤ ℓ + 1,
and then Ψ ∈ H 1 (Ω 1 ) by the above observation. Moreover, Ψ is the ground state for P N 1 , unique up to a constant. We apply Lemma 2.1 to ϕ/Ψ, and we have

1 L 2 ϕ 2 L 2 (Ω 1 ) ≤ 1 L 2 (sup Ψ) 2 ϕ/Ψ 2 L 2 (Ω 1 ) ≤ (sup Ψ) 2 L Γ(ϕ/Ψ) 2 L 2 (S) + (sup Ψ) 2 ∇(ϕ/Ψ) 2 L 2 (Ω 1 ) ≤ sup Ψ inf Ψ 2 1 L Γϕ 2 L 2 (S) + c 1 (sup Ψ) 2 Q 1 (ϕ, ϕ),
where we have used Lemma 2.3 in the last inequality. The claim follows immediately.

We next consider P 0 = -△+W 0 on L 2 (Ω 0 ) and its Dirichlet-to-Neumann operator. As in Theorem 2.1, we suppose

α = inf σ(P N 0 ) > 0.
We set

P ′ 0 = -△ + W 0 on L 2 (Ω 0 ) with D((P ′ 0 ) 1/2 ) = ϕ ∈ H 1 (Ω 0 ) Γϕ = 0 ,
where Γ is the trace operator from H 1 (Ω 1 ) to L 2 (S). P ′ 0 defines a self-adjoint operator, and each ϕ ∈ D(P ′ 0 ) satisfies Dirichlet boundary conditions on S and Neumann boundary conditions on ∂Ω 0 \ S. Let λ < α. By a standard argument of the theory of elliptic boundary value problems (see, e.g., Folland [START_REF] Folland | Introduction to Partial Differential Equations[END_REF]), for any g ∈ H 3/2 (S), there exists a unique ψ ∈ H 2 (Ω 0 ) such that (2.1) (-△ + W 0 -λ)ψ = 0, Γψ = g and that satisfies Neumann boundary conditions on ∂Ω 0 \ S. Then, the map

T (λ) : g → Γ(∂ ν ψ) ∈ H 1/2 (S)
defines a bounded linear map from H 3/2 (S) to H 1/2 (S), where ∂ ν = ∂/∂x d is the outer normal derivative on S. We consider T (λ) as an operator on L 2 (S), and it is called the Dirichlet-to-Neumann operator.

Lemma 2.6. T (λ) is a symmetric operator. Moreover, if λ 0 < α then T (λ) ≥ ε for 0 ≤ λ ≤ λ 0 with some ε > 0.

Proof. Let ϕ, ψ ∈ H 2 (Ω 0 ) such that Γϕ = f , Γψ = g, and

(-△ + W 0 -λ)ϕ = (-△ + W 0 -λ)ψ = 0
with Neumann boundary conditions on ∂Ω 0 \ S. By Green's formula we have

0 = (-△ + W 0 -λ)ϕ, ψ -ϕ, (-△ + W 0 -λ)ψ = - S ∂ ν ϕ • ψ + S ϕ • ∂ ν ψ = -T (λ)f, g L 2 (S) + f, T (λ)g L 2 (S) ,
and hence T (λ) is symmetric. Similarly, we have

0 = (-△ + W 0 -λ)ϕ, ϕ = - S ∂ ν ϕ • ϕ + Ω 0 |∇ϕ| 2 + Ω 0 (W 0 -λ)|ϕ| 2 = -T (λ)f, f + Q 0 (ϕ, ϕ) -λ ϕ 2 ,
where

Q 0 (ϕ, ϕ) = Ω 0 |∇ϕ| 2 + W 0 |ϕ| 2 dx.
Hence, we learn

T (λ)f, f = Q 2 (ϕ, ϕ) -λ ϕ 2 ≥ Q 0 (ϕ, ϕ) -λ 0 ϕ 2 .
The form in the right hand side is equivalent to ϕ 2 H 1 (Ω 0 ) since λ 0 < α. Hence, it is bounded from below by ε f 2 L 2 (S) with some ε > 0 by virtue of the boundedness of the trace operator from H 1 (Ω 0 ) to L 2 (S).

