
HAL Id: hal-00367614
https://hal.science/hal-00367614v1

Submitted on 11 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling under energy constraints
Christian Artigues, Pierre Lopez, Alain Haït

To cite this version:
Christian Artigues, Pierre Lopez, Alain Haït. Scheduling under energy constraints. International
Conference on Industrial Engineering and Systems Management (IESM 2009), May 2009, Montréal,
Canada. pp.CD-Rom Session 5D. �hal-00367614�

https://hal.science/hal-00367614v1
https://hal.archives-ouvertes.fr

International Conference
on Industrial Engineering and Systems Management

IESM 2009

May 13-15
MONTRÉAL - CANADA

Scheduling under energy constraints ⋆

Christian ARTIGUES a, Pierre LOPEZ a, Alain HAÏT b

aCNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France
Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

bUniversité de Toulouse; Institut Supérieur de l’Aéronautique et de l’Espace; 10 avenue E. Belin B.P. 54032;
F-31055 Toulouse, France.

Abstract

In this paper we present a scheduling problem dealing with energy constraints (typically electrical energy). Mainly
we propose an extension of specific resource constraint propagation techniques (known as “energy reasoning”)
to efficiently prune the search space and then to facilitate its resolution. We also present dominance rules and a
branching scheme to solve the problem via tree search. Finally, computational results are provided.

Key words: Production scheduling, energy constraints, constraint propagation, energy reasoning

1 Introduction

Since the last two decades, hard combinatorial problems, mainly in scheduling, have been the target of
many approaches combining Operations Research and Artificial Intelligence techniques. These approaches
are generally focussed on constraint satisfaction as a general paradigm for representing and solving effi-
ciently such problems. At the heart of these approaches, a panel of consistency enforcing techniques is
used to dramatically prune the search space.

Therefore propagation techniques dedicated to resource and time constrained scheduling problems, viewed
as special instances of Constraint Satisfaction Problems (CSP), have been developed to speed up the
search for a feasible schedule or to detect early an inconsistency. For instance the energy reasoning [3] has
enabled the joint integration of both resource and time constraints in order to prevent the combinatorics
of solving conflicts between activities in competition for limited resources.

Furthermore, it is still of interest to search for propagating novel types of constraints according to real
world problems. The new environmental constraints, but also the increase of the energy cost, should
prompt us to consider as a crucial and promising issue to look into the problem of the power consumption
optimization in production scheduling. Real-time (processor) scheduling theory has often addressed energy
constraints. However, the consideration of energy constraints in production scheduling, and particularly
focussed on constraint propagation techniques, has been relatively unexplored.

⋆ This paper was not presented at any other revue. Corresponding author C. Artigues. Tel. +33-561-337-907. Fax
+33-561-336-936.

Email addresses: christian.artigues@laas.fr (Christian ARTIGUES), pierre.lopez@laas.fr (Pierre

LOPEZ), alain.hait@isae.fr (Alain HAÏT).

IESM 2009, MONTRÉAL - CANADA, May 13 - 15

The objective of this paper is to present a formal description for the propagation of energy constraints
induced by machine power consumptions. The idea is to apply the generic energy reasoning in scheduling
and to extend it for the consideration of electric power consumptions. This paper is then organized as
follows: Section 2 presents the problem under study. A new problem, the energy scheduling problem
(EnSP), is introduced. Section 3 presents a short review of related work. Section 4 reminds the reader
of the bases of the energy reasoning in scheduling. Section 5 proposes the above-mentioned extensions
of this reasoning to process the energy constraints. In Section 6 we present dominance rules in order
to reduce the search space. In Section 7, a branching scheme is proposed to solve the problem via tree
search. Computational experiments are described in Section 8.

2 The scheduling problem under energy constraints

In this section we introduce the energy scheduling problem (EnSP). We first present the related cumulative
scheduling problem (CuSP). Then we present the EnSP. Finally we show how we can model an industrial
parallel machine scheduling problem with electrical energy constraints as an association of an EnSP and
a CuSP.

