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ABSTRACT
In this paper we give a short theoretical description of

the general predictive adaptive arithmetic coding technique.
The links between this technique and the works of J. Ris-
sanen in the 80’s, in particular the BIC information cri-
terion used in parametrical model selection problems, are
established. We also design lossless and lossy coding tech-
niques of images. The lossless technique uses a mix between
fixed-length coding and arithmetic coding and provides bet-
ter compression results than those separate methods. That
technique is also seen to have an interesting application in
the domain of statistics since it gives a data-driven proce-
dure for the non-parametrical histogram selection problem.
The lossy technique uses only predictive adaptive arithmetic
codes and shows how a good choice of the order of predic-
tion might lead to better results in terms of compression. We
illustrate those coding techniques on a raw grayscale image.

1. INTRODUCTION

Arithmetic Coding (AC) is an efficient binary coding
technique. We use it here in one of its most general form :
the predictive and adaptive one. Even though those aspects
of AC are known, it is quite hard to find literature dealing
with both of them ; as well as to determine which aspects
are actually used in image coding norms such as JPEG and
JPEG2000. We try here to answer the first issue but could
not collect useful informations about the second. This pa-
per does not seek compression efficiency but wants to show
how different AC processes may be used in both parametri-
cal (§3) and non-parametrical (§4) model selection problems.
This explains why we choose to work on raw images.

After a description of AC algorithm in §2, we take a
closer look at the resulting codelength. To this end, we use
works of J. Rissanen in [6, 7] and especially [8]. The main
conclusion of §3 is that the codelength enters the family of
information criteria, a widely used tool in the vast problem of
model selection. We aim at showing that the adaptive aspect
of the AC used here is an essential feature.

Next, we design in §4 a new lossless coding technique.
It uses a mix between AC, which is compression efficient,
and fixed-length coding, which is not. It is shown in §4.2 that
correctly mixing those two methods gives better compression
efficiency than using only AC. The most important parameter
to be adjusted in order to get that "correct" mix is the order of
prediction. Moreover, that method is shown in §4.3 to have a
direct application in the histogram selection problem.

Finally we design in §5 a lossy coding technique which,
once again, shows the importance of the order of prediction.

2. GENERALITIES ON ARITHMETIC CODING

2.1 Multiple Markov Chain

The notion of Multiple Markov Chain (MMC) leads to
arithmetic coding. Let E = {a1, . . . ,am} be a finite set with
m elements. An E-valued process (Xn)n∈N∗ is an order k
MMC if k ∈N is the smallest integer satisfying the law equa-
lity

�
(Xn|Xn−1, . . . ,X1) =

�
(Xn|Xn−1, . . . ,Xn−k) for all n. We

will always work in the case where that law does not depend
on n ; the chain is said homogeneous. An order 0 MMC is a
sequence of independent random variables.

If X is an order k MMC, we will suppose that X1, . . . ,Xk

are independent and uniformly distributed on E. For i ∈ E a

state and j ∈ Ek a multiple state, we denote by θ(i| j) the pro-

bability to see i after j. Consequently, choosing (m− 1)mk

real numbers θ(i| j) for j ∈ Ek and i ∈ {a1, . . . ,am−1} is en-
ough for describing the evolution of X . Let θ denote such a
parameter and xn = x1, . . . ,xn be a sequence of elements of
E, the likelihood of xn relatively to θ writes as :

�
(xn|θ) =

1

mk ∏
j∈Ek

∏
i∈E

θ(i| j)n(i| j) (1)

where n(i| j) is the number of occurences of i after j in xn.

2.2 Predictive adaptive arithmetic coding : PAAC

We deal here with a general AC which is both k-
predictive and adaptive ; we shorten it to k-PAAC. Predic-
tive means we code using orders k that may be greater than
1, hence a prediction of the future state of the chain from
the current state. Adaptive means we do not need any prior
knowledge on the chain, except its order ; we learn how to
predict the future step by step. Both notions have been for-
mally introduced and studied by Rissanen [6, 7, 8]. For a
more concrete description of arithmetic coding, we refer to
[11] ; note that this paper does not mention the predictive as-
pect. Let us now give a theoretical description of the general
k-PAAC algorithm.

