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Combinatorial Deformations of Algebras: Twisting and Perturbations

The framework used to prove the multiplicative deformation of the algebra of Feynman-Bender diagrams is a twisted shifted dual law (in fact, twisted twice). We give here a clear interpretation of its two parameters. The crossing parameter is a deformation of the tensor structure whereas the superposition parameter is a perturbation of the shuffle coproduct which, in turn, can be interpreted as the diagonal restriction of a superproduct. Here, we systematically detail these constructions.

Introduction

In [START_REF] Bender | Quantum field theory of partitions[END_REF], Bender, Brody, and Meister introduced a special field theory, then called "Quantum Field Theory of Partitions". This theory is based on a bilinear product formula which reads

H(F, G) = F z d dx G(x) x=0 . (1) 
If one develops this formula in the case when F and G are free exponentials, one obtains a summation over all the (finite) bipartite1 graphs with multiple edges and no isolated point [START_REF] Duchamp | A Three Parameter Hopf Deformation of the Algebra of Feynmanlike Diagrams[END_REF] (the set of these diagrams will be called diag), a data structure which is equivalent to classes of packed matrices [START_REF] Duchamp | Non commutative symmetric functions VI: Free quasi-symmetric functions and related algebras[END_REF] under permutations of rows and columns. So, one has a Feynman-type expansion of the product formula

H exp( ∞ n=1 L n z n n! ), exp( ∞ n=1 V n z n n! ) = n≥0 z n n! d∈diag |d|=n mult(d)L α(d) V β(d) (2) 
where mult(d) is the number of pairs (P 1 , P 2 ) of (ordered) set partitions of {1, . . . , n} which correspond to a diagram d, |d| the number of edges in d and

L α(d) = L α 1 1 L α 2 2 • • • ; V β(d) = V β 1 1 V β 2 2 • • • (3) 
is the multiindex notation for the monomials in L ∪ V where α i = α i (d) (resp.

β j = β j (d))
is the number of white (resp. black) spots of degree i (resp. j) in d.

The set diag endowed with disjoint receive the structure of a monoid such that the arrow d → L α(d) V β(d) is a morphism (of monoids) and then, by linear extension, one deduces a morphism of algebras

C[diag] → Pol(C; L ∪ V) . (4) 
where Pol(C; L ∪ V) is the Hopf algebra of (commutative) polynomials with complex coefficients generated by the alphabet L ∪ V. For at least three models of Physics, one can specialize L so that the canonical Hopf algebra structure of Pol(C; L∪V) can be lifted, through [START_REF] Bourbaki | Algèbre Commutative[END_REF]. The resulting Hopf algebra (based on C[diag]) has been denoted DIAG. To our great surprise, this Hopf algebra structure could be lifted at the (noncommutative) level of the objects themselves instead of classes, resulting in the construction of a Hopf algebra on (linear combinations of) "labelled diagrams" (the monoid ldiag, see [START_REF] Duchamp | A Three Parameter Hopf Deformation of the Algebra of Feynmanlike Diagrams[END_REF]). As these "labelled diagrams" are in one-to-one correspondence with the packed matrices of MQSym, we get on the vector space C[ldiag] two (combinatorially natural) structures of algebra (and co-algebra) and one could raise the question of the existence of a continuous deformation between the two. The answer is positive and can be performed through a three-parameter (two formal, or continuous and one boolean) Hopf deformation2 of LDIAG called LDIAG(q c , q s , q t ) [START_REF] Duchamp | A Three Parameter Hopf Deformation of the Algebra of Feynmanlike Diagrams[END_REF] such that

LDIAG(0, 0, 0) ≃ LDIAG ; LDIAG(1, 1, 1) ≃ MQSym . ( 5 
)
The rôle of the two parameters q c , q s (algebra parameters, whereas q t is a coalgebra parameter) was discovered just counting crossings and superpositions in the twisted labelled diagrams (see [START_REF] Duchamp | A Three Parameter Hopf Deformation of the Algebra of Feynmanlike Diagrams[END_REF] for details). This simple statistics (counting crossings and superpositions) yields an associative product on the diagrams. The first proof given for the associativity was mainly computational and it was a surprise that even the associativity held. This raised the need to understand this phenomenon in a deeper way and the question whether the two parameters (q c and q s ) would be of different nature. The aim of this paper is to answer this question and give a conceptual proof of associativity by developing four building blocks which are general and separately easy to test: addition of a group-like element to a co-associative coalgebra, shifting lemma, codiagonal deformation of a semigroup and extension of a colour factor to words. The essential ingredient in the two last operations is what has become nowadays a useful tool, the coloured product of algebras, for which we give some new results.
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2 The deformed algebra LDIAG(q c , q s )

