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ALTERNATIVE UTILIZATIONS OF INFORMATION CRITERIA FOR

GAUSSIAN REGRESSION ON A RANDOM DESIGN.

Guilhem Coq1

Abstract. We consider the problem of estimating an unknown function f?. Our data consist in a

set of points in the plane, the abscisses of which are distributed according to a known density while

their ordinates are the image of those abscisses by f? deteriorated by a Gaussian white noise. To

this end, we use general Information Criteria, also called penalized likelihood criteria. We introduce

several methods of use of those criteria that present the advantage to have reasonnable computational

complexity. We also show that those methods are as efficient as classical ones since they satisfy good

asymptotic properties as well as an oracle inequality.
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Introduction

We study the problem of Gaussian regression in the case called ”random design” by Baraud [3] or Birgé [5].
In this setting, more precisely described in part 1.3, we consider a set of abscisses xn = (x1, . . . , xn) that is
a sample from a specified density w on an interval I of R. The ordinates yn = (y1, . . . , yn) are the images of
those abscisses by an unknown function f? deteriorated by a Gaussian white noise. By opposition, the more
common ”fixed design” studied for instance by Baraud [2] consider the same problem except the abscisses are
deterministic.

In all that paper, we address the regression problem using information criteria. Those tools are widely used to
solve model selection problem in a general way. Let us cite for reference Akaike [1] who gives the AIC criterion
(Akaike Information Criterion) in the early 70’s and uses it in the problem of the determination of the order of
an autoregression. Following Akaike, Schwarz [17] presents BIC for Bayesian Information Criterion in a more
general setting. Rissanen studies the stochastic complexity of datas relatively to a set of models during the
80’s [14,15]. His work, along with the MDL principle [9,13], allows to derive RIC, Rissanen Information Criterion,
which is similar to BIC. Rissanen also applies stochastic complexity to study the problem of the selection of an
histogram estimating an unknown density in [16]. In a general setting, Nishii studies the asymptotic properties
of models selected by a general information criterion in [11]. Regarding the results of Nishii, El-Matouat and
Al. present in [8] the so-called ϕβ criterion that allows Nishii’s result to apply.

More recently, we observe an interest for non-asymptotic study of model selection via information criteria.
The conjoint work of Barron, Birgé and Massart [4, 6, 10] give a lot of tools allowing to derive non-asymptotic
inequalities for the risks of a model selection procedure. In this optic, Castellan studies in [7] such bounds for
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the problem of the histogram while Baraud [2,3] is interested in the problem of regression, also the topic of this
paper.

One of our main concern here is to provide methods of model selection, always based on information criteria,
that are both “efficient” and “fast”. The efficiency of those methods will be studied in terms of the behavior of
the selected model as well as in terms of risks. As for the rapidity, we will require the methods to present an
algorithm that does not require too many computations in view of an implementation on machines.

Firstly we present the general criterion we use throughout the paper. Then, in part 2.5, we introduce the
different methods under study and explain why they are fast by giving them a complexity in part 2.6. The
asymptotic study, section 3, shows why those methods are efficient by giving the asymptotic behavior of the
selected model. Result of this section are inspired by the work of Nishii [11]. We give in section 4 some
simulations results illustrating the convergence theorems given earlier. Note that, for those simulations, we use
the ϕβ criterion since it is practical. Section 5 is devoted to the computation of risks in the random design
case. We stress the main differences between the fixed design setting. Finally, in section 6, we give an oracle
inequality regarding the risk of the estimation of f? resulting from a fast model selection method presented
earlier.

1. Notations

1.1. Regression space

Let I be an interval of R endowed with the Lebesgue measure λ and w be a given nonnegative function with
integral 1 assumed to vanish only on a set of I of Lebesgue measure 0. The following defines a scalar product
on L2 := L2(I, wdλ)

〈f, g〉w =

∫

I

fgwdλ. (1.1)

whose associated norm is denoted by ‖.‖w

We choose F = Vect(f1, . . . , fd) a d-dimensional subspace of L2 with d ≤ n and denote by Mw the Gram
matrix of the fj ’s

Mw(j, k) = 〈fj , fk〉w , j, k = 1, . . . , d.

For any support S ⊂ [[1, d]] we denote by FS the |S|-dimensionnal subspace of F

FS = Vect {fj , j ∈ S} (1.2)

and by Mw,S the associated Gram matrix Mw,S(j, k) = 〈fj , fk〉w , j, k ∈ S. In F , the orthogonal projector on

FS is denoted by ΠF
S .

In the case where f? actually lives in F , we write f? =
∑

a?
jfj and call S? its support

S? = {j such that a?
j 6= 0}. (1.3)

In the sequel it will be convenient to identify F to Rd via F → Rd, f =
∑d

k=1 akfk 7→ a = (a1, . . . , ad)
T .

This way, the squared norm of a function may be written as ‖f‖2
w = fT Mwf .

We will also need to apply central limit theorem several times in the sequel. In order to ensure that all
considered variables have a variance, we assume from now on that there exists a η > 0 such that

f?, fj ∈ L4+η(w), j = 1, . . . , d. (1.4)

Note that we are constrained to suppose that f? presents this integrability only in the case where it does not
belong to the space of regression F .
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1.2. Observations space

We endow the observations space Rn with the canonical scalar product 〈., .〉n and its associated norm ‖.‖n.
When x ∈ In and a support S are given we denote by ES the subspace

ES = Vect {fj(x), j ∈ S} (1.5)

and shorten E[[1,d]] to E. In Rn, the orthogonal projector on ES is denoted by ΠE
S .

1.3. Modelization

Let X = X1, . . . ,Xn be independent variable with density w on I. Let also G be a n-dimensionnal gaussian
white noise G ∼ N (0, σ2idn) independent of X. We modelize the abscisses X and ordinates Y of a set of n
points in the plane as follows :

Y = f?(X) + G (1.6)

Namely, the abscisses are given by a sample of the law w and the ordinates by the images of those abscisses by
the unknown function f? deteriorated by the noise. Note that all the ES (1.5) and their projection ΠE

S become
random.

For any support S ⊂ [[1, d]], let us set the following model ΘS :

ΘS = {L(f(X) + G)| f ∈ FS} . (1.7)

Those are the law of n-dimensionnal variables which write as f(X) + G where f ∈ FS . If f? lives in F and has
support S?, the law of Y belongs to the model ΘS? .

2. Information criteria and their use

2.1. Maximum likelihood

Relatively to a function f ∈ F , a realization (x, y) of (X,Y ) has the following likelihood :

1

(2πσ2)n/2

n∏

i=1

w(xi) exp

(
− 1

2σ2n

n∑

i=1

(yi − f(xi))
2

)
.

In the sequel we shall rather work with twice the opposite of the log-likelihood which we denote by l. Since
we are only concerned in minimization of l with respect to f , we drop terms not depending on it and l may be
seen as

l : F ∼ Rd → R

f 7→
n∑

i=1

(yi − f(xi))
2

a 7→
n∑

i=1

(
yi −

d∑

k=1

akfk(xi)

)2

.

Consequently, for any support S, the maximization of the likelihood of y within the model ΘS amounts to
the minimization of the quadratic error l on FS . Then the (opposite of the) maximum (log-)likelihood of y with
respect to the model ΘS writes as :

min
f∈FS

l(f) = d2(y,ES) =: l(f̂S). (2.1)



4 TITLE WILL BE SET BY THE PUBLISHER

2.2. Estimators f̂S, f̃S

In order to express asymptotics of this likelihood as well as to give a matricial expression of the function

f̂S ∈ FS that realizes the minimum in (2.1), it will be convenient to use the Vandermonde-type n× d matrix V
depending only of the xi’s :

V =




f1(x1) . . . fd(x1)
...