2.1 The cumulative scheduling problem

A CuSP is a sub-problem of the RCPSP (resource-constrained project scheduling problem), in which
precedence constraint are relaxed and a single resource is considered at a time [1]. The problem is
also called the multiprocessor task problem and is denoted P |ri, di; sizei|− in the well-known three
field scheduling notation [2]. An instance of the CuSP can be defined as follows: a set of n activities
A = {1, 2, . . . , n} is to be processed without interruption on a given resource of capacity B. To each activity
i are associated its resource requirement bi, its release date ri, its deadline di, and its processing time pi

(note that capacity and resource requirements are assumed to be constant over the planning horizon).
The CuSP can be stated as follows. Activity i start time (sti) and completion time (fti = sti+pi) have to
belong to the time window [ri, di]. Activities can be simultaneously processed according to the satisfaction
of the cumulative constraint:

∑
i∈A bit ≤ B, for every time point t, where bit = bi if sti ≤ t < fti and

bit = 0 otherwise.

2.2 The energy scheduling problem

The energy scheduling problem (EnSP) takes as input a set of n activities A = {1, 2, . . . , n} having
to be processed without interruption using an energy resource of capacity (available power) B. Instead
of being defined through its duration pi and resource demand bi, each activity is defined through its
required energy Wi, and its minimum and maximum resource requirements bmin

i and bmax
i such that the

number of allocated resource units (provided power) has to remain between bmin
i and bmax

i . Note here
that for practical motivations, we consider that changes in the power allocated to an activity only occur
at discrete time periods. The EnSP amounts to find a start time sti ≥ ri, a completion time fti ≤ di

and a power allocation bit such that bmin
i ≤ bit ≤ bmax

i for t ∈ [sti, f ti − 1] and bit = 0 otherwise. The
global power limitation constraint is written

∑
i∈A bit ≤ B for any time period t. We consider both bit

and pi = fti−sti as discrete variables. Last, an energy requirement constraint Wi ≤
∑fti−1

t=sti
bit, holds for

each activity i, i.e. the energy brought to i must be at least Wi. We remark that enforcing equality would
yield to possibly infeasible solutions in the case where the remaining energy to be brought to an activity
at a given time period is strictly lower than bmin

i . Consequently, in accordance with practical cases, we
consider the energy brought to an activity can be larger than the required one.

Consider a problem instance with B = 5 and 3 activities such that W1 = 12, bmin
1 = 1, bmax

1 = 5, r1 = 0,
d1 = 6,W2 = 12, bmin

2 = 2, bmax
2 = 5, r2 = 2, d2 = 6, W3 = 6, bmin

3 = bmax
3 = 2, r3 = 2, d3 = 5.

Figure 1 displays a feasible solution for the problem. One can observe that there is no solution for which
all the activities have a rectangular shape.

2.3 Industrial case modeling example

As a typical application, consider a tubing plant in the Montréal area, presented in [4,7], and more
precisely, the foundry where metal is melted in induction furnaces and then cast in individual billets. The

IESM 2009, MONTRÉAL - CANADA, May 13 - 15

r1 r3

1
2

3

t

d3 d1

B = 5

d2r2

Fig. 1. Solution of an EnSP

melting operation has a variable duration that depends on the power given to the furnace (constrained
by physical and operational considerations).

The foundry has five production lines. From a scheduling view-point, this facility can easily be recognized
as a parallel machine problem. The electric power is a cumulative resource which is a generalization of a
parallel-machine type resource.

A standard parallel machine problem can be modeled as a CuSP where activities require only one resource
unit. In the considered context, electric power overheads must be closely managed. And knowing that
the power consumption depends mainly on the activity of the foundry, we have to integrate these energy
features in the production planning and scheduling of the melting facility.