Review of the construction of the algebra

The complete story of the algebra of Feynman-Bender diagrams which arose in Combinatorial Physics in (2005) can be found in [START_REF] Duchamp | A Three Parameter Hopf Deformation of the Algebra of Feynmanlike Diagrams[END_REF] and a fragment of it, as well as a realization with an alternative data structure, in [START_REF] Duchamp | Hopf algebras of diagrams[END_REF].

Recall that (classical) shuffle products (of words) can be expressed in two ways a) recursion b) summation on (and by means of) some permutations.

Here, we will trace back the construction of the deformed product between two diagrams, starting from an analog of (b) (using however the symmetric semigroup instead of the symmetric group, see below) and going gradually to (a) following in that the first description of the deformed case which was graphical (and was discovered as such [START_REF] Duchamp | A Three Parameter Hopf Deformation of the Algebra of Feynmanlike Diagrams[END_REF]). The diagrams on which the product has to be performed are plane bipartite graphs (vertices being called black and white spots) with multiple ordered edges ; they look as follows. One can define more formally this data structure using the equivalent notion of a weight function. Here, it is a function ω : N + × N + → N (as in [START_REF] Duchamp | Hopf algebras of diagrams[END_REF]) with support

supp(ω) = {(i, j) ∈ N + × N + | w(i, j) = 0} (6) 
having projections of the form pr 1 (supp(ω)) = [1 . . . p]; pr 2 (supp(ω)) = [1 . . . q] for some p, q ∈ N + . This last prescription can be rephrased without pr i remarking that p (resp. q) is the last i such that (∃j ∈ N + )(ω(i, j) = 0) (resp. q is the last j such that (∃i ∈ N + )(ω(i, j) = 0)). In this way our graphs are in one-to-one correspondence with such weight functions. We are now in the position of describing the (deformed) product of our diagrams by means of the symmetric semigroup (whereas the symmetric group would only provide crossings as it occurs with the shuffle product).

The symmetric semigroup on a finite set F (denoted here SSG F ) is the set of endofunctions F → F . In order to preserve the requirement that black spots kept on being labelled from 1 to some integer, we have to ask that the mapping acting on the diagram d with n black spots had its image of the type [1 . . . m] for some m ≤ n. The result noted d.f has m black spots such that the black spot of (former) label "i" bears the new label f (i). If we consider any onto mapping [1 . .

. p] → [1 . . . r], the diagram d.f = d ′ has the following weight function ω ′ ω ′ (i, k) = f (j)=i ω(j, k) . (7) 
which can be easily checked to be admissible in our context.

Before giving the expression of the deformed product, we must define local partial degrees. For a black spot with label "l", we denote by bks(d, l) its degree (number of adjacent edges). Then, for d 1 (resp. d 2 ) with p (resp. q) black spots, the product reads

[d 1 |d 2 ] L(qc,qs) = f ∈Shs(p,q) i<j f (i)>f (j) q bks(d,i).bks(d,j) c i<j f (i)=f (j) q bks(d,i).bks(d,j) s [d 1 |d 2 ] L .f (8)
where Shs(p, q) is the set of mappings f ∈ SSG [1...p+q] with image an interval of type [1 . . . m] (with max{p, q} ≤ m ≤ p + q), and such that

f (1) < f (2) < • • • < f (p) ; f (p + 1) < f (p + 2) < • • • < f (p + q) . (9) 
This condition, similar to that of the shuffle product, guarantees that the black spots of the diagrams are kept in order during the process of shuffling with superposition (hence the name Shs).

