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Abstract

This paper presents a new variational method for the
segmentation of a moving object against a still back-
ground, over a sequence of (2-D or 3-D) image frames.
The method is illustrated in application to myocar-
dial gated SPECT data, and incorporates a level set
framework to handle topological changes while provid-
ing closed boundaries.

The key innovation is the introduction of a geometri-
cal constraint into the derivation of the Euler-Lagrange
equations, such that the segmentation of each individ-
ual frame can be interpreted as a closed boundary of
an object (an isolevel of a set of hyper-surfaces) while
integrating information over the entire sequence. This
results in the definition of an evolution velocity normal
to the object boundary. Applying this method to 3-D
myocardial gated SPECT sequences, the left ventricle
endocardial and epicardial limits can be computed in
each frame.

This space-time segmentation method was
tested on simulated and clinical 3-D myocar-
dial gated SPECT sequences and the corre-
sponding ejection fractions were computed.
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1 Introduction

Classically, when segmenting a sequence, each frame
of the sequence is segmented independently from the
others [1]-[7]. Alternatively, each frame can be seg-
mented taking into account other previous and subse-
quent frames, or even the entire sequence. This second
approach, called space-time segmentation, offers the
advantage of providing a time consistent segmentation.

Kornprobst et al. [8] developed a variational method
for space-time segmentation in the scope of video mon-
itoring. The method assumes that such sequences are
composed of moving (and warping) objects against a
still background (in other words, the frames are all
registered with respect to one another). The aim is to
detect the moving objects in the sequence, i.e. to seg-
ment the objects in each frame of the sequence. Their
criterion takes into account the entire sequence caus-
ing individual frame segmentations to depend on all the
others. Nevertheless, it is geometrically unconstrained.
As a consequence, the segmentation is performed pixel
by pixel.

Pixel based segmentation methods should be dis-
tinguished from region based segmentation methods.
In the case of sequence segmentation, a region based
method is developed in [9]. Assuming that a back-
ground reference image is known, the segmentation is
performed using active contours whose evolution veloc-
ity depends on intensity and motion information. Part
of the motion information is modeled utilizing the op-
tical flow constraint. This approach is statistical in
the sense that intensity values are widely replaced with
probability density functions. The authors discuss the
reliability of the different evolution terms. Another
region based statistical approach is presented in [10]
for single image segmentation. It also uses active con-
tours. The evolution velocity is such that it increases
the discrepancy between statistical values computed in
each region, or equivalently, such that it maximizes the
homogeneity in each region. The number of indepen-
dent statistical values required is directly related to the
number of types of region, which must be chosen ini-
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tially. The active contour process is regularized using
an additional curvature term.

Based on the work in [8], we propose to geomet-
rically constrain the segmentation process to make it
region based. In other words, instead of looking for a
given pixel/voxel to belong to an object or to the back-
ground, our goal is to search the set of pixels/voxels
that form the same object; The remaining pixels/voxels
belong to the background. To achieve this goal, we
have developed a new space-time segmentation crite-
rion (restricted to a unique moving and warping ob-
ject) which involves the space domains of the object
in each frame. The derivation of the Euler-Lagrange
equations is constrained by the object domain bound-
aries. As a consequence, we find an expression of
an evolution velocity normal to the object boundary.
This naturally implies an active contour process [11]-
[14] (further theoretical studies and applications can be
found in [3],[15]-[17]). We have implemented it using a
level set modelization [18]-[20] which guarantees that
the segmentation contours (the zero levels) are closed
hyper-surfaces [18],[21].

We have tested this space-time segmentation method
on simulated and clinical 3-D myocardial gated SPECT
sequences, for which dynamic features such as myocar-
dial wall thickening or ejection fraction may be com-
puted from the endocardial and epicardial limit seg-
mentation in each frame of the sequence. As an illus-
tration, we have computed the ejection fractions of the
segmented sequences using the sign of level sets.

Since the method developed in [8] is the starting
point of our work, we briefly sketch some of its key
components in section 3. Section 4 presents the devel-
opment of our space-time segmentation algorithm. In
section 5 we present results on simulated and clinical
data. Finally, we discuss relevant issues in section 6.

2 Notations

Two-dimensional or three-dimensional images are de-
noted with an additional “(.)” or “(., .)”. t is the itera-
tion index when embedding an unknown into a family
of evolving terms converging toward the solution. For
example, unknown a or a(.) may be denoted a(t) or
a(., t) respectively when considering the iterative reso-
lution process. Vectors are denoted with an overhead
arrow. Tables 1 and 2 present the main symbols used
in this paper.

Table 1: Symbol list: Mathematical symbols and pa-
rameters
Symbol Category Meaning

R The set of reals
△
= By definition, is equal to
a · b Dot product
〈a, b〉 Duality pairing
N Input Number of frames

in a sequence
α, β, γ Parameters Constants of R

+

ϕb, ϕc Parameter Regularization functions
from R

+ to R
+

n Variable Frame index in [1..N ]
x Variable Pixel or voxel coordinates
t Variable Algorithm iteration index
dt Parameter Algorithm iteration step
p Variable Arc-length parameter
dp Infinitesimal curve length
dǫ Infinitesimal surface area

3 Pixel based segmentation

method

3.1 Unconstrained criterion

Let us assume that a sequence is composed of frames
with a still background occluded by some moving (and
warping) objects (for example, a sequence acquired
by a static video monitoring camera). Therefore, the
frames are all registered with respect to one another
so that a particular background pixel, when not oc-
cluded by an object, can be assumed to be of fixed
intensity. Then, if the background image is known (a
frame where the moving objects have been removed,
uncovering the background), it can be compared pixel
by pixel to any frame of the sequence. If two corre-
sponding pixel values are equal, the pixel belongs to
the background. If two corresponding pixel values are
different, the pixel belongs to a moving object. Based
on these assumptions and properties, the following cri-
terion was developed for space-time segmentation in
the scope of video monitoring [8]:

J1(cn, b) =
N∑

n=1

[ ∫

Ω

c2
n(x)× {b(x)− Sn(x)}2

+α

∫

Ω

{cn(x)− 1}2
]

+β

∫

Ω

ϕb(|∇b(x)|) + γ

N∑

n=1

∫

Ω

ϕc(|∇cn(x)|) (1)

where Sn(.) is frame n of the sequence to segment,
cn(.) is the unknown space-time segmentation (see the
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Table 2: Symbol list: Domains and unknowns
Symbol Category Meaning

Ω Input Frame domain
Ω× [1..N ] Input N -frame sequence domain
Sn(.) Input Frame n of a sequence
on Unknown Myocardium value in

frame n (belongs to R
+)

b(.) Unknown Background image of
a sequence

Ωn Unknown Myocardium domain in
frame n

Γn Unknown Segmentation contour in
frame n: Boundary of Ωn

un(.) Unknown Level set of frame n whose
zero level is Γn

~N(.) Variable Direct unit normal of
any isolevel of un(.)

