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Abstract

Collaborative recommendation is an information-filtering technique

that attempts to present information items that are likely of interest

to an Internet user. Traditionally, collaborative systems deal with

situations with two types of variables, users and items. In its most

common form, the problem is framed as trying to estimate ratings

for items that have not yet been consumed by a user. Despite wide-

ranging literature, little is known about the statistical properties of

recommendation systems. In fact, no clear probabilistic model even

exists which would allow us to precisely describe the mathematical

forces driving collaborative filtering. To provide an initial contribution

to this, we propose to set out a general sequential stochastic model for

collaborative recommendation. We offer an in-depth analysis of the

so-called cosine-type nearest neighbor collaborative method, which is

one of the most widely used algorithms in collaborative filtering, and

∗Corresponding author.
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analyze its asymptotic performance as the number of users grows. We

establish consistency of the procedure under mild assumptions on the

model. Rates of convergence and examples are also provided.

Index Terms — Collaborative recommendation – cosine-type similar-

ity – nearest neighbor estimate – consistency – rate of convergence.

AMS 2000 Classification: 62G05, 62G20.

1 Introduction

Collaborative recommendation is a Web information-filtering technique that
typically gathers information about your personal interests and compares
your profile to other users with similar tastes. The goal of this system is to
give personalized recommendations, whether this be movies you might enjoy,
books you should read or the next restaurant you should go to.

There has been much work done in this area over the past decade since the
appearance of the first papers on the subject in the mid-90’s (Resnick et al.
[13], Hill et al. [11], Shardanand and Maes [16]). Stimulated by an abundance
of practical applications, most of the research activity to date has focused
on elaborating various heuristics and practical methods (Breese et al. [4],
Heckerman et al. [10], Salakhutdinov et al. [14]) so as to provide personal-
ized recommendations and help Web users deal with information overload.
Examples of such applications include recommending books, people, restau-
rants, movies, CDs and news. Websites such as amazon.com, match.com,
movielens.org and allmusic.com already have recommendation systems in
operation. We refer the reader to the surveys by Adomavicius and Tuzhilin
[3] and Adomavicius et al. [2] for a broader picture of the field, an overview
of results and many related references.

Traditionally, collaborative systems deal with situations with two types of
variables, users and items. In its most common form, the problem is framed
as trying to estimate ratings for items that have not yet been consumed by
a user. The recommendation process typically starts by asking users a series
of questions about items they liked or did not like. For example, in a movie
recommendation system, users initially rate some subset of films they have
already seen. Personal ratings are then collected in a matrix, where each row
represents a user, each column an item, and entries in the matrix represent
a given user’s rating of a given item. An example is presented in Table 1,
where ratings are specified on a scale from 1 to 10, and “NA” means that
the user has not rated the corresponding film.
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Armageddon Platoon Rambo Rio Bravo Star wars Titanic

Jim NA 6 7 8 9 NA
James 3 NA 10 NA 5 7
Steve 7 NA 1 NA 6 NA
Mary NA 7 1 NA 5 6
John NA 7 NA NA 3 1
Lucy 3 10 2 7 NA 4
Stan NA 7 NA NA 1 NA

Johanna 4 5 NA 8 3 9

Bob NA 3 3 4 5 ?

Table 1: A (subset of a) ratings matrix for a movie recommendation system.
Ratings are specified on a scale from 1 to 10, and “NA” means that the user
has not rated the corresponding film.

Based on this prior information, the recommendation engine must be able to
automatically furnish ratings of as-yet unrated items and then suggest appro-
priate recommendations based on these predictions. To do this, a number of
practical methods have been proposed, including machine learning-oriented
techniques (e.g., Abernethy et al. [1]), statistical approaches (e.g., Sarwar et
al. [15]) and numerous other ad hoc rules (Adomavicius and Tuzhilin [2]).
The collaborative filtering issue may be viewed as a special instance of the
problem of inferring the many missing entries of a data matrix. This field,
which has very recently emerged, is known as the matrix completion problem,
and comes up in many areas of science and engineering, including collabora-
tive filtering, machine learning, control, remote sensing and computer vision.
We will not pursue this promising approach, and refer the reader to Candès
and Recht [6] and Candès and Plan [5] who survey the literature on matrix
completion. These authors show in particular that under suitable conditions,
one can recover an unknown low rank matrix from a nearly minimal set of
entries by solving a simple convex optimization problem.

In most of the approaches, the crux is to identify users whose tastes/ratings
are “similar” to the user we would like to advise. The similarity measure
assessing proximity between users may vary depending on the type of ap-
plication, but is typically based on a correlation or cosine-type approach
(Sarwar et al. [15]).

Despite wide-ranging literature, very little is known about the statistical
properties of recommendation systems. In fact, no clear probabilistic model
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even exists allowing us to precisely describe the mathematical forces driving
collaborative filtering. To provide an initial contribution to this, we propose
in the present paper to set out a general stochastic model for collaborative
recommendation and analyze its asymptotic performance as the number of
users grows.

The document is organized as follows. In section 2, we provide a sequential
stochastic model for collaborative recommendation and describe the statis-
tical problem. In the model we analyze, unrated items are estimated by
averaging ratings of users who are “similar” to the user we would like to ad-
vise. The similarity is assessed by a cosine-type measure, and unrated items
are estimated using a kn-nearest neighbor-type regression estimate, which
is indeed one of the most widely used procedures in collaborative filtering.
It turns out that the choice of the cosine proximity as a similarity measure
imposes constraints on the model, which are discussed in section 3. Under
mild assumptions, consistency of the estimation procedure is established in
section 4, whereas rates of convergence are discussed in section 5. Illustrative
examples are given throughout the document, and proofs of some technical
results are postponed to section 6.