We note that T (λ) extends to a self-adjoint operator on L 2 (S) by the Friedrichs extension, though we do not use the fact in this paper.

Proof of Theorem 2.1. Let ϕ be the ground state of P N on Ω with the ground state energy λ ≥ 0. If λ ≥ λ 0 > 0 with some fixed λ 0 (independently of L), then the statement is obvious, and hence we may assume 0 ≤ λ ≤ λ 0 < α = inf σ(P N 0 ) without loss of generality. Let f = Γϕ ∈ H 3/2 (S). Since ϕ satisfies Neumann boundary conditions on ∂Ω 0 \S, we learn ∂ ν ϕ⌈ S = T (λ)ϕ. On the other hand, by Green's formula, we have

Ω 1 P N ϕ • ϕ = S ∂ n ϕ • ϕ + Ω 1 |∇ϕ| 2 + W 1 |ϕ| 2 = T (λ)f, f L 2 (S) + Q 1 (ϕ, ϕ) ≥ ε f 2 L 2 (S) + Q 1 (ϕ, ϕ)
by Lemma 2.6. Now, we apply Lemma 2.5 to learn that the right hand side is bounded from below by (1/c 2 L 2 ) ϕ 2 L 2 (Ω 1 ) . Since P N ϕ = λϕ and ϕ L 2 (Ω 1 ) = 0, this implies λ ≥ 1/c 2 L 2 for sufficiently large L.

Proof of main theorems

Here, we mainly discuss the proof of Theo-

x 1 x 2 x 3 Σ (2,4)
Figure 1: Chopping the cube into strips rems 1.2 and 1.3, and we prove Theorem 1.4 at the end of the section. We thus suppose Assumption A with either m < M or that there exists k, k

′ such that v k ∼ d v k ′ .
For notational simplicity, we assume the reflections of v k at {x d = 1/2} are included in the possible set of potentials {v k }. This does not change the conditions on {v 1 , . . . , v m }, but we might need to add the reflections of {v m+1 , . . . , v M }. This does not affect the following arguments.

We write

Λ = p ∈ Z d-1 0 ≤ p j ≤ L -1, j = 1, . . . , d -1
and, for p ∈ Λ, we set

Σ p = L-1 k=0 C 1 ((p, k))
so that C L (0) is decomposed (see Fig. 1) as

C L (0) = p∈Λ Σ p
which is a disjoint union except for the boundaries of the strips.

For a given V ω and p ∈ Λ, we consider the restriction of H ω to Σ p , i.e.,

HN p = △ + V 0 + L-1 ℓ=0 v ω((p,ℓ)) (x -(p, ℓ)) on L 2 (Σ p )
with Neumann boundary conditions on ∂Σ p . By the standard Neumann bracketing, we learn

H N ω,L ≥ p∈Λ HN p on L 2 (C L (0)) ∼ = p∈Λ L 2 (Σ p ),
and hence, in particular,

(3.1) inf σ(H N ω,L ) ≥ min p∈Λ inf σ( HN p ).
Under our assumptions, one of the following holds for each p ∈ Λ: We note that the probability of (b) p to occur is less than µ -L with some µ < 1 independent of L. Since {ω(γ)} are independent, we have (3.2) P (b) p holds for some p ∈ Λ ≤ L d µ -L , which is small if L is large. For the moment, then, we suppose (a) p holds for all p ∈ Λ. We denote V p (x) be the potential function of HN p on Σ p . Let

Σp = (p + [0, 1] d-1 ) × (R/(2LZ)) and set V p (x) = V p (x ′ , |x d |) for x = (x ′ , x d ) ∈ (p + [0, 1] d-1 ) × [-L, L) ∼ = Σp ,
i.e., V p is the extension of Ṽ p by the reflection at {x d = 0}. We note V p is continuous on Σp . We now consider

ĤN p = △ + V p on L 2 ( Σp )
with Neumann boundary conditions. It is easy to see

(3.3) inf σ( HN p ) ≥ inf σ( ĤN p ).
In fact, if Φ is the ground state of HN p , then we extend Φ by reflection to obtain Φ ∈ H 1 ( Σp ) and we have