νn(.) Variable Evolution velocity
magnitude on Γn

~νn(.) Variable νn(.) ~N (.)
κn(.) Variable Curvature of any isolevel

of un(.)

description of ĉn(x) below), b(.) is the unknown back-
ground image, ϕb and ϕc are regularization functions,
and Ω is the frame domain. The minimization of (1)

leads to an estimated background image b̂(.) and an es-
timated sequence segmentation ĉn(.). Without the ϕb-

background regularization term (β = 0), b̂(.) reduces
to a weighted time average of the frames Sn(.):

b̂(x) =

∑N

n=1 ĉ2
n(x)Sn(x)

∑N

n=1 ĉ2
n(x)

, x ∈ Ω (2)

where ĉn(x) is such that:

• ĉn is a function from Ω to [0, 1],

• ĉn(x) is close to one if x belongs to the background
in frame n, and

• ĉn(x) is close to zero if x belongs to a moving
object in frame n.

Without the ϕc-segmentation regularization term (γ =
0), ĉn(x) equals:

ĉn(x) =
α

α + {b(x)− Sn(x)}2
· (3)

Let us give an intuitive explanation of criterion (1).
The first sum over n is the data consistency term.
The last two terms are dedicated to the regulariza-
tion of the solutions. The data consistency term is
composed of two integrals of positive expressions. In
order to minimize criterion (1), these expressions must

be equal to zero or close to zero. The first integral
equals zero if and only if for all x: b(x) = Sn(x) or
cn(x) = 0 or both. If b(x) = Sn(x) and cn(x) = 0,
then the expression in the second integral is maximum
(since: cn(x) ∈ [0, 1]). Therefore, the two conditions
b(x) = Sn(x) and cn(x) = 0 seem mutually exclusive.
Moreover, when b(x) = Sn(x), the expression of the
first integral equals zero regardless of what the value
of cn(x) may be. This value should be one so that the
expression of the second integral equals zero. In sum-
mary, there are two cases that allow minimization of
the criterion:

{
b(x) = Sn(x)
cn(x) = 1

or

{
b(x) 6= Sn(x)
cn(x) = 0

· (4)

We can then conclude that a point x of the background
in frame n is characterized by cn(x) = 1 (because the
value Sn(x) of the frame is equal to the background
value b(x)). Conversely, a point x of a moving object in
frame n is characterized by cn(x) = 0. In this second
case, the expression in the second integral has the
maximum value. As a consequence, cn(x) converges
toward a small value in order to minimize the first
integral without maximizing the second one. This
value of convergence depends on parameter α (it is an
increasing function of α). Therefore, the second inte-
gral acts as a penalty for assigning a particular point
to a moving object. Without this penalty criterion (1)
would be minimized with cn(x) = 0 for all n and all x,
i.e. each frame is entirely composed of moving objects.

This segmentation model has a long history in the
literature. In its earliest form (in the context of seg-
menting single images), it goes back to the variational
formulation of Mumford and Shah [22]. Let us try to
see why. We consider the single image case (N = 1).
Let us assume that c1(.) is the characteristic function
over b(.), i.e. c1(x) equals one if x belongs to the back-
ground and otherwise equals zero. The Mumford-Shah
criterion for image segmentation is:

JM−S(w, Γ) =

∫

Ω\Γ

{w(x) − S1(x)}2

+γ

∫

Ω\Γ

|∇w(x)|2 + L (5)

where w(.) is the segmented image, Γ represents the
contours in S1(.), and L is a measure of the contour
lengths. The pair (w(.), Γ) represents the unknown
segmentation of S1(.). We still consider the case of
objects on a background. Therefore, w(x) can be writ-
ten: c1(x)b(x) + (1 − c1(x))o1(x) where o1(x) denotes
the object image. Then, the term in the first integral
of (5) (Let us denote: A(x) = {w(x)−S1(x)}2) equals:

A(x) = {[c1(x)b(x) + (1− c1(x))o1(x)]
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− [c1(x)S1(x) + (1− c1(x))S1(x)]}2 (6)

= c1(x)2{b(x)− S1(x)}2

+ (1− c1(x))2{o1(x)− S1(x)}2

+ 2c1(x)(1 − c1(x)){b(x) − S1(x)}

{o1(x)− S1(x)} · (7)

Expression (7) has similarities with criterion (1). In
particular, the first term of (7) can be found in the
first integral of (1). The second term of (7) represents
the term in the second integral of (1) (the exact
quadratic error {o1(x) − S1(x)}2 has been replaced
with parameter α that serves as a mean quadratic
error). The third term of (7) equals zero since c1(x)
equals either zero or one. The second term of (5)
corresponds to the ϕc-regularization term of (1).

As a conclusion about the method of Kornprobst et
al. [8], each frame can be segmented into background
and objects using a threshold value between zero and
one. Every pixel with a cn value below this threshold
corresponds to an object. Every pixel with a cn value
above this threshold corresponds to the background.

Using this criterion, the computed segmentation is
not globally constrained: There are no assumptions
that compel some pixels to belong to the same moving
object. Regardless of the ϕc-regularization term, the
segmentation process is performed pixel by pixel, and
is therefore unconstrained.

3.2 Space-time segmentation algorithm

The space-time segmentation is represented by the se-
quence ĉn(.) which results from the minimization of
criterion (1). The minimization algorithm developed
in [8] is based on alternate resolutions of the Euler-
Lagrange equations with respect to b(.) and cn(.). For
both b(.) and cn(.), these equations are partial differen-
tial equations involving a weighted Laplacian [23],[24].
They are discretized and solved using a Gauss-Seidel
iterative algorithm.

4 New region based segmenta-

tion method

4.1 Object/background balanced crite-
rion

Criterion (1) gives priority to the background with
respect to the moving objects. Indeed, the term∫
Ω c2

n(x) × {b(x) − Sn(x)}2 involves the background
image b(.) whereas the term α

∫
Ω
{cn(x) − 1}2 does

not explicitly involve the values of the moving objects.
The reason is that moving objects in video monitor-
ing sequences are generally not homogeneous. On the

contrary, in SPECT images, the observed organ pix-
els/voxels are roughly of the same value. Then, a se-
quence of this type of images can be considered as one
or several homogeneous moving (and warping) organs
on a still background with all of the images registered
with respect to one another, so that a particular back-
ground pixel/voxel, when not occluded by an organ,
can be assumed to be of fixed intensity. Regarding the
particular gated SPECT acquisition, the myocardium
is the only object of concern. If the myocardium can
be considered as a homogeneous object within a frame
(i.e. constant in space), it is known that it becomes
brighter from the end diastolic frame to the end sys-
tolic frame (i.e. variable in time) due to myocardial
wall thickening and global uptake conservation [25]-
[27]. Therefore, we define one unknown constant my-
ocardium value on per frame in the following new bal-
anced (it involves both the background and the object)
criterion:

J2(cn, on, b) =

N∑

n=1

[ ∫

Ω

c2
n(x) × {b(x)− Sn(x)}2

+

∫

Ω

{cn(x) − 1}2 × {on − Sn(x)}2
]

+β

∫

Ω

ϕb(|∇b(x)|) + γ

N∑

n=1

∫

Ω

ϕc(|∇cn(x)|) · (8)

4.2 Constrained criterion: Active con-
tour model

The algorithm developed in [8] uses an initial esti-
mate of cn(.) and makes it evolve iteratively pixel by
pixel (the ϕc-regularization term only provides a local
regularization constraint, not a real geometrical con-
straint). Our aim is to propose a new method which (i)
requires an initial segmentation for each frame (com-
posed of one or several contours), (ii) interprets the
inside of the contours as the regions of the moving
(and warping) object, and (iii) makes the contours
in each frame iteratively evolve toward the true mov-
ing object boundary by taking into account all of the
frames. Therefore, we need to define a geometrically
constrained criterion in which the segmentation un-
knowns are the moving object regions in each frame.