2 A model for collaborative recommendation

2.1 Ratings matrix and new users

Suppose that there are d + 1 (d ≥ 1) possible items, n users in the ratings
matrix (i.e., the database) and that users’ ratings take values in the set
({0} ∪ [1, s])d+1. Here, s is a real number greater than 1 corresponding to
the maximal rating and, by convention, the symbol 0 means that the user
has not rated the item (same as “NA”). Thus, the ratings matrix has n rows,
d + 1 columns and entries from {0} ∪ [1, s]. For example, n = 8, d = 5 and
s = 10 in Table 1, which will be our toy example throughout this section.
Then, a new user Bob reveals some of his preferences for the first time, rating
some of the first d items but not the (d + 1)th (the movie Titanic in Table
1). We want to design a strategy to predict Bob’s rating of Titanic using:
(i) Bob’s ratings of some (or all) of the other d movies and (ii) the ratings
matrix. This is illustrated in Table 1, where Bob has rated 4 out of the 5
movies.

The first step in our approach is to model the preferences of new user Bob
by a random vector (X, Y ) of size d+1 taking values in the set [1, s]d× [1, s].
Within this framework, the random variable X = (X1, . . . , Xd) represents
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Bob’s preferences pertaining to the first d movies, whereas Y , the (unob-
served) variable of interest, refers to the movie Titanic. In fact, as Bob does
not necessarily reveals all his preferences at once, we do not observe the vari-
able X, but instead some “masked” version of it denoted hereafter by X⋆.
The random variable X⋆ = (X⋆

1 , . . . , X
⋆
d) is naturally defined by

X⋆
j =

{
Xj if j ∈M
0 otherwise,

where M stands for some non-empty random subset of {1, . . . , d} indexing
the movies which have been rated by Bob. Observe that the random variable
X⋆ takes values in ({0} ∪ [1, s])d and that ‖X⋆‖ ≥ 1, where ‖.‖ denotes the
usual Euclidean norm on R

d. In the example of Table 1, M = {2, 3, 4, 5} and
(the realization of) X⋆ is (0, 3, 3, 4, 5).

We follow the same approach to model preferences of users already in the
database (Jim, James, Steve, Mary, etc. in Table 1), who will therefore
be represented by a sequence of independent [1, s]d × [1, s]-valued random
pairs (X1, Y1), . . . , (Xn, Yn) from the distribution (X, Y ). A first idea for
dealing with potential non-responses of a user i in the ratings matrix (i =
1, . . . , n) is to consider in place of Xi = (Xi1, . . . , Xid) its masked version

X̃i = (X̃i1, . . . , X̃id) defined by

X̃ij =

{
Xij if j ∈Mi ∩M
0 otherwise,

(2.1)

where each Mi is the random subset of {1, . . . , d} indexing the movies which
have been rated by user i. In other words, we only keep in Xi items corated
by both user i and the new user — items which have not been rated by X

and Xi are declared non-informative and simply thrown away.

However, this model, which is static in nature, does not allow to take into
account the fact that, as time goes by, each user in the database may reveal
more and more preferences. This will for instance typically be the case in
the movie recommendation system of Table 1, where regular customers will
update their ratings each time they have seen a new movie. Consequently,
model (2.1) is not fully satisfying and must therefore be slightly modified to
better capture the sequential evolution of ratings.

2.2 A sequential model

A possible dynamical approach for collaborative recommendation is based
on the following protocol: users enter the database one after the other and
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update their list of ratings sequentially in time. More precisely, we suppose
that at each time i = 1, 2, . . ., a new user enters the process and reveals
his preferences for the first time, while the i − 1 previous users are allowed
to rate new items. Thus, at time 1, there is only one user in the database
(Jim in Table 1), and the (non-empty) subset of items he decides to rate is
modeled by a random variable M1

1 taking values in P⋆({1, . . . , d}), the set
of non-empty subsets of {1, . . . , d}. At time 2, a new user (James) enters
the game and reveals his preferences according to a P⋆({1, . . . , d})-valued
random variable M1

2 , with the same distribution as M1
1 . At the same time,

Jim (user 1) may update his list of preferences, modeled by a random variable
M2

1 satisfying M1
1 ⊂ M2

1 . The latter requirement just means that the user is
allowed to rate new items but not to remove his past ratings. At time 3, a
new user (Steve) rates items according to a random variable M1

3 distributed
as M1

1 , while user 2 updates his preferences according to M2
2 (distributed as

M2
1 ) and user 1 updates his own according to M3

1 , and so on. This sequential
mechanism is summarized in Table 2.

Time 1 Time 2 . . . Time i . . . Time n
User 1 M1

1 M2
1 . . . M i

1 . . . Mn
1

User 2 M1
2 . . . M i−1

2 . . . Mn−1
2

...
. . .

...
...

...
User i M1

i . . . Mn+1−i
i

...
. . .

...
User n M1

n

Table 2: A sequential model for preference updating.

By repeating this procedure, we end up at time n with an upper triangular
array (M j

i )1≤i≤n,1≤j≤n+1−i of random variables. A row in this array consists
of a collection M j

i of random variables for a given value of i, taking values
in P⋆({1, . . . , d}) and satisfying the constraint M j

i ⊂ M j+1
i . For a fixed i,

the sequence M1
i ⊂M2

i ⊂ . . . describes the (random) way user i sequentially
reveals his preferences over time. Observe that the later inclusions are not
necessarily strict, so that a single user is not forced to rate one more item at
every single step.