In the application context, each operation has to be processed inside its time window by one furnace to be
selected among a set of m equivalent furnaces. Once this assignment is done, operations assigned to the
same furnace must be sequenced. On the other hand, each operation needs a predefined electrical energy
amount Ei. The power of each furnace can be adjusted at each time period according to a minimal and
maximal value Pmin and Pmax. The power used by all furnaces at a given time period cannot exceed a
global threshold P .

Hence the problem corresponds to the conjunction of a CuSP (for the parallel machine side) with B = m
and bi = 1 for all operations i, and an EnSP (for the electric power side) with Wi = Ei, B = P ,
bmin
i = Pmin, bmax

i = Pmax. In a constraint programming framework, both subproblems can be considered
separately as global constraints to perform feasibility tests and time-bound adjustments through energy
reasoning. In Section 3, we show through a short literature review that feasibility tests and time-bound
adjustments for the EnSP cannot be directly found in previous work. In Section 4, we recall the (standard)
energy reasoning for the CuSP. In Section 5, we propose an extension of the energy reasoning for the
EnSP.

3 Related work

In Section 4, we present the standard energy reasoning consisting in feasibility tests and adjustment rules
for the CuSP [3]. Many variants or extensions of the CuSP have been considered, for which feasibility
tests and adjustment rules have been issued. However, we show hereafter that none of these variants
correspond to the EnSP.

Clearly the CuSP cannot be used to model the EnSP since activities are not necessarily of rectangular
shape (see Section 4). In fact, the EnSP can be defined as a relaxation of the (continuous) CuSP. Indeed,
we obtain the CuSP by setting bmin

i = bmax
i = bi.

However in [1], other relaxations of the CuSP are considered. The fully elastic relaxation corresponds to
a particular EnSP where bmin

i = 0 and bmax
i = B. Hence although the feasibility tests and adjustment

rules proposed for the fully elastic CuSP hold for the EnSP, they may not capture all the structure of
the EnSP since the fully elastic CuSP is itself a relaxation of the EnSP.

The partially elastic relaxation restricts elasticity by enforcing regularity constraints of the changes in-
volving nominal bi. Namely, we have bmin

i = 0 and bmax
i = B as for the fully elastic case but for any

IESM 2009, MONTRÉAL - CANADA, May 13 - 15

��
��
��

��
��
��

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

��
��
��
��

��
��
��
��

����
����
����
����
����

����
����
����
����
����

3

1

t1 t2

5

4

2

Fig. 2. Consumption of five activities

interval [ri, t] it must hold
∑t

τ=ri
biτ ≤ bi.(t − ri). We do not have such regularity constraints in the

EnSP, so the partially elastic CuSP and the EnSP are not comparable in terms of complexity.

Another related extension of the CuSP has been proposed in [5], aiming at considering an activity as
a sequence of consecutive subtasks such that the resource consumption of each subtask is given by a
function of the subtask duration. In our case the consumption of an activity at a time period t is a
decision variable.

In the discrete time-resource tradeoff model [6], the duration of each activity is not predetermined, but
changes as a discrete non-increasing function of the amount of renewable resources assigned to it. However,
the activities still have a rectangular shape.

4 The classical energy reasoning for the CuSP

In the energy reasoning for scheduling, the idea is to propose a smart way for simultaneously considering
time and resource constraints in a unique reasoning. In that context, the energy is generically defined as
the product of a time duration by a resource quantity. As an illustration, we can say that the problem
of scheduling n activities of duration pi, i=1..n in an amount bi, i=1..n using a given resource available in
a constant amount B over a time horizon ∆ of duration p∆ is isomorphic to the placement problem of n
rectangles of surface area pi.bi, i = 1, . . . , n, in a rectangle of surface area B.p∆.

To present the energy reasoning, one must consider a working time interval, an available energy and a
total consumed energy over this interval.

Let [t1, t2] be a reference time interval. Bounds of the interval are arbitrarily chosen but they also can be
fixed to particular times. Over [t1, t2] and for a resource of capacity B, the available energy is defined as
B.(t2 − t1).