...
...

f1(xn) . . . fd(xn)




as well as the d× d Gram matrix M = V T V . The passage from a function f to the vector f(x) is then a simple
multiplication f(x) = V f . Also note that, in the case where f? ∈ F , we may write y = V f? + g and the Taylor
expansion of l at any function f writes as

l(h) − l(f) = (grad lf )
T

(h − f) +
1

2
(h − f)T Hess lf (h − f) (2.2)

= −2
(
M(f − f?) − V T g

)T
(h − f) + (h − f)T M(h − f).

Now let us set DS the d × |S| matrix of zeros and ones such that VS := V DS contains columns j of V for
j ∈ S only. We also set the Gram matrix MS = V T

S VS . Consequently, the likelihood (2.1) writes as

L(y|ΘS) = d2(y,ES) =
Gram ({y, fj(x), j ∈ S})

det (MS)
. (2.3)

where Gram(u1, . . . , ukk) denotes the Gram determinant of those vectors. Moreover the matrix of the orthogonal
projection ΠE

S of Rn onto ES is

Mat(ΠE
S ) = VSM−1

S V T
S (2.4)

which gives the following expression for f̂S realizing the minimum in (2.1) :

f̂S = DSM−1
S V T

S y ∈ FS . (2.5)

It is important to note that, unlike the fixed points case, it may happen that
∥∥∥f̂S

∥∥∥
2

w
is not integrable. To handle

this problem we will use at some points in the sequel a truncated estimator

f̃S = f̂S .
�
{‖nM−1

S
‖<C} (2.6)

where ‖.‖ is any norm on matrices and C is a constant satisfying C > ‖M−1
w,S‖ so that

�
{‖nM−1

S
‖<C} → 1 a.s.

Now, from (2.5), the squared norm of f̃S writes as

∥∥∥f̃S

∥∥∥
2

w
=
�
{‖nM−1

S
‖<C}

(
DSM−1

S V T
S y

)T
Mw,S

(
DSM−1

S V T
S y

)

with y = f?(x) + g. In that expression, matrices DS and Mw,S are deterministic and the indicator function

ensures the boundedness of M−1
S . Moreover, the integrability we have requested on f? and on the fj ’s in (1.4)

along with the fact that G is Gaussian ensure that

�
[∥∥∥f̃S

∥∥∥
2p

w

]
< ∞ for any p such that 2p ≤ 4 + η. (2.7)
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Furthermore, for an event A, Hölder’s inequality gives

�
[∥∥∥f̃S

∥∥∥
2

w

�
A

]
≤ �

[∥∥∥f̃S

∥∥∥
2p

w

]1/p �
(A)1/q. (2.8)

for any p > 1 such that 2p ≤ 4 + η and 1/p + 1/q = 1.
The convergence of MS/n to Mw,S results from the law of large numbers. Moreover, since all fj ’s are L4(w),

any variable of the form fj(X)fk(X) has a variance V smaller than

Vmax = max
{
V

(
f?(X)2

)
, V

(
G2

1

)
, V (fj(X)fk(X)) , j, k = 1, . . . , d

}
. (2.9)

Consequently we may apply central limit theorem to obtain a control given by, for any ε > 0,

�
(‖Ms/n − Mw,S‖ > ε) = O

(
exp

( −nε2

4Vmax

))
.

Since the event {‖nM−1
S ‖ < C}c is included in an event of the form ‖Ms/n−Mw,S‖ > εC for a certain εC > 0

depending on C, we obtain that

� [�
{‖nM−1

S
‖<C}c

]
= O

(
exp

( −nε2
C

4Vmax

))
. (2.10)

2.3. Asymptotics of the maximum likelihood

Because all the fj ’s are L2, the law of large numbers ensures that each entry MS(i, j) of MS satisfies :

1

n
MS(i, j) → Mw,S(i, j), a.s. (2.11)

Moreover, since y = f?(x) + g and by independence between X and G, the entry (1,1) of the first Gram matrix
in (2.3) satisfies

1

n
〈f?(x) + g, f?(x) + g〉n → 〈f?, f?〉w + σ2 a.s. (2.12)

Any other entry goes to the corresponding one of the Gram matrix of functions f?, fj , j ∈ S. Consequently we
get :

1

n
l(f̂S) → σ2 + d2(f?, FS) a.s. (2.13)

Now we need to control the speed of the convergence in (2.13). Every variables for whom the law of large
numbers has been used in (2.11) and (2.12) have a variance because of (1.4) and because the error G is Gaussian.
All those variances are smaller than Vmax defined earlier in (2.9). Then we may apply central limit theorem to
obtain that convergences in (2.11) and (2.12) have a speed given by O

(
exp(−nε2/4Vmax)

)
, for any ε > 0. That

speed passes to the determinant to give

� (∣∣∣∣
1

n
l(f̂S) − σ2 − d2(f?, FS)

∣∣∣∣ > ε

)
= O

(
exp

( −nε2

4Vmax

))
. (2.14)

2.4. The criterion

Let us choose any function α : N → R+ referred to in the sequel as the penalty term. Here comes the criterion
to be minimized among all possible supports S ⊂ [[1, d]] :

IC(S) = l(f̂S) + |S|α(n). (2.15)
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This minimization realizes the best trade-off between the goodness of fit, measured by the likelihood term

l(f̂S) = d2(y,ES) and the complexity of the model needed to obtain such a fit, measured by the penalty |S|α(n).
In this paper, we are not only interested on properly choosing the penalty α(n) but also in “efficient” and

“fast” methods allowing to use the criterion. We present those methods now.

2.5. Methods

By method, we understand a sequence of computations of IC(S) that eventually leads to a selection of a

support Ŝ. We define several of those in the sequel. The methods we use allow to select a support that may take
any value in P([[1, d]]). In this sense, our basis (fj)j is not required to present a natural order as, for instance,
basis of polynomials or wavelets would do. Our methods will always select a set of functions to be used for
regression, without favouring any of them and regardless of which kind of functions are mixed in the basis.

Let us stress that, even though this paper is written in the context of linear regression, those methods may
be simply transposed to many other parametric model selection problems.

We will always denote the selected support by Ŝ but in the sequel the context will allow to determine which
method is used.

2.5.1. Global method

The estimated support is chosen as

Ŝ = Argmin {IC(S), S ∈ P([[1, d]])} . (2.16)

2.5.2. Comparative method

Rather than testing any support as in the global method, Nishii suggest in [11] the following method. The
expression ”−j” denotes the support [[1, d]] \ {j}.

ICref = IC([[1, d]])

Ŝ =
{
j ∈ [[1, d]] such that ICref ≤ IC(−j)

}
(2.17)

Here the value ICref of the criterion where every basis functions is allowed to appear in the curve is taken as
a reference. Then it is compared to the value IC(−j) where the specific function fj is forbidden. If the criterion

prefers that function fj appears, i.e. ICref ≤ IC(−j), we keep it in Ŝ, otherwise we reject it.

2.5.3. Reversed comparative method

Looking at method (2.17) one may ask why not to consider the following :

ICref = IC(∅)
Ŝ =

{
j ∈ [[1, d]] such that IC({j}) ≤ ICref

}
(2.18)

This way, we compare the null curve to curves where only a single function fj is allowed and keep indices for
which the second curve is prefered via IC({j}) ≤ ICref.