Throughout the paper, we will assume that, for each i, the distribution of the
sequence of random variables (Mn

i )n≥1 is independent of i, and is therefore
distributed as a generic random sequence denoted (Mn)n≥1, satisfying M1 6=
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∅ and Mn ⊂ Mn+1 for all n ≥ 1. For the sake of coherence, we assume that
M1 and M (see (2.1)) have the same distribution, i.e., the new abstract user
X⋆ may be regarded as a user entering the database for the first time. We
will also suppose that there exists a positive random integer n0 such that
Mn0 = {1, . . . , d} and, consequently, Mn = {1, . . . , d} for all n ≥ n0. This
requirement means that each user rates all d items after a (random) period of
time. Last, we will assume that the pairs (Xi, Yi), i = 1, . . . , n, the sequences
(Mn

1 )n≥1, (Mn
2 )n≥1, . . . and the random variableM are mutually independent.

We note that this implies that the users’ ratings are independent.

With this sequential point of view, improving on (2.1), we let the masked

version X
(n)
i = (X

(n)
i1 , . . . , X

(n)
id ) of Xi be defined as

X
(n)
ij =

{
Xij if j ∈Mn+1−i

i ∩M
0 otherwise.

Again, it is worth pointing out that, in the definition of X
(n)
i , items which

have not been corated by both X and Xi are deleted. This implies in par-
ticular that X

(n)
i may be equal to 0, the d-dimensional null vector (whereas

‖X⋆‖ ≥ 1 by construction).

Finally, in order to deal with possible non-answers of database users regarding
the variable of interest (Titanic in our movie example), we introduce (Rn)n≥1,
a sequence of random variables taking values in P⋆({1, . . . , n}), such that
Rn is independent of M and the sequences (Mn

i )n≥1, and satisfying Rn ⊂
Rn+1 for all n ≥ 1. In this formalism, Rn represents the subset, which is
assumed to be non-empty, of users who have already provided information
about Titanic at time n. For example, in Table 1, only James, Mary, John,
Lucy and Johanna have rated Titanic and therefore (the realization of) Rn

is {2, 4, 5, 6, 8}.

2.3 The statistical problem

To summarize the model so far, we have at hand at time n a sample of
random pairs (X

(n)
1 , Y1), . . . , (X

(n)
n , Yn) and our mission is to predict the score

Y of a new user represented by X⋆. The variables X
(n)
1 , . . . ,X

(n)
n model the

database users’ revealed preferences with respect to the first d items. They
take values in ({0} ∪ [1, s])d, where a 0 at coordinate j of X

(n)
i means that

the jth product has not been corated by both user i and the new user. The
variable X⋆ takes values in ({0}∪[1, s])d and satisfies ‖X⋆‖ ≥ 1. The random
variables Y1, . . . , Yn model users’ ratings of the product of interest. They take
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values in [1, s] and, at time n, we only see a non-empty (random) subset of
{Y1, . . . , Yn}, indexed by Rn.

The statistical problem with which we are faced is to estimate the regression
function η(x⋆) = E[Y |X⋆ = x⋆]. For this goal, we may use the database ob-

servations (X
(n)
1 , Y1), . . . , (X

(n)
n , Yn) in order to construct an estimate ηn(x⋆)

of η(x⋆). The approach we explore in this paper is a cosine-based kn-nearest
neighbor regression method, one of the most widely used algorithms in col-
laborative filtering (e.g., Sarwar et al. [15]).

Given x⋆ ∈ ({0}∪[1, s])d−0 and the sample (X
(n)
1 , Y1), . . . , (X

(n)
n , Yn), the idea

of the cosine-type kn-nearest neighbor (NN) regression method is to estimate

η(x⋆) by a local averaging over those Yi for which: (i) X
(n)
i is “close” to

x⋆ and (ii) i ∈ Rn, that is, we effectively “see” the rating Yi. For this,

we scan through the kn neighbors of x⋆ among the database users X
(n)
i for

which i ∈ Rn and estimate η(x⋆) by averaging the kn corresponding Yi. The
closeness between users is assessed by a cosine-type similarity, defined for
x = (x1, . . . , xd) and x′ = (x′1, . . . , x

′
d) in ({0} ∪ [1, s])d by

S̄(x,x′) =

∑
j∈J xjx

′
j√∑

j∈J x
2
j

√∑
j∈J x

′2
j

,

where J = {j ∈ {1, . . . , d} : xj 6= 0 and x′j 6= 0} and, by convention,
S̄(x,x′) = 0 if J = ∅. To understand the rationale behind this proxim-
ity measure, just note that if J = {1, . . . , d} then S̄(x,x′) coincides with
cos(x,x′), i.e., two users are “close” with respect to S̄ if their ratings are
more or less proportional. However, the similarity S̄, which will be used to
measure the closeness between X⋆ (the new user) and X

(n)
i (a database user)

ignores possible non-answers in X⋆ or X
(n)
i , and is therefore more adapted to

the recommendation setting. For example, in Table 1,

S̄(Bob, Jim) = S̄((0, 3, 3, 4, 5), (0, 6, 7, 8, 9)) = S̄((3, 3, 4, 5), (6, 7, 8, 9)) ≈ 0.99,

whereas

S̄(Bob,Lucy) = S̄((0, 3, 3, 4, 5), (3, 10, 2, 7, 0)) = S̄((3, 3, 4), (10, 2, 7)) ≈ 0.89.

Next, fix x⋆ ∈ ({0}∪[1, s])d−0 and suppose to simplify thatM ⊂Mn+1−i
i for

each i ∈ Rn. In this case, it is easy to see that X
(n)
i = X⋆

i = (X⋆
i1, . . . , X

⋆
id),

where

X⋆
ij =

{
Xij if j ∈M
0 otherwise.
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Besides, Yi ≥ 1,
S̄(x⋆,X⋆

i ) = cos(x⋆,X⋆
i ) > 0, (2.2)

and an elementary calculation shows that the positive real number y which
maximizes the similarity between (x⋆, y) and (X⋆

i , Yi), that is

S̄ ((x⋆, y), (X⋆
i , Yi)) =

∑
j∈M x⋆

jX
⋆
ij + yYi√∑

j∈M x⋆
j
2 + y2

√∑
j∈M X⋆

ij
2 + Y 2

i

,

is given by

y =
‖x⋆‖

‖X⋆
i ‖ cos(x⋆,X⋆

i )
Yi.