ĤN p Φ, Φ Φ 2 = HN p Φ, Φ Φ 2 = inf σ( HN p )
and the claim (3.3) follows by the variational principle. Since we assume (a) p , Σ p can be decomposed to subsegments Σ p = K j=1 Ξ j such that each Ξ j satisfies the following conditions: We write

Ξ j = ν ℓ=0 C 1 (p, κ + ℓ), κ ∈ Z, 0 ≤ ν < L, and 
V p (x) = v β(ℓ) (x -(p, ℓ)) for x ∈ C 1 (p, κ + ℓ), ℓ ∈ {0, . . . , ν}
with β(ℓ) ∈ {1. . . . , M }. Then either one of the following holds

(i) β(0) ∈ {m + 1, . . . , M }; β(ℓ) ∈ {1, . . . , m} for ℓ ≥ 1; and v β(ℓ) ∼ d v β(ℓ ′ )
for ℓ, ℓ ′ ∈ {1, . . . , ν}.

(ii) β(ℓ) ∈ {1, . . . , m} for all ℓ; v β(0) ∼

d v β(1) ; and v β(ℓ) ∼ d v β(ℓ ′ ) for ℓ, ℓ ′ ∈ {2, . . . , ν}.
The proof of this claim is an easy combinatorics, though somewhat lengthy to write down using symbols. We omit the details.

We again decompose ĤN p . We denote the restriction of ĤN p to Ξ j by P j on L 2 (Ξ j ) with Neumann boundary conditions. Then, again by Neumann bracketing, we learn

ĤN p ≥ κ j=1 P j on L 2 ( Σp ) ∼ = κ j=1 L 2 (Ξ j ),
and in particular,

(3.4) inf σ( ĤN p ) ≥ min j inf σ(P j ).
Now if (i) holds for Ξ j , then we set a = 1 and use Theorem 2.1 for P j . Since inf σ(H N β(0) ) > 0 by Assumption A and ν ≤ L, we learn

inf σ(P j ) ≥ 1 C(ν -1) 2 ≥ 1 C(L -1) 2 .
If (ii) holds for Ξ j , then we set a = 2 and use Theorem 2.1 for

P j . Since v β(0) ∼ d v β(1) , we have inf σ(H N β(0)β(1)(d) ) > 0. Thus we have inf σ(P j ) ≥ 1 C(ν -2) 2 ≥ 1 C(L -2) 2 .
Combining these with (3.1), (3.3) and (3.4), we conclude

(3.5) inf σ(H N ω,L ) ≥ c 3 L 2
with some c 3 > 0, provided (a) p holds for all p ∈ Λ.

Proof of Theorems 1.2 and 1.3. For E > 0, we set

c 3 E < L ≤ c 3 E + 1
so that, by virtue of (3.5),

inf σ(H N ω,L ) > E
provided Condition (a) p holds for all p ∈ Λ. As noted in (3.2), the probability of the events that (b) p holds for some p ∈ Λ is bounded by

P (b) p for some p ∈ Λ ≤ L d µ -L ≤ c 4 E -d/2 e -c 5 E -1/2
with some c 4 , c 5 > 0. On the other hand, since the potential V 0 + V ω is uniformly bounded, we have

#{eigenvalues of H N ω,L ≤ α} ≤ c 6 L d
for any ω with some c 6 > 0. Thus we have

L -d E #{e.v. of H N ω,L ≤ E} ≤ L -d (c 6 L d )P (b) p for some p ∈ Λ ≤ c 4 c 6 E -d/2 e -c 5 E -1/2 ≤ c 7 e -(c 5 -ε)E -1/2
for 0 < ε < c 5 with some c 7 > 0. By the Neumann bracketing again, we have

N (E) ≤ L -d E #{e.v. of H N ω,L ≤ E} ≤ c 7 e -(c 5 -ε)E -1/2
and Theorems 1.2 and 1.3 follow immediately from this estimate.

In fact, we have proved

lim inf E→+0 | log N (E)| E -1/2 > 0,
and this statement is slightly stronger than (1.6).

Proof of Theorem 1.4. (i) This statement is an immediate consequence of Assumption B and Theorem 1.3. We just replace the x d -axis by the x j -axis where v k ∼ j v ℓ for some k, ℓ.