Let xn = x1, . . . ,xn be a chain of elements of E to be enco-
ded and Ic be the current interval firstly set to Ic = [0,1). For
n≥ t ≥ 1 we note xt = x1, . . . ,xt . The only prior we need is an
order of coding k ≥ 0, then the algorithm works as follows.

Suppose that the t ≥ 0 first symbols are dealt with ; t =
0 means we have not started the coding yet. To deal with
the (t + 1)-th symbol we actualize transition probabilities as
follows :

θ̂(t)(i| j) =
n(t)(i| j)+1

n(t)( j)+m



where i ∈ E, j ∈ Ek, n(t)(i| j) and n(t)( j) denote the respec-
tive number of occurences of i after j and of j in the chain xt ;

n(t)( j) must not count an occurence of j at the very end of
that chain. If k = 0, the multiple states j vanish and we set

n(t)( j) = t. Those probabilities reflect what we know of the
chain at the time t of the coding process ; they are the adap-
tive aspect. We then set j = xt−k+1, . . . ,xt the current state
and split the current interval Ic in m smaller intervals accor-

ding to the probabilities θ̂(t)(i| j), i ∈ E. This way, we asso-
ciate to each possible future state i ∈ E an interval whose
length is proportional to the probability with which we ex-
pect it. The (t + 1)-th symbol is dealt with by choosing for
new Ic the interval corresponding to i = xt+1.

Once the last symbol xn has been dealt with, we are left
with an interval Ic = [low,high). Let d.e denote the super-
ior integer part, there exists two consecutive dyadic numbers
with length d− log(high-low)e in Ic. We take as the arithme-
tic code of xn the sequence of bits given by the fractionnal
part of the biggest one. If encoder and decoder agree on the
order k of coding, that sequence of bits is decodable, we refer
again to [11].

For illustration in table 1, we take m = 2, E = {a,b} and

encode x4 = abaa at order k = 1. In the splits, we allow the
left interval to a.

TAB. 1 – Order 1 PAAC of the chain abaa.

t xt Ic θ̂(t)(.|.) Split

0 /0 [0,1)
(a|a) = 1/2
(a|b) = 1/2

[0, 1
2
,1)

1 a [0, 1
2
)

(a|a) = 1/2
(a|b) = 1/2

[0, 1
4
, 1

2
)

2 ab [ 1
4
, 1

2
)

(a|a) = 1/3
(a|b) = 1/2

[ 1
4
, 3

8
, 1

2
)

3 aba [ 1
4
, 3

8
)

(a|a) = 1/3
(a|b) = 2/3

[ 1
4
, 7

24
, 3

8
)

4 abaa [ 1
4
, 7

24
)

(a|a) = not used
(a|b) = not used

not used

d− log(1/4−7/24)e = 5
Code : 01001 ; predecessor : 01000
Both 1/4+1/32 and 1/4 belong to Ic

This example shows the following general fact about k-
PAAC : the more unexpected behaviours occur in the chain,
the smaller is the last Ic, the longer is the code. For instance at
step t = 4 we expected b with probability 2/3, and observed a.
This caused us to choose the small interval Ic = [1/4,7/24).
For comparison, if b had occured the code would have been
0110 which is 1 bit shorter. This leads us to the notion of
information criteria (IC).

3. INFORMATION CRITERIA

Let us show how the PAAC may be used to solve a model
selection problem being : if xn is a realisation of an unknown
MMC (§2.1), which is its order ? More precisely, we will see
how the adaptive aspect of the PAAC is involved.

3.1 Coding approach of the model selection problem

As mentionned earlier the k-PAAC length of xn, say
L(xn|k), is ruled by the unexpected events in xn : the more

unexpected events, the longer the code. Consequently, if xn

is ruled by an unknown order k? MMC and we try to k-PAAC
it at an order k 6= k?, many unexpected events might occur :
either because k < k? and we do not look far enough in the
past, or because k > k? and we take into account informa-
tions relative to a too far away past which has actually no
influence on the future. Thus the minimization of L(xn|k) is
an appropriate tool for seeking k?.