This suggests the following regression estimate ηn(x⋆) of η(x⋆):

ηn(x⋆) = ‖x⋆‖
∑

i∈Rn

Wni(x
⋆)

Yi

‖X⋆
i ‖
, (2.3)

where the integer kn satisfies 1 ≤ kn ≤ n and

Wni(x
⋆) =

{
1/kn if X⋆

i is among the kn-MS of x⋆ in {X⋆
i , i ∈ Rn}

0 otherwise.

In the above definition, the acronym “MS” (for Most Similar) means that we
are searching for the kn “closest” points of x⋆ within the set {X⋆

i , i ∈ Rn}
using the similarity S̄ — or, equivalently here, using the cosine proximity
(by identity (2.2)). Note that the cosine term has been removed since it has
asymptotically no influence on the estimate, as can be seen by a slight adap-
tation of the arguments of the proof of Lemma 6.1, Chapter 6, in Györfi et al.
[9]. The estimate ηn(x⋆) is called the cosine-type kn-NN regression estimate
in the collaborative filtering literature. Now, recalling that definition (2.3)

makes sense only when M ⊂ Mn+1−i
i for each i ∈ Rn (that is, X

(n)
i = X⋆

i ),
the next step is to extend the definition of ηn(x⋆) to the general case. In
view of (2.3), the most natural approach is to simply put

ηn(x⋆) = ‖x⋆‖
∑

i∈Rn

Wni(x
⋆)

Yi

‖X(n)
i ‖

, (2.4)

where

Wni(x
⋆) =

{
1/kn if X

(n)
i is among the kn-MS of x⋆ in {X(n)

i , i ∈ Rn}
0 otherwise.

9



The acronym “MS” in the weight Wni(x
⋆) means that the kn closest database

points of x⋆ are computed according to the similarity

S
(
x⋆,X

(n)
i

)
= p

(n)
i S̄

(
x⋆,X

(n)
i

)
, with p

(n)
i =

|Mn+1−i
i ∩M |
|M |

(here and throughout, notation |A| means the cardinality of the finite set A).

The factor p
(n)
i in front of S̄ is a penalty term which, roughly, avoids to over-

promote the last users entering the database. Indeed, the effective number
of items rated by these users will be eventually low and, consequently, their
S̄-proximity to x⋆ will tend to remain high. On the other hand, for fixed i
and n large enough, we know that M ⊂Mn+1−i

i and X
(n)
i = X⋆

i . This implies

p
(n)
i = 1, S(x⋆,X

(n)
i ) = S̄(x⋆,X⋆

i ) = cos(x⋆,X⋆
i ) and shows that definition

(2.4) generalizes definition (2.3). Therefore, we take the liberty to still call
the estimate (2.4) the cosine-type kn-NN regression estimate.

Remark 2.1 A smoothed version of the similarity S could also be considered,
typically

S
(
x⋆,X

(n)
i

)
= ψ

(
p

(n)
i

)
S̄
(
x⋆,X

(n)
i

)
,

where ψ : [0, 1] → [0, 1] is a nondecreasing map satisfying ψ(1/2) < 1
(assuming |M | ≥ 2). For example, the choice ψ(p) =

√
p tends to promote

users with a low number of rated items, provided the items corated by the new
user are quite similar. In the present paper, we shall only consider the case
ψ(p) = p, but the whole analysis carries over without difficulties for general
functions ψ.

Remark 2.2 Another popular approach to measure the closeness between
users is the Pearson correlation coefficient. The extension of our results to
Pearson-type similarities is not straightforward and more work is needed to
address this challenging question. We refer the reader to Choi et al. [7] and
Montaner et al. [12] for a comparative study and comments on the choice of
the similarity.

Finally, for definiteness of the estimate ηn(x⋆), some final remarks are in
order:

(i) If X
(n)
i and X

(n)
j are equidistant from x⋆, i.e., S(x⋆,X

(n)
i ) = S(x⋆,X

(n)
j ),

then we have a tie and, for example, X
(n)
i may be declared “closer” to

x⋆ if i < j, that is, tie-breaking is done by indices.

(ii) If |Rn| < kn, then the weights Wni(x
⋆) are not defined. In this case,

we conveniently set Wni(x
⋆) = 0, i.e., ηn(x⋆) = 0.
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(iii) If X
(n)
i = 0, then we take Wni(x

⋆) = 0 and we adopt the convention
0 ×∞ = 0 for the computation of ηn(x⋆).

(iv) With the above conventions, the identity
∑

i∈Rn
Wni(x

⋆) ≤ 1 holds in
each case.

3 The regression function

Our objective in section 4 will be to establish consistency of the estimate
ηn(x⋆) defined in (2.4) towards the regression function η(x⋆). To reach this
goal, we first need to analyze the properties of η(x⋆). Surprisingly, the special
form of ηn(x⋆) constrains the shape of η(x⋆). This is stated in Theorem 3.1
below.

Theorem 3.1 Suppose that ηn(X⋆) → η(X⋆) in probability as n→ ∞. Then

η(X⋆) = ‖X⋆‖E

[
Y

‖X⋆‖
∣∣∣

X⋆

‖X⋆‖

]
a.s.

Proof of Theorem 3.1. Recall that

ηn(X⋆) = ‖X⋆‖
∑

i∈Rn

Wni(X
⋆)

Yi

‖X(n)
i ‖

,

and let

ϕn(X⋆) =
∑

i∈Rn

Wni(X
⋆)

Yi

‖X(n)
i ‖

.