We denote by w(i, t1, t2) the consumption of activity i (i.e. how long i uses the resource) over [t1, t2]. Two
cases must be distinguished:

(1) [sti, f ti] ∩ [t1, t2] = ∅ ⇒ w(i, t1, t2) = 0;
(2) [sti, f ti] ∩ [t1, t2] 6= ∅ ⇒ w(i, t1, t2) = bi. (min(fti, t2)−max(sti, t1)).

In Figure 2, striped areas represent the consumption of each activity from 1 to 5 between t1 and t2.

One is usually especially interested in computing the lower and upper bounds of the consumption: for the
consumption of activity i over interval [t1, t2], we might derive from above equations the minimum and the
maximum consumptions. The relevant notion for our purpose is obviously the minimum consumption,
also called the mandatory (or compulsory) consumption: when trying to check whether i before j is
feasible, we intend to take into account that another activity k will necessarily consume the resource,
between sti and ftj, for at least some time T . Therefore we will not consider anymore the maximum
consumption in the remainder of the paper.

IESM 2009, MONTRÉAL - CANADA, May 13 - 15

The mandatory consumption of an activity i is denoted by w(i, t1, t2). To compute it, the activity has to
be shifted to its left and right utmost positions on its time window [ri, di], retaining the minimum value
of all intersections between such positions and the reference interval. One then gets:

• the left-shifted consumption:

wL(i, t1, t2) = bi. max{0, min(pi, t2 − t1, ri + pi − t1)}

• the right-shifted consumption:

wR(i, t1, t2) = bi. max{0, min(pi, t2 − t1, t2 − di + pi)}

The mandatory consumption of activity i is then:

w(i, t1, t2) = min{wL(i, t1, t2), wR(i, t1, t2)} = bi. max {0, min(pi, t2 − t1, ri + pi − t1, t2 − di + pi)}

From this definition, it yields a satisfiability test (global inconsistency rule) which includes total manda-
tory consumption over the set of activities A:

Property 1 CuSP feasibility test

If ∃ [t1, t2] s.t.
∑

i∈A w(i, t1, t2) > B.(t2 − t1), then no feasible solution exists for the CuSP.

In [1], the set of relevant intervals [t1, t2] is characterized and an O(n2) algorithm is provided to perform
the feasibility tests over all these intervals.

From this satisfiability test, we can now propose local consistency rules to derive time-window adjustments
for a specified task. Let SL(i, t1, t2) = B.(t2−t1)−

∑
j∈A\{i} w(j, t1, t2) be the maximum available energy

(i.e. the slack) for processing i on [t1, t2].

Property 2 CuSP time-bound adjustments

Release date adjustment. If an activity i verifies: ∃ [t1, t2] s.t. wL(i, t1, t2) > SL(i, t1, t2), then a valid

lower bound of the completion time of i can be deduced and then impacts its release date as follows:

ri ← max{ri, ⌈t2 − SL(i, t1, t2)/bi⌉}.

Deadline adjustment. Symetrically, if an activity i verifies: ∃ [t1, t2] s.t. wR(i, t1, t2) > SL(i, t1, t2), then

a valid upper bound of the start time of i can be deduced and then impacts its deadline as follows:

di ← min{di, ⌊t1 + SL(i, t1, t2)/bi⌋}.

In [1], an O(n3) algorithm is provided to perform all the time-bound adjustments over the relevant
intervals.

5 Energy reasoning for the EnSP

A first basic feasibility rule is to check whether there is enough time in each activity time window to
bring the energy it requires when the maximum power is allocated to the activity.

Namely, this basic feasibility test can be written as follows:

Property 3 EnSP basic feasibility test

If, for an activity i, bmax
i .(di − ri) < Wi, the EnSP is infeasible.

In what follows we consider this condition is fulfilled for each activity. To extend the energy reasoning,
the basic question to answer is, given an interval [t1, t2], what is the mandatory consumption w(i, t1, t2)
of each activity i ?

