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Abstract: We consider the problem of estimating an unknown function
f⋆ in the setting of Gaussian regression on a random design. To this end, we
use general Information Criteria, also called penalized likelihood criteria.
We introduce several comparative methods of use of those criteria that
present the advantage to have reasonnable computational complexity. We
also show that those methods are as efficient as classical ones since they
satisfy good asymptotic properties as well as an oracle inequality.
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Introduction

We study the problem of Gaussian regression in the case called random design
by Baraud [3] or Birgé [5]. In this setting we consider a set of abscisses xn =
(x1, . . . , xn) that is a sample from a specified density w on an interval I of
R. The ordinates yn = (y1, . . . , yn) are the images of those abscisses by an
unknown function f⋆ deteriorated by a Gaussian white noise. By opposition,
the more common fixed design , studied for instance by Baraud [2], considers
the same problem except the abscisses are deterministic.

In all that paper, we address the regression problem using information crite-
ria. Let us cite for classical references on this subject Akaike [1] who gives the
AIC criterion in the early 70’s, Schwarz [17] who presents the Bayesian Informa-
tion Criterion. Rissanen introduces the notion of stochastic complexity [15, 16]
which, along with the MDL principle [14, 8], allows to derive RIC, Rissanen In-
formation Criterion, which is similar to BIC. In a general setting, Nishii studies
the asymptotic properties of models selected by a general information criterion
in [11].

More recently, we observe an interest for non-asymptotic study of model se-
lection via information criteria. The conjoint work of Barron, Birgé and Massart
[4, 6, 9] gives a lot of tools allowing to derive non-asymptotic inequalities for
the risks of a model selection procedure. In this optic, Castellan studies in [7]
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such bounds for the problem of the histogram while Baraud [2, 3] is interested
in the problem of regression, also the topic of this paper.

One of our main concern is to provide methods of model selection, referred
to as comparative methods, which are both efficient and fast. The main idea of
those methods was firstly introduced by Nishii [10, 11], studied in the regression
setting by Rao and Wu [13], and discussed recently in a more general setting by
the same authors in [12]. Here, we will use the classical comparative method,
referred to as leave-one approach in [12]. We will also introduce several variations
of it. The efficiency of those methods will be studied in terms of the behavior
of the selected model as well as in terms of risks. As for the rapidity, we will
require the methods to present an algorithm that does not require too many
computations in view of an implementation on machines.

Part 1 and 2.2 present respectively the modelization and the information
criterion used throughout this paper. Comparative methods of use of this cri-
terion are defined in part 2.3. Using them, we show theorem 3.1 which deals
with asymptotic stability, theorem 4.1 which studies the asymptotic risk and
theorem 4.2 which gives an oracle inequality. Appendices A to E present the
proofs of those theorems.

1. Modelization

1.1. Regression space

Let I be an interval of R endowed with the Lebesgue measure λ and w be a
given nonnegative function with integral 1 assumed to vanish only on a set of I of
Lebesgue measure 0. The following defines a scalar product on L2 := L2(I, wdλ)

〈f, g〉w =

∫

I

fgwdλ. (1.1)

whose associated norm and squared-distance are denoted by ‖.‖w and d2
w.

We choose F = Vect(f1, . . . , fd) a d-dimensional subspace of L2 where d ≤ n
is not allowed to depend on n. For any support S ⊂ {1, . . . , d} we denote by FS

the |S|-dimensionnal subspace of F

FS = Vect {fj , j ∈ S} . (1.2)

We choose an unknown function f⋆ ∈ F , write f⋆ =
∑

a⋆
jfj and call S⋆ its

support
S⋆ = {j such that a⋆

j 6= 0}. (1.3)

Recall that, in all that follows, the function fj belong to L2. In the sequel,
we will, at some points, make the following assumption:

fj ∈ L8(I, wdλ), j = 1, . . . , d. (H8)
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1.2. Observation space

We endow the observations space Rn with the canonical scalar product 〈., .〉n
and its associated norm and squared-distance ‖.‖n, d2.

For x ∈ In and f ∈ F , we denote by f(x) the vector (f(x1, . . . , f(xn))T . To
a support S ⊂ {1, . . . , d} we also associate the subspace

ES = Vect {fj(x), j ∈ S} ⊂ Rn (1.4)

and shorten E{1,...,d} to E.

1.3. Modelization

Let X = X1, . . . ,Xn be independent variable with density w on I. Let also G
be a n-dimensionnal gaussian white noise G ∼ N (0, σ2idn) independent of X.
We modelize the abscisses X and ordinates Y of a set of n points in the plane
by a regression model on random design :

Y = f⋆(X) + G (1.5)

Namely, the abscisses are given by a sample of the law w and the ordinates by
the images of those abscisses by the unknown function f⋆ deteriorated by the
noise. Note that all the spaces ES (1.4) become random.

2. Information criteria and their use

2.1. Maximum likelihood

We are interested in twice the opposite of the log-likelihood of a realization (x, y)
of (X,Y ) relatively to a function f ∈ F . In our Gaussian setting, it is classical
that this quantity, dropping terms not depending on f , is the quadratic error :

l : F ∼ Rd → R

f 7→
n∑

i=1

(yi − f(xi))
2

Consequently, for any support S, the maximization of the likelihood of (x, y)
within the regression subspace FS amounts to the minimization of the quadratic
error l on FS . We denote by f̂S ∈ FS the function realizing that minimization :

d2(y,ES) = min
f∈FS

l(f) =: l(f̂S). (2.1)
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2.2. The criterion

Let us choose any function α : N → R+ referred to in the sequel as the penalty
term. We consider the information criterion

IC(S) = d2(y,ES) + |S|α(n), S ⊂ {1, . . . , d}. (2.2)

In the sequel, the following hypothesis on α(n) will be used :

(i) α(n) = o(n)
(ii) ln lnn = o(α(n)).

(Hα)

Note that, in the case where the error G in (1.5) is not Gaussian, the quantity
IC(S) is not strictly speaking an information criterion since those are defined
as penalized maximum likelihood.