Since (ηn(X⋆))n is a Cauchy sequence in probability and ‖X⋆‖ ≥ 1, (ϕn(X
⋆))n

is also a Cauchy sequence. Thus, there exists a measurable function ϕ on R
d

such that ϕn(X⋆) → ϕ(X⋆) in probability. Using the fact that 0 ≤ ϕn(X⋆) ≤
s for all n ≥ 1, we conclude that 0 ≤ ϕ(X⋆) ≤ s a.s. as well.

Let us extract a sequence (nk)k satisfying ϕnk
(X⋆) → ϕ(X⋆) a.s. Observing

that, for x⋆ 6= 0,

ϕnk
(x⋆) = ϕnk

(
x⋆

‖x⋆‖

)
,

we may write ϕ(X⋆) = ϕ(X⋆/‖X⋆‖) a.s. Consequently, the limit in proba-
bility of (ηn(X⋆))n is

‖X⋆‖ϕ
(

X⋆

‖X⋆‖

)
.
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Therefore, by the uniqueness of the limit, η(X⋆) = ‖X⋆‖ϕ(X⋆/‖X⋆‖) a.s.
Moreover,

ϕ

(
X⋆

‖X⋆‖

)
= E

[
ϕ

(
X⋆

‖X⋆‖

) ∣∣∣
X⋆

‖X⋆‖

]

= E

[
η(X⋆)

‖X⋆‖
∣∣∣

X⋆

‖X⋆‖

]

= E

[
E

[
Y

‖X⋆‖
∣∣∣X⋆

] ∣∣∣
X⋆

‖X⋆‖

]

= E

[
Y

‖X⋆‖
∣∣∣

X⋆

‖X⋆‖

]
,

since σ(X⋆/‖X⋆‖) ⊂ σ(X⋆). This concludes the proof of the theorem.

�

An important consequence of Theorem 3.1 is that if we intend to prove any
consistency result regarding the estimate ηn(x⋆), then we have to assume
that the regression function η(x⋆) has the special form

η(x⋆) = ‖x⋆‖ϕ(x⋆), where ϕ(x⋆) = E

[
Y

‖X⋆‖
∣∣∣

X⋆

‖X⋆‖ =
x⋆

‖x⋆‖

]
(F).

This will be our fundamental requirement throughout the paper, and it will
be denoted by (F). In particular, if x̃⋆ = λx⋆ with λ > 0, then η(x̃⋆) =
λη(x⋆). That is, if two ratings x⋆ and x̃⋆ are proportional, then so must be
the values of the regression function at x⋆ and x̃⋆, respectively.

4 Consistency

In this section, we establish the L1 consistency of the regression estimate
ηn(x⋆) towards the regression function η(x⋆). Using L1 consistency is essen-
tially a matter of taste, and all the subsequent results may be easily adapted
to Lp norms without too much effort. In the proofs, we will make repeated
use of the two following facts. Recall that, for a fixed i ∈ Rn, the random
variable X⋆

i = (X⋆
i1, . . . , X

⋆
id) is defined by

X⋆
ij =

{
Xij if j ∈M
0 otherwise,

and X
(n)
i = X⋆

i as soon as M ⊂ Mn+1−i
i . Recall also that, by definition,

‖X⋆
i ‖ ≥ 1.

12



Fact 4.1 For each i ∈ Rn,

S(X⋆,X⋆
i ) = S̄(X⋆,X⋆

i ) = cos(X⋆,X⋆
i ) = 1 − 1

2
d2

(
X⋆

‖X⋆‖ ,
X⋆

i

‖X⋆
i ‖

)
,

where d is the usual Euclidean distance on R
d.

Fact 4.2 Let, for all i ≥ 1,

Ti = min(k ≥ i : Mk+1−i
i ⊃M)

be the first time instant when user i has rated all the films indexed by M . Set

Ln = {i ∈ Rn : Ti ≤ n}, (4.1)

and define, for i ∈ Ln,

W ⋆
ni(x

⋆) =

{
1/kn if X⋆

i is among the kn-MS of x⋆ in {X⋆
i , i ∈ Ln}

0 otherwise.

Then

W ⋆
ni(x

⋆) =

{
1/kn if

X
⋆
i

‖X⋆
i ‖

is among the kn-NN of x
⋆

‖x⋆‖
in
{

X
⋆
i

‖X⋆
i ‖
, i ∈ Ln

}

0 otherwise,

where the kn-NN are evaluated with respect to the Euclidean distance on R
d.

That is, the W ⋆
ni(x

⋆) are the usual Euclidean NN weights (Györfi et al. [9]),
indexed by the random set Ln.

Recall that |Rn| represents the number of users who have already provided
information about the variable of interest (the movie Titanic in our example)
at time n. We are now in a position to state the main result of this section.

Theorem 4.1 Suppose that |M | ≥ 2 and that assumption (F) is satisfied.
Suppose that kn → ∞, |Rn| → ∞ a.s. and E[kn/|Rn|] → 0 as n→ ∞. Then

E |ηn(X⋆) − η(X⋆)| → 0 as n→ ∞.

Thus, to achieve consistency, the number of nearest neighbors kn, over which
one averages in order to estimate the regression function, should on the one
hand tend to infinity but should, on the other hand, be small with respect
to the cardinality of the subset of database users who have already rated the
item of interest. We illustrate this result by working out two examples.
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Example 4.1 Consider, to start with, the somewhat ideal situation where
all users in the database have rated the item of interest. In this case, Rn =
{1, . . . , n}, and the asymptotic conditions on kn become kn → ∞ and kn/n→
0 as n→ ∞. These are just the well-known conditions ensuring consistency
of the usual (i.e., Euclidean) NN regression estimate (Györfi et al. [9], Chap-
ter 6).