Coding and the recursive definition

The graphical and symmetric-semigroup-indexed description of the deformed product neither give immediately a recursive definition nor an explanation of "why" the product is associative. We will, on our way to understand this (as well as the different natures of its parameters), proceed in three steps:

• coding the diagrams by words of monomials

• presenting the product as a shifted law

• give a recursive definition of the (non-shifted) law.

The code used here relies on monomials over a commutative alphabet of variables X = {x i } i≥1 . As in [START_REF] Duchamp | A Three Parameter Hopf Deformation of the Algebra of Feynmanlike Diagrams[END_REF], we let MON(X) denote the monoid of monomials {X α } α∈N (X) (indeed, the free commutative monoid over X) and MON + (X) = {X α } α∈N (X) -{0} the semigroup of its non-unit elements (the free commutative semigroup over X). Note that each weight function ω ∈ N (N + ×N + ) yields an equivalent "word of monomials 3 

" W (ω) = w 1 .w 2 . • • • .w p such that W (ω)[i] = w i = ∞ j=1 x ω(i,j) j . ( 10 
)
The correspondence code : 

N (N + ×N + ) → (MON + (X)) * is one-to-
(where indexes(Alph(W )) is the set of i ∈ N + such that an x i is involved in W ). Due to the special indexation of its alphabet, the monoid (MON + (X)) * comes equipped with a set of endomorphisms, the translations T n defined on the variables by T n (x i ) = x i+n and extended to MON + (X), to (MON + (X)) * and then to K MON + (X) . Note that the code of a concatenation reads

code([d 1 |d 2 ] L ) = code(d 1 ).T max(indexes(Alph(code(d 1 )))) (code(d 2 )) . (12) 
Therefore, the function "code" being below extended by linearity, the reader may check easily that one can compute recursively the deformed product on the codes by

code([d 1 |d 2 ] L ) = code(d 1 ) ↑ T max(indexes(Alph(code(d 1 )))) (code(d 2 )) (13) 
where the bilinear product ↑ is recursively defined on the words as follows

1 (MON + (X)) * ↑ w = w ↑ 1 (MON + (X)) * = w au ↑ bv = a(u ↑ bv) + q |au||b| c b(au ↑ v) + q |u||b| c q |a||b| s (a • b)(u ↑ v) (14) 
where a•b (medium • dot) denotes the (monomial, commutative) product of a and b within MON + (X).

It is this last recursion that we will decompose and analyse below in order to get a better understanding of the parameters. The associativity of the product ( 14) is a consequence of the following proposition. Let q c , q s ∈ K be two elements in a (commutative) ring K. We define on

K S = K[S * ] a new product ↑ by w ↑ 1 S * = 1 S * ↑ w = w au ↑ bv = a(u ↑ bv) + q |au| d |b| d c b(au ↑ v) + q |u| d |b| d c q |a| d |b| d s (a.b)(u ↑ v) ( 15 
)
where the weights are extended additively to lists (words) by

a 1 a 2 • • • a k d = k i=1 |a i | d .
Then the new product ↑ is graded, associative with 1 S * as its unit.

The questions that have arisen in the introduction can be now reformulated as follows. Q1) Are q c and q s of the same nature ? Q2) If no, can the associativity be explained, step by step, by constructions which will show their different natures ?

Here, by"nature", is understood that, although at the level of statistics q c and q s seem to play a similar rôle, they could be distinguished by general algebra. Indeed we attempt in the sequel to show that q c is of geometric nature (deformation at the level of the tensor structure) whereas q s is a perturbative nature (perturbation of the Lie coproduct). With this end in view, we need to recall a now classical tool, the coloured product of two algebras.

Colour factors and products

Colour factors were introduced4 by [14] and the theory was developped or used in [START_REF] Duchamp | Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras[END_REF][START_REF] Désarménien | Quelques remarques sur les superalgèbres de Lie libres C[END_REF][START_REF] Mikhalev | Combinatorial Aspects of Lie Superalgebras[END_REF][START_REF] Zhou | Combinatoire des derivations[END_REF].

Let A = ⊕ α∈D A α and B = ⊕ β∈D B β be two D-graded associative K-algebras5 (D is a commutative semigroup whose law is denoted additively). Readers that are not familiar with graded algebras can think of D = N (X) , the free commutative monoid over X and A α = K[X] α , the space of homogeneous polynomials of multidegree α.