(ii) We use the ground state transform as in the proof of Lemmas 2.3-2.5. Under our conditions, there exist µ 1 , . . . , µ m > 0 such that

µ 1 Ψ 1 (x) = µ 2 Ψ 2 (x) = • • • = µ m Ψ m (x) for x ∈ ∂C 1 (0).
For given H N ω,L , we set

Φ(x) = µ k Ψ k (x) if x ∈ C 1 (γ) with ω(γ) = k.
Then it is easy to see that Φ is the positive ground state of H N ω,L with the energy 0. Let Q(•, •) be the quadratic form corresponding to H N ω,L . For ϕ ∈ H 1 (C L (0)), we set f = ϕ/Φ. As in the proof of Lemma 2.3, we have

Q(ϕ, ϕ) = Φ(∇f ) 2 and hence (inf Φ) 2 ∇f 2 ≤ Q(ϕ, ϕ) ≤ (sup Φ) 2 ∇f 2 .
This implies

K -2 ∇f 2 f 2 ≤ Q(ϕ, ϕ) ϕ 2 ≤ K 2 ∇f 2 f 2 where K = max k sup(µ k Ψ k )/ min k inf(µ k Ψ k )
. By the min-max principle, we learn

K -2 #{e.v. of (-△) N L ≤ E} ≤ #{e.v. of H N ω,L ≤ E} ≤ K 2 #{e.v. of (-△) N L ≤ E}
where (-△) N L is the Laplacian on C L (0) with Neumann boundary conditions. Taking the limit L → +∞, we have

(3.6) K -2 c d E d/2 ≤ N (E) ≤ K 2 c d E d/2 ,
where c d is the volume of the unit ball in R d . This completes the proof of Theorem 1.4.

Application to random displacement models

We now consider a model recently studied by Baker, Loss and Stolz in [START_REF] Baker | Minimizing the ground state energy of an electron in a randomly deformed lattice[END_REF][START_REF] Baker | Low energy properties of the random displacement models[END_REF].

Combining their results with Theorem 1.2, we show that this model exhibits Lifshitz singularities at the ground state energy. We consider a random Schrödinger operator of the form:

H ω = -△ + V ω on L 2 (R d ) where V ω (x) = γ∈Z d q(x -γ -ω(γ)) with i.i.d. random variables {ω(γ) | γ ∈ Z d } which take values in C 1 (0).

Assumption C.

(1) There exists δ ∈ (0, 1/2) such that ω(γ) takes values in a finite set

Θ ⊂ x ∈ R d δ ≤ x j ≤ 1 -δ, ∀j ∈ {1, . . . , d} . Moreover Θ ⊃ ∆ = x ∈ R d x j = δ or 1 -δ, ∀j ∈ {1, . . . , d}
and P(ω(γ) = x) > 0 for x ∈ ∆.

(2) q ∈ C 0 (R d ) and it is supported in x |x j | ≤ δ, j ∈ {1, . . . , d} . Moreover, q is symmetric about {x | x j = 0}, j = 1, . . . , d.

(3) Let H N q = -△+q on L 2 ({|x| ≤ 1}) with Neumann boundary conditions, and let φ be the ground state. Then, φ is not a constant outside Supp q. Note that this is relevant only if the ground state energy is 0. [START_REF] Baker | Minimizing the ground state energy of an electron in a randomly deformed lattice[END_REF] showed that inf σ(H N 1,β ) takes its minimum (with respect to β) if and only if β ∈ ∆. In particular, they showed that for H N ω,2ℓ the Neumann restriction of H ω to C 2ℓ (0) the minimal value of the ground state energy was obtained for clustered configuration (see Fig 2). We cannot directly apply our result to this model, since q(x -β) is not symmetric for β ∈ ∆. However, they also showed that if we consider the operator H ω restricted to C 2 (0) and if d ≥ 2, then the minimum is attained by 2 d symmetric configurations, which are equivalent to each other by translations (see [START_REF] Baker | Low energy properties of the random displacement models[END_REF] and Fig. 3). Thus, we can apply our results by considering H ω as a 2Z d -ergodic random Schrödinger operators, i.e., by considering C 2 (0) as the unit cell. Then, this model satisfies Assumption A with M = (#Θ) 2 d and m = 2 d . Theorem 4.1. Let d ≥ 2, and suppose Assumption C for some δ ∈ (0, 1/2). Then, (1.6) holds at the bottom of the spectrum of H ω , a.s.