An inequality of the type IC(S) ≤ IC(T ) expresses the fact that the support
S realizes a better trade-off between the goodness of fit (measured by the like-

lihood term l(f̂S)) and the complexity of the model needed to obtain such a fit
(measured by the penalty |S|α(n)) than the support T does.

If one wants to use such a criterion for the estimation of f⋆, one has to choose
a penalty function α(n) and a sequence of computations of IC that will lead to

the selection of a support Ŝ and thus to the estimation of f⋆ by f̂
Ŝ
.

In this paper, we are not only interested in properly choosing α(n) but also

in efficient and fast methods able to select Ŝ. We present those methods now.

2.3. Methods

By method, we understand a sequence of computations of IC(S) that eventually

leads to the selection of a support Ŝ well suited to estimate f⋆ by f̂
Ŝ
. We define

five of those in the sequel : formulaes (2.3), (2.4), (2.5), (2.6) and part 2.3.5.
The global method (2.3) is the most used when the problem of computation
speed is not under consideration ; this is the case for instance in Baraud’s work
[2, 3]. The comparative method (2.4) solves the computationnal problem. The
remaining ones are derived from (2.4), in the specific aim of obtaining an oracle
inequality (theorem 4.2) on the risk for the descending comparative method
(part 2.3.5).

All the methods we use allow to select a support that may take any value in
P({1, . . . , d}). In this sense, our basis (fj)j is not required to present a natural
order as, for instance, basis of polynomials or wavelets would do. Our methods
will always select a set of functions to be used for regression, without favouring
any of them and regardless of which kind of functions are mixed in the basis.

Let us also stress that, even though this paper is written in the context
of linear regression, those methods may be simply transposed to many other
parametric model selection problems.
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2.3.1. Global method

This is the most straightforward, but also the most computationnal method.
The estimated support is chosen as

Ŝ = Argmin {IC(S), S ∈ P({1, . . . , d})} . (2.3)

2.3.2. Comparative method

Rather than testing any support as in the global method, Nishii [10, 11] suggests
the following method, also called leave-one approach by Rao and Wu in [13].
From now on, the expression −j denotes the support {1, . . . , d} \ {j}.

ICref = IC({1, . . . , d})
Ŝ =

{
j ∈ {1, . . . , d} such that ICref ≤ IC(−j)

}
(2.4)

2.3.3. Reversed comparative method

Looking at method (2.4) one may ask why not to consider the following :

ICref = IC(∅)
Ŝ =

{
j ∈ {1, . . . , d} such that IC({j}) ≤ ICref

}
. (2.5)

The reversed method might be transposed to the case where the space of re-
gression has infinite dimension. Indeed, even though the basis (in the classical or
Hilbert sense) of F was infinite, using the reversed method would never require
to compute an IC with an infinite number of free parameters. By opposition the
reference of the regular comparative method (2.4) are not computable in the
infinite dimensionnal case.

As will be discussed in part C.2, when the basis (f1, . . . , fd) is orthogonal
relatively to the scalar product (1.1), the reversed method is asymptotically
equivalent to the regular method (2.4). However, in the non-orthogonal case,
this method presents asymptotic flaws that will also be precisely described in
part C.2. In order to handle these flaws, we present the next method.

2.3.4. Adapted reversed comparative method

For any j ∈ {1, . . . , d}, choose a non-vanishing function fN
j that is normal,

relatively to the scalar product (1.1), to the hyperplane F−j defined in (1.2).
The orientation of fN

j as well as its norm does not matter in the sequel.

For any j, the family {fk, k 6= j} ∪ {fN
j } is a basis of F and a function does

not live in F−j if and only if it has a component along fN
j . The idea comes

that, instead of determining wether f⋆ should have a component along fj , we
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will determine if it should have one along fN
j by following the so called adapted

reversed comparative method :

ICref = IC(∅)
Ŝ =

{
j ∈ {1, . . . , d} such that l

(
f̂N

j

)
+ α(n) ≤ ICref

}
, (2.6)

where f̂N
j denotes the function h colinear to fN

j realizing the minimum of

d2(y, h(x)).
Note that the basis (fN

j )j is orthogonal if and only if (fj)j is. In this case, fN
j

is colinear to fj which makes (2.5) and (2.6) equivalent methods of selection.
It will be shown in theorem 3.1 that this method satisfies a convergence

theorem even though the basis (f1, . . . , fd) is not orthogonal.

2.3.5. Descending comparative method

The descending comparative method is designed specifically in the aim of using
results from Baraud [3] in order to show theorem 4.2.

Firstly let us set

S(0) = {1, . . . , d}
IC

(0)

ref
= IC(S(0)).

The first step of the descending method produces new quantities that have
superscript (1) as follows

C(1) =
{

j ∈ S(0), IC
(
S(0) \ {j}

)
≤ IC

(0)

ref

}
(2.7)

J (1) = Argmin
{

IC
(
S(0) \ {j}

)
, j ∈ C(1)

}
.

This way, among the functions of C(1) found useless by the criterion, J (1) is the
worst one. This is consequently the function we should remove in priority. This
is what we do now by refreshing our reference with superscript (1) :

S(1) = S(0) \ {J (1)}
IC

(1)

ref
= IC(S(1)). (2.8)

From there, we start a second step by computing useless functions and the
worst one by

C(2) =
{

j ∈ S(1), IC
(
S(1) \ {j}

)
≤ IC

(1)

ref

}

J (2) = Argmin
{

IC
(
S(1) \ {j}

)
, j ∈ C(2)

}

and refresh again our reference by adding 1 to all superscripts in (2.8).
This process is repeated until the random final step kf +1 where C(kf+1) = ∅.

This means that the criterion does not reject functions anymore and that the
current support S(kf ) should be our estimator Ŝ.
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Table 1

Methods and their complexities.

Method Complexity

Global 2d

comparative d + 1
Reversed comparative d + 1
Adapted reversed comparative d + 1
Descending comparative ≤ d(d + 1)/2

2.4. Methods complexities

We define here an integer willing to reflect the complexity of a particular method
in terms of computations. This integer is simply the number of ICs that one
needs to compute in order to select Ŝ. Table 1 sums up the complexities of
the different methods used here. For the descending method the number of
computation is random so we only give an upper bound.