The asymptotic flaws of this method will be precisely discussed in part 3.2. However, we may already give
some comments about it. Suppose the basis (fj)j is orthogonal relatively to the scalar product (1.1), that f?

belongs to F and writes f? =
∑

j ajfj . Then from the asymptotic behaviour of likelihood terms in our criterion

given in (2.13), we obtain that the difference n−1(IC({j})− IC(∅)) behaves as n−1α(n)− a2
j . Then the decision

of the reversed method regarding the function fj is related only to the coefficient aj of f? which vanishes if and
only if fj is to be rejected. Note that, in the same setting, the regular comparative method (2.17) is interested
in the difference n−1(IC[[1,d]]−IC(−j)) that also behaves as n−1α(n)−a2

j because of (2.13). Those two methods,
in the orthogonal case, are asymptotically equivalent.
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Now for the non-orthogonal case, still from (2.13), the difference n−1(IC({j}) − IC(∅)) only behaves as

n−1α(n) + d2(f?, Fj) − ‖f?‖2
w. Here, even in the case where fj is to be rejected, the term d2(f?, Fj) − ‖f?‖2

w

remains negative, requiring a stronger penalization for the reversed method to actually reject fj . In fact, it will
be shown in the asymptotic study that this need of a large penalization may almost not be fulfilled without
rejecting every functions. By opposition, still in the non-orthogonal case, for the regular comparative method
(2.17) the difference n−1(IC[[1,d]] − IC(−j)) behaves as n−1α(n)− d2(f?, Fj) where the term d2(f?, Fj) vanishes
when fj is to be rejected. In this sense, the regular comparative method is not affected by the orthogonality of
the basis.

To sum up those comments, let us just say that in the orthogonal case, reversed and regular comparative
methods have the same asymptotic behaviour whereas in the non-orthogonal case the reversed method suffers
flaws that will be more precisely described in the part 3.2 of the asymptotic study.

Finally, let us say that the reversed method might be transposed to the case where the space of regression
has infinite dimension. Indeed, even though the basis (in the classical or Hilbert sense) of F was infinite, using
the reversed method would never require to compute an IC with an infinite number of free parameters. By

opposition the reference of the regular comparative method, as well as all others criteria needed to select Ŝ in
(2.17), are not computable in the infinite dimensionnal case.

2.5.4. Adapted reversed comparative method

We give here an adaptation of the reversed comparative method that will be shown to avoid issues occuring
with the previous one. To this end we need to define new functions fN

j ; the superscript N stands for normal.

Indeed, each function fN
j is chosen to be normal, relatively to the scalar product (1.1), to the hyperplane F−j

defined in (1.2). The orientation of fN
j as well as its norm does not matter in the sequel.

We may then define new alternative models as in (1.7) :

ΘN
j =

{
L(f(X) + G)| f = aN

j fN
j

}
, aN

j 6= 0.

For any j, the family {fk, k 6= j}∪{fN
j } is a basis of F and a function does not live in F−j if and only if it has

a component along fN
j . The idea comes that, instead of determining wether f? should have a component along

fj , we will determine if it should have one along fN
j by following the so called adapted reversed comparative

method :

ICref = IC(∅)
Ŝ =

{
j ∈ [[1, d]] such that l(f̂N

S ) + α(n) ≤ ICref

}
. (2.19)

Note that the basis (fN
j )j is orthogonal if and only (fj)j is. In this case, fN

j is colinear to fj which makes

(2.18) and (2.19) equivalent methods of selection of Ŝ.
In the sequel, it will be shown that under some assumptions on the penalty, this method satisfies a convergence

theorem 3.3 . Let us stress that, even though this theorem applies, this method suffers the same flaws as the
reversed comparative method (2.18) since it remains a reversed method. Indeed, as in comments made before,
when fj is to be rejected, the adapted reversed comparative method is strongly affected by the orthogonality
of fN

j and f?. However, calculations are not made with those function but rather with fN
j (X) and f?(X) that

are orthogonal only asymptotically. Consequently, for a fixed n, we also expect this method to require a larger
penalization in order to avoid overparametrization.
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Method Complexity

Global 2d

comparative d + 1
Reversed comparative d + 1
Adapted reversed comparative d + 1
Descending ≤ d(d + 1)/2
Table 1. Methods and their complexities.

2.5.5. Descending comparative method

The descending comparative method is designed especially in the aim of using results from Baraud in [2, 3].
It requires a random computation of ICs. Firstly let us set

S(0) = [[1, d]]

IC
(0)

ref
= IC(S(0)).

The first step of the descending method produces new quantities that have superscript (1) as follows

C(1) =
{

j ∈ S(0), IC
(
S(0) \ {j}

)
≤ IC

(0)

ref

}
(2.20)

J (1) = Argmin
{
IC

(
S(0) \ {j}

)
, j ∈ C(1)

}
.

This way, among the functions of C(1) found useless by the criterion, J (1) is the worst one. This is consequently
the function we should remove in priority. This is what we do now by refreshing our reference with superscript
(1) :

S(1) = S(0) \ {J (1)}
IC

(1)

ref
= IC(S(1)). (2.21)

From there, we start a second step by computing useless functions and the worst one by

C(2) =
{

j ∈ S(1), IC
(
S(1) \ {j}

)
≤ IC

(1)

ref

}

J (2) = Argmin
{

IC
(
S(1) \ {j}

)
, j ∈ C(2)

}

and refresh again our reference by adding 1 to all superscripts in (2.21).
This process is repeated until the random step kf +1 where C(kf+1) = ∅. This means that the criterion does

not reject functions anymore and that the current support S(kf ) should be our estimator Ŝ. We say that the
procedure stops at step kf for ”k final”.

2.6. Methods complexities

We also define here an integer willing to reflect the complexity of a particular method in terms of compu-
tations. This complexity reflects how fast the method is. We define it simply as the number of ICs that one

needs to compute in order to obtain the estimator Ŝ. For instance the complexity of the global method (2.16)
is the number of partition of [[1, d]], that is 2d.

Table 1 sums up the complexities of the different methods used here. For the descending method the number
of computation is random so we only give an upper bound.
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All methods derived from the comparative one have polynomial complexity in d contrarily to the global
method that has exponential complexity. Nevertheless they allow a precise selection of the support in the sense

that for each of them Ŝ may take any value in P([[1, d]]). They are what we have called “fast” methods. The
remainder of the paper is devoted to explain in which way they are also “efficient“.

3. Asymptotic study

In all our asymptotic study, we assume that f? lives in F and has support S? as in (1.3). Our concern is then
to determine conditions on our criterion (2.15), more precisely on its penalty term, to obtain some convergence

of Ŝ to S? as n grows. The main results are given in theorems 3.1, 3.2, 3.3, 3.4.

3.1. Asymptotics of the comparative method

Here we work with the comparative method (2.17) and criterion (2.15). The main result is as follows.

Theorem 3.1. If the penalty α(n) of the criterion (2.15) satisfies

(i) α(n) = o(n)
(ii) ln lnn = o(α(n))

then the method (2.17) is strongly consistent in the sense that Ŝ converges (stationnarily) to S? almost surely.

More precisely, conditions (i) and (ii) ensure respectively S? ⊂ Ŝ and Ŝ ⊂ S? a.s. above a certain rank.

Remark. The proof actually shows that we might relax condition (i) to

α(n) = c n where c < min
{
d2(f?, F−j), j ∈ S?

}

but that min is not available to the user.
Proof : Let us split it into two parts.
? First part : the case j ∈ S?. Here, let us use asymptotics of the likelihood term given in (2.14) to write :

1

n

(
ICref − IC(−j) − α(n)

)
= −d2(f?, F−j) + o(1) a.s., (3.1)

where that latter distance D2 := d2(f?, F−j) does not vanish since j ∈ S?.