Given a mapping χ : D × D -→ K, we define a product of algebra on A ⊗ B by

(x 1 ⊗ y 1 )(x 2 ⊗ y 2 ) = χ(β 1 , α 2 )(x 1 x 2 ⊗ y 1 y 2 ) (16) 
for (x i ) ∈ A α i and (y i ) ∈ B β i (i = 1, 2). Equating the computations of ((x 1 ⊗ y 1 )(x 2 ⊗ y 2 )) (x 3 ⊗y 3 ) and (x 1 ⊗y 1 ) ((x 2 ⊗ y 2 )(x 3 ⊗ y 3 )) using ( 16) lead to the following proposition. Proposition 3.1 [START_REF] Zhou | Combinatoire des derivations[END_REF] Let χ : D × D -→ K. The following are equivalent i) For A, B D-graded associative algebras, the product defined by ( 16) is associative. 

ii) (∀α 1 , α 2 , α 3 , β 1 , β 2 , β 3 ) ∈ D χ(β 1 , α 2 )χ(β 1 + β 2 , α 3 ) = χ(β 2 , α 3 )χ(β 1 , α 2 + α 3 ) (17 
χ(α + α ′ , β) = χ(α, β)χ(α ′ , β) χ(α, β + β ′ ) = χ(α, β)χ(α, β ′ ), ( 18 
)
then the two members of ( 16) amount to

χ(β 1 , α 2 )χ(β 1 , α 3 )χ(β 2 , α 3 ) = 1≤i<j≤3 χ(β i , α j ) (19)
and hence χ is a colour factor 6 . But the full class of colour factors is much larger than solutions of Eq. ( 18). Just observe that Eq. ( 17 

(A ⊗ B) γ = ⊕ α+β=γ A α ⊗ B β . ( 20 
)
The usual identification 

(A ⊗ B) ⊗ C ≃ A ⊗ (B ⊗ C) (21 

Algebras and coalgebras in duality

An algebra (A, µ) and a coalgebra (C, ∆) are said to be in duality iff there is a nondegenerate pairing -|such that for all x, y ∈ A,

z ∈ C µ(x, y)|z = x ⊗ y|∆(z) ⊗2 (22) 
In the following, we will call dual law a product K A ⊗ K A * -→ K A on the free algebra which is the dual of a comultiplication, the pairing being given on the basis of words by u|v = δ u,v .

Our first examples are essential in modern and not-so-modern research ( [START_REF] Ochsenschläger | Binomialkoeffitzenten und Shuffle-Zahlen[END_REF][START_REF] Rosso | Groupes quantiques et algèbres de battage quantiques[END_REF]). Firstly, we have the dual of the Cauchy product

∆ Cauchy (w) = uv=w u ⊗ v . ( 23 
)
Contrary to this one (23), which is not a morphism of algebras7 

K A -→ K A ⊗ K A , (24) 
one has three very well-known examples being so, namely duals of the shuffle , the Hadamard ⊙ and the infiltration product ↑. As they are morphisms between the algebras (24), they are well defined by their values on the letters. Respectively

∆ (x) = x ⊗ 1 + 1 ⊗ x ; ∆ ⊙ (x) = x ⊗ x ; ∆ ↑ (x) = x ⊗ 1 + 1 ⊗ x + x ⊗ x . ( 25 
)
One can prove that the deformations ∆ q = ∆ (x) + q∆ ⊙ (x) are also co-associative and that they are the unique solutions of the problem of bialgebra comultiplications on K A that are compatible with subalphabets [START_REF] Duchamp | Direct and dual laws for automata with multiplicities T[END_REF].

In the sequel, we will make use several times of the following lemma, the proof of which is left to the reader.

Lemma 4.1 Let A be an algebra and C be a coalgebra in (non-degenerate) duality, then

A is associative iff C is coassociative.