All methods derived from the comparative one have polynomial complexity
contrarily to the global method that has exponential complexity. Nevertheless
they allow a precise selection of the support in the sense that for each of them Ŝ
may take any value in P({1, . . . , d}). They are what we have called fast methods.
The remainder of the paper is devoted to explain in which ways they are also
efficient .

3. Stability of comparative methods

Recall that the unknown function f⋆ has support S⋆ as in (1.3). The following
theorem, shown in appendix C, gives conditions on the penalty α(n) in (2.2) that

ensure convergence of Ŝ to S⋆ when the criterion is used with the comparative
methods we introcuced in previous section.

Theorem 3.1 Assume that (Hα) holds. Then

(i) the comparative method (2.4) is strongly consistent in the sense that Ŝ
converges to S⋆ almost surely,

(ii) the reversed comparative method (2.5) is strongly consistent provided that
the basis (f1, . . . , fd) is orthonormal relatively to the scalar product (1.1),

(iii) the adapted reversed comparative method (2.6) is strongly consistent,
(iv) the descending comparative method (part 2.3.5) is strongly consistent.

More precisely, in any of those cases, conditions (i) and (ii) in (Hα) ensure

respectively S⋆ ⊂ Ŝ and Ŝ ⊂ S⋆ a.s. above a certain rank.

4. Study of the risks

The aim of this section is to study the behaviour of the risk following the selec-
tion of a support Ŝ resulting from the use of a comparative method described
in part 2.3.
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The fact that, in our random design setting, f̂S defined in (A.6) is not square
integrable prevents us from computing risks in general. We handle this issue by
using, in this entire section 4 the truncated estimator f̃S , defined in (A.7).

4.1. Asymptotics of the risks

Our aim is to derive asymptotic results similar to those given in [10], except we
handle the random design case and use more comparative methods.

4.1.1. The ideal case

Assume for a moment that the user knows the support S⋆. Then he will estimate
f⋆ by f̃S⋆ and get an oracle risk denoted by OR(n, S⋆). As shown in lemma B.2,
under (H8), this risk satisfies :

E

[∥∥∥f̃S⋆ − f⋆
∥∥∥

2

w

]
∼ σ2|S⋆|

n
(4.1)

4.1.2. Risk of comparative methods

Theorem 4.1 Assume that (Hα) and (H8) hold and that either of the following

method has been used to determine Ŝ :

⋆ comparative method (2.4),
⋆ reversed comparative method in the orthonormal case (2.5),
⋆ adapted reversed comparative method (2.6),
⋆ descending comparative method (part 2.3.5).

Then the estimation of f⋆ by f̃
Ŝ

defined in (A.7) presents a risk R(n) equivalent
to the oracle risk (4.1) in the sense that

R(n) ∼ σ2|S⋆|
n

The proof of this theorem is given in appendix D.

4.2. An oracle inequality for the risk of the descending method

Our main purpose here is to establish an oracle inequality on the risk achieved
by the estimator of f⋆ resulting from the use of an information criterion of
the form (2.2) along with the descending comparative method (part 2.3.5). The
result is given in theorem 4.2.
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4.2.1. Definition of the risk

To S ⊂ {1, . . . , d} a support we associate an unknown risk R⋆(S) by

R⋆(S) = d2
w(f⋆, FS) + σ2|S|/n. (4.2)

This quantity R⋆(S) is the actual risk resulting from the estimation of f⋆ by

f̂S , but in the fixed design setting.
In our random design and under certain integrability hypothesis, we have

shown that one may obtain an explicit value of this risk involving Gram matrices
similar to those used in appendix A. However, those expressions are quite useless
and we do not give them here. Let us just say that, in the case where S⋆ ⊂ S, the
risk remains almost unchanged, while in the other case the estimator is biased
and a new variance term appears. Also stress that, as n grows, the law of large
numbers ensures that those differences vanish.

Regardless of this remark, and as Baraud in [3], we work in the sequel in

random design, with the f̃S estimator defined in (A.7), but still with quantities
R⋆(S).

4.2.2. Baraud’s result

Let F be a family of supports. We associate with it the oracle risk

OF (f⋆) = min
S∈F

R⋆(S). (4.3)

This oracle is the minimum risk the user could achieve if he knew by advance
the support SO in F realizing that minimum. Note that there is no reason why
SO would equal S⋆.

Let us assume for now that the user has chosen the global method (2.3). The
only thing he knows is what his criterion has found is the best support, namely

Ŝ = Argmin {IC(Y, S), S ∈ F} .

Baraud shows in [3] that the user did not take too much risks in the sense that

E

[∥∥∥f⋆ − f̃
Ŝ

∥∥∥
2

w

]
≤ COF (f⋆). (4.4)

where C is a constant depending on θ appearing in the penalty (4.5) but neither
on n nor on f⋆. This result stands if the penalty in IC is of the form :

α(n) = (1 + θ)σ2|S|, θ > 0. (4.5)

Now, as stressed in part 2.4, the global method has exponential complex-
ity. Our aim in the sequel is to show that the descending method, that has
polynomial complexity, also gives an oracle inequality of the type (4.4).
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4.2.3. A family of nested deterministic supports

We define here a sequence of decreasing unknown supports S⋆(k), k = 0, . . . , d
all with cardinality d − k. Firstly set S⋆(0) = {1, . . . , d}. Then, when S⋆(k) is
defined, set

S⋆(k+1) = Argmin
(
R⋆(S), S ⊂ S⋆(k), |S| = d − (k + 1)

)
(4.6)

where R⋆ is defined in (4.2).
We thus obtain a sequence of risks R⋆(S⋆(k)), k = 0, . . . , d. Each of those

represents the minimum risk achieved by removing a single function in the
previous support.

In the sequel, we are constrained to make the following assumption :

R⋆(S⋆(k)) 6= R⋆(S⋆(k+1)), k = 0, . . . , d − 1. (4.7)

This holds most of the time regarding the expression of R⋆ (4.2). It is indeed very
unlikely that the potential increase of the first term in R⋆ is exactly compensated
by the decrease σ2/n of the second. However, if that happens, it suffices to add
one or several points to the sample to deal with the problem. Assumption (4.7)
ensures that the first index 1 ≤ k⋆ ≤ d − 1 such that

R⋆(S⋆(k⋆−1)) > R⋆(S⋆(k⋆)) and R⋆(S⋆(k⋆+1)) > R⋆(S⋆(k⋆)) (4.8)

is correctly defined. In the case where the sequence R⋆(S⋆(k)), k = 0, . . . , d is
always decreasing, we set k⋆ = d. In the case where R⋆(S⋆(1)) > R⋆(S⋆(0)), we
set k⋆ = 0.