We introduce one unknown object domain Ωn per
frame. Let us denote: Ωn = Ω \ Ωn. The conditions
of minimization of criterion (1) (see section 3) are still
valid for criterion (8). Indeed: (i) If b(x) = Sn(x) and
cn(x) = 1, the two integrals of the data consistency
term of (8) equal zero. This case corresponds to the
background since b(x) = Sn(x) (using the object do-
main notation: x belongs to Ωn). (ii) If b(x) 6= Sn(x)
and cn(x) = 0, the first integral of the data consis-
tency term equals zero, and the second integral equals∫
Ω
{on − Sn(x)}2. This last integral also equals zero if
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on = Sn(x), which means that x belongs to the object
(using the object domain notation: x belongs to Ωn).
We rewrite criterion (8) using the fact that Ω = Ωn∪Ωn

and Ωn ∩ Ωn = ∅:

J2(cn, on, b) =

N∑

n=1

[ ∫

Ωn

c2
n(x)× {b(x)− Sn(x)}2

︸ ︷︷ ︸
A

+

∫

Ωn

c2
n(x) × {b(x)− Sn(x)}2

︸ ︷︷ ︸
B

+

∫

Ωn

{cn(x)− 1}2 × {on − Sn(x)}2

︸ ︷︷ ︸
C

+

∫

Ωn

{cn(x)− 1}2 × {on − Sn(x)}2

︸ ︷︷ ︸
D

]

+β

∫

Ω

ϕb(|∇b(x)|)

+γ
N∑

n=1

∫

Ω

ϕc(|∇cn(x)|) · (9)

We can delete the ϕc-regularization term which ceases
to be of use since cn(.) is no longer a function from Ω
to the interval [0, 1] but a function from Ω to the set
{0, 1}. Applying the above conclusions (cn(.) equals
zero on Ωn and one on Ωn), integrals A and D equal
zero, thereby leading to the new criterion:

J3(Ωn, on, b) =

N∑

n=1

[ ∫

Ωn

{b(x)− Sn(x)}2

+

∫

Ωn

{on − Sn(x)}2
]

+ β

∫

Ω

ϕb(|∇b(x)|) · (10)

4.3 Resolutions with respect to b(.) and
o

n

The minimization of criterion (10) with respect to b(.)
and on (Ωn being fixed) is achieved by solving the cor-
responding Euler-Lagrange equations. This criterion is
a least square expression with respect to b(.) (if the ϕb-
regularization term is omitted) and on. Thus, it can
easily be shown that the solutions are:

∀x ∈ Ω, b(x) =

∑N

n=1 ωn(x)Sn(x)
∑N

n=1 ωn(x)
if β = 0 (11)

on = S̃n(x), x ∈ Ωn (12)

where ωn(x) equals one if x belongs to Ωn and is other-
wise zero, and S̃ denotes the average value of variable
S. Equation (11) is a weighted time average. Equa-
tion (12) is a space average. If β is not equal to zero,
the resolution with respect to b(.) is still a classical
minimization problem [23],[24].

4.4 Evolution velocity computation

4.4.1 Unregularized evolution velocity

The minimization of criterion (10) with respect to Ωn

(b(.) and on being fixed) is not straightforward. In-
deed, the calculations of the Ωn Euler-Lagrange equa-
tions are delicate because the Ωn’s are integration do-
mains. Moreover, these domains induce discontinu-
ities: The intensity abruptly changes from on to a value
of background b(.) when crossing out of the boundary
of Ωn. Then, computation of the derivative of (10)
with respect to Ωn requires the use of the distribution
theory to take into account the discontinuities. The
idea is to embed Ωn into a family of evolving domains
Ωn(t), t ≥ 0. Here, t represents the iteration index dur-
ing computation of the solutions, which should not be
confused with n, the frame index. Note that the ϕb-
regularization term is independent of Ωn. Therefore, it
is not involved in the following calculation.
Let us define:

Fn(t) =

∫

Ωn(t)

{b(x)−Sn(x)}2 +

∫

Ωn(t)

{on−Sn(x)}2 ·

(13)
Therefore:

J3(Ωn, on, b) =

N∑

n=1

Fn(t) + β

∫

Ω

ϕb(|∇b(x)|) · (14)

We would like to know how criterion (10) is modified
if Ωn evolves slightly from instant t to instant t + dt.
In other words, we would like to calculate F ′

n(t) in the
distributional sense.
Let φ be a C∞-function with compact support. The
distributional derivative of Fn(t) is defined as <
F ′

n(t), φ >.

< F ′
n(t), φ(t) >

△
=

∫ +∞

t=0

F ′
n(t)φ(t)dt

= − < Fn(t), φ′(t) > (property of the distributions)

= −

∫ +∞

t=0

{∫

Ωn(t)

{b(x)− Sn(x)}2

}

︸ ︷︷ ︸
θ̄(t)

φ′(t)dt

−

∫ +∞

t=0

{∫

Ωn(t)

{on − Sn(x)}2

}

︸ ︷︷ ︸
θ(t)

φ′(t)dt · (15)

Integrating by parts:

∫ +∞

t=0

θ(t)φ′(t)dt = −

∫ +∞

t=0

θ′(t)φ(t)dt+[θ(t)φ(t)]
+∞
0 ·

(16)
The last term of equation (16) equals zero since: φ(t =
0) = φ(t → +∞) = 0, due to the compact support of
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φ. Performing the same development with θ̄ and by
substitution into (15), one gets:

< F ′
n(t), φ(t) > =

∫ +∞

t=0

θ̄′(t)φ(t)dt +

∫ +∞

t=0

θ′(t)φ(t)dt

=

∫ +∞

t=0

{
θ̄′(t) + θ′(t)

}
φ(t)dt · (17)

Equation (17) is true for any C∞-function φ with com-
pact support. Then, we can conclude that: F ′

n(t) =
θ̄′(t) + θ′(t), in the distributional sense. Computation
of θ̄′(t) is not straightforward. However, it is a classical
development in continuous media mechanics [28]. The
final expression is:

θ̄′(t) =

∫

Ωn(t)

∂

∂t

[
{b(x)− Sn(x)}2

]

+

∫

Γn(t)

{b(x)− Sn(x)}2~v(x) · ~N(x)dΓn (18)

where Γn(t) is the oriented boundary of Ωn(t), ~v(.)
is equal to (∂Γn/∂t)(.) (therefore, it is the evolution

velocity on Γn(t)), and ~N(.) is the direct unit normal
of Ωn(t).

Note: Active contours are naturally in-
volved in the minimization of criterion (10)
with respect to Ωn through the term ~v(x)
involved during this development.