We note that if d = 1, this result does not hold, and the IDS may have logarithmic singularity at the bottom of the spectrum ( [START_REF] Baker | Low energy properties of the random displacement models[END_REF]). In view of our results, such singularities can occur for the lack of symmetry of the minimizing configurations.

5 The alloy type model studied in [START_REF] Klopp | Spectral extrema and Lifshitz tails for non monotonous alloy type models[END_REF] In a previous paper on Lifshitz tails for sign indefinite alloy type random Schrödinger operators [START_REF] Klopp | Spectral extrema and Lifshitz tails for non monotonous alloy type models[END_REF], we studied the model (1.1) for a single site potential V satisfying the reflection symmetry Assumption B. We now recall some of the results of that work. Let the support of the random variables (ω γ ) γ be contained in Assume moreover that the i.i.d. random variables (ω γ ) γ are not Bernoulli distributed i.e. P(ω 0 = a) + P(ω 0 = b) < 1. Then

(5.3) lim sup E→E + - log | log N (E)| log(E -E -) ≤ - 1 2 . 
So we show that Lifshitz tails also hold in this case. As already noted we believe that (5.4) is not optimal and that -1/2 should be replaced by -d/2. Moreover, depending on the tail of the distributions of the random variables (ω γ ) γ near a and b, the lim sup in (5.4) should be a limit, the inequality should become an equality, the exponent -1/2 should be replaced by -d/2 plus a possibly vanishing constant (see Section 0 of [START_REF] Klopp | Spectral extrema and Lifshitz tails for non monotonous alloy type models[END_REF] for the case E -(a) = E -(b)). Combining Theorems 5.1 and 5.2 with the Wegner estimates obtained in [START_REF] Klopp | Localization for some continuous random Schrödinger operators[END_REF][START_REF] Hislop | The integrated density of states for some random operators with nonsign definite potentials[END_REF] and the multiscale analysis as developed in [START_REF] Germinet | Bootstrap multiscale analysis and localization in random media[END_REF], we learn Theorem 5.3. Assume Assumption B. Assume, moreover, that the common distribution of the random variables admits an absolutely continuous density. Then, the bottom edge of the spectrum of H ω exhibits complete localization in the sense of [START_REF] Germinet | Bootstrap multiscale analysis and localization in random media[END_REF].

This result improves upon Theorem 0.3 of [START_REF] Klopp | Spectral extrema and Lifshitz tails for non monotonous alloy type models[END_REF].

The proof of Theorem 5.2

Recall that H N ω,L is defined in (1.3). It is well known that, at E, a continuity point of N (E), the sequence

N N L (E) = E #{eigenvalues of H N ω,L ≤ E} L d
is decreasing and converges to N (E) (see e.g. [START_REF] Pastur | Spectra of random and almost-periodic operators[END_REF][START_REF] Kirsch | Random Schrödinger operators[END_REF]). As (5.4)

N N L (E) ≤ C P({inf σ(H N ω,L ) ≤ E})
it is sufficient to prove an upper bound for P({inf σ(H N ω,L ) ≤ E}) for a well chosen value of L. Define E -,L (ω) = inf σ(H N ω,L ). It only depends on (ω γ ) γ∈Z L , where A second differentiation yields

Z L = γ ∈ Z d 0 ≤ γ j < L, j = 1, . . . ,
(H N ω,L -E -,L (ω))∂ 2 ωγ ω β ϕ L (ω) = ∂ 2 ωγ ω β E -,L (ω)ϕ L (ω) + ∂ ωγ E -,L (ω) -V (• -γ) ∂ ω β ϕ L (ω) + ∂ ω β E -,L (ω) -V (• -β) ∂ ωγ ϕ L (ω).
Hence, using (5.5) and (5.6), we compute

∂ 2 ωγ ω β E -,L (ω) = -V (• -γ)∂ ω β ϕ L (ω), ϕ L (ω) -V (• -β)∂ ωγ ϕ L (ω), ϕ L (ω) = -2Re (H N ω,L -E -,L (ω)) -1 ψ β , ψ γ
where

• ψ γ = ΠV (• -γ)ϕ L (ω)
• Π is the orthogonal projector on the orthogonal to ϕ L (ω).