This way, S⋆(k⋆) is the first support that does not immediatly include a
support achieving a smaller risk. The quantity R⋆(S⋆(k⋆)) is an oracle risk, not
among any risks possible as in (4.3) with F = P({1, . . . , d}), but among a
smaller, nested, family of risks.

The deterministic family of supports S⋆(k) (4.6) is related to the random fam-
ily S(k) produced by the descending comparative method in part 2.3.5. Ideally,
one would like the method to choose good supports and stop at the right step
in the sense that

S(0) = S⋆(0), S(1) = S⋆(1), . . . , S(k⋆) = S⋆(k⋆), and kf = k⋆.

Even though the forecoming theorem 4.2 deals with an oracle inequality, its
proof also shows that this happens except on a event the probability of which
decreases as o(1/n).

4.2.4. The oracle inequality

Theorem 4.2 Assume that (H8) holds. Consider an information criteria of the
form (2.2) whose penalty term writes as

α(n) = (1 + θ)σ2|S|
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with θ > 0. Using this criterion along with the descending comparative method
described in part 2.3.5, one produces f̃

S(kf ) as an estimation of the unknown
function f⋆. The risk of such an estimation satisfies

E

[∥∥∥f⋆ − f̃
S(kf )

∥∥∥
2

w

]
≤ C.R⋆(S⋆(k⋆)) + o

(
1

n

)
(4.9)

where C is a constant depending on θ but neither on n nor on f⋆ and R⋆(S⋆(k⋆))
is the nested oracle risk defined in (4.8).

The proof of this theorem is given in appendix E

Appendix A: Expressions of the estimators f̂S and f̃S

This section introduces some notations useful in the various proofs of the theo-
rems presented in the sequel.

A.1. Non-random objects

These objects are linked to the regression space F defined in part 1.1. It will
be convenient to think of F as Rd via F → Rd, f =

∑d
k=1 akfk 7→ a =

(a1, . . . , ad)
T .

For S ⊂ {1, . . . , d}, we consider Mw,S the Gram matrix

Mw,S(j, k) = 〈fj , fk〉w , j, k ∈ S (A.1)

associated to FS . Those matrices, indexed by w, are non-random objects. We
shorten Mw,{1,...,d} to Mw. This way, the squared norm of a function writes

simply as ‖f‖2
w = fT Mwf . We also denote by ΠF

S the orthogonal projector on
FS .

A.2. Random objects

These objects are linked to the observation space Rn defined in part 1.2. Let us
use the Vandermonde-type n × d matrix V depending only of the xi’s :

V =




f1(x1) . . . fd(x1)
...

...
...

f1(xn) . . . fd(xn)




This way, the passage from a function f to the vector f(x) is a simple multipli-
cation f(x) = V f . Moreover, the Taylor expansion of l at any function f writes
as

l(h) − l(f) = −2
(
M(f − f⋆) − V T g

)T
(h − f) + (h − f)T M(h − f). (A.2)
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We set DS the d×|S| matrix of zeros and ones such that VS := V DS contains
columns j of V for j ∈ S only. We also set the Gram matrix

MS = V T
S VS , (A.3)

which is the random analog of the matrix Mw,S defined in (A.1). We also shorten
M{1,...,d} = V T V to simply M .

The orthogonal projection of Rn onto ES is denoted by ΠE
S , its matrix is :

Mat(ΠE
S ) = VSM−1

S V T
S . (A.4)

A.3. The estimator f̂S

The likelihood (2.1) writes as

l(f̂S) = d2(y,ES) =
Gram ({y, fj(x), j ∈ S})

det (MS)
. (A.5)

where Gram(u1, . . . , uk) denotes the Gram determinant of those vectors. The

orthogonal projection ΠE
S (A.4) gives the following expression for f̂S realizing

the minimum in (2.1) :

f̂S = DSM−1
S V T

S (V f + g) ∈ FS . (A.6)

A.4. The estimator f̃S

It is important to note that, contrarily to the fixed design setting, it may happen

that
∥∥∥f̂S

∥∥∥
2

w
is not integrable, thus preventing us from calculating risks. To handle

this we use at some points in the paper a truncated estimator

f̃S = f̂S .1{‖nM−1
S

‖<C} (A.7)

where ‖.‖ is any norm on matrices and C is a constant satisfying C > ‖M−1
w,S‖.

A.5. An application of the law of large numbers

In our random design setting, the law of large numbers gives a simple asymptotic
connection between the observation space (random objects) and the regression
space (non-random objects) by relating Gram matrices (A.3) and (A.1) as fol-
lows :

1

n
MS → Mw,S , a.s. S ⊂ {1, . . . , d}. (A.8)
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Appendix B: Some technical lemmas

Lemma B.1 Assume that (H8) holds.

(i) For any constant C greater than ‖M−1
w,S‖ we have :

E
[
1{‖nM−1

S
‖<C}c

]
= o

(
1

n

)
. (B.1)

(ii) For any ε > 0 :

P

(∣∣∣∣
1

n
l(f̂S) − σ2 − d2

w(f⋆, FS)

∣∣∣∣ > ε

)
= o

(
1

n

)
. (B.2)

(iii) Using any of the comparative methods described in part 2.3 and assuming
that α(n) = o(n), we have, for any j ∈ S⋆ :

P(j /∈ Ŝ) = o

(
1

n

)
. (B.3)

Proof : For any i = 1, . . . , n and j, k ∈ {1, . . . , d}, set Yi = fj(Xi)fk(Xi).
From (H8), we get Yi ∈ L4. Denote by Sn ∈ L4 the sum Y1 + · · ·+ Yn. The law
of large numbers (A.8) amounts to write Sn/n → 〈fj , fk〉w. Choose ε > 0 and
use Markov inequality to write

P

(∣∣∣∣
Sn

n
− 〈fj , fk〉w

∣∣∣∣ > ε

)
≤ 1

n4ε4
E
[∣∣Sn − n 〈fj , fk〉w

∣∣4
]
.