The integral term on Ωn(t) equals zero because {b(x)−
Sn(x)}2 is independent of t. Similarly, since {on −
Sn(x)}2 is independent of t, θ′(t) equals:

θ′(t) =

∫

Γ⋆

n
(t)

{on − Sn(x)}2~v⋆(x) · ~N⋆(x)dΓ⋆
n (19)

where Γ⋆
n(t) is the oriented boundary of Ωn(t), ~v⋆(.) =

(∂Γ⋆
n/∂t)(.) is the evolution velocity on Γ⋆

n(t), and
~N⋆(.) is the direct unit normal of Ωn(t). Since Γn(t)
and Γ⋆

n(t) represent the same contour with opposite

orientations, one has: ~v(.) = ~v⋆(.), ~N(.) = − ~N⋆(.),
and then:

θ′(t) = −

∫

Γn(t)

{on − Sn(x)}2~v(x) · ~N(x)dΓn · (20)

Finally:

F ′
n(t) =

∫

Γn(t)

[
{b(x)− Sn(x)}2 − {on − Sn(x)}2

]

~v(x) · ~N(x)dΓn · (21)

The term ~v(x) · ~N(x) is the normal component of the
evolution velocity, that is to say the useful component
of the evolution velocity. To minimize criterion (10)
with respect to Ωn, we have to find the expression of

~v(x)· ~N (x) which makes F ′
n(t) the most negative. How-

ever, we know neither the absolute value nor the sign
of

{
{b(x)− Sn(x)}2 − {on − Sn(x)}2

}
. Let us denote

this term A. The only way to guarantee that F ′
n(t) is

negative is to impose ~v(x) · ~N(x) to be equal to −A
(in which case F ′

n(t) is the integral of −A2 on Γn(t)).
Therefore:

~v(x) · ~N(x) = −
[
{b(x)− Sn(x)}2 − {on − Sn(x)}2

]
·

(22)
As a conclusion, the evolution velocity on the boundary
of Ωn is:

~νn(x) = νn(x) ~N (x) (23)

=
[
{on − Sn(x)}2 − {b(x)− Sn(x)}2

]
~N(x)

(24)

and the partial differential equation that models the
active contour process is:

∂Γn

∂t
= νn

~N · (25)

Assuming that b(.) and the on’s are known, equa-
tions (24) and (25) can be interpreted as follows: If
the contour is inside the object, only the second term
of equation (24) contributes to the evolution since
on − Sn(x) equals zero. The velocity is negative,
therefore, outward contour motion occurs. Vice versa,
if the contour is in the background (b(x) − Sn(x)
equals zero), only the first term contributes and
inward contour motion occurs.

Note that from the beginning of section 4 to equa-
tion (25), the development is valid both for the 2-D
case and the 3-D case:

• The sequence is either composed of 2-D frames or
3-D frames, and

• a contour is either a closed curve or a closed sur-
face.

4.4.2 Curvature based regularization

The contour evolution process is driven by velocity
~νn(.). The noise in the frames of the sequence can cor-
rupt ~νn(.). As a consequence, the segmentation con-
tours might not be smooth and small parts of them
may be left out during the evolution, thereby encir-
cling noise peaks. A minimal length penalty is adapted
to regularize such an evolution process [10],[22] since
small sacrifices regarding the data consistency term
minimization will allow smoothing of the main con-
tours and shrinking of the small contours until they
vanish (see sections 6.3 and 6.4 for more details). In
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the 2-D case, this penalty is expressed through the fol-
lowing criterion:

J4,n(Ωn) =

∫

Γn

dp (26)

where p is the arc-length parameter of curve Γn. It
can be shown [18] that the minimization of (26) with
respect to Γn is achieved by solving the Euclidean curve
shortening equation, or geometric heat equation:

∂Γn

∂t
= κn

~N (27)

where κn(.) is the curvature of Γn. This regularization
term is added to criterion (10) after multiplication by
a positive parameter δ to tune the relative weights of
the two parts. Our variational criterion is then:

J5(Ωn, on, b) = J3(Ωn, on, b) + δ

N∑

n=1

J4,n(Ωn) · (28)

This regularization technique is also used in [10].
However, criterion (28) cannot be interpreted in the
weighted length minimization framework (see sec-
tion 6.4 for more details). Weighted length and area
minimization flow derivations from first principles can
be found in [3],[14],[15], and [17]. Therefore, the final
partial differential equation to solve is:

∂Γn

∂t
= {νn + δκn} ~N · (29)

Extension of this curvature based regularization to the
3-D case is classical. Only the following changes are
needed:

• Curve is replaced with surface,

• length is replaced with area,

• dp is replaced with dε, the infinitesimal area on
Γn, and

• curvature is replaced with mean curvature.

4.5 Level set implementation

The level set technique [18]-[20] greatly simplifies the
management of the contour evolution (i.e. the resolu-
tion of equation (29)), especially for handling topolog-
ical changes. The level set un(.) is a function of x (2-D
or 3-D point) with real values (un : Ω −→ R) and is
defined as follows:

• un(.) is negative on Ωn,

• un(.) is positive on Ωn, and

• un(.) equals zero on Γn, i.e. for all p in [0, 1]:

un(Γn(p)︸ ︷︷ ︸
x

) = 0 · (30)

The knowledge of the sign of un(.) is equivalent to
the knowledge of Ωn. Thus, the Ωn’s can be replaced
with the un(.)’s in criterion (28): J5(Ωn, on, b) becomes
J5(un, on, b). In section 4.4.1, the Ωn’s are embedded
into families of evolving domains Ωn(t). As a conse-
quence, the un(.)’s are also embedded into families of
evolving level sets un(., t). Equation (30) becomes:

∀x ∈ Ω, un(x, t) = 0 · (31)

Differentiating (31) with respect to t (see the ap-
pendix), we obtain the following partial differential
equation:

∂un

∂t
= {νn + δκn}|∇un| (32)

where:

∀x ∈ Ω, κn(x) = div

(
∇un(x)

|∇un(x)|

)
· (33)

4.6 Space-time segmentation algorithm

The algorithm was implemented in the 3-D case. Since
criterion (28) must be minimized with respect to b(.),
on, and Ωn (n in [1..N ]) we use an alternate resolution
scheme. Note that b(.) and the on’s are also embedded
into families of evolving terms, b(., t) and on(t) respec-
tively. Each iteration is divided into two steps. First,
fixing domains Ωn, the minimization is achieved for
b(.) and the on’s. Second, fixing b(.) and the on’s, the
minimization is achieved for domains Ωn. The second
step is performed by applying the active contour evolu-
tion velocities νn(.) to the boundaries of domains Ωn,
or equivalently to level sets un(.). The segmentation
algorithm is presented in table 3.

4.7 Initialization of the algorithm

The algorithm inputs are: b(., t = 0), on(t = 0), and
un(., t = 0) (n in [1..N ]). b(x, t = 0) equals zero for
all x. on(t = 0) equals zero for all n. u1(., t = 0) is
such that the zero level is a truncated hollow ellipsoid
whose interior wall is not too far from the left ventricle
interior wall in the first frame, and similarly for the
exterior wall. un(x, t = 0) = u1(x, t = 0) for all x and
all n in [2..N ].