Obviously if ri ≥ t2 or di ≤ t1, w(i, t1, t2) = 0. Let us consider now that ri < t2 and di > t1. As for
the standard energy reasoning, the mandatory consumption of each activity i in [t1, t2] is attained either

IESM 2009, MONTRÉAL - CANADA, May 13 - 15

b

b

bmin
i

bmax
i

ri t1

t1 t2ri

bmax
i

bmin
i

t

b

bmin
i

bmax
i

ri t1

bmin
i

t1 t2ri

bmax
i

t2

t

b

bmin
i

bmax
i

ri t1 t2

t

t

b

bmin
i

bmax
i

ri t1

bmin
i

t1 t2ri

bmax
i

t2

t

b

bmin
i

bmax
i

ri t1 t2

t

t

t1 t2ri

bmax
i

bmin
i

di

di

di

di

t

t

b b

b

Fig. 3. Different cases for left-shifted consumption wL(i, t1, t2)

when the activity starts at its release date or when it ends by its due date. When ri < t2, the relevant
cases are displayed in Figure 3.

To compute w(i, t1, t2) we need to compute the maximum energy w−(i, t1) consumed by i before t1, as
well as the maximum energy w+(i, t2) consumed by i after t2. We have

w−(i, t1) = min {Wi, max (0, bmax
i .(t1 − ri))}

w+(i, t2) = min {Wi, max (0, bmax
i .(di − t2))}

It follows that the minimal energy consumption of i inside [t1, t2] verifies w(i, t1, t2) ≥ v where

v = min{Wi − w−
i (i, t1), Wi − w+

i (i, t2), b
min
i .(t2 − t1)}

or equivalently:

v = min{Wi −min(Wi, b
max
i . max(0, t1 − ri, di − t2)), b

min
i .(t2 − t1)}

Because of the minimal resource requirement bmin
i , we cannot have w(i, t1, t2) < bmin

i if w(i, t1, t2) > 0.
Futhermore the required work Wi has to be performed inside the time window [ri, di]. So in the case

IESM 2009, MONTRÉAL - CANADA, May 13 - 15

where it is necessary to consume bmin
i .(t2 − t1) inside the interval, we have to check whether consuming

the maximal energy outside the interval is sufficient to bring the required energy Wi. The case where
bmin
i .(t2− t1) is not a sufficient energy amount because of time window tightness is displayed at the right

bottom of Figure 3. Hence we set:

w(i, t1, t2) = 0 if v = 0 and w(i, t1, t2) = max(bmin
i , v, Wi − w−

i (i, t1)− w+
i (i, t2)) otherwise.

This yields the following feasibility test.

Property 4 EnSP feasibility test

If ∃ [t1, t2] s.t.
∑

i∈A w(i, t1, t2) > B.(t2 − t1), then no feasible solution exists for the EnSP.

As for the CuSP, let SL(i, t1, t2) = B.(t2 − t1) −
∑

j∈A\{i} w(j, t1, t2) denote the maximum available

energy (i.e. the slack) for processing i on [t1, t2]. We obtain bound adjustments considering the two
extreme cases for an activity i.

Consider wL(i, t1, t2) the minimal energy consumption of i in [t1, t2] when i is left shifted (i.e. sti = ri).
We have wL(i, t1, t2) ≥ x where

x = min{Wi − w−
i (i, t1), b

min
i .(t2 − t1)}

or equivalently :

x = min{Wi −min(Wi, b
max
i . max(0, t1 − ri)), b

min
i .(t2 − t1)}

and, we have:

wL(i, t1, t2) = 0 if x = 0 and wL(i, t1, t2) = max(bmin
i , x, Wi − w−

i (i, t1)− w+
i (i, t2)) otherwise.