Moreover, setting Z := Y1 − 〈fj , fk〉w, we have

E
[∣∣Sn − n 〈fj , fk〉w

∣∣4
]

= nE
[
Z4
]
+ 6n(n − 1)E

[
Z2
]2

.

Consequently, we may write P
(∣∣Sn/n − 〈fj , fk〉w

∣∣ > ε
)

= o(1/n) as well as

P (‖Ms/n − Mw,S‖ > ε) = o

(
1

n

)
(B.4)

Now for the proof of (i), since C > ‖M−1
w,S‖, there exists an εC > 0 such that

the event {‖nM−1
S ‖ < C}c is included in {‖Ms/n−Mw,S‖ > εC}. Control (B.1)

follows from (B.4).
In order to proove (ii), first note that, by independence between X and G,

the entry (1,1) of the first Gram matrix in (A.5) satisfies

1

n
〈f⋆(x) + g, f⋆(x) + g〉n → 〈f⋆, f⋆〉w + σ2 a.s. (B.5)
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Moreover, any other entry converges to the corresponding one of the Gram
matrix of functions f⋆, fj , j ∈ S. Consequently we get :

1

n
l(f̂S) → σ2 + d2

w(f⋆, FS) a.s. (B.6)

From (H8), each variable for whom the law of large numbers has been used here
have a moment of order 4. Arguments similar to those leading to (B.4) give
(B.2).

We now proove (iii). Choose j ∈ S⋆ so that D2 := d2
w(f⋆, F−j) > 0. Assume

that α(n) = o(n) and consider n large enough to make 0 ≤ α(n)/n < D2/2.
Assume we use the comparative method (2.4). We may write :

P(j /∈ Ŝ) = P
(
n−1

(
ICref − IC(−j)

)
≥ 0
)

≤ P
(
n−1l(f̂{1,...,d}) −

(
n−1l(f̂−j) − D2

)
> D2/2

)

≤ P
(∣∣∣n−1l(f̂{1,...,d}) − σ2

∣∣∣ > D2/4
)

+P
(∣∣∣n−1l(f̂−j) − σ2 − D2

∣∣∣ > D2/4
)

.

Then, (B.3) follows from (B.2). We handle the case of the other methods the
same way. �

Lemma B.2 Under (H8) and in the setting used in part 4.1.1, equation (4.1)
holds.

Proof : For any function f and any support S, DSfDT
S sets to 0 all the

components of f along the fj ’s, j ∈ S. Consequently, DS⋆f⋆DT
S⋆ = f⋆. Now,

from (A.6) and (A.7), we may write :

f̃⋆
S = 1{‖nM−1

S⋆ ‖<C}D
⋆
SM−1

S⋆ V T
S⋆

(
V DS⋆f⋆DT

S⋆ + g
)

= 1{‖nM−1
S⋆ ‖<C}

(
f⋆ + D⋆

SM−1
S⋆ V T

S⋆g
)

Also recall, that, for any function f , the norm ‖f‖2
w writes as fT Mwf . Note

that the event {‖M−1
S⋆ ‖ < C} appearing in (A.7) is independent of the noise g.

Therefore, raw calculations give

E

[∥∥∥f̃S⋆ − f⋆
∥∥∥

2

w

]
= ‖f⋆‖2

w E
[
1{‖nM−1

S⋆ ‖<C}c

]

+σ2E
[
1{‖nM−1

S⋆ ‖<C}Tr(Mw,S⋆M−1
S⋆ )
]
.

The first term is handled by (B.1). For the second, recall that Mw,S⋆ is a |S⋆|×
|S⋆| matrices towards which MS/n converges a.s. ; finally, the indicator function
gives a dominated convergence and allows to write (4.1).

�
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Lemma B.3 Assume that (H8) holds. We have

E

[∥∥∥f̃S

∥∥∥
2p

w

]
< ∞ for any p ≤ 4. (B.7)

Moreover, for any event A and any p, q > 1 such that p ≤ 4, 1/p + 1/q = 1,
Hölder’s inequality gives

E

[∥∥∥f̃S

∥∥∥
2

w
1A

]
≤ E

[∥∥∥f̃S

∥∥∥
2p

w

]1/p

P(A)1/q. (B.8)

Proof : Recall the definition of f̃S in (A.7) and use the law of large numbers

(A.8) to write 1{‖nM−1
S

‖<C} → 1 a.s. From (A.6), the squared norm of f̃S writes
as ∥∥∥f̃S

∥∥∥
2

w
= 1{‖nM−1

S
‖<C}

(
DSM−1

S V T
S y
)T

Mw,S

(
DSM−1

S V T
S y
)

with y = V f⋆ + g. In that expression, matrices DS and Mw,S are deterministic
and the indicator function ensures the boundedness of M−1

S . The integrability
we have requested on the fj ’s in (H8) along with the fact that G is Gaussian
ensure that give (B.7). �

Appendix C: Proof of theorem 3.1

C.1. Proof of assertion (i)

Let us split it into two parts.
⋆ First part : the case j ∈ S⋆. Here, use (B.6) to write :

1

n

(
ICref − IC(−j) − α(n)

)
= −d2

w(f⋆, F−j) + o(1) a.s., (C.1)

where that latter distance D2 := d2
w(f⋆, F−j) does not vanish since j ∈ S⋆.

Again because j ∈ S⋆, one would like to select j as a part of Ŝ; in other terms
one would like ICref−IC(−j) to be nonpositive. The fact that α(n) = o(n) from
assumption (Hα) ensures that this happens a.s. for n large enough.