The parameters of the algorithm are: β, ϕb, δ, and
dt. We decided to set β to zero since the background of
our SPECT sequences was not noisy enough to justify
the use of the ϕb-regularization. Then, the choice of
ϕb is not relevant. δ is chosen heuristically depending
on the desired smoothness of the computed segmenta-
tion. If the segmentation is too irregular, δ must be
increased. However, increasing δ too much may reduce
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Table 3: Segmentation algorithm
b(., t = 0)← initial background image
on(t = 0)← initial myocardium value in frame n,
n in [1..N ]
un(., t = 0)← initial level set, n in [1..N ]
Set parameters β, ϕb, δ, and dt (see section 4.7)
t← 0

repeat

b(., t)← argminb{J5 with un fixed to un(., t),
n in [1..N ]} (using (11))
for each n in [1..N ] do

on(t)← argminon
{J5 with un fixed to un(., t)}

(using (12))
done

for each n in [1..N ] do

νn(.) ← {on(t)− Sn(.)}2 − {b(., t)− Sn(.)}2

κn(.)← div(∇un(., t) / |∇un(., t)|)

un(., t + dt)←
un(., t) + dt {νn(.) + δκn(.)} |∇un(., t)|

done

t← t + dt
tmax ← t

until convergence (see section 6.4)

space-time segmentation ← zero level set
of un(., tmax),n in [1..N ]

the geometrical accuracy (see sections 6.4 and 6.5). Fi-
nally, dt is chosen such that the absolute value of the
evolution velocity νn(.) multiplied by dt is bounded
by 0.1 and 0.2 during the first two or three iterations.
These boundaries are arbitrary. They were chosen in
order to guarantee the process stability.

5 Experimental evaluation

Our 3-D space-time segmentation method was tested
on simulated and clinical 3-D gated SPECT sequences.

5.1 MCAT simulation

The method was tested on an MCAT simula-
tion [29],[30]. Sixteen frames over the cardiac cycle
were computed, but only height of them were used (ev-
ery other frame starting from the first one). The frames
were corrupted by a Poisson noise, thereby inducing
signal to noise ratios in dB of: ∼32 in peak, ∼11.5 in
energy, and ∼9.5 in variance. The myocardium region
was not reformatted into a particular orientation. In

the following, transverse slices refer to slices orthogo-
nal to the body axis. The 1283 generated volumes were
cropped resulting in 45x40x40 images with a voxel size
of 2.3x2.3x2.3 mm3. Only the left ventricle has been
assigned a significant perfusion value, which is identical
in each frame. Thus, there was no myocardium bright-
ening effect during systole. The contrast of the my-
ocardium with respect to the background was approx-
imately 70/10. δ was 0.01 and dt was 4e-05. The algo-
rithm was stopped after 300 iterations. The left ven-
tricle segmentation is presented in figures 1, 2, and 3.
It seems that systole extends from the first frame to
the third or fourth frame with a rather regular con-
traction. Diastole seems to extend from the fourth or
fifth frame to the eighth frame with a fast dilation in
the first two diastolic frames, followed by a slower di-
lation in the subsequent frames. For each frame,

Figure 1: MCAT: 3-D space-time segmentation of the
left ventricle. Chronological order from left to right
and top to bottom.

Figure 2: MCAT: Same transverse slice of the 3-D
space-time segmentation. Chronological order from
left to right and top to bottom.

we have computed two segmentation error measures:
The number of voxels of the segmentation which does
not belong to the MCAT simulated myocardium (over-
segmentation), and the number of voxels of the MCAT
simulated myocardium which are not included in the
segmentation (under-segmentation). The mean over-
segmentation error over the eight frames was 9.9% with
a minimum and a maximum error of 7.4% (in the third
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Figure 3: MCAT: Some transverse slices of the 3-D
space-time segmentation of the 8th frame.

frame) and 12.6% (in the eighth frame). The mean
under-segmentation error over the eight frames was
6.3% with a minimum and a maximum error of 6.1%
(in the fifth frame) and 6.8% (in the second frame).

5.2 Gated SPECT acquisition

The method was tested on standard clinical patient
data obtained at rest using 99mTc-Sestamibi with
a triple-detector Picker Prism 3000 gamma camera
(Picker International, Inc., Cleveland, Ohio, USA)
equipped with low-energy, high-resolution fan-beam
collimators. These data were acquired at the Centre
Antoine Lacassagne, Nice, France. Sixty projections
were acquired over 360 degrees using a frame rate of
height frames per cardiac cycle. The height reconstruc-
tions were performed using a standard clinical filtered
backprojection algorithm (Hamming filter). They were
reformatted into short axis slices resulting in 64x64x23
images with a voxel size of 2.5x2.5x5 mm3. The max-
imum diameter of the left ventricle in the short axis
slices was approximately 28 voxels. The contrast of
the myocardium with respect to the background was
approximately 45/12 in end diastole and 55/12 in end
systole. δ was 0.015 and dt was 5e-05. The algorithm
was stopped after 200 iterations. Only the left ventricle
was segmented. The results are presented in figures 4,
5 and 6. It seems that systole extends from the first
frame to the third or fourth frame with a rather reg-
ular contraction. Diastole seems to extend from the
fourth or fifth frame to the eighth frame with a fast
dilation in the first two diastolic frames, followed by
a slower dilation which is almost imperceptible. In
order to visualize the myocardium brightening effect,
we have plotted the computed on values against the
frame number (see figure 7). This brightening effect is
theoretically inversely proportional to the myocardium
volume variation. This is the global uptake conserva-
tion principle. However, in practice, the value of the
myocardium also depends on the resolution of the re-
construction, and then of the detector. The order of
magnitude of the resolution of a SPECT detector is 1

Figure 4: Patient: 3-D space-time segmentation of the
left ventricle. Chronological order from left to right
and top to bottom.

Figure 5: Patient: Base/apex median short axis slice of
the 3-D space-time segmentation. Chronological order
from left to right and top to bottom.

cm. This is also the standard thickness of the heart
in end diastole. This means that the value of the my-
ocardium is certainly decreased in diastolic frames (in-
creasing the brightening effect due to global uptake
conservation). We have computed the products be-
tween on and the number of voxels of the segmented
myocardium in frame n. Using the level set, this num-
ber is the number of negative voxels of un(.). The n
products are theoretically proportional to the global
uptake. They should be equal. The values obtained
for the different frames had a standard deviation of
7.3% from the mean value with a minimum value in
the eighth frame (end diastole) and a maximum value
in the third frame (end systole). These results are con-
sistent with the previous remark about detector reso-
lution.

5.3 Ejection fraction computation

We have computed the ejection fractions of the MCAT
simulation and the patient data. The method of cal-
culation takes advantage of the level sets. At conver-
gence, un(.) is negative within the myocardium and
positive everywhere else. Thus, the volume of the left
ventricle is proportional to the number of positive vox-
els bounded by the negative voxels (the myocardium
voxels) and a valve surface at the base of the my-
ocardium. As suggested by [7], we chose to model this
valve surface with two planes. We have manually lo-
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Figure 6: Patient: Some short axis slices of the 3-D
space-time segmentation of the 8th frame. From left
to right and top to bottom: Base to apex.