The works of Rissanen will confirm that idea and esta-
blish a link with Information Criteria (IC).

3.2 Rissanen’s result

In [8] it is shown that L(xn|k) asymptotically behaves as :

BIC(xn|k) = − log
�

(xn|θ̂k)+
(m−1)mk

2
logn (2)

where θ̂k is the maximum likelihood (ML) estimator of order
k for xn, i.e. the parameter that maximizes (1).

BIC stands for Bayesian Information Criterion and enters
the formalism of IC first introduced by Akaike [1] ; let us
mention [10, 5, 3] in addition to [1, 8] as important steps in
the theory of IC.

Here is the idea behind IC : the first term of the criterion
(2), referred to as the ML term, decreases as k grows. This is

mainly because the ML estimator θ̂k fits the datas more accu-
rately if we let him look far away in the past. This phenomena
is known as overparametrization and is the major problem to
be solved in model selection, it appears on figure 1. On the
other hand, the second term, the penalty, increases as k grows

due to (m− 1)mk which is the number of free parameters in
the MMCs model of order k. Therefore, the minimization of
IC over k realizes a balance between the data fitting, measu-
red by the ML term, and the complexity of the model needed
to obtain such a fitting, measured by the penalty.

The quantity BIC(xn|k) is much faster to compute than
L(xn|k) ; the encoder should use BIC before encoding to find
which order will achieve the minimum codelength.

One can design a non-adaptive order k-predictive arith-
metic coding process whose codelength would be exactly

d− log
�

(xn|θ̂k)e = dMLe. However, this process requires to

send the parameter θ̂k for decodability and, especially, it no
longer answers the problem of order selection since ML suf-
fers the overparametrization issue. In terms of IC, the adap-
tive aspect of the process creates the penalty term which
avoids overparametrization, see again figure 1.

3.3 Comparison of actual codings with criterion

We generate a realization xn of an order k? = 5 MMC
with m = 2 and n = 25000. For k = 0, . . . ,10 we encode
it with k-PAAC process. We also compute the criterion

BIC(xn|k) and the quantity ML =− log
�

(xn|θ̂k). Results are
presented on figure 1 divided by n to express them as a bit-
rate.

As expected, BIC and k-PAAC curves present a minimum
at k = k? while the ML method overparametrizes at k = 9.

Note that, when computing BIC, it is desirable to have
enough observations compared to the number of free para-
meters, empirically :

n ≈ α(m−1)mk with α ≥ 20 (3)



FIG. 1 – Superposition of codelengths and criteria.

would be good. If n is too small behind the number of tran-
sition probabilities to be estimated, those transitions do not
occur often in the chain and their estimation is weak, resul-
ting in the penalty to dominate the ML term. An alternative
would be to compute the number of transitions actually ob-

served in the chain and plug them in (2) instead of (m−1)mk.

4. LOSSLESS CODING OF RAW IMAGES

Let [[p,q]] be the set of integers from p to q. Let us choose
an r×c greyscale image and set n = rc. Firstly, the image has
to be turned into a vector xn ∈ In. For order k ≥ 1 codings,
the way this linearization is done does matter since one does
not want to lose proximity information on the pixels. We have
chosen the "zigzag" linearization used in 8×8 blocks of DCT
transform in JPEG norm [12]. Other transformations have
been tested and results are quite similar. Let us now describe
our lossless coding method.

4.1 Lossless coding method

It is a two-part coding technique. In first, choose a par-
tition P of I = [0,255] ; that is a set of m disjoined intervals
(I j) j∈[[1,m]] whose union is I. Then, from xn, form a new chain
yn as follows :

∀i ∈ [[1,n]], yi =
m

∑
j=1

j�I j
(xi). (4)

That is, each yi denotes the number of the interval of P in
which xi falls. The chain yn has values in E = [[1,m]]. For k
an order, we denote by L(yn|k,P) its k-PAAC codelength. If
m = 1, we set L(yn|k,P) to 0.