⋆⋆ Second part : the case j /∈ S⋆. Recall the definitions of the matrix Mw

in (A.1), the random matrix M in (A.3) and the law of large numbers (A.8)
linking them :

M/n −→ Mw a.s.,

that latter limit being invertible and positive definite. Consequently each entry
of nM−1 is bounded a.s. at least above a certain rank, which we denote by

M−1 = O

(
1

n

)
a.s. (C.2)
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More precisely, if mj is the j-th diagonal coefficient of M−1, then n.mj con-
verges a.s. to the j-th diagonal coefficient of M−1

w which is positive and

1

mj
= O(n) a.s. (C.3)

Let us call f̂ and f̂−j the functions in F and F−j respectively maximizing
the likelihood on those spaces as in (2.1). We are interested in the difference of
likelihood which, from (A.2), writes as :

l
(
f̂−j

)
− l
(
f̂
)

=
(
f̂−j − f̂

)T
M
(
f̂−j − f̂

)
(C.4)

since f̂ satisfies grad l
(
f̂
)

= 0.

Now for f̂−j , it satisfies

(
grad l(f̂−j)

)T

= Mf̂−j − Mf̂ = (0, . . . , 0, λj , 0, . . . , 0)T (C.5)

where λj is a Lagrange coefficient set at the j-th place in the latter vector. Since

the j-th coefficient of f̂−j , must vanish, that Lagrange coefficient necessarily
satisfies

λj = − f̂j

mj
(C.6)

where f̂j is the j-th coefficient of f̂ .
Plugging (C.3), (C.5) and (C.6) in expansion (C.4) gives

l
(
f̂ j
)
− l
(
f̂
)

=
(
f̂j

)2

O(n) (C.7)

Now note that f̂ is defined by f̂ = f⋆ + M−1V T g which yields E[f̂ ] = f⋆

keeping in mind that matrices V and M only depend on X which is independent
of G. Consequently, in our case j /∈ S⋆, we get

f̂j = 0 +
(
M−1V T g

)
j
.

Any entry in the vector V T g is of the form
∑n

i=1 fk(xi)gi which is the sum of

n independent variables with mean 0, finite variance, and thus is O(
√

n ln lnn)
a.s. by the law of iterated logarithm. The order of M−1 given in (C.2) makes

f̂j = O

(√
ln ln n

n

)
a.s.

Plugging in (C.7), we finally get

l
(
f̂ j
)
− l
(
f̂
)

= O(ln lnn) a.s.

Now in our case j /∈ S⋆, one would like to reject j ; in other terms, on would
like ICref − IC(−j) to be nonnegative. Write

ICref − IC(−j) = l
(
f̂
)
− l
(
f̂ j
)

+ α(n) = α(n) + O (ln lnn) a.s.
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so that
1

ln lnn

(
ICref − IC(−j) − α(n)

)
= O(1) a.s. (C.8)

From assumption (Hα), we have ln lnn = o(α(n)). Consequently, a.s. and for
n large enough, ICref − IC(−j) > 0.

C.2. Proof of assertion (ii)

We work here with the reverse comparative method (2.5). The function achiev-

ing the maximum likelihood for ICref obviously vanishes. Denote by f̂{j} the
function with support {j} achieving it for IC({j}). The following control for the
difference of the likelihoods holds :

l(0) − l(f̂{j}) = n 〈fj , f
⋆〉2w + 〈fj , f

⋆〉w O
(√

n ln lnn
)

+ O(ln lnn). (C.9)

Indeed, the function f̂{j} has the following component along fj :

f̂{j},j =
〈fj(x), y〉n

〈fj(x), fj(x)〉n
Now the difference of the likelihoods is easier to compute than with the regular
comparative method :

l(0) − l(f̂{j}) =

n∑

i=1

(
y2

i −
(

yi −
〈fj(x), y〉n

〈fj(x), fj(x)〉n
fj(xi)

)2
)

=
〈fj(x), y〉2n

〈fj(x), fj(x)〉n
In order to control the asymptotics, use the law of that large numbers to write
〈fj(x), fj(x)〉−1

n = O(1/n) a.s. Moreover, two applications of the law of iterated
logarithm give, a.s. :

〈fj(x), y〉n = 〈fj(x), f⋆(x)〉n + 〈fj(x), g〉n = n 〈fj , f
⋆〉w + O

(√
n ln lnn

)
.

Equation (C.9) follows.

C.2.1. Orthonormal case and reversed comparative method

As in theorem (3.1) (ii) to be shown, we assume here that the basis (fj)j is
orthonormal relatively to the scalar product (1.1). Note that orthogonal would
be enough.

Recall that f⋆ =
∑

j a⋆
jfj , consequently a⋆

j = 〈fj , f
⋆〉w = 0 ⇔ j /∈ S⋆ and

(C.9) yields

ICref − IC(j) + α(n) = na⋆
j
2 + a⋆

jO
(√

n ln lnn
)

+ O(ln lnn) a.s.
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This formula is to be related to equations (C.1) and (C.8) concerning the regular
comparative method to see that, in the orthonormal case, the reversed method
behaves asymptotically as the comparative method. Assertion (ii) follows from
arguments similar to those leading to (i).

C.2.2. Non-orthonormal case and reversed comparative method.

This case is not dealt with in theorem (3.1). However, we give here some com-
ments about it.

Suppose we are in a case where 〈fj , f
⋆〉w =

∑
k∈S⋆ a⋆

k 〈fj , fk〉w vanishes for
no index j. This happens most of the times if the basis (fk, k ∈ {1, . . . , d}) is
not orthonormal even though j /∈ S⋆. Then formula (C.9) gives

1

n

(
ICref − IC({j}) + α(n)

)
= 〈fj , f

⋆〉2w + o(1). (C.10)

Now assume α(n) = o(n), then ICref − IC(j) > 0 a.s. above a certain rank
and this for all j.The condition α(n) = o(n) which ensured we kept good indices
with the regular comparative method (assertion (i)) turns out to make us keep
every indices.

One should thus think about taking a penalty a bit larger. However, formula
(C.10) also implies that if

α(n) = kn where C > max
{
〈fj , f

⋆〉2w , j ∈ {1, . . . , d}
}

then ICref − IC(j) < 0 a.s. above a certain rank and this for all j. This means
we reject every indices j ∈ {1, . . . , d}.

Therefore, in order to use the reversed comparative method, one should firstly
choose a penalty of order not smaller than n and not greater than kn to ensure
that the criterion does not accept or reject systematically every indices. A good
order for the penalty would be in the few place left :

α(n) = α.n with min
{
〈fj , f

⋆〉2w , j ∈ S⋆
}

> α > max
{
〈fj , f

⋆〉2w , j /∈ S⋆
}

.