Figure 7: Patient: Computed on values (in percent of
the highest value) against the frame number.

cated these planes in each frame. The ejection fraction
was computed with the following formula:

EF =
100× (max−min)

max
(34)

where min and max are respectively the minimum and
maximum number of left ventricle voxels over the se-
quence.

The ejection fraction of the MCAT simulation was
61.4% with a maximum left ventricle volume in the first
frame and a minimum volume in the third frame. For
the segmented myocardium, the maximum and mini-
mum left ventricle volumes also occurred in the first
frame and the third frame respectively. The computed
ejection fraction was 60.3% corresponding to a 1.1%
under-estimation (1.7% relative error).

We have also performed this computation on the
healthy patient sequence of section 5.2. The maximum
and minimum left ventricle volumes of the sequence
segmentation occurred in the first frame and the fourth
frame respectively. The computed ejection fraction was
57.5%, which is a normal value.

We have also segmented a gated SPECT sequence of
a patient suffering from diffuse hypokinesis (results not
presented in the paper). The ejection fraction obtained
using ultrasound imaging was 30%. The maximum and
minimum left ventricle volumes of the sequence seg-
mentation occurred in the first frame and the fourth
frame respectively. The computed ejection fraction was

27% corresponding to a 3% under-estimation (10% rel-
ative error).

The ejection fraction computation is an example of
a dynamic feature measurement using a simple prop-
erty of level sets: Their sign. See [16] for examples of
static feature measurements (volume, shape index and
thickness in-between two coupled level sets) on cortex
segmentation using the sign and the value of level sets.

6 Discussion

6.1 Validity of the assumptions

We have made two assumptions. First, the background
is assumed to be still. In 99mTc-Sestamibi SPECT ex-
aminations, besides the myocardium, the liver, the kid-
neys (which are out of the field of view) and the spleen
may have significant perfusion levels. These organs can
be considered motionless if the motion due to breathing
is not considered. The rest of the background is dom-
inated by noise. As a consequence, this assumption is
realistic in first approximation.

Second, within a frame, the myocardium value is as-
sumed to be homogeneous. Before discussing this as-
sumption, let us see if our results are in accordance.
This is not necessary for the MCAT simulation. For
the patient data, we have computed an intensity his-
togram of the segmented myocardium region for each
frame of the sequence. These histograms are presented
in figure 8. The homogeneity is not strict. This is
mainly due to the smoothing of the reconstruction
(near the edges of the myocardium) caused by the lim-
ited resolution of the detector. For each frame, we have
also computed the number of voxels of the segmented
myocardium whose values are in the interval [average
value - 15%,average value + 15%]. Table 4 presents
the results. Between 45% and 57% of the voxel val-

Table 4: Number of voxels of the segmented my-
ocardium whose values belong to [average value -
15%,average value + 15%], in percent of the total num-
ber of voxels of the segmented myocardium

Frame 1 2 3 4

Number of voxels 56.9 52.8 44.6 54.5

Frame 5 6 7 8

Number of voxels 53.8 55.7 56.1 55.8

ues belong to this interval depending on the frame. As
a conclusion, the assumption is fairly well respected.
Nevertheless, this sequence is a healthy patient case
for which the myocardium perfusion is correct. Fig-
ure 9 presents four situations of a myocardium with
a hypoperfused region and the corresponding segmen-
tation contours which would be obtained. In the first
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Figure 8: Histograms of the segmented myocardium region for each frame of the sequence. Chronological order
is from left to right and top to bottom.

(c)(a) (b) (d)

Figure 9: Likely influence of a hypoperfused region
(dark grey) on the segmentation (dotted line).

case (figure 9.a), the assumption is no longer valid.
However, this case never appears in practice. In the
second case (figure 9.b), the segmentation contours do
not represent the myocardium itself. Nevertheless, the
computed ejection fraction would still be correct. In
the third case (figure 9.c), the computed ejection frac-
tion would not be correct. It is necessary to perform
tests using simulations and clinical sequences to deter-
mine the degree to which the ejection fraction deterio-
rates in such cases. In the fourth case (figure 9.d), the
ejection fraction cannot be computed.

6.2 Advantages of the method

From a theoretical point of view, we have claimed that
our method has the advantage of taking into account
the entire sequence in each simultaneous frame segmen-
tation process. Observing the active contour evolution
velocity (equation (24)), this is not necessarily obvi-
ous. Indeed, only frame Sn(.) is involved in the calcu-
lation of the evolution velocity νn(.). Actually, all of
the frames of the sequence are taken into account due
to the presence of background b(.). At each iteration,
b(.) is explicitly solved using all of the frames.

Generally speaking, what is the advantage of
segmenting a sequence using a global process like
the one we propose over several independent seg-
mentation processes (one per frame)? To segment
is to find homogeneous regions or boundaries (i.e.

high gradients) between homogeneous regions. The
previous question is equivalent to considering if it is
easier (more efficient) to find high temporal gradients
than high space gradients. The answer depends on
the characteristics of the sequences and perhaps both
types of gradient could be used in conjunction for
maximal efficiency. Note that a temporal gradient and
an optical flow are different approaches. An optical
flow calculation assumes that a particular voxel x in
frame n has the same value in frame n + 1 at location
x+dx. Voxels are tracked from one frame to the next.
A temporal gradient is the derivative of a voxel value
with respect to time. The evolution velocity term
{b(x) − Sn(x)}2 is the square of a temporal gradient
first order approximation if b(.) is considered as a
frame of sequence Sn(.) at a time when the object was
not yet in the field of view.

From a practical point of view, the use of the level
set technique in our space-time segmentation process
should greatly facilitate computation of dynamic fea-
tures such as myocardial wall thickening. Indeed, at
convergence, we have instantaneous information such
as the myocardium region according to the sign of the
level set. We have illustrated this by computing the
ejection fractions of three gated SPECT sequences.

6.3 Experimental results

The segmentation errors (see section 5.1) on the MCAT
simulation can probably be explained by one factor act-
ing in two regions. This factor is the curvature penalty
(see section 6.4).
First, this penalty does not allow the active contours
to fit highly concave shapes: This is the case in the
left ventricle cavity, mainly in the apex region, in par-
ticular in the third and fourth frames. As a result, an
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over-segmentation occurs.
Second, the MCAT myocardium includes voxels of the
region of the valves. However, this region being too
thin and having a lower perfusion level as well as being
a highly convex region (which again cannot be accu-
rately segmented because of the curvature penalty), it
was not segmented. As a result, an under-segmentation
occurs.

It seems difficult to overcome this problem. If
there is noise, the contours may be irregular, which
leads to segmentation errors. If we add the curvature
penalty to smooth the contours (therefore, leading
to fewer segmentation errors due to noise), the deep
concavity or convexity problem arises possibly leading
to segmentation errors.