Symmetrically, consider wR(i, t1, t2) the minimal energy consumption of i in [t1, t2] when i is right shifted
(i.e. fti = di). We have wL(i, t1, t2) ≥ y where

y = min{Wi − w+
i (i, t2), b

min
i .(t2 − t1)}

or equivalently :

y = min{Wi −min(Wi, b
max
i . max(0, di − t2)), b

min
i .(t2 − t1)}

and, we have wR(i, t1, t2) = 0 if y = 0 and wR(i, t1, t2) = max(bmin
i , y, Wi−w−

i (i, t1)−w+
i (i, t2)) otherwise.

We obtain the following time-bound adjustments:

Property 5 EnSP time-bound adjustments

Release date adjustment. If an activity i verifies: ∃ [t1, t2] s.t. wL(i, t1, t2) > SL(i, t1, t2), then the release

date can be updated as follows:

ri ← max{ri, ⌈t2 − SL(i, t1, t2)/bmin
i ⌉}.

Deadline adjustment. Symetrically, if an activity i verifies: ∃ [t1, t2] s.t. wR(i, t1, t2) > SL(i, t1, t2), then

the deadline can be updated as follows:

di ← min{di, ⌊t1 + SL(i, t1, t2)/bmin
i ⌋}.

As the EnSP admits the CuSP as special case, it is a priori difficult to enumerate the intervals to be
considered. Indeed, from [1] we know that a part of the relevant intervals for the CuSP is such that
t1 = rj + pj and/or t2 = dj − pj for some activity j. For the EnSP, except when bmin

j = bmax
j (which

IESM 2009, MONTRÉAL - CANADA, May 13 - 15

corresponds to the CuSP case), we have not a fixed activity duration but a set of possible durations from
⌈Wj/bmax

j ⌉ to ⌈Wj/bmin
j ⌉. For the sake of simplicity we restrict the considered intervals to O1×O2 where

O1 = {rj |j ∈ A} and O2 = {dj|j ∈ A}.

We can illustrate the adjustments performed on the Figure 1 example. Consider interval [t1, t2] with t1 = 2
and t2 = 5. We have w(1, t1, t2) = wL(1, t1, t2) = 2, w(2, t1, t2) = wR(3, t1, t2) = 7 and w(3, t1, t2) =
wL(3, t1, t2) = wR(3, t1, t2) = 6. Note the configuration displayed in Figure 1 actually corresponds to the
minimal consumption of the three activities in [t1, t2]. Consider the case where activity 1 is right shifted.
We have wR(1, t1, t2) = 7 (same configuration as the one displayed for activity 2). Since w(3, t1, t2) +
w(2, t1, t2) = 13 the slack for activity 1 in [t1, t2] is SL(1, t1, t2) = 15 − 13 = 2. Since wR(1, t1, t2) >
SL(1, t1, t2), the deadline of activity 1 can be updated according to property 5 by setting d1 ← t1+2/1 = 4.

6 Dominance rules for the EnSP

The following dominance rules can be established for the EnSP.

Property 6 Active schedules

Active schedules are dominant for the EnSP.

Consider a solution S to the EnSP such that there is an activity i starting at time sti and a time period
t < sti such that there is a feasible solution S′ setting sti = t without changing the schedule of other
activities. The search space can be obviously reduced to the set of solutions for which no such property
holds.

Property 7 Power change

Schedules for which, for any activity i, changes in the allocated power only occur on activity release dates

or completion times, are dominant.

Consider a feasible solution S to an EnSP instance such that a power change occurs at a time t which
does not verify the above property and such that t is maximal. Simple arguments can show that the
power change can be postponed while keeping the solution feasible, which contradicts the maximality of
t.

7 Branching scheme

A simple branching scheme based on time incrementation can be derived from the dominance rules
presented in Section 6. Each node corresponds to a decision time point initially set to t = mini∈A ri.
For each activity the required energy Wi is progressively decreased and all activities are scheduled when
Wi = 0 for all activities. At each node, associated with a decision time t, activities are partionned into
the following subsets. The started activities are such that the decision to start the activity has been taken
at some ancestor node (at a time point t′ < t) but no decision has been taken yet for the current decision
point and Wi > 0. The completed activities are such that fti ≤ t and Wi = 0. The available activities are
such that ri ≤ t but no start decision has been taken yet for these activities. The processed activities are
such that the decision to process the activity at time t with some resource amount b has already been
taken and Wi > 0. The unavailable activities verify ri > t and Wi > 0. The postponed activities are those
selected for being scheduled later (see branching scheme below).