Hence, for (a γ ) γ complex numbers, γ,β ∂ 2 ωγ ω β E -,L (ω)a γ a β = -2Re (H N ω,L -E -,L (ω)) -1 Πu a , Πu a where u a = ( γ a γ V (• -γ))ϕ L (ω). Note that, as V is not trivial, the assumption E -(a) = E -(b) implies that V changes sign, i.e., there exists x + = x -such that V (x -) • V (x + ) < 0. Now, the vector Πu a vanishes if and only if u a is colinear to ϕ L (ω) which cannot happen as V is not constant and ϕ L (ω) does not vanish on open sets by the unique continuation principle.

On the other hand, E -,L (ω) being a simple eigenvalue associated to ϕ L (ω), Π(H N ω,L -E -,L (ω)) -1 Π ≥ c Π for some c > 0. So the Hessian of ω → E -,L (ω) is positive definite. This completes the proof of Lemma 5.1.

We now turn to the proof of Theorem 5. To complete the proof of Theorem 5.2, we first extend lemma 5.2 using the concavity of the ground state energy to 
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 13 the coupling of two local Hamiltonians H N k and H N ℓ does not increase the ground state energy. We note that v k ∼ j v ℓ generically for k = ℓ. Suppose Assumption A with m = M . Suppose moreover that v k ∼ d v ℓ for some k = ℓ. Then (1.6) holds, i.e., H ω has Lifshitz singularities at the zero energy.

  (a) p : ω((p, ℓ)) > m for some ℓ, or v ω((p,ℓ)) ∼ d v ω((p,ℓ ′ )) for some ℓ, ℓ ′ ∈ {0, . . . , L -1}. (b) p : For all ℓ, ℓ ′ ∈ {0, . . . , L -1}, ω((p, ℓ)) ≤ m and v ω((p,ℓ)) ∼ d v ω((p,ℓ ′ )) .

  (a) A typical random configuration (b) The minimizing configuration

Figure 2 :

 2 Figure 2: An example in two dimensions Let H N 1,β = -△ + q(x -β) on L 2 (C 1 (0)) with Neumann boundary conditions, where β ∈ Θ. Baker, Loss and Stolz[START_REF] Baker | Minimizing the ground state energy of an electron in a randomly deformed lattice[END_REF] showed that inf σ(H N 1,β ) takes its minimum (with respect to β) if and only if β ∈ ∆. In particular, they showed that for H N ω,2ℓ the Neumann restriction of H ω to C 2ℓ (0) the minimal value of the ground state energy was obtained for clustered configuration (seeFig 2).

  (a) The minimal 2 × 2 configurations (b) Other 2 × 2 configurations

Figure 3 : 2 ×

 32 Figure 3: 2 × 2 configurations in two dimensions
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 52 [a, b] and assume both a and b belong to the essential support of the random variables. Consider now the operator H N λ = -∆ + λV with Neumann boundary conditions on the cube C 1 (0) = [0, 1] d . Its spectrum is discrete, and we let E -(λ) be its ground state energy. It is a simple eigenvalue and λ → E -(λ) is a real analytic concave function defined on R. Let E -be the infimum of the almost sure spectrum of H ω then Proposition 5.1 ([10]). Under Assumption B,E -= inf(E -(a), E -(b)).As for Lifshitz tails, we proved Theorem 5.1 ([10]). Suppose Assumption B is satisfied. Assume moreover that (5.1) E -(a) = E -(b). where we have set c = a if E -(a) < E -(b) and c = b if E -(a) > E -(b), and α + = -1 2 lim inf ε→0 log | log P({|c -ω 0 | ≤ ε})| log ε ≥ 0. The technique developed in [10] did not allow us to treat the case E -(a) = E -(b). Clearly, if the random variables (ω γ ) γ are non trivial and Bernoulli distributed, i.e., if P(ω 0 = a) + P(ω 0 = b) = 1 and P(ω 0 = a) > 0, P(ω 0 = b) > 0, Theorem 1.4 tells us that the Lifshitz tails hold if and only if aV ∼ j bV for some j ∈ {1, • • • , d} (see (1.9)). So we are just left with the case when the random variables (ω γ ) γ are not Bernoulli distributed. We prove Suppose assumption B is satisfied and that (5.2) E -(a) = E -(b).