Duality between grouplike elements and unities

Let (C, ∆) be a coalgebra with counit ǫ : C → K. We call group-like an element u such that ǫ

(u) = 1 ; ∆(u) = u ⊗ u . ( 26 
)
One then has C = ker(ǫ) ⊕ K.u and

∆(y) = ∆ + (y) + y ⊗ u + u ⊗ y -ǫ(y)u ⊗ u . ( 27 
)
where ∆ + is a comultiplication on C for which ker(ǫ) = C + is a subcoalgebra (i.e., ∆

+ (C + ) ⊂ C + ⊗ C + ) [3].
Proposition 4.2 Let (C, ∆, ǫ) be a coalgebra with counit, u a group-like element in C and (C + , ∆ + ) be as in ( 27). On the other hand, let A be an algebra and A (1) = A ⊕ K.v be the algebra with unit constructed from A by adjunction of the unity v. Then, if C + and A are in duality by | , so are C and A (1) by | • defined as follows

x + αv|y + βu • = x|y + βα (28)
for x ∈ A and y ∈ C + = ker(ǫ).

Proof -Let (x 1 + α 1 v) ⊗ (x 2 + α 2 v)|∆(y + βu) ⊗2 • = (x 1 + α 1 v) ⊗ (x 2 + α 2 v)|∆ + (y) + y ⊗ u + u ⊗ y + βu ⊗ u) ⊗2 • (29)
but, according to the fact that

x i |u = x 1 ⊗ v|∆ + (y) = v ⊗ x 2 |∆ + (y) = v ⊗ v|∆ + (y) = v|y = 0 one has from (29) (x 1 + α 1 v) ⊗ (x 2 + α 2 v)|∆(y + βu) ⊗2 • = x 1 ⊗ x 2 |∆ + (y) ⊗2 + α 2 x 1 |y + α 1 x 2 |y + α 1 α 2 β = x 1 x 2 + α 2 x 1 + α 1 x 2 + α 1 α 2 v|y + βu • = (x 1 + α 1 v)(x 2 + α 2 v)|y + βu • (30)
which proves the claim.

Deformed laws

Let S be a semigroup graded by a semigroup of degrees D and A = K[S] its algebra. A colour factor χ : D × D → K being given, we endow the algebra A ⊗ A with the coloured tensor product structure. Notice that the diagonal subspace

D S = ⊕ x∈S Kx ⊗ x is a subalgebra as (x ⊗ x)(y ⊗ y) = χ(x, y) xy ⊗ xy . (31) 
Carrying (31) back to A by means of the isomorphism of vector spaces, A → D S , one sees immediately that the deformed product on A given by x. χ y = χ(x, y) xy (32) (for x, y ∈ D) is associative.

From now on, we suppose that the semigroup D fulfils condition [D] of Bourbaki [START_REF] Bourbaki | Algebra[END_REF] which means that for all z ∈ D, the number of solutions (x, y) ∈ D 2 of the equation xy = z is finite. This condition is fulfilled by almost all the grading semigroups used by combinatorialists, in particular the semigroups (N, +), (N + , ×), (N (X) , +).

If A is endowed with the scalar product for which the basis (s) s∈S is orthonormal, the pairing is non-degenerate and the dual comultiplication is given by

∆(z) = xy=z χ(x, y) x ⊗ y . (33) 
The construction together with lemma 4.1 proves that this comultiplication on A is coassociative.

Shifted laws

We begin by a very general version of the "shifting lemma" (more general than the one given and needed in [START_REF] Duchamp | A Three Parameter Hopf Deformation of the Algebra of Feynmanlike Diagrams[END_REF]). We start from an algebra A decomposed (as a vector space) by the direct sum

A = ⊕ α∈D A α
over D, a semigroup. We denote by End α (A) the morphisms of algebra A → A (then multiplicative) which "shift by α" (i.e., φ ∈ End α (A) iff for all β ∈ D, one has φ(A β ) ⊂ A α+β ). this situation is typical of "shift of indices" in free algebras. For example let Y = {y j } j≥1 = {y 1 , y 2 , • • • y k , • • • } be an infinite alphabet, D be its indexing semigroup (N + , +) and A be the algebra K Y . For every monomial (word) w let d(w) be the maximal index j of a letter y j occurring in w. With K Y j := ⊕ d(w)=j K.w, one gets a direct sum decomposition