Again because j ∈ S?, one would like to select j as a part of Ŝ; in other terms one would like ICref − IC(−j)
to be nonpositive. It suffices to choose α(n) such that α(n) = o(n) to ensure that fact a.s. for n large enough.

Taking a not too large penalty (of order o(n)) thus ensures that we do not reject basis functions fj that
actually appear in the unknown function f?, this is the first statement of the theorem.

In this case, let us take n large enough to make 0 ≤ α(n)/n < D2/2 to get the following control :

�
(j /∈ Ŝ) =

� (
n−1

(
ICref − IC(−j)

)
≥ 0

)

≤
� (

n−1l(f̂[[1,d]]) −
(
n−1l(f̂−j) − D2

)
> D2/2

)

≤
� (∣∣∣n−1l(f̂[[1,d]]) − σ2

∣∣∣ > D2/4
)

+
� (∣∣∣n−1l(f̂−j) − σ2 − D2

∣∣∣ > D2/4
)

.

Hence, from (2.14) :
�

(j /∈ Ŝ) = O

(
exp

(
− nD4

64Vmax

))
, j ∈ S? (3.2)

which will be useful in studies of risks to come later.
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?? Second part : the case j /∈ S?. Recall the definition of the (random) matrix M in part 2.1. Since each
fj is in L2 the law of large numbers gives

M/n −→ Mw

that latter limit being invertible and positive definite. Consequently each entry of nM−1 is bounded a.s. at
least above a certain rank, which we denote by

M−1 = O

(
1

n

)
a.s. (3.3)

More precisely, if mj is the j-th diagonal coefficient of M−1, then n.mj goes a.s. to the j-th diagonal
coefficient of M−1

w which is positive and
1

mj
= O(n) a.s. (3.4)

We call here for brievety f̂ and f̂ j the functions in F and F−j respectively maximizing the likelihood on
those spaces as in (2.1). From (2.2), the quantities we are interested in are:

l
(
f̂ j

)
− l

(
f̂
)

=
(
f̂ j − f̂

)T
M

(
f̂ j − f̂

)
(3.5)

since f̂ satisfies grad l
(
f̂
)

= 0.

Now for f̂ j , it satisfies

(
grad l(f̂ j)

)T

= Mf̂ j − Mf̂ = (0, . . . , 0, λj , 0, . . . , 0)T (3.6)

where λj is a Lagrange coefficient set at the j-th place in the latter vector which necessarily satisfies

λj = − f̂j

mj
(3.7)

since f̂ j
j , the j-th coefficient of f̂ j , must vanish.

Plugging (3.4), (3.6) and (3.7) in expansion (3.5) gives

l
(
f̂ j

)
− l

(
f̂
)

=
(
f̂j

)2

O(n) (3.8)

Now note that f̂ is defined by f̂ = f? + M−1V T g which yields
�

[f̂ ] = f? keeping in mind that matrices V
and M only depend on X which is independent of G. Consequently, in our case j /∈ S?, we get

f̂j = 0 +
(
M−1V T g

)
j
.

Any entry in the vector V T g is of the form
∑n

i=1 fk(xi)gi which is the sum of n independent variables with

mean 0, finite variance from (1.4), and thus is O(
√

n ln lnn) a.s. by the law of iterated logarithm. The order of

M−1 given in (3.3) makes f̂j = O

(√
ln ln n

n

)
a.s.

Plugging in (3.8), we finally get

l
(
f̂ j

)
− l

(
f̂
)

= O(ln lnn) a.s.

Now in our case j /∈ S?, one would like to reject j ; in other terms, on would like ICref − IC(−j) to be
nonnegative. Write

ICref − IC(−j) = l
(
f̂
)
− l

(
f̂ j

)
+ α(n) = α(n) + O (ln lnn) a.s.
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so that
1

ln lnn

(
ICref − IC(−j) − α(n)

)
= O(1) a.s. (3.9)

Now it suffices to choose α(n) such that ln lnn = o(α(n)) to ensure that a.s. and for n large enough,
ICref − IC(−j) > 0.

We have shown that taking a large enough penalty ensures that we reject basis functions fj which do not
appear in f?, this is the second statement of the theorem. ¤

3.2. Asymptotics of the reversed comparative method

We work here with the method (2.18).

3.2.1. Asymptotics of the likelihood difference

The function achieving the maximum likelihood for ICr
ref obviously vanishes and the function with support

{j} achieving it for IC({j}) is the new function f̂ j whose component along fj is:

f̂ j
j =

〈fj(x), y〉n
〈fj(x), fj(x)〉n

Now the difference of the log-likelihoods is easier to compute than with the regular comparative method :

l(0) − l(f̂ j) =

n∑

i=1

(
y2

i −
(

yi −
〈fj(x), y〉n

〈fj(x), fj(x)〉n
fj(xi)

)2
)

=
〈fj(x), y〉2n

〈fj(x), fj(x)〉n

In order to control the asymptotics, we firstly use the law of that large numbers to write 〈fj(x), fj(x)〉−1
n =

O(1/n) a.s. Moreover, two applications of the law of iterated logarithm give, a.s. :

〈fj(x), y〉n = 〈fj(x), f?(x)〉n + 〈fj(x), g〉n = n 〈fj , f
?〉w + O

(√
n ln lnn

)
.

Consequently, a.s. :

l(0) − l(f̂ j) = n 〈fj , f
?〉2w + 〈fj , f

?〉w O
(√

n ln lnn
)

+ O(ln lnn). (3.10)

3.2.2. Non-orthonormal case

Here appear the main problem about the reversed method (2.18). Suppose we are in a case where 〈fj , f
?〉w =∑

k∈S? ak 〈fj , fk〉w vanishes for no index j. This happens most of the times if the basis (fk, k ∈ [[1, d]]) is not
orthonormal even though j /∈ S?. Then formula (3.10) gives

1

n

(
ICr

ref − IC({j}) + α(n)
)

= 〈fj , f
?〉2w + o(1). (3.11)

Now assume α(n) = o(n), then ICr
ref − IC(j) > 0 a.s. above a certain rank and this for all j. This means

we keep every indices j ∈ [[1, d]]. Here the condition α(n) = o(n) which ensured we kept good indices with the
regular comparative method (see theorem 3.1) turns out to make us keep every indices.

One should thus think about taking a penalty a bit larger. However, formula (3.11) also implies that if

α(n) = Cn where C > max
{
〈fj , f

?〉2w , j ∈ [[1, d]]
}
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then ICr
ref− IC(j) < 0 a.s. above a certain rank and this for all j. This means we reject every indices j ∈ [[1, d]].

Therefore, in order to obtain a result similar to theorems 3.1 one should firstly choose a penalty of order
not smaller than n and not greater than Cn to ensure that we do not have a criterion that accept or reject
systematically every indices. In certain cases, there exists a good order for the penalty in the few place left
between n and Cn as follows.

α(n) = kn where min
{
〈fj , f

?〉2w , j ∈ S?
}

> k > max
{
〈fj , f

?〉2w , j /∈ S?
}

.

However, that k might not exist if its bounds are not ordered the correct way ; moreover, it is unavailable to
the user and thus not of a practical use.

In the case where the basis (fj) is orthonormal, those issues disappear and we establish in the next part a
convergence theorem for the reversed comparative method.