At each node an activity either started or available is selected for being included in the processed set (or
in the postponed set for the available activities). The activity i∗ with the smallest due date is selected first
and, in case of tie, the activity with the most remaining work (Wi∗) is selected. Let Q and E denote the
set of started and processed activities, respectively. If i∗ ∈ Q, bi∗ = B−

∑
j∈Q\{i∗} bmin

j −
∑

j∈E bjt denotes

the available power for i at time t. If i∗ 6∈ Q, the available power for i∗ is bi∗ = B−
∑

j∈Q bmin
j −

∑
j∈E bjt.

If bi∗ > bmin
i∗ , a part of i can be scheduled at time t. A child node is generated for b ∈ [bmin

i∗ , min(bi∗ , b
max
i∗)]

corresponding to an allocation of power bi∗t = b to i∗ at time t. An additional child node, only for available

IESM 2009, MONTRÉAL - CANADA, May 13 - 15

activities, corresponds to postponing activity i∗ to a decision point t′ > t such that t′ is either equal to
the minimum between the smallest possible completion time of an activity of E and the smallest release
date of unavailable activities, strictly greater than t. This time point is unknown at this step since set E
is under construction, so the activities are just marked as postponed without any other update.

If no activity can be selected for being scheduled at t, we have different reasons. If all activities are in the
completed set, the search succeeds. If all activities are either processed, postponed, unavailable or available

but without enough resource capacity, the search must continue from the next decision time point set to
the smallest release date or completion time of processed activities greater than t. At this time we may
check whether the new decision point is still compatible with the due date of the available activities and
if the schedule is active. Actually we just check whether the schedule is still semi-active by verifying that
no postponed activity could actually start at t. If one due date cannot be satisfied or if the schedule is
no more semi-active, a failure occurs and the node is pruned. Otherwise decision time point is updated.
The processed activities are transferred either to the completed set or to the started set. The postponed

activities are moved to the available set. The unavailable activities such that ri ≤ t are moved to the
available set. The activity selection process starts again and the process is iterated until an activity is
selected for being processed or a failure occurs.

We illustrate the branching process on the Figure 1 problem instance. For the root node where t = 0,
activity 1 is in the available set while activities 2 and 3 are in the unavailable set. We branch to the second
node by selecting activity 1 for being scheduled at maximal power. Activity 1 is included in the processed

set. At time t = 0 no other activity is available. Time t is set of the next decision point t = 2. Activities
2 and 3 are included in the available set and activity 1 is transferred to the started set. The third node
selects activity 3 with power b = 2 as the activity with the smallest due date for being inserted in the
processed set. Activities 1 and 2 can both be processed at time 2 and have the same due date but activity
2 has the most remaining work. So the fourth node selects activity 2 for being processed at time t = 2
with the maximal available power, taking account of processed and started activities, equal to b = 2. For
the fifth node, activity 1 can now be processed at time t = 2 with its minimal power b = 1. No activity is
available anymore at time t = 2, so we proceed to the next time point corresponding with the completion
time of activity 1 at time t = 4 and activities 2 and 3 are now both in the started set while 1 is put
into the completed set. For the seventh node, activity 3 is still selected with power b = 2 as it has the
smallest due date. Then, the eighth node selects activity 2 with the maximal available power b = 3. Since
all activities are in the processed set, the time point is increased to the completion time t = 5 of activity
3 and activity 2 is included in the started set. For the ninth node, activity 2 is selected with the maximal
power b = 5 and completed at time t = 6. For this example no backtracking has been necessary.