These segmentation errors are presented in fig-
ures 10 and 11 for two values of delta (0.01 and
1000) and two levels of noise (levels 1 and 6, see
table 5 in section 6.6). It can be observed that the

Figure 10: MCAT segmentation errors in the first
frame (end diastole). First row: A transverse slice
with the over-segmented voxels in grey and the under-
segmented voxels in black; From left to right, delta =
0.01 and noise level 1, delta = 1000 and noise level
1, delta = 20 and noise level 6. Second row: 3-
D views showing both over-segmentation and under-
segmentation errors; From left to right, same order as
in the first row.

over-segmentation errors are mostly located along the
interior wall (in the apex region in particular) and
that the under-segmentation errors are mostly located
in the basal region.

Errors on the ejection fraction computations (sec-
tion 5.3) may be due to two reasons. First, the qual-
ity of the segmentation. Second, the location of the
valve planes. Indeed, we have located them manually.
These computations were performed only to illustrate
the possibility of obtaining, at reasonable cost, some
dynamic features from the segmentation. Therefore,
we did not make particular efforts to implement an ac-

Figure 11: MCAT segmentation errors in the third
frame (end systole). First and second row: Same con-
figuration as in figure 10.

curate and robust method for the valve plane location
as proposed in [7].

6.4 Algorithm convergence and curva-
ture regularization

We have not studied the theoretical algorithm con-
vergence. This is a delicate issue because of the al-
ternate resolution scheme. Moreover, the unregular-
ized evolution velocity νn(.) can be positive on some
parts of the contour and negative on some others. As
far as we know, no work has been done yet to prove
the convergence of an active contour process when
the evolution velocity has not the same sign every-
where. Finally, note that the addition of the curva-
ture based regularization does not allow us to interpret
our method as a weighted area minimization (thereby
preventing us from using directly the related theoret-
ical results). Indeed, our criterion can be written:
∑

n

{∫
Ω An +

∫
Γn

dp
}
, but not with the weighted area

form:
∑

n

∫
Γn

Bndp. Our motivation for using this par-
ticular regularization term was to compute a smooth
segmentation and to avoid, while converging, forma-
tion of small contours around noise peaks. However,
this curvature term may compete with the unregular-
ized velocity to which it is added (see equation (29)).
For example, if a part of the contour is initially inside
an object and the object has a convex shape, then the
unregularized velocity is negative (see equation (24)),
whereas the curvature will necessarily be positive when
the contour gets closer to the object boundary. As a
consequence, the regularized criterion does not allow
accurate segmentation of deep concavities or deep con-
vexities (the maximum allowed concavities and con-
vexities depend on parameter δ: If δ is high, the max-
imum is low and vice versa). This possible competi-
tion between the two terms of the evolution velocity
is probably another delicate point when studying the
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theoretical algorithm convergence.
The numerical test of convergence depends on the

evolution of the zero level between two iterations. This
evolution is measured using the evolution velocity val-
ues in the area of the zero level. If the evolution is less
than an arbitrary threshold, the algorithm is stopped.
However, since it is very unlikely that the segmentation
contours go exactly through voxel centers, these evo-
lution velocity values are never equal to zero and sta-
bilize not necessarily close to zero. As a consequence,
we simply stop the algorithm after a given number of
iterations. For the sequences presented here, the com-
putation time was 20 to 30 minutes on a 240 MHz HP
workstation.

6.5 Influence of parameter δ

The weight of the curvature penalty, tuned by param-
eter δ, may influence the convergence of the algorithm.
We have performed a series of segmentations of the
MCAT simulation increasing δ from 0.01 to 1000. For
each result, we have computed the mean segmenta-
tion errors described in section 5.1, the left ventri-
cle volumes in the first frame and the third frame,
and the ejection fraction. These results are presented
in figures 12 and 13. As δ increases, the curvature
penalty gets stronger and the segmentation contours
converge toward closed surfaces of a smaller volume.
Therefore, compared to the MCAT myocardium, the
number of over-segmented voxels decreases and the
number of under-segmented voxels increases. More-
over, the number of under-segmented voxels increases
much faster (by 7.8% in all) than the number of over-
segmented voxels decreases (by 2.0% in all). We have
seen in section 6.3 that the region of concern for under-
segmentation was the basal one, whereas the region
of concern for over-segmentation was the interior wall,
mostly the apex region. Since the curvature in the
basal region is higher than the curvature in the apex re-
gion, the error depending on quality in the basal region
(the under-segmentation error) is more dramatically
influenced. However, until δ equals 50, both the over-
segmentation error and the under-segmentation error
remain quite constant (the over-segmentation belongs
to [9.9%, 10.1%] and the under-segmentation belongs
to [6.3%, 6.5%]).

Both first frame and third frame left ventricle vol-
umes decrease with δ. The curvature penalty increas-
ingly prevents the accurate segmentation of the apex
region of the interior wall and the basal region where
the curvature is even larger. This phenomenon in the
basal region is more pronounced for the first frame than
for the third frame since the myocardial wall is thinner
in the first frame (so the curvature in the basal region
is higher). As a consequence, the determined valve
surface gets closer to the apex while δ is increased, the

computed cavity volume then gets smaller, and the evo-
lution is faster for the first frame. Indeed, in figure 13,
it can be observed that the third frame left ventricle
volume is quite constant until δ equals 300, whereas the
first frame left ventricle volume decreases immediately
after δ equals 100. As a consequence, the computed
ejection fraction is reliable until δ equals 100 (absolute
variation of 0.3% for δ between 0.01 and 100).

One can imagine that for a certain large δ, the data
consistency term will be weaker than the curvature
penalty. As a result, the segmentation contours will
go through the actual myocardium boundary. This ef-
fect will occur first in the apex region where the my-
ocardium is thinner. Moreover, it will occur first for
the diastolic frames where the apical thinning is more
prominent. This can be observed in figure 14 which
represents the segmentation obtained when δ equals
2000. In addition to this phenomenon, note that the
segmented myocardium is shorter (basal region) than
when there is a much smaller δ, as is the case on fig-
ure 1.

Figure 14: MCAT: 3-D space-time segmentation ob-
tained when δ equals 2000, first four frames.

6.6 Influence of noise

The noise level in the sequence may influence the con-
vergence of the algorithm. We have performed a series
of segmentations of the MCAT simulation, increasing
the level of Poisson noise (see table 5 for the corre-
sponding signal to noise ratios), while keeping δ equal
to 20. In order to keep the convergence process stable
while noise was increased, we introduced a smoothing
step of the evolution velocity νn(.). More precisely, af-
ter computation of νn(.) and before its application to
the level set un(.), a three by three average filtering was
performed on νn(.). We prefer this heuristic technique
to the one that consists of presmoothing the sequence
(which is theoretically more justifiable) because we do
not want to introduce a myocardium brightening effect
due to the difference of myocardium thickness between
systolic and diastolic frames. For each result, we have
computed the mean segmentation errors described in
section 5.1, the left ventricle volumes in the first frame
and the third frame, and the ejection fraction. These
results are presented in figures 15 and 16. The evolu-
tion of the segmentation errors when noise is increased
is similar to what was observed for the influence of δ.
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Figure 12: Influence of δ (horizontal axis) over the segmentation errors: Left, over-segmentation errors; Right,
under-segmentation errors.