3.2.3. Orthonormal case

We assume here that the basis (fj , j ∈ [[1, d]]) is orthonormal relatively to the scalar product (1.1). Note that
this is often the case ; let us cite for instance the situation where one needs to decompose a measured signal on
a wavelet or a Fourier basis (in this case, w is the uniform density on the corresponding interval).

Recall that f? =
∑

j∈S? ajfj , consequently aj = 〈fj , f
?〉w = 0 ⇔ j /∈ S? and (3.10) yields

ICr
ref − IC(j) + α(n) = na2

j + ajO
(√

n ln lnn
)

+ O(ln lnn) a.s.

This formula is to be related to equations (3.1) and (3.9) concerning the regular comparative method to see that,
in the orthonormal case, the reversed method behaves asymptotically as the regular method. The following
theorem is derived from considerations similar to the proof of theorem 3.1.

Theorem 3.2. In the orthonormal case and under the following assumptions on the penalty :

(i) α(n) = o(n)
(ii) ln lnn = o(α(n))

the selection of indexes by the reversed comparative method (2.18) is strongly consistent.

More precisely, conditions (i) and (ii) ensure respectively S? ⊂ Ŝ and Ŝ ⊂ S? a.s. above a certain rank.

The orthonormal case as treated here gives the idea of considering the adapted reversed comparative method
(2.19). In the next part, we show that this method is consistent without the orthonormality hypothesis.

3.3. Asymptotics of the adapted reversed comparative method

We work here with the method (2.19) and fix j ∈ [[1, d]]. Arguments in part 3.2.1 may be transposed here
simply by replacing fj with fN

j and noting that
〈
fN

j , f?
〉

w
= aN

j . We get a formula similar to (3.10) :

ICN
ref − ICN (j) + α(n) = n

(
aN

j

)2
+ aN

j O
(√

n ln lnn
)

+ O(ln lnn).

Now recalling that aN
j 6= 0 ⇔ j ∈ S?, we obtain a result similar to theorem 3.2 for the adapted reversed

comparative method without the orthonormality hypothesis.

Theorem 3.3. Under the following assumptions on the penalty :

(i) α(n) = o(n)
(ii) ln lnn = o(α(n)),

the selection of indexes by the adapted reversed comparative method (2.19) is strongly consistent.

More precisely, conditions (i) and (ii) ensure respectively S? ⊂ Ŝ and Ŝ ⊂ S? a.s. above a certain rank.
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3.4. Asymptotics of the descending comparative method

We work here with the method described in part 2.5.5 and show the

Theorem 3.4. Under the following assumptions on the penalty :

(i) α(n) = o(n)
(ii) ln lnn = o(α(n)),

the selection of indexes by the descending comparative method in part (2.5.5) is strongly consistent.

More precisely, conditions (i) and (ii) ensure respectively S? ⊂ Ŝ and Ŝ ⊂ S? a.s. above a certain rank.

Proof : Under assumptions of that theorem, we may apply theorem 3.1 concerning the regular comparative
method. Then, with probability 1 and for n large enough, the indices C(1) selected in the first step (2.20) are
exactly S?c so that J (1) /∈ S? and S? ⊂ S(1).

Then, applying again theorem 3.1 gives that, with n possibly larger, J (2) /∈ S?. Once that process has been
iterated enough times to eliminate all indices out of S?, theorem 3.1 once again ensures that the following choice
of C(k) will lead to the empty set. This completes the proof. ¤

4. Simulations

In this section, we present simulation results illustrating theorems 3.1, 3.2, 3.3, 3.4 regarding convergence of

the chosen supports Ŝ selected by our alternative methods toward the true support S?.

4.1. Setting

The unknown function we consider is

f? : [−π, π] → R

x 7→ f?(x) = −x + cos(2x) − sin(2x). (4.1)

The distribution of the abscisses is given by the density

w =
1

2π

�
[−π,π] (4.2)

and the model considered is a 6-dimensionnal space F = Vect(f1, . . . , f6) where

f1(x) = x, f3(x) = cos(x), f5(x) = sin(x),
f2(x) = x2, f4(x) = cos(2x), f6(x) = sin(2x).

(4.3)

Note that f? ∈ F .

4.2. The ϕβ criterion

Recall that the main assumption of theorems 3.1, 3.2, 3.3, 3.4 is that the penalty α(n) in the criterion (2.15)
satisfies

(i) α(n) = o(n)
(ii) ln lnn = o(α(n)).

Considering this, authors in [8], suggest to use the following that may be seen as a parametrization of penalties
allowing previous convergence theorems to apply :

α(n) = nβ ln lnn, β ∈ (0, 1).
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For any β ∈ (0, 1) we thus obtain a criterion in the sense of (2.15) referred to as ϕβ in the sequel :

ϕβ(S) = d2(y,ES) + |S|nβ ln lnn. (4.4)

When n is fixed, correctly choosing the value of β in (4.4) allows to recover usual information criteria.
Among them, we consider the historical AIC criterion presented by Akaike [1] and the BIC criterion established
by Schwarz [17] or Rissanen [14,15] which, in our setting, write as

AIC(S) = d2(y,ES) + 2|S|
BIC(S) = d2(y,ES) + |S| ln n (4.5)

The values of β in the ϕβ criterion allowing to recover AIC and BIC are respectively

βAIC = (ln 2 − ln ln lnn)/ ln n

βBIC = (ln lnn − ln ln lnn)/ ln n. (4.6)

4.3. Results

We generate 100 set of observations of the couple (X,Y ) linked by the relation Y = f?(X) + G. On each of
those observations we apply the ϕβ criterion, for β ranging from 0 to 1 by step 0.05, along with the following
methods :

? Global method (2.16).
? Comparative method (2.17)
? Reversed comparative method (2.18)
? Adapted reversed comparative method (2.19), shortened to ”adapted”
? Descending method (part 2.5.5).

Recall that the first one has exponential complexity while the others have polynomial complexities which make
them much faster to use. In our setting, the global method took 270 seconds to provide results while any of the
4 comparative methods needed about 13 seconds.

We count a success if the selected support is exactly the one of f? in the setting given by (4.1), (4.2) and
(4.3) ; that is S? = {1, 4, 6}. Note that, since the basis of our setting is not orthonormal relatively to (1.1), the
reversed comparative method should not give good results as seen in part 3.2. Actually, this method always
give a percentage succes of 0 in all our simulations, this is why it does not appear in our results.

Figure 1 presents the percentage of succes of the different methods plugged against the value of β in (4.4)
for n = 20, 50, 200 and 1000. The two vertical lines correspond, from the left to the right, to the values βAIC

and βBIC given in (4.6). Note that most of the time, descending and global methods give the same percentage.

4.4. Comments

Firstly let us say that when β is too low, the penalization of the criterion is too weak and overparametrization

occurs : Ŝ contains too many functions, thus the failure. By opposition, when β is too large, underparametriza-

tion occurs and Ŝ does not contain S?.
Now, as n grows, we observe an increasing rate of succes for any fixed value of β as convergence theorems of

the previous section announced.
However, the AIC criterion (4.5) (corresponding to the first vertical line) does not fullfill those theorems

requirements and thus present a quite low percentage of succes. The AIC criterion is known for its lack of
penalization yielding overparametrization ; this is what we observe here.

The BIC criterion (4.5) (corresponding to the second vertical line) does not give here the fastest increasing
rate of success. It seems it also lacks a little more penalization to reach the 100% of success sooner. Our
previous use of the ϕβ criterion in other model selection problems (such as autoregression order determination)
also resulted in the same conclusion regarding the BIC criterion.
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As announced when the adapted reversed comparative method (2.19) was introduced (part 2.5.4), it requires
a bit more penalization than regular comparative method in order to avoid overparametrization. This fact
appears on figure 1.