8 Computational experiments

In this section we illustrate on a few randomly generated problem instances the interest of the proposed
energy reasoning. In Table 1, we provide the results of two tree search methods, the first one with energy
reasoning feasibility tests and time-bound adjustments applied at each node, and the second one without
these tests and adjustments. Five instance EnSP1,. . . ,EnSP5 have been selected as illustrative ones. The
first four instances have 25 activities while the last one comprises 30 activities. The solution found, the
CPU time in seconds, and the number of nodes in the search tree are provided for each pair instance /
method. The available power has been set to B = 10. The energy requirements and time windows have
been randomly generated to obtain infeasible and feasible instances.

Table 1
Compared results on EnSP instances

results with energy reasoning results without energy reasoning

Instance n B Solution CPU (s) #Nodes Solution CPU (s) #Nodes

EnSP1 25 10 Infeasible 0 1 NA NA > 106

EnSP2 25 10 Feasible 6 101970 Feasible 17 464933

EnSP3 25 10 Feasible 13 212382 Feasible 16 443491

EnSP4 25 10 Feasible 22 368264 Feasible 31 811607

EnSP5 30 10 Infeasible 27(2) 69350(69350) Infeasible 4 173819

IESM 2009, MONTRÉAL - CANADA, May 13 - 15

For the 25 activity instances, the results show the superiority of the approach incorporating energy
reasoning, both for number of nodes and CPU time. For infeasible instance EnSP1, the energy reasoning
proves infeasibility at the root node, while the branching scheme cannot reach this result after 106

nodes (“NA” stands for ‘Not Available’). However, for infeasible instance EnSP5, the branching scheme
incorporating energy reasoning obtains a significantly lower number of nodes but the required CPU
time is much more important. This indicates that despite the quality of the adjustments, the algorithm
complexity (O(n3)) is too big. Hence, in this case we may use energy reasoning only for a subset of nodes.
Indeed, if we use it only at the root node (results displayed in parenthesis in Table 1), we still obtain
69350 nodes with a CPU time of 2 seconds, so incorporating energy reasoning becomes profitable again.

9 Conclusion

We presented the energy scheduling problem, an extension of the cumulative scheduling problem to
represent energy requirements of activities. We showed this model is well-adapted to a parallel machine
scheduling industrial context with electric power limitations. We proposed an extension of the standard
energy reasoning scheme that was not covered by previous works on this subject. Finally we draw the
scheme of a tree search method based on dominance rules. Computational experiments illustate the
quality of energy reasoning adjustments and the trade-off that has to be found for their efficient use
inside tree search.

References

[1] P. Baptiste, C. Le Pape, and W. Nuijten. Satisfiability tests and time-bound adjustments for cumulative scheduling
problems. Annals of Operations Resarch, 92:305–333, 1999.

[2] M. Drozdowski. Scheduling multiprocessor tasks – an overview. European Journal of Operational Research, 94:215–230,
2004.

[3] J. Erschler and P. Lopez. Energy-based approach for task scheduling under time and resources constraints. In 2nd

International Workshop on Project Management and Scheduling, pages 115–121, Compiègne, France, 1990.

[4] A. Häıt, C. Artigues, M. Trépanier, and P. Baptiste. Ordonnancement sous contraintes d’énergie et de ressources
humaines. In 11ème Congrès de la Société Française de Génie des Procédés, Saint-Etienne, France, 2007.

[5] E. Poder, N. Beldiceanu, and E. Sanlaville. Computing a lower approximation of the compulsory part of a task with
varying duration and varying resource consumption. European Journal of Operational Research, 153(1):239–254, 2004.

[6] M. Ranjbar, B. De Reyck, and F. Kianfar. A hybrid scatter search for the discrete time/resource trade-off problem in
project scheduling. European Journal of Operational Research, 193(1):35–48, 2009.

[7] M. Trépanier, P. Baptiste, A. Häıt, and I.D. Arciniegas Alvarez. Modélisation des impacts du délestage énergétique sur
la production. In 6ème Congrès International de Génie Industriel, Besançon, France, 2005.