Example 4.2 In this more sophisticated model, we recursively define the
sequence (Rn)n as follows. Fix, for simplicity, R1 = {1}. At step n ≥ 2,
we first decide or not to add one element to Rn−1 with probability p ∈ (0, 1),
independently of the data. If we decide to increase Rn, then we do it by
picking a random variable Bn uniformly over the set {1, . . . , n} −Rn−1, and
set Rn = Rn−1 ∪{Bn}; otherwise, Rn = Rn−1. Clearly, |Rn| − 1 is a sum of
n − 1 independent Bernoulli random variables with parameter p, and it has
therefore a binomial distribution with parameters n−1 and p. Consequently,

E

[
kn

|Rn|

]
=
kn [1 − (1 − p)n]

np
.

In this setting, consistency holds provided kn → ∞ and kn = o(n) as n→ ∞.

In the sequel, the letter C will denote a positive constant, the value of which
may vary from line to line. Proof of Theorem 4.1 will strongly rely on facts
4.1, 4.2 and the following proposition.

Proposition 4.1 Suppose that |M | ≥ 2 and that assumption (F) is satisfied.
Let αni = P(Mn+1−i 6⊃M |M). Then

E |ηn(X⋆) − η(X⋆)|

≤ C

{
E

[
kn

|Rn|

]
+ E

[
1

|Rn|
∑

i∈Rn

Eαni

]
+ E

[
∏

i∈Rn

αni

]

+ E

∣∣∣
∑

i∈Ln

W ⋆
ni(X

⋆)
Yi

‖X⋆
i ‖

− ϕ(X⋆)
∣∣∣
}
,

where Rn stands for the non-empty subset of users who have already provided
information about the variable of interest at time n and Ln is defined in (4.1).

Proof of Proposition 4.1. Since ‖X⋆‖ ≤ s
√
d, it will be enough to

upper bound the quantity

E

∣∣∣∣∣
∑

i∈Rn

Wni(X
⋆)

Yi

‖X(n)
i ‖

− ϕ(X⋆)

∣∣∣∣∣ .
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To this aim, we write

E

∣∣∣∣∣
∑

i∈Rn

Wni(X
⋆)

Yi

‖X(n)
i ‖

− ϕ(X⋆)

∣∣∣∣∣

≤ E



∑

i∈Lc
n

Wni(X
⋆)

Yi

‖X(n)
i ‖


+ E

∣∣∣∣∣
∑

i∈Ln

Wni(X
⋆)

Yi

‖X(n)
i ‖

− ϕ(X⋆)

∣∣∣∣∣ ,

where the symbol Ac denotes the complement of the set A. Let the event

An =
[
∃i ∈ Lc

n : X
(n)
i is among the kn-MS of X⋆ in {X(n)

i , i ∈ Rn}
]
.

Since
∑

i∈Lc
n
Wni(X

⋆) ≤ 1, we have

E




∑

i∈Lc
n

Wni(X
⋆)

Yi

‖X(n)
i ‖



 = E




∑

i∈Lc
n

Wni(X
⋆)

Yi

‖X(n)
i ‖

1An



 ≤ sP(An).

Observing that, for i ∈ Ln, X
(n)
i = X⋆

i and Wni(X
⋆)1Ac

n
= W ⋆

ni(X
⋆)1Ac

n
(fact

4.2), we obtain

E

∣∣∣∣∣
∑

i∈Ln

Wni(X
⋆)

Yi

‖X(n)
i ‖

− ϕ(X⋆)

∣∣∣∣∣

= E

∣∣∣∣∣
∑

i∈Ln

Wni(X
⋆)

Yi

‖X⋆
i‖

− ϕ(X⋆)

∣∣∣∣∣

= E

∣∣∣∣∣
∑

i∈Ln

Wni(X
⋆)

Yi

‖X⋆
i‖

− ϕ(X⋆)

∣∣∣∣∣1An
+ E

∣∣∣∣∣
∑

i∈Ln

W ⋆
ni(X

⋆)
Yi

‖X⋆
i ‖

− ϕ(X⋆)

∣∣∣∣∣1Ac
n

≤ sP(An) + E

∣∣∣∣∣
∑

i∈Ln

W ⋆
ni(X

⋆)
Yi

‖X⋆
i‖

− ϕ(X⋆)

∣∣∣∣∣ .

Applying finally Lemma 6.5 completes the proof of the proposition.

�

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. According to Proposition 4.1, Lemma 6.1 and
Lemma 6.2, the result will be proven if we show that

E

∣∣∣∣∣
∑

i∈Ln

W ⋆
ni(X

⋆)
Yi

‖X⋆
i ‖

− ϕ(X⋆)

∣∣∣∣∣→ 0 as n→ ∞.
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For Ln ∈ P({1, . . . , n}), set

Zn
Ln

=
1

kn

∑

i∈Ln

1»

X
⋆
i

‖X⋆
i
‖

is among the kn-NN of X⋆

‖X⋆‖
in



X
⋆
i

‖X⋆
i
‖
,i∈Ln

ff–

Yi

‖X⋆
i ‖

− ϕ(X⋆).

Conditionally on the event [M = m], the random variables X⋆ and {X⋆
i , i ∈

Ln} are independent and identically distributed. Thus, applying Theorem
6.1 in [9], we obtain

∀ε > 0, ∃Am ≥ 1 : kn ≥ Am and
|Ln|
kn

≥ Am =⇒ Em|Zn
Ln
| ≤ ε,

where we use the notation Em[.] = E[.|M = m]. Let Pm(.) = P(.|M = m).
By independence,

Em|Zn
Ln
| =

∑

Ln∈P({1,...,n})

Em|Zn
Ln
|Pm(Ln = Ln).