Finally let us stress that the regression problem as studied in this paper is the one, to our knowledge,
that allows the biggest penalization before underparametrization occurs. Indeed, in the others model selection
problems we studied with the ϕβ criterion, we obtained results similar to figure 1 except that the success rate
of any method fell back to 0 before β reached 0.5. This occured even with values of n much larger than 2000.

4.5. A brief word on future applications

Choosing I = [−π, π], w the uniform density on I, f?(x) = x and a basis consisting of cos(ax), sin(bx)
where a, b ∈ [[0, 5]], we observed that comparative methods select supports containing only sinus functions and
produced the following estimation of f? :

2.02 sin(x) − 1.02 sin(2x) + 0.71 sin(3x) − 0.47 sin(4x) + 0.46 sin(5x)

whereas the Fourier series of f? starts by

2 sin(x) − sin(2x) +
2

3
sin(3x) − 1

2
sin(4x) +

2

5
sin(5x) + ...

This observations enlights the fact that linear regression helps finding the most important harmonics contained
in a noised signal. We currently work on finding those harmonics on real signals, e.g. heartbeat signals measured
before or after physical efforts. The same work might also be done with wavelets basis.
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Figure 1. Percentage of succes of the different methods against the value of β in the ϕβ criterion (4.4). Vertical lines
correspond respectively to AIC and BIC criteria (4.5).
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5. Study of the risks

5.1. Expression of the risks

The aim of this part is to show non-asymptotic differences between our setting and the fixed points case in
terms of risk for our estimators. Because of the remark following (2.5), we are constrained here to make the
following assumption : � [

M−1
S

]
< +∞. (5.1)

Note that, from (2.5), this assumption also implies that
�

[∥∥∥f̂S

∥∥∥
2

w

]
< +∞ and thus gives sense to following

computations about the risk of f̂S as an estimator of f?. We have reason to believe that, under mild conditions
on the regression space (such as every fj presents at least a non-vanishing derivative at any points), there
exists a fixed N such that (5.1) holds for n ≥ N . Here, we are not interested in such conditions but in their

consequences on expressions of the bias and risk of f̂S .
We work here with a fixed support S that belongs to either of the families F1 and F2 defined by

F1 = {S ∈ [[1, d]] |S? * S} and F2 = {S ∈ [[1, d]] |S? ⊆ S} . (5.2)

In the case where f? does not live in F , we simply set F2 = ∅ and F1 = P([[1, d]]).
Recall briefly that, in the fixed points setting studied for instance in [2], computations of losses are done

directly in the space of observations Rn endowed with the normalized canonical norm n−1‖.‖n that is chosen to
satisfy n−1‖t‖2

n = n−1
∑

i t(xi)
2 for all t ∈ F . We obtain :

�
f̂S = ΠF

S f?

� [
‖f̂S − f?‖2

n

]
= ‖f? − ΠF

S f?‖2
n + σ2|S|/n. (5.3)

5.1.1. The case S ∈ F2

Remark that the multiplication DSDT
S f sets to 0 the components of f along each fj , j /∈ S. Since f? has

support S? we get DSDT
S f? = f? and formula (2.5) gives

f̂S = DSM−1
S V T

S (V DSDT
S f? + g) = f? + DSM−1

S V T
S g. (5.4)

By independence between X and G we obtain
�

f̂S = f? = ΠF
S f?, that is f̂S is an unbiased estimator of ΠF

S f?.
In order to compute the risk let us remark that

∥∥∥f̂S − f?
∥∥∥

2

w
= gT VSM−1

S DT
S MwDSM−1

S V T
S g =: gT AS g. (5.5)

One of the main difference between the deterministic points case and our case appears in that matrix AS .
Indeed, in the former case, the computation of losses is done in the space of observations Rn rather than in F .
In other words, the matrix Mw,S in AS is replaced by MS which reduces AS to the matrix of ΠE

S as in (2.4)
and gives an exact formula for the variance. In our settings we are not able to derive such a formula and may
only write :

�
f̂S = f? = ΠF

S f?

�
[∥∥∥f̂S − f?

∥∥∥
2

w

]
= σ2� [Tr(AS)] = σ2� [

Tr(Mw,SM−1
S )

]
. (5.6)

In this case S ∈ F2, the result (5.6) is quite close to (5.3).
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5.1.2. The case S ∈ F1

Here we may only write y = V f? + g and (2.5) gives

�
f̂S =

� [
DSM−1

S DT
S Mf?

]
=:

�
[BSf?] .

Note that BS → DSM−1
w,SDT

S Mw a.s., that latter being the matrix of the orthogonal projector ΠF
S . However

�
BS 6= DSM−1

w,SDT
S Mw. Consequently, as an estimator of ΠF

S f?, f̂S has a bias.
Now for the risk we write

�
[∥∥∥f̂S − f?

∥∥∥
2

w

]
=

�
[∥∥∥f? − ΠF

S f? + ΠF
S f? − �

f̂S +
�

f̂S − f̂S

∥∥∥
2

w

]

=
∥∥f? − ΠF

S f?
∥∥2

w
+

∥∥∥ΠF
S f? − �

f̂S

∥∥∥
2

w

+
�

[∥∥∥
�

f̂S − f̂S

∥∥∥
2

w

]
,

moreover

�
[∥∥∥f̂S − �

f̂S

∥∥∥
2

w

]
=

� [∥∥BSf? + DSM−1
S V T

S g − �
[BSf?]

∥∥2

w

]

=
� [

‖BSf? − �
[BSf?]‖2

w

]
+
� [∥∥DSM−1

S V T
S g

∥∥2

w

]
,

the expectation of the scalar product vanishing since X and G are independent. Finally, non asymptotically :

�
f̂S =

�
[BSf?]

�
[∥∥∥f̂S − f?

∥∥∥
2

w

]
=

∥∥f? − ΠF
S f?

∥∥2

w
+ σ2� [

Tr(Mw,SM−1
S )

]

+
∥∥ΠF

S f? − �
[BSf?]

∥∥2

w
+
� [

‖BSf? − �
[BSf?]‖2

w

]

=
∥∥f? − ΠF

S f?
∥∥2

w
+ σ2� [

Tr(Mw,SM−1
S )

]
(5.7)

+
� [∥∥BSf? − ΠF

S f?
∥∥2

w

]

Comparing this result to (5.3), we get a new bias and a variance term
� [∥∥BSf? − ΠF

S f?
∥∥2

w

]
. Those are

created by the randomness on the Xi’s since, in the fixed setting, the expression BSf? − ΠF
S f? vanishes.

5.2. Asymptotics of the risks

We no longer suppose (5.1). Our aim is now to derive asymptotic results similar to those given in [12], except
we handle the random points case. More precisely, we prove that assumptions of theorems 3.1, 3.2, 3.3, 3.4 also
ensure an asymptotic risk equivalent to an oracle risk. Recall that the remark following (2.5) prevents us from

computing risks in a general case. We handle this issue by using the truncated estimator f̃S defined in (2.6).

5.2.1. The ideal case

Assume for a moment that the user knows the support S?. Then he will estimate f? by f̃S? and get an oracle

risk OR(n, S?) =
�

[∥∥∥f̃S? − f?
∥∥∥

2

w

]
.
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Note that the event {‖M−1
S? ‖ < C} appearing in (2.6) is independent of the noise g. Therefore, following

computations similar to part 5.1.1 we get

OR(n, S?) = ‖f?‖2
w

� [�
{‖nM−1

S? ‖<C}c

]
+ σ2�

[�
{‖nM−1

S? ‖<C}Tr(Mw,S?M−1
S? )

]
.