Figure 13: Influence of δ (horizontal axis) over the ejection fraction: Left, left ventricle volume at end diastole
(first frame); Middle, left ventricle volume at end systole (third frame); Right, ejection fraction.

Table 5: MCAT: Signal to noise ratios in dB of the
different levels of noise of the sequences (level 1 corre-
sponds to the sequence presented in section 5.1)
Noise level 1 2 3 4 5 6

Peak 32.0 29.6 27.9 26.6 25.6 24.8
Energy 11.5 8.3 6.6 5.4 4.4 3.6

Variance 9.5 6.9 5.1 3.9 2.9 2.1

In our simulations, it appears that the Poisson noise
nibbles little by little the edges of the myocardium and
the regions of low value such as the basal region. As
a consequence, the noisy myocardium becomes smaller
than the original one. Then, the segmentation con-
tours converge toward closed surfaces of a smaller vol-
ume. The nibbling effect is more prominent in the basal
region, which explains why the under-segmentation in-
creases by 2.7% while the over-segmentation only drops
by 0.9%.

The first frame left ventricle volume decreases by
5.1% when noise is increased from level 1 to level 6.
This can be explained by the nibbling effect in the basal

region which causes the determined valve surface to be
closer to the apex, reducing the computed cavity vol-
ume. The third frame left ventricle volume increases
by 2.1% when noise is increased from level 1 to level
6. This is confusing. However, note that the nibbling
effect at the basal region is less prominent in this frame
since the myocardial wall is thicker than it is in the first
frame. The nibbling effect on the edges of the cavity
is certainly more prominent. As a consequence, the
cavity volume slightly increases. This can be (barely)
observed in figure 17 which presents the same slice of
the segmentation obtained with noise levels 1 and 6.
Going back to the first frame case, the nibbling effect
on the edges should have the same consequence. How-
ever, the effect in the basal region is probably more
pronounced.
As a consequence, the ejection fraction keeps decreas-
ing while noise is increased. The absolute variation is
0.8% between levels 1 and 2, and 3% between levels 1
and 6.

Figure 18 presents the segmentations of the first
frame and the third frame obtained for levels 1 and
6. Note the small shortening of the segmented my-
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Figure 15: Influence of noise (horizontal axis) over the segmentation errors: Left, over-segmentation errors;
Right, under-segmentation errors.

Figure 16: Influence of noise (horizontal axis) over the ejection fraction: Left, left ventricle volume at end
diastole (first frame); Middle, left ventricle volume at end systole (third frame); Right, ejection fraction.

Figure 17: Influence of noise over the third frame left
ventricle volume: A transverse slice of the segmenta-
tion obtained for noise levels 1 (left) and 6 (right).

ocardium in the basal region.

We have chosen to smooth the evolution velocity at
each iteration. This is not computationally efficient,
and should we have a proof of convergence of the algo-
rithm, it would no longer be valid. However, this tech-
nique has the advantage (over the presmoothing of the
sequence) of preserving the contrast of the sequence.
Whereas presmoothing would probably decrease the
contrast in diastolic frames where the myocardium has
a lower value and is thinner. As a consequence, the

Figure 18: Influence of noise over the left ventricle seg-
mentation. From left to right: First frame/level 1, first
frame/level 6, third frame/level 1 and third frame/level
6.

segmentation task would be more difficult.

Finally, let us remark that the manner in which
noisy simulations were obtained is not realistic enough.
Monte Carlo simulations would be more effective. Nev-
ertheless, the effects and their consequences seem ac-
ceptable.

6.7 Computation of b(.) and o
n

Among the algorithm outputs, only the Ωn’s are rele-
vant for the segmentation. However, b(.) and the on’s
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must be computed since the evolution velocity applied
to the Ωn’s depends on them. They appear to be aux-
iliary variables. The background is indeed not interest-
ing in SPECT images. It is not taken into account for
the diagnosis. We could make the same conclusion with
respect to the on’s. Using 99mTc-Sestamibi, it is not
possible to obtain absolute quantitative information.
Nevertheless, the relative quantitative knowledge given
by the on’s may be used to compute an average my-
ocardial wall thickening as suggested by [26] and [27].

6.8 Future works

The assumption of a homogeneous myocardium value
within a frame is reasonable. Hypoperfused regions will
be excluded from the computed segmentation. Since
SPECT is a functional modality, this is exactly what
we are expecting. However, it is also desirable to seg-
ment the whole myocardium, whether it is homoge-
neously perfused or not. Thus, for example, hypoper-
fused region volumes could be computed. This anatom-
ical segmentation using functional data requires the use
of an anatomical model (like in [1],[2], and [7]). We will
try to incorporate such a model in the method using a
constraint on the level sets.

6.9 Further experimental evaluation

The myocardium uptake varies from one patient to an-
other due to different physiological properties. As a
consequence, the contrast changes between clinical se-
quences. In a rigorous experimental evaluation context
we should perform a sequence normalization prior to
running the segmentation algorithm itself. This could
be done by a linear mapping of the minimum to max-
imum voxel value range to the [0, 100] interval. Thus,
the method would be independent of the original se-
quence contrast (particularly concerning the choice of
dt).

The influence of the initialization of b(., t = 0),
on(t = 0), and un(., t = 0) (n in [1..N ]) should be
studied.

The influence of parameter δ has been studied in
the MCAT simulation case. A more complete study
including patient data should be done.

b(.) and on are obtained by computations of average
values (a time average value for b(.) and a space average
value for on, see section 4.3). Therefore, the influence
of noise on their solutions should be minimal. However,
the influence of noise critically appears in the evolution
velocity νn(.). A preliminary study of the influence of
noise has been done. It needs to be continued using
Monte Carlo simulations and patient data.

The derivative of (31) with respect to t is:

∂Γn

∂t
· ∇un +

∂un

∂t
= 0 (35)

⇔
∂un

∂t
= −

∂Γn

∂t
· ∇un · (36)

Using expression (29) of ∂Γn/∂t, equation (36) is:

∂un

∂t
= −{νn + δκn} ~N · ∇un · (37)

Since un(.) is a level set and since it increases from the
inside of Γn to the outside of it, ∇un(.) is normal to

Γn and is oriented toward the outside of Γn. ~N(.) has

been defined to have the opposite direction: ~N(.) =
− ∇un

|∇un| (.). Then (37) is equivalent to:

∂un

∂t
= {νn + δκn}

∇un

|∇un|
· ∇un (38)

⇔
∂un

∂t
= {νn + δκn}|∇un| · (39)

κn(.) is the curvature/mean curvature of Γn, the zero
level of un(.). However, it is correct to extend its defi-
nition to any isolevel of un(.). Then, for all x in Ω:

κn(x) = div

(
∇un(x)

|∇un(x)|

)
· (40)

Similarly, νn(.) is defined on Γn. However, we need to
compute it in a narrow band here and there from Γn.
We could use the evolution velocity extension proposed
in [31] or [32]. We chose to classically apply the for-
mula obtained on Γn within the narrow band [20].
To solve equation (32) we use a finite difference approx-
imation of ∂un

∂t
and a specific discretization scheme for

|∇un| (which is an unpublished evolution of the dis-
cretization scheme developed in [33]).
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