K Y = ⊕ j≥1 K Y j (34) 
for which K Y is not a graded algebra (it is, in fact for the sup law in N + , but we aim here at constructing a graded algebra for the addition of degrees). The change of variables T n (y j ) := y j+n defines a morphism of algebras T n ∈ End n (A). the product of algebra is the usual concatenation whereas the shifted law reads

w 1 conc w 2 := w 1 T n (w 2 )
where n = max{j ≥ 1||w 1 | y j = 0}. One can easily check that the following spaces are subalgebras of (K Y , conc)

1. the space generated by packed words (i.e., the words whose alphabet indices are of the form [1 . . . q]) 2. the space generated by injective words (each letter occurs at most once)

3. the space generated by permutation words (packed and injective, see [START_REF] Duchamp | Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras[END_REF])

4. the space generated by increasing (resp. strictly increasing) words (i.e., w = y j 1 y j 2 • • • y j k such that the function r → j r is increasing (resp. strictly increasing)

5. the space generated by disconnected words (i.e., w = y j 1 y j 2 • • • y j k such that there exists en index r < k with y jr+1 not occurring in w)

The following lemma gives general conditions for such shifted laws to be associative.

Lemma 4.3

Let A be an algebra (whose multiplicative law will be denoted by ⋆) and A = ⊕ α∈D A α a decomposition of A as a direct sum over D, a semigroup (A is then graded but only as a vector space). Let α → T α : D → End gr (A) be a morphism of semigroups such that T α ∈ End α (A). Explicitly, for all α, β ∈ D ;

x ∈ A β T α (x) ∈ A α+β and T α • T β = T α+β . ( 35 
)
We suppose that the shifted law defined for x ∈ A α and y ∈ A by

x ⋆ y = x ⋆ T α (y) ( 36 
)
is graded for the decomposition

A = ⊕ α∈D A α (i.e., if x ∈ A α and y ∈ A β then x ⋆ y ∈ A α+β ).
Then, if the law ⋆ is associative so is the law ⋆.

Proof -One has just to prove the identity of associativity of ⋆ for homogeneous elements. Suppose that ⋆ is associative, for x ∈ A α , y ∈ A β and z ∈ A, one has

x⋆(y⋆z) = x ⋆ T α (y⋆z) = x ⋆ T α (y ⋆ T β (z))) = x ⋆ (T α (y) ⋆ T α (T β (z))) = x ⋆ (T α (y) ⋆ T α+β (z)) = (x ⋆ T α (y)) ⋆ T α+β (z) = (x ⋆ y) ∈A α+β ⋆ T α+β (z) = (x⋆y)⋆z
5 Application to the structure of LDIAG(q c , q s ) 5.1 Associativity of LDIAG(q c , q s ) using the previous tools As was stated in paragraph 2.2, we just have to prove proposition 2.1 and we keep the notations of it. We first remark, from paragraph (4.2) that, for a semigroup S of type (D) 8 , graded by a degree function

| | d : S → N, the comultiplication ∆ 1 : K[S] → K[S] ⊗ K[S] given for s ∈ S by ∆ 1 (s) = rt=s q |r| d |t| d s r ⊗ t (37) 
is coassociative. Now, we endow K S ⊗ K S with the structure of coloured product given by the bicharacter on S * χ(u, v) = 1≤i≤|u| 1≤j≤|v|

q |u[i]| d |v[j]| d c ( 38 
)
8 After [START_REF] Bourbaki | Algebra[END_REF], a semigroup S of type (D) is such that the product mapping S × S → S has finite fibers.

One defines a mapping ∆ :

S → K S ⊗ K S by ∆(s) = s ⊗ 1 S * + 1 S * ⊗ s + ∆ 1 (s) (39) 
which is extended at once as a morphism of algebras ∆ : K S → K S ⊗ K S . Note that V = ⊕ x∈S∪{1 S * } K.x = KS ⊕K.1 S * is a subcoalgebra for ∆ and the coalgebra V is, by paragraph (4.1.2), still coassociative. Now, one has to prove that the following rectangle is commutative

K S ∆ / / ∆ K S ⊗ K S Id⊗∆ K S ⊗ K S ∆⊗Id / / K S ⊗ K S ⊗ K S . (40) 
By Note (3.4) (ii) all the arrows are morphisms of algebras and in particular the composites (Id ⊗ ∆) • ∆ ; (∆ ⊗ Id) • ∆ which, it has been proved just previously, coincide on S (coassociativity of the subcoalgebra V ). This shows that the rectangle (40) is commutative.