Consequently, letting A = maxAm, where the maximum is taken over all
possible choices of m ∈ P⋆({1, . . . , d}) we get, for all n such that kn ≥ A,

Em|Zn
Ln
| =

∑

Ln∈P({1,...,n})
|Ln|≥Akn

Em|Zn
Ln
|Pm(Ln = Ln)

+
∑

Ln∈P({1,...,n})
|Ln|<Akn

Em|Zn
Ln
|Pm(Ln = Ln)

≤ ε+ sPm(|Ln| < Akn).

Therefore

E|Zn
Ln
| = E

[
E
[
|Zn

Ln
|
∣∣M
]]

≤ ε+ sP (|Ln| < Akn) .

Moreover, by Lemma 6.2,

|Ln|
kn

=
|Rn|
kn

(
1 − |Lc

n|
|Rn|

)
→ ∞ in probability as n→ ∞.

Thus, for all ε > 0, lim supn→∞ E|Zn
Ln
| ≤ ε, whence E|Zn

Ln
| → 0 as n → ∞.

This shows the desired result.

�
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5 Rates of convergence

In this section, we bound the rate of convergence of E |ηn(X⋆) − η(X⋆)| for
the cosine-type kn-NN regression estimate. To reach this objective, we will
require that the function

ϕ(x⋆) = E

[
Y

‖X⋆‖
∣∣∣

X⋆

‖X⋆‖ =
x⋆

‖x⋆‖

]

satisfies a Lipschitz-type property with respect to the similarity S̄. More
precisely, we say that ϕ is Lipschitz with respect to S̄ if there exists a constant
C > 0 such that, for all x and x′ in R

d,

|ϕ(x) − ϕ(x′)| ≤ C
√

1 − S̄(x,x′).

In particular, for x and x′ ∈ R
d − 0 with the same null components, this

property can be rewritten as

|ϕ(x) − ϕ(x′)| ≤ C√
2

d

(
x

‖x‖ ,
x′

‖x′‖

)
,

where we recall that d denotes Euclidean distance.

Theorem 5.1 Suppose that assumption (F) is satisfied and that ϕ is Lip-
schitz with respect to S̄. Let αni = P(Mn+1−i 6⊃ M |M), and assume that
|M | ≥ 4. Then there exists C > 0 such that, for all n ≥ 1,

E |ηn(X⋆) − η(X⋆)|

≤ C

{
E

[
kn

|Rn|
∑

i∈Rn

Eαni

]
+ E

[
∏

i∈Rn

αni

]
+ E

[(
kn

|Rn|

)Pn

]
+

1√
kn

}
,

where Pn = 1/(|M | − 1) if kn ≤ |Rn|, and Pn = 1 otherwise.

To get an intuition on the meaning of Theorem 5.1, it helps to note that
the terms depending on αni do measure the influence of the unrated items
on the performance of the estimate. Clearly, this performance improves as
the αni decrease, i.e., as the proportion of rated items growths. On the other
hand, the term E[(kn/|Rn|)Pn ] can be interpreted as a bias term in dimension
|M | − 1, whereas 1/

√
kn represents a variance term. As usual in nonpara-

metric estimation, the rate of convergence of the estimate is dramatically
deteriorated as |M | becomes large. However, in practice, this drawback may
be circumvented by using preliminary dimension reduction steps, such as
factorial methods (PCA, etc.) or inverse regression methods (SIR, etc.).
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Example 5.1 (cont. Example 4.1) Recall that we assume, in this ideal
model, that Rn = {1, . . . , n}. Suppose in addition that M = {1, . . . , d}, i.e.,
any new user in the database rates all products the first time he enters the
database. Then the upper bound of Theorem 5.1 becomes

E |ηn(X⋆) − η(X⋆)| = O

((
kn

n

)1/(d−1)

+
1√
kn

)
.

Since neither Rn nor M are random in this model, we see that there is no
influence of the dynamical rating process. Besides, we recognize the usual
rate of convergence of the Euclidean NN regression estimate (Györfi et al.
[9], Chapter 6) in dimension d − 1. In particular, the choice kn ∼ n2/(d+1)

leads to
E |ηn(X⋆) − η(X⋆)| = O

(
n−1/(d+1)

)
.

Note that we are led to a d − 1-dimensional rate of convergence (instead of
the usual d) just because everything happens as if the data is projected on the
unit sphere of R

d.

Example 5.2 (cont. Example 4.2) In addition to model 4.2, we suppose
that at each time, a user entering the game reveals his preferences accord-
ing to the following sequential procedure. At time 1, the user rates exactly 4
items by randomly guessing in {1, . . . , d}. At time 2, he updates his prefer-
ences by adding exactly one rating among his unrated items, randomly chosen
in {1, . . . , d} −M1

1 . Similarly, at time 3, the user revises his preferences ac-
cording to a new item uniformly selected in {1, . . . , d} −M2

1 , and so on. In
such a scenario, |M j | = min(d, j+3) and thus, M j = {1, . . . , d} for j ≥ d−3.
Moreover, since |M | = 4, a moment’s thought shows that

αni =






0 if i ≤ n− d+ 4

1 −

(
d− 4

n− i

)

(
d

n+ 4 − i

) if n− d+ 5 ≤ i ≤ n.

Assuming n ≥ d− 5, we obtain

∑

i∈Rn

αni ≤
n∑

i=n−d+5

αni

≤
n∑

i=n−d+5

(
1 − (n + 4 − i)(n + 3 − i)(n + 2 − i)(n + 1 − i)

d(d− 1)(d− 2)(d− 3)

)

≤ (d− 4)

(
1 − 24

d(d− 1)(d− 2)(d− 3)

)
.
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Similarly, letting Rn0 = Rn ∩ {n− d+ 5, . . . , n}, we have

∏

i∈Rn

αni =
∏

i∈Rn0

αni 1{min(Rn)≥n−d+5}

≤
(

1 − 24

d(d− 1)(d− 2)(d− 3)

)|Rn0|

1{min(Rn)≥n−d+5}.