However, that α might not exist if its bounds are not ordered the correct way.
In any case, it is unavailable to the user and thus not of a practical use.

C.3. Proof of assertion (iii)

We work here with the adapted reversed comparative method (2.6). Choose j ∈
{1, . . . , d}. Replace the basis (f1, . . . , fd) with {fk, k 6= j}∪{fN

j } and decompose
f⋆ as

f⋆ =
∑

k 6=j

a⋆
k

Nfk + a⋆
j
NfN

j .
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We get a formula similar to (C.9) :

ICref − IC(j) + α(n) = n
(
a⋆

j
N
)2

+ a⋆
j
NO

(√
n ln lnn

)
+ O(ln lnn).

Note that a⋆
j
N 6= 0 ⇔ j ∈ S⋆ and apply arguments similar to those leading to

(i) to obtain (iii).

C.4. Proof of assertion (iv)

We work here with the descending method described in part 2.3.5.
Applying (i) we obtain that, with probability 1 and for n large enough, the

indices C(1) selected in the first step (2.7) are exactly S⋆c. Therefore, J (1) /∈ S⋆

and S⋆ ⊂ S(1). Since the dimension d of the regression space is not allowed to
depend on n, that process may be iterated enough times to eliminate all indices
out of S⋆. Another application of (i) ensures that the following choice of C(k)

will lead to the empty set. This concludes the proof

Appendix D: Proof of theorem 4.1

Let us consider the families of supports :

F1 = {S ⊂ {1, . . . , d} |S⋆ * S} and F2 = {S ⊂ {1, . . . , d} |S⋆ ⊆ S} . (D.1)

Theorem 3.1 as well as control (B.3), ensure that with any of the comparative
method used here, we get





Ŝ → S⋆ a.s.

P(Ŝ = S) → 0 for any S ∈ F2 \ {S⋆}
P(Ŝ = S) = o

(
1
n

)
for any S ∈ F1

(D.2)

where c is a positive constant.
Our estimation procedure of f⋆ by f̃ = f̃

Ŝ
has a risk R(n) given by

R(n) = E

[∥∥∥f⋆ − f̃
∥∥∥

2

w

]
=

∑

S⊂{1,...,d}

E

[∥∥∥f⋆ − f̃S

∥∥∥
2

w
1

Ŝ=S

]
=:

∑

S⊂{1,...,d}

R(n, S).

(D.3)
Now distinguish between two cases.
⋆ The case S ∈ F2. Computations similar to the ones exposed in the proof of
lemma B.2 show that the quantity R(n, S) equals

R(n, S) = ‖f⋆‖2
w E

[
1
{‖nM−1

S
‖<C}c∩{Ŝ=S}

]

+E
[
GT ASG1

{‖nM−1
S

‖<C}∩{Ŝ=S}

]
.
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where AS = V T
S M−1

S Mw,SM−1
S VS . Let us denote by Zn the new variable

Zn = nGT ASG1{‖nM−1
S

‖<C}

=
1

n

n∑

i,j=1

GiGj

(
V T

S nM−1
S Mw,SnM−1

S VS

)
i,j
1{‖nM−1

S
‖<C}. (D.4)

Note that, via the law of large numbers (A.8), independence between X and G,
and dominated convergence given by the indicator function, we get





EZn → σ2|S|,

EZ2
n = O(1).

(D.5)

Let us begin by S = S⋆. Then (B.1), (D.2) and (D.5) give :

R(n, S⋆) ∼ σ2|S⋆|
n

. (D.6)

Now for S ∈ F2 \ {S⋆} we use Schwarz’s inequality to write

E
[
Zn1{Ŝ=S}

]
≤
(
EZ2

nP(Ŝ = S)
)1/2

→ 0

because of (D.5) and (D.2). Consequently,

nR(n, S) → 0, for any S ∈ F2 \ {S⋆}. (D.7)

⋆⋆ The case S ∈ F1. Here we simply write

R(n, S) = E

[∥∥∥f⋆ − f̃S

∥∥∥
2

w
1

Ŝ=S

]

≤ 2 ‖f⋆‖2
w P(Ŝ = S) + 2E

[∥∥∥f̃S

∥∥∥
2p

w

]1/p

P(Ŝ = S)1/q

where p, q are chosen as in (B.8). Recall (B.7) and (D.2) to obtain

nR(n, S) → 0, for any S ∈ F1. (D.8)

Plugging (D.3), (D.6), (D.7) and (D.8) together gives theorem 4.1.

Appendix E: Proof of theorem 4.2

Define the decreasing sequence of events (Ak)k=1,...,d by

Ak =
{

S(k−1) = S⋆(k−1), . . . , S(0) = S⋆(0)
}

. (E.1)

Note that Ak is implicitely included in the event {kf ≥ k−1}. Let us start with
a lemma
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Lemma E.1 Assume that (H8) holds. For any k = 1, . . . , k⋆, we have

P
(
S(k) 6= S⋆(k) |Ak

)
= o

(
1

n

)
,

P (kf = k⋆ − 1 |Ak⋆ ) = o

(
1

n

)
, (E.2)

P (kf > k⋆ |Ak⋆ ) = o

(
1

n

)
.

Proof : Choose 1 ≤ k ≤ k⋆. We are interested in the probability that the
descending comparative method selects good supports up to step k−1 and fails
to select S⋆(k) at step k : P

(
S(k) 6= S⋆(k) , Ak

)
. Write

P
(
S(k) 6= S⋆(k) , Ak

)
≤

∑

S

P

(
1

n
IC(S) − σ2 ≤ 1

n
IC(S⋆(k)) − σ2 , Ak

)

≤
∑

S

P

(∣∣∣∣
1

n
IC(S) − σ2 − R⋆(S)

∣∣∣∣ > εk , Ak

)
+(E.3)

∑

S

P

(∣∣∣∣
1

n
IC(S⋆(k)) − σ2 − R⋆(S⋆(k))

∣∣∣∣ > εk , Ak

)

where the sums are extended to all supports S ⊂ S⋆(k−1) with cardinal |S| =
d − k except S⋆(k) and

εk =
1

2
min

S
(R⋆(S) − R⋆(S⋆(k))) > 0,

the minimun being taken among the same set of supports. Let us denote by
ε > 0 the smallest of those εk’s, k = 1, . . . , k⋆. Because of the form of the
penalty term (4.5), expressions appearing in the probabilities of equation (E.3)
simplify to

1

n
IC(S) − σ2 − R⋆(S) =

1

n
d2(y,ES) − σ2 − d2

w(f⋆, FS) +
θσ2|S|

n
.