End of the duality. -We denote by ↓ the law which is dual to ∆. This law, being dual to a coassociative comultiplication, is associative. We prove that it satisfies the same recursion as in proposition (2.1) so, ↓=↑. It is sufficient to prove the recursion for non-empty factors. One has

au ↓ bv = w∈S + au ↓ bv|w w = x∈S w 1 ∈S * au ↓ bv|xw 1 xw 1 = x∈S w 1 ∈S * au ⊗ bv|∆(x)∆(w 1 ) xw 1 = x∈S w 1 ∈S * au ⊗ bv|(x ⊗ 1 + 1 ⊗ x + yz=x χ(y, z)y ⊗ z)∆(w 1 ) xw 1 = x∈S w 1 ∈S * au ⊗ bv|(x ⊗ 1)∆(w 1 ) xw 1 + x∈S w 1 ∈S * au ⊗ bv|(1 ⊗ x)∆(w 1 ) xw 1 + x∈S w 1 ∈S * au ⊗ bv|( yz=x χ(y, z)y ⊗ z)∆(w 1 ) xw 1 = x=a w 1 ∈S * au ⊗ bv|(x ⊗ 1)∆(w 1 ) xw 1 + x∈S w 1 ∈S * au ⊗ bv|(1 ⊗ x) i,j β ij w i ⊗ w j xw 1 + x∈S w 1 ∈S * au ⊗ bv|( yz=x χ(y, z)y ⊗ z) i,j β ij w i ⊗ w j xw 1 = a(u ↓ bv) + q |au| d |b| d c b(au ↓ v) + q |u| d |b| d c q |a| d |b| d s (a.b)(u ↓ v) (41)
which proves the claim.

5.2 Structure of LDIAG(q c , q s ) This section is devoted to the thorough study of the structure of LDIAG(q c , q s ) using that of the algebra of (MON + (X)) * endowed with the shifted law ↑.

We first investigate the structure of the monoid ((MON + (X)) * , ⋆), broadening out to some extent Proposition 3.1 of [START_REF] Duchamp | A Three Parameter Hopf Deformation of the Algebra of Feynmanlike Diagrams[END_REF]. For a general monoid, (M, ⋆, 1 M ), the irreducible elements are the elements x = 1 M such that x = y ⋆ z =⇒ 1 M ∈ {y, z}. The set of these elements will be denoted irr(M). For convenience, in the following statement, M stands for the monoid ((MON + (X)) * , ⋆), M + = M -{1 M } and M c is the submonoid of codes of diagrams (i.e., words which fulfill Eq. ( 11)). The monoid M is free. An

element w = m 1 .m 2 . • • • .m l ∈ M + (hence l = |w| > 0) is reducible iff there exists 0 < k < l such that indices(Alph(m 1 .m 2 . • • • .m k ))) ≺ (indices(Alph(m k+1 .m k+2 . • • • .m l )) (42) 
where, for two nonempty subsets X, Y ⊂ N + , one notes ≺ the relation of majoration i.e., (∀(x, y) ∈ X × Y )(x < y) .

One checks at once that the monoid M c is generated by the subalphabet irr(M) ∩ M c and therefore is free. Now, we need a classical tool of general algebra (see [START_REF] Bourbaki | Algèbre Commutative[END_REF], chapter III for details). Let (A, µ) be an algebra endowed with an increasing exhaustive filtration (A n ) n∈N (i.e., two-sided ideals such that A n ⊂ A n+1 and ∪ n∈N A n = A). It is classical to construct the associated graded algebra Gr(A) = ⊕ n≥0 A n /A n-1 by passing the law to quotients i.e., μp,q : A p /A p-1 ⊗ A q /A q-1 → A p+q /A p+q-1 (one sets A -1 = {0}). A classical lemma (and easy exercise) states that, if the associated graded algebra is free, so is A. Now, returning to (K MON + (X) , ↑) ( ↑ is the shifted deformed law), one constructs a filtration by the number of irreducible components of a word of monomials (call it l(w) for w ∈ MON + (X)). From [START_REF] Rosso | Groupes quantiques et algèbres de battage quantiques[END_REF], one gets, w 1 ↑w 2 = w 1 ⋆w 2 + l(w)<l(w 1 )+l(w 2 )

P w (q c , q s )w (44) with P w ∈ K[q c , q s ] (indeed, ↑ is the same law as in [START_REF] Rosso | Groupes quantiques et algèbres de battage quantiques[END_REF] but shifted) and then, the associated graded algebra is, by triangularity argument, free. One can then state the following structure theorem.