The first term is handled by (2.10). For the second, the indicator function gives a dominated convergence
allowing to write

OR(n, S?) ∼ σ2|S?|
n

(5.8)

5.2.2. Risk of our procedures

We assume now that the support Ŝ has been selected by an IC (2.15) whose penalty satisfies

(i) α(n) = o(n)
(ii) ln lnn = o(α(n)),

and using either of the following method :

? comparative method (2.17)
? Reversed comparative method in the orthonormal case (2.18)
? Adapted reversed comparative method (2.19)
? Descending comparative method (part 2.5.5)

Recall the notations of part 5.1. Theorems of the previous section as well as control (3.2), easily transposable
to other selection procedures listed above, insure that in any of those cases we get





Ŝ → S? a.s.�
(Ŝ = S) → 0 for any S ∈ F2 \ {S?}�

(Ŝ = S) = O (exp(−cn)) for any S ∈ F1

(5.9)

where c is a positive constant.

Our estimation procedure of f? by f̃ = f̃Ŝ has a risk R(n) given by

R(n) =
�

[∥∥∥f? − f̃
∥∥∥

2

w

]
=

∑

S⊂[[1,d]]

�
[∥∥∥f? − f̃S

∥∥∥
2

w

�
Ŝ=S

]
=:

∑

S⊂[[1,d]]

R(n, S). (5.10)

Now distinguish between two cases.

5.2.3. Asymptotics of the case S ∈ F2

Computations similar to (5.4) and (5.5) where f̂S is replaced by f̃S reduce R(n, S) to

R(n, S) = ‖f?‖2
w

� [�
{‖nM−1

S
‖<C}c∩{Ŝ=S}

]

+
� [

gT ASg
�
{‖nM−1

S
‖<C}∩{Ŝ=S}

]
.

Remark that

Zn := ngT ASg
�
{‖nM−1

S
‖<C}

=
1

n

n∑

i,j=1

gigj

(
V T

S nM−1
S Mw,SnM−1

S VS

)
i,j

�
{‖nM−1

S
‖<C} (5.11)
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has an L2(Ω) norm satisfying
�

Z2
n = O(1).

Let us begin by S = S?. Then (5.9) yields lim
� [

Zn
�
{Ŝ=S?}

]
= lim

�
Zn which is σ2|S?| by dominated

convergence. This, with (2.10), gives

R(n, S?) ∼ σ2|S?|
n

. (5.12)

Now for S ∈ F2 \ {S?} we use Schwarz’s inequality to write

� [
Zn

�
{Ŝ=S}

]
≤

(�
Z2

n

�
(Ŝ = S)

)1/2

→ 0

because of (5.11) and (5.9). Consequently,

nR(n, S) → 0, for any S ∈ F2 \ {S?}. (5.13)

5.2.4. Asymptotics of the case S ∈ F1

Here we simply write

R(n, S) =
�

[∥∥∥f? − f̃S

∥∥∥
2

w

�
Ŝ=S

]

≤ 2 ‖f?‖2
w

�
(Ŝ = S) + 2

�
[∥∥∥f̃S

∥∥∥
2p

w

]1/p �
(Ŝ = S)1/q

where p, q are chosen as in (2.8). Recall (2.7) and (5.9) in our present case S ∈ F1 to obtain

nR(n, S) → 0, for any S ∈ F1. (5.14)

5.2.5. Summary

Plugging (5.10), (5.12), (5.13) and (5.14) together we get the following

Theorem 5.1. Assume that the penalty of our IC (2.15) satisfies

(i) α(n) = o(n)
(ii) ln lnn = o(α(n)),

and that either of the following method has been used to determine Ŝ.

? comparative method (2.17)
? Reversed comparative method in the orthonormal case (2.18)
? Adapted reversed comparative method (2.19)
? Descending comparative method (part 2.5.5)

Then the estimation of f? by f̃ = f̃Ŝ defined in (2.6) presents a risk R(n) equivalent to the oracle risk
OR(n, S?) (5.8) in the sense that

R(n) ∼ σ2|S?|
n

6. An oracle inequality for the risk of the descending method

In this section, we no longer assume that f? lives in F . Our main purpose is to give theorem 6.1. This
theorem presents an oracle inequality on the risk achieved by the estimator of f? resulting from the use of an
information criterion of the form (2.15) along with the (fast) descending comparative method (part 2.5.5).
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6.1. Preliminary result

Let F be a family of supports. We associate with it an oracle ”risk“ by

OF (f?) = min
S∈F

{
d2(f?, FS) + σ2|S|/n

}
=: min

S∈F
R?(S) (6.1)

Note that the quantity R?(S) does not represent the risk resulting from the estimation of f? within FS which
are expressed in (5.6) and (5.7). Actually, R?(S) is the risk resulting from such an estimation in the case where
the xi’s are deterministic as in (5.3). In the sequel, as Baraud in [3], we work with quantities R?(S).

The oracle (6.1) is the minimum ”risk” the user could achieve by selecting the support SO in F that realizes
the minimum. However, as the name oracle implies, that quantity as well as SO is unavalaible to the user. Also
note that, even though f? would live in F , there is no reason why SO would equal S?.

From now on, we choose a penalty of the form

α(n) = (1 + θ)σ2|S|, θ > 0. (6.2)

Let us assume briefly that this user has chosen the global method (2.16). The only thing he knows is what his
criterion has found is the best support, namely

Ŝ = Argmin {IC(Y, S), S ∈ F} .

Baraud shows in [3] that in our setting and by using the penalty (6.2) in his criterion (2.15), the user did not
take too much risks in the sense that

�
[∥∥∥f? − f̃Ŝ

∥∥∥
2

w

]
≤ COF (f?). (6.3)

where C is a constant depending on θ appearing in the penalty (6.2) but neither on n nor on f?.
Now, as stressed in part 2.6, the global method has exponential complexity. Here, if one wanted to be able to

select any support, he would have computed 2d criteria. Our aim in the sequel is to show that the descending
method, that has polynomial complexity, also gives an oracle inequality of the type (6.3).

6.2. A family of nested deterministic supports

We define here a sequence of decreasing unknown supports S?(k), k = 0, . . . , d all with cardinality d − k.
Firstly we set S?(0) = [[1, d]] then, when S?(k) is defined, we set

S?(k+1) = Argmin
(
R?(S), S ⊂ S?(k), |S| = d − (k + 1)

)
(6.4)

where the function R? is defined in 6.1.
We thus obtain a sequence of risks R?(S?(k)), k = 0, . . . , d. Each of those represents the minimum risk

achieved by removing a single function in the previous support. Let us denote by k? the first index such that

R?(S?(k?−1)) > R?(S?(k?)) and R?(S?(k?+1)) ≥ R?(S?(k?)). (6.5)

In other terms, S?(k?) is the first support that does not include a support achieving a smaller risk. The
quantity R?(S?(k?)) is an oracle risk, not among any risks possible as in 6.1 with F = P([[1, d]]), but among a
smaller, nested, family of risks.
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6.3. The oracle inequality

Let us give the main result.