It remains to choose n large enough to make θσ2|S|/n < ε/4 and apply control
(B.2) to have

P
(
S(k) 6= S⋆(k) , Ak

)
= o

(
1

n

)
, k = 1, . . . , k⋆. (E.4)

Now let us stress that, conditionnaly to the distribution X of the abscisses,
the information criterion (2.2) has a distribution of the type non-central χ2 ;
the degrees of freedom as well as the mean parameter being related to which
support S the IC is calculated on. Now, an event of the form Ak (E.1) may
be expressed in term of some IC(S) constrained to belong to some, random
but non-empty, intervals of R. Therefore, via the positivity of the densities of
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the joint laws of those IC, we get the positivity of P(Ak) for any k. Moreover,
iterating control (E.4) also shows that P(Ac

k) behaves as o (1/n) for some a > 0
and k = 1, . . . , k⋆. Finally we get the existence of a positive constant c satisfying
for all n :

P(Ak) > c > 0, k = 1, . . . , k⋆. (E.5)

We are now interested in

P (kf = k⋆ − 1 , Ak⋆) .

This is the probability that the method goes well up to step k⋆ − 1 but stops
here. Write :

P (kf = k⋆ − 1 , Ak⋆) = P

(
⋂

S

(
1

n
IC(S) − σ2 ≥ 1

n
IC(S⋆(k⋆−1)) − σ2

)
, Ak⋆

)

where the intersection is extended to all supports S of cardinal d− k⋆ included
in S⋆(k⋆−1). In particular, choosing S = S⋆(k⋆) :

P (kf = k⋆ − 1 , Ak⋆) ≤ P

(
1

n
IC(S⋆(k⋆)) − σ2 ≥ 1

n
IC(S⋆(k⋆−1)) − σ2 , Ak⋆

)

≤ P

(∣∣∣∣
1

n
IC(S⋆(k⋆−1)) − σ2 − R⋆(S⋆(k⋆−1))

∣∣∣∣ > ε , Ak⋆

)

+P

(∣∣∣∣
1

n
IC(S⋆(k⋆)) − σ2 − R⋆(S⋆(k⋆))

∣∣∣∣ > ε , Ak⋆

)

where

ε =
1

2

(
R⋆(S⋆(k⋆−1)) − R⋆(S⋆(k⋆))

)
> 0.

Again because of (4.5), expressions in those probabilities reduce to

1

n
IC(T ) − σ2 − R⋆(T ) =

1

n
d2(y,ET ) − σ2 − d2

w(f⋆, FT ) +
θσ2|T |

n
.

Choose n large enough to make θσ2|T |/n < ε/4 and apply control (B.2) to get

P (kf = k⋆ − 1 , Ak⋆) = o

(
1

n

)
. (E.6)

The last probability we need to control is the following :

P (kf > k⋆ , Ak⋆) ≤ P
(
kf > k⋆ , S(k⋆) 6= S⋆(k⋆) , Ak⋆

)
+P (kf > k⋆ , Ak⋆+1) .

The first term has already been dealt with when we obtained control (E.4). For
the second one, it is handled by arguments similar to the ones we developped
to justify (E.6). Consequently we get

P (kf > k⋆ , Ak⋆) = o

(
1

n

)
. (E.7)

imsart-ejs ver. 2009/05/21 file: EJOS.tex date: July 9, 2009



Guilhem Coq/Comparative utilizations of Information Criteria 23

Put (E.4), (E.6), (E.7) together with (E.5) to end the proofs of the lemma.
�

Let us now finish the proof of theorem 4.2. Recall that the descending com-
parative method produces f̂

S(kf ) as an estimation of f⋆. The loss is measured

by
∥∥∥f⋆ − f̃

S(kf )

∥∥∥
2

w
which we shorten to L.

We condition by the event {kf = k⋆} ∩ Ak⋆ which means that the method
has chosen good supports up to step k⋆ − 1 and will stop at the good step k⋆.
The comparative descending method (part 2.3.5) used here ensures that we are
going to choose a support by minimization of our criterion among the family of
supports of cardinal d−k⋆ included in S⋆(k⋆−1). The oracle risk associated with
this family is precisely R⋆(S⋆(k⋆)).

It is time to apply Baraud’s result as described in section 4.2.2. Precisely, we
use equation (15) following theorem 1.1 in [3] to get

E [L| kf = k⋆, Ak⋆ ] ≤ C.R⋆(S⋆(k⋆)),

where C depends on θ but neither on n nor on f⋆. We need to remove the
conditionning in order to obtain the oracle inequality (4.9). Write

E [L|Ak⋆ ] ≤ E [L| kf = k⋆, Ak⋆ ] +E
[
L1kf =k⋆−1

∣∣Ak⋆

]
+E

[
L1kf >k⋆

∣∣Ak⋆

]

to handle the event kf = k⋆. Moreover :

E [L|Ak⋆−1] ≤ E [L|Ak⋆ ] +E
[
L1S(k⋆) 6=S⋆(k⋆)

∣∣Ak⋆−1

]

handles the event S(k⋆−1) = S⋆(k⋆−1) in Ak⋆ . Iterating that latter argument we
get

E [L|A1] = E [L] ≤ C.R⋆(S⋆(k⋆)) +

E
[
L1kf=k⋆−1

∣∣Ak⋆

]
+E

[
L1kf >k⋆

∣∣Ak⋆

]
+

k⋆−1∑

k=1

E
[
L1S(k) 6=S⋆(k)

∣∣Ak

]
.

It suffices to apply Hölder’s inequality (B.8) along with controls (E.2) to con-
clude the proof.
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