Theorem 5.1 The algebra K MON + (X) , endowed with the shifted deformed law ↑, is free on the irreducible words and then the algebra LDIAG(q c , q s ), isomorphic to a subalgebra generated by irreducible words, is free for every choice of (q c , q s ).

Conclusion

To sum up what has been done in this paper we can state that the deformed algebra LDIAG(q c , q s ), which originates from a special quantum field theory [START_REF] Bender | Quantum field theory of partitions[END_REF], is free and its law can be constructed from very general procedures: it is a shifted twisted law. Before shifting, one can observe that the law is, in fact, dual to a comultiplication on a free algebra. This comultiplication is a perturbation, with q s (the superposition parameter) of the shuffle comultiplication on this free algebra. The parameter q s is obtained by addition of a perturbating factor which is just dual to a (diagonally) deformed law of a semigroup whereas the crossing parameter q c is obtained by extending to the tensor structure (i.e., to words) a colour factor of an algebra.

Fig 1 .-

 1 Fig 1. -Labelled diagram of format 3 × 4.

Fig 2 .

 2 Fig 2. -The weight function (when not 0) of the diagram in Fig 1. Here p = 3 and q = 4.

  one and provides at once a way to code each labelled diagram through its weight function as a word of monomials. Conversely a word W ∈ (MON + (X)) * is the code of a diagram (i. e. the image by code of the weight function of a diagram) iff indexes(Alph(W )) = [1 . . . m]

Proposition 2 . 1 (

 21 Prop. 5.1 in[START_REF] Duchamp | A Three Parameter Hopf Deformation of the Algebra of Feynmanlike Diagrams[END_REF]) Let (S, .) be a semigroup graded by a degree function | | d : S → N (i. e. a morphism to (N, +)) and S * the set of lists (denoted by words a 1 a 2 • • • a k ) with letters in S (including the empty list 1 S * ).

) Definition 3 . 2

 32 Every mapping χ : D × D -→ K which fulfills the equivalent conditions of proposition (3.1) will be called a colour (twisting) factor. Remarks 3.3 i) If χ is bilinear, which means in this context that the following equations are satisfied (for all α, α ′ , β, β ′ ∈ D)

)

  holds for coloured products. ii) Moreover, if A f → A ′ (resp. B g → B ′) are two morphisms of (graded) algebras (over the same semigroup of degrees D), then A ⊗ B f ⊗g -→ A ′ ⊗ B ′ is a morphism of algebras (the colour products being taken w. r. t. the same colour factor).

  Note 3.4 i) The colour product of two algebras A = ⊕ α∈D A α and B = ⊕ β∈D B β comes also as a graded algebra by

	of colour
	factors that are not bilinear.
	ii) The converse (i.e., ii =⇒ i) part of proposition (3.1) can be easily proved by considering
	(free) semigroup algebras K[D].

) is homogeneous in the classical sense i.e. for all λ ∈ K, if χ fulfills (17) then rescaling it by λ still does. Hence, for example, any constant function on D × D is a colour factor. This shows the existence

The (bi)-partition of the vertices is understood ordered. In this case, the term bicoloured can also be found in the literature.

This algebra deformation has received recently another realisation in terms of bi-words[START_REF] Duchamp | Hopf algebras of diagrams[END_REF].

The low point . here is used to emphasize concatenation which is alsewhere denoted by simple juxtaposition of letters.

In fact, some of them ("Facteurs de commutation", with values in {-1, 1} and an [anti]symmetry condition) are already considered in the edition of 1970 of[START_REF] Bourbaki | Algebra[END_REF]. See the paragraph 10 Dérivations of Ch III.

Not necessarily with unit.

These bilinear mappings are also called bicharacters in the literature[START_REF] Ree | Generalized Lie elements[END_REF].

Unless A = ∅.