  -E -,L (ω))∂ ωγ ϕ L (ω) = ∂ ωγ E -,L (ω) -V (• -γ) ϕ L (ω) and (5.6) ∂ ωγ ϕ L (ω), ϕ L (ω) = 0.

2 .

 2 As the random variables are not Bernoulli distributed, i.e., P(ω 0 = a) + P(ω 0 = b) < 1, we can fix ε > 0 sufficiently small such thatP(ω 0 ∈ [a, a + ε)) + P(ω 0 ∈ (b -ε, b]) < 1. By strict concavity of E -(λ), one has E -(a) < E -(a+ε) and E -(b) < E -(b-ε).In Section 2, we have provedLemma 5.2. Assume E -(a) = E -(b). There exists C > 0 such, for all L ≥ 0, if ω ∈ {a, b, a + ε, b -ε} Z L issuch that (P) for all p ∈ Λ, there exists ℓ ∈ {0, . . . , L -1} such that ω (p,ℓ) ∈ {a + ε, b -ε} then (5.7) E -,L (ω) ≥ E -(a) + 1 CL 2 .
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 53 Assume E -(a) = E -(b). There exists C > 0 such, for all L ≥ 0, if ω ∈ Ω L is such that (P') for all p ∈ Λ, there exists ℓ ∈ {0, . . . , L -1} such that ω (p,ℓ) ∈ [a + ε, b -ε] then (5.7) holds (with the same constant as in Lemma 5.2).Let us postpone the proof of this result to complete that of Theorem 5.2. Pick E > E -(a) = E -(b). We use(5.4) and pick L = c(E -E -(a)) 1/2 . Pick c > 0 sufficiently small that Cc 2 < 1. Then, Lemma 5.2 tells us that,

  d . The function ω → E -,L (ω) is real analytic and strictly concave on [a, b] Z L .Proof. Though this is certainly a well known result, for the sake of completeness, we give the proof. The ground state being simple, ω → E -,L (ω) is real analytic in ω.As H ω depends affinely on ω, by the variational characterization of the ground state energy, E -,L (ω) is the infimum of a family of affine functions of ω. So it is concave. The strict concavity is obtained using perturbation theory. Let ϕ L (ω) be the unique normalized positive ground state associated to E -,L (ω) and H N ω,L . The ground state energy being simple, this ground state is a real analytic function of ω; differentiating once the eigenvalue equation and the normalization condition of the ground state, as the ground state is normalized and real, one obtains

	One has
	Lemma 5.1.

if ω ∈ [a, b] Z L satisfies (P'), then E -(ω) > E. So, the set Ω L (E) := {ω ∈ Ω L ; E -(ω) > E} satisfies

Hence,

This yields the announced exponential decay and completes the proof of Theorem 5.2.

Proof of Lemma 5.3. We will proceed in two steps. First, we prove that, if ω satisfies (P') and all its coordinates that are not in [a + ε, b -ε] are either equal to a or to b, then (5.7) holds (with the same constant as in Lemma 5.2). This comes from the concavity of the ground state and the fact that any such point is a convex combination of points satisfying (P). Indeed, take such a point ω and let Γ(ω) be the set of coordinates such that

That ω satisfies (5.7) then follows from the concavity of ω → E -,L (ω), that is Lemma 5.1, and from Lemma 5.2. To complete the proof of Lemma 5.3, it suffices to show that a point ω satisfying (P') can be written a convex combination of points of the type defined above. This is done as above. Indeed, pick ω satisfying (P'). Define L(ω) = {a, b} (Z L \Γ(ω)) . Then, there exists a convex combination (µ η ) η∈L(ω) such that

That ω satisfies (5.7) then follows from the concavity of ω → E -,L (ω) and from the first step. This completes the proof of Lemma 5.3.