Secondly, we denote by A j the number of integers in I j.
Once yi = j is known one needs, in order to recover xi ∈ I j, to
specify which one of those integers xi actually is. This is done
for each xi ∈ I j by a simple code with fixed length dlogA je.
Therefore, the number of bits required to recover xn from yn

is L(xn|yn) = ∑
m
j=1 n jdlogA je.

For decodability, one should also send the partition cho-
sen to encode. We do not take this into account here since the

FIG. 2 – Lossless estimated bit-rates of Lena at order 0,1,2.

codelength required to this end is very small compared to the
quantities L(yn|k,P) and L(xn|yn) we work on.

Let us note L(xn|k,P) := L(yn|k,P) + L(xn|yn) the total
lossless codelength of xn with help of the partition P.

4.2 Choice of partition and order of prediction

As m grows L(yn|k,P) also grows because yn has values
in [[1,m]]. By opposition L(xn|yn) decreases since the inter-
vals I j get smaller. Consequently, there should exist a parti-
tion P which balances those two phenomena by minimizing
the codelentgh L(xn|k,P). This argument takes place in the
theory of Minimum Description Length (MDL) introduced
by Rissanen and for which we refer to Grunwald and al. [4].

We estimate L(yn|k,P) by BIC(yn|k), see §3. We then de-
fine the following criterion as an estimation of the lossless
order k coding of xn with the partition P :

CRIT(xn|k,P) = BIC(yn|k)+L(xn|yn). (5)

We restrict ourselves to regular partitions ; i.e. partitions
P(m) whose intervals all have length 256/m. We work with
the 512×512 greyscale Lena image.

Figure 2 presents, for m ranging from 1 to 256 the esti-
mated bit-rate CRIT(xn|k,P(m))/n for k = 0,1,2. For k = 1,
the condition (3) is satisfied for m up to 115 but we still give
the k = 1 curve up to m = 256 for completeness. The algo-
rithm complexity increases considerably with the order k and
computations for k ≥ 2 shows no significant improvements ;
in the case k = 2 we went up to m = 30 which makes α about
10.

Note that our coding technique with P(1) is equivalent to

the pgm format1. In the other extreme case, with P(256) we
get yn = xn and L(xn|yn) = 0 ; this means we directly encode
the chain xn with the k-PAAC process. Considering this, fi-
gure 2 shows how a mix of those two methods leads to better
bit-rates. The minimization of the criterion (5) tells us which
partition is to be chosen in order to get the correct mix.

More important, 1-PAAC is clearly seen to reaches better
bit-rates than 0-PAAC : roughly 7 bpp with huge P(200) par-
tition for 0-PAAC against 5.4 bpp with P(50) for 1-PAAC.
Note that the order k chosen for the coding process only af-
fects the first term BIC(yn|k) of the criterion (5), hence we

1http ://www.imagemagick.org/script/formats.php



FIG. 3 – Laplace distribution and histogram chosen by (6).

may also give the following interpretation of the curves in
figure 2 : no matter how we quantize them via a partition,
the grey scales in our image should not be considered inde-
pendent but rather of order 1. Unsurprisingsly, that depen-
dance of a pixel greyscale on its neighboors may be shown
this way on most of common images which content is com-
prehensible by the human brain.

4.3 Histogram selection statistical problem

It is interesting to note that the criterion (5) may be
directly extended to the histogram selection statistical pro-
blem : if f is an unknown density on an interval I and xn is a
sample from this density, which partition of I is to be chosen
for building an histogram estimator of f ?

For such a partition P, by independence of xn and formula
(4), it is readily seen that the yi’s are independent so that
the 0-PAAC of yn will be the best. Let us denote by L j the
length of I j and suppose that each I j contains a number of
real numbers proportional to L j. Then, up to terms which do
not depend on P and after little calculations, the estimated
lossless order 0 codelength of xn using P is :

CRIT(xn|0,P) = BIC(yn,0)+L(xn|yn).