Theorem 6.1. Consider an information criteria of the form (2.15) whose penalty term writes as

α(n) = (1 + θ)σ2|S|

with θ > 0. Using this criterion along with the descending comparative method described in part 2.5.5, one

produces f̃
S(kf ) as an estimation of the unknown function f?. The risk of such an estimation satisfies

�
[∥∥∥f? − f̃

S(kf )

∥∥∥
2

w

]
≤ C.R?(S?(k?)) + rn (6.6)

where C is a constant depending on θ but neither on n nor f? ; R?(S?(k?)) is the nested oracle risk defined in
(6.5) and rn is a deterministic term satisfying rn = O(exp(−an)) with a > 0.

Proof : the deterministic family of supports (6.4) is related to the random family S(k) produced by the
descending comparative method in part 2.5.5. Recall that this method stops at a random step kf and thus

produces only supports S(k), k = 0, . . . , kf . One would like the descending comparative method to choose
”good” supports and stop at the ”right” step in the sense that

kf = k?, and S(kf ) = S?(k?), S(kf−1) = S?(k?−1), . . . , S(0) = S?(0).

Equations (6.7) and (6.9) that we justify now show that this happens except on a set of exponentially decreasing
probability.

For 1 ≤ k ≤ d let us set the event

Ak =
{

kf ≥ k − 1, S(k−1) = S?(k−1), . . . , S(0) = S?(0)
}

.

Firstly, we study the probability �
>k? :=

�
(kf > k? | Ak?+1)

where kf is the random step where the descending comparative method stops and k? is the deterministic step
defined by (6.5). This is the probability that the method does not stop after the oracle step k? when it has
chosen all good supports up to that step. We have

�
>k? ≤

∑

S

� (
1

n
IC(S) − σ2 ≤ 1

n
IC(S?(k?)) − σ2 | Ak?+1

)

where the sum is extended to all supports S ⊂ S(k?) = S?(k?) with cardinal |S| = d − k? − 1. Because of the
definition of k?, any of those supports satisfies R?(S) > R?(S?(k?)). We choose

ε =
1

2
min

S

{
R?(S) − R?(S?(k?))

}
> 0

where the min is taken among the same set of supports. Then we have

�
>k? ≤

∑

S

� (∣∣∣∣
1

n
IC(S) − σ2 − R?(S)

∣∣∣∣ > ε | Ak?+1

)

+
� (∣∣∣∣

1

n
IC(S?(k?)) − σ2 − R?(S?(k?))

∣∣∣∣ > ε | Ak?+1

)
.
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Because of the form (6.2) of the penalty, expressions in those probabilities reduce to

1

n
IC(S) − σ2 − R?(S) =

1

n
d2(y,ES) − σ2 − d2(f?, FS) +

θσ2|S|
n

.

Choosing n large enough to make θσ2|S|/n < ε/4 and applying control (2.14) yields

�
(kf > k? | Ak?+1) = O

(
exp

(
− ε2n

64Vmax

))
. (6.7)

We are now interested in the probability that the method fails to select the good support S?(k) when it has
done well up to step k − 1 :

Pk :=
� (

S(k) 6= S?(k) |Ak

)
.

Similarily, we write

Pk ≤
∑

S

� (
1

n
IC(S) − σ2 ≤ 1

n
IC(S?(k)) − σ2 | Ak

)

≤
∑

S

� (∣∣∣∣
1

n
IC(S) − σ2 − R?(S)

∣∣∣∣ > εk | Ak

)

+
∑

S

� (∣∣∣∣
1

n
IC(S?(k)) − σ2 − R?(S?(k))

∣∣∣∣ > εk | Ak

)

where the sums are extended to all supports S ⊂ S(k−1) = S?(k−1) with cardinal |S| = d − k except S?(k) and

εk =
1

2
min

S
(R?(S) − R?(S?(k))) > 0, (6.8)

the minimun being taken among the same set of supports. Let us denote by ε > 0 the smallest of the εk’s
satisfying (6.8), k = 1, . . . , d.

Again because of the penalty term (6.2), expressions simplify to

1

n
IC(S) − σ2 − R?(S) =

1

n
d2(y,ES) − σ2 − d2(f?, FS) +

θσ2|S|
n

.

Now it suffices to choose n large enough to make θσ2|S|/n < ε/64 and apply control (2.14) to have

� (
S(k) 6= S?(k) |Ak

)
= O

(
exp

(
− ε2n

64Vmax

))
. (6.9)

Now that we have controls (6.7) and (6.9) we will apply Baraud’s result. Recall that the descending compar-

ative method produces f̂
S(kf ) as an estimation of f?. The loss is measured by

∥∥∥f? − f̃
S(kf )

∥∥∥
2

w
which we shorten

to d2
w. We condition by the event {kf = k?} ∩Ak? which means that the method has chosen good supports up

to step k? − 1 and will stop at the good step k?. The result of Baraud (6.3), more precisely : equation (15)
following theorem 1.1 in [3], ensures that

� [
d2

w

∣∣ kf = k?, Ak?

]
≤ C.R?(S?(k?)),
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where C depends on θ but neither on n nor on f?. We need to remove the conditionning in order to obtain the
oracle inequality (6.6):

� [
d2

w

∣∣ Ak?

]
≤ � [

d2
w

∣∣ kf = k?, Ak?

]
+
� [

d2
w

�
kf >k?

∣∣ Ak?

]

handles the event kf = k?. Moreover :

� [
d2

w

∣∣ Ak?−1

]
≤ � [

d2
w

∣∣ Ak?

]
+
� [

d2
w

�
S(k?) 6=S?(k?)

∣∣ Ak?−1

]

handles the event S(k?−1) = S?(k?−1) in Ak? . Iterating that latter argument we get

� [
d2

w

]
≤ C.R?(S?(k?)) +

+
� [

d2
w

�
kf >k?

∣∣ Ak?

]

+
k?−1∑

k=1

� [
d2

w

�
S(k) 6=S?(k)

∣∣ Ak

]
.

It suffices to apply Hölder’s inequality (2.8) along with controls (6.7) and (6.9) in the remainder terms to obtain
the theorem. ¤
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[7] Gwénaëlle Castellan. Sélection d’histogrammes à l’aide d’un critère de type Akaike. C. R. Acad. Sci. Paris Sér. I Math.,
330(8):729–732, 2000.

[8] Abdelaziz El Matouat and Marc Hallin. Order selection, stochastic complexity and Kullback-Leibler information. 115:291–299,

1996.
[9] Peter D. Grunwald, In Jae Myung, and Mark A. Pitt. Advances in Minimum Description Length: Theory and Applications

(Neural Information Processing). The MIT Press, 2005.
[10] Pascal Massart. Concentration inequalities and model selection, volume 1896 of Lecture Notes in Mathematics. Springer, Berlin,

2007. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003, With a foreword by

Jean Picard.

[11] R. Nishii. Maximum likelihood principle and model selection when the true model is unspecified. J. Multivariate Anal.,

27(2):392–403, 1988.

[12] Ryuei Nishii. Asymptotic properties of criteria for selection of variables in multiple regression. Ann. Statist., 12(2):758–765,
1984.

[13] Jorma Rissanen. Modeling by the shortest data description. Automatica, 14:465–471, 1978.
[14] Jorma Rissanen. Stochastic complexity and modeling. Ann. Statist., 14(3):1080–1100, 1986.

[15] Jorma Rissanen. Stochastic complexity in statistical inquiry, volume 15 of World Scientific Series in Computer Science. World

Scientific Publishing Co. Inc., Teaneck, NJ, 1989.

[16] Jorma Rissanen, Terry P. Speed, and Bin Yu. Density estimation by stochastic complexity. IEEE Transactions on Information
Theory, 38(2):315–323, 1992.

[17] Gideon Schwarz. Estimating the dimension of a model. Ann. Statist., 6(2):461–464, 1978.