CRIT(xn|0,P) = −
m

∑
j=1

n j log
n j

nL j

+
m−1

2
logn. (6)

This criterion is in shape really similar to the one used by
Birgé and al. in [2] except it has a coding background which
justifies its use. Moreover it is not restricted to regular parti-
tions of I. If I is supposed to contain R real numbers, there
could be 2R−1 partitions to be tested, which is huge. Rissanen
and al. presented in [9] a dynamic programing method which
shrinks to O(R2) the number of computations required to find

which one of the 2R−1 partitions achieves the minimum of
(6). For illustration, we present in figure 3 the partition cho-
sen on a 2000-sample from the Laplace distribution used to
represent DCT coefficients in the JPEG norm. We assume
that I = [−5,5] and R = 200.

5. LOSSY CODING OF RAW IMAGES

We keep the same linearization as in §4 to turn an image
into a vector xn and now describe our lossy coding method.

FIG. 4 – Estimated Lena’s bit-rates for 0-PAAC and 1-PAAC.

5.1 Lossy coding method

For P a partition of [0,255] in m intervals, we define the
[[1,m]]-valued chain yn as in (4). Next, we quantize the da-
tas xn on P at their barycenter. That is, for each j ∈ [[1,m]],
we consider all xi’s falling into I j, compute their barycenter,
round it to the closest integer B j and finally set all those xi’s
to B j. This gives a new image with only m grey levels, this is
where the loss occurs. Moreover, that quantization creates an
injective map :

B : [[1,m]] −→ [[0,255]]
j 7−→ B j

With the help that map, the decoder is able to reconstruct
the quantized image from only the chain yn ; therefore B is
to be sent. However, the coding of such a map is very short
compared to the codelength of the chain yn, so we drop it.

Now we are left to encode yn with the k-PAAC process,
hence the estimation of the lossy codelength of our image by
the BIC criterion (2) :

BIC(yn|k) = − log
�

(yn|θ̂k)+
(m−1)mk

2
logn.

5.2 Influence of the order on bit-rates

We still restrict ourselves to regular partition P(m) and
work with Lena. Figure 4 presents the estimated bit-rates
BIC(yn|k)/n for m ranging from 1 to 256 and orders k = 0,1.
For any m, the fact that the k = 1 curve is under the k = 0
curve means, as in §4 and via IC interpretation, that the chain
yn is of order 1 rather than order 0.

5.3 Comparison involving distortion

Each value of m brings a certain quantization, thus a cer-
tain distortion. We measure this distortion by the Peak Signal
to Noise Ratio (PSNR) and plot it against the corresponding
bit-rate of 0-PAAC and 1-PAAC in figure 5. For illustration,
we present in figure 6 the two quantized Lena images ob-
tained for m = 3 and m = 13 with their respective PSNR.
We also give bit-rates achieved by 0-PAAC and 1-PAAC on



each of those image. For instance, this shows that at an im-
posed rate of about 1.4 bpp, the 1-PAAC allows to encode
Lena with a PSNR of 33.15 dB while the 0-PAAC only gives
22.11 dB.

FIG. 5 – Estimated Lena’s bit-rates/PSNR for 0 and 1-PAAC.

m = 3 levels : 22.11 dB m = 13 levels : 33.15 dB
0-PAAC : 1.36 bpp 0-PAAC : 3.18 bpp
1-PAAC : 0.43 bpp 1-PAAC : 1.39 bpp

FIG. 6 – Estimated PSNR and bit-rates on Lena quantized at
m = 3 and m = 13 levels for 0-PAAC and 1-PAAC.

6. PERSPECTIVES

As mentionned in the introduction we did not provide ef-
ficient compression results by intentionally working on raw
images. Therefore it would be interesting to insert the dis-
cussed binary coding methods after, for instance, the wavelet
transform block of the JPEG2000 norm. In order to com-
press, one should in first determine with the BIC criterion
(2) the order of the sequence of wavelet coefficients and then
use the criterion (5) to determine the partition which allows
to encode those coefficients efficiently.
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