Since |Rn| − 1 has binomial distribution with parameters n − 1 and p, we
obtain

E

[
∏

i∈Rn

αni

]
≤ P

(
min(Rn) ≥ n− d+ 5

)

≤ P
(
|Rn| ≤ d− 5

)
≤ C

n
.

Finally, applying Jensen’s inequality,

E

[(
kn

|Rn|

)Pn

]
= E

[(
kn

|Rn|

)1/3

1{kn≤|Rn|}

]
+ E

[
kn

|Rn|
1{kn>|Rn|}

]

≤ C

(
E

[
kn

|Rn|

])1/3

≤ C

(
kn

n

)1/3

.

Putting all the pieces together, we get with Theorem 5.1

E |ηn(X⋆) − η(X⋆)| = O

((
kn

n

)1/3

+
1√
kn

)
.

In particular, the choice kn ∼ n2/5 leads to

E |ηn(X⋆) − η(X⋆)| = O(n−1/5),

which is the usual NN regression estimate rate of convergence when the data
is projected on the unit sphere of R

4.

Proof of Theorem 5.1. Starting from Proposition 4.1, we just need to
upper bound the quantity

E

∣∣∣∣∣
∑

i∈Ln

W ⋆
ni(X

⋆)
Yi

‖X⋆
i ‖

− ϕ(X⋆)

∣∣∣∣∣ .
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A combination of Lemma 6.6 and the proof of Theorem 6.2 in [9] shows that

E

∣∣∣∣
∑

i∈Ln

W ⋆
ni(X

⋆)
Yi

‖X⋆
i ‖

− ϕ(X⋆)

∣∣∣∣

≤ C

{
1√
kn

+ E

[(
kn

|Ln|

)1/(|M |−1)

1{Ln 6=∅}

]
+ P(Ln = ∅)

}
. (5.1)

We obtain

E

[(
kn

|Ln|

)1/(|M |−1)

1{Ln 6=∅}

]

= E



(

kn

|Rn|
(
1 − |Lc

n|/|Rn|
)
)1/(|M |−1)

1{|Lc
n|≤|Rn|/2}




+ E

[(
kn

|Ln|

)1/(|M |−1)

1{|Lc
n|>|Rn|/2}1{Ln 6=∅}

]

≤ E

[(
2kn

|Rn|

)1/(|M |−1)
]

+ E
[
k1/(|M |−1)

n 1{|Lc
n|>|Rn|/2}

]
.

Since |M | ≥ 4, one has 21/(|M |−1) ≤ 2 and k
1/(|M |−1)
n ≤ kn in the rightmost

term, so that, thanks to Lemma 6.2,

E

[(
kn

|Ln|

)1/(|M |−1)

1{Ln 6=∅}

]

≤ C

{
E

[(
kn

|Rn|

)1/(|M |−1)
]

+ E

[
kn

|Rn|
∑

i∈Rn

Eαni

]}
.

The theorem is a straightforward combination of Proposition 4.1, inequality
(5.1), and Lemma 6.1.

�

6 Technical lemmas

Before stating some technical lemmas, we remind the reader that Rn stands
for the non-empty subset of {1, . . . , n} of users who have already rated the
variable of interest at time n. Recall also that, for all i ≥ 1,

Ti = min(k ≥ i : Mk+1−i
i ⊃M)
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and
Ln = {i ∈ Rn : Ti ≤ n}.

Lemma 6.1 We have

P(Ln = ∅) = E

[
∏

i∈Rn

αni

]
→ 0 as n→ ∞.

Proof of Lemma 6.1. Conditionally on M and Rn, the random variables
{Ti, i ∈ Rn} are independent. Moreover, the sequence (Mn)n≥1 is nonde-
creasing. Thus, the identity [Ti > n] = [Mn+1−i

i 6⊃ M ] holds for all i ∈ Rn.
Hence,

P(Ln = ∅) = P (∀i ∈ Rn : Ti > n)

= E

[
P

(
∀i ∈ Rn : Ti > n

∣∣∣Rn,M
)]

= E

[
∏

i∈Rn

P

(
Ti > n

∣∣∣Rn,M
)]

= E

[
∏

i∈Rn

P

(
Mn+1−i

i 6⊃M
∣∣∣M
)]

(by independence of (Mn+1−i
i ,M) and Rn

= E

[
∏

i∈Rn

αni

]
.

The last statement of the lemma is clear since, for all i, αni → 0 a.s. as
n→ ∞.

�

Lemma 6.2 We have

E

[ |Lc
n|

|Rn|

]
= E

[
1

|Rn|
∑

i∈Rn

Eαni

]

and

E

[
1

|Ln|
1{Ln 6=∅}

]
≤ 2E

[
1

|Rn|

]
+ 2E

[
1

|Rn|
∑

i∈Rn

Eαni

]
.

Moreover, if limn→∞ |Rn| = ∞ a.s., then

lim
n→∞

E

[ |Lc
n|

|Rn|

]
= 0.
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Proof of Lemma 6.2. First, using the fact that the sequence (Mn)n≥1 is
nondecreasing, we see that for all i ∈ Rn, [Ti > n] = [Mn+1−i

i 6⊃ M ]. Next,
recalling that Rn is independent of Ti for fixed i, we obtain

E

[ |Lc
n|

|Rn|
∣∣∣Rn

]
=

1

|Rn|
E

[
∑

i∈Rn

1{Ti>n}

∣∣∣Rn

]
=

1

|Rn|
∑

i∈Rn

P(Mn+1−i
i 6⊃M),

and this proves the first statement of the lemma. Now define Jn = {n+ 1−
i, i ∈ Rn} and observe that

E

[ |Lc
n|

|Rn|

]
= E

[
1

|Jn|
∑

j∈Jn

P(M j 6⊃M)

]
,

where we used |Jn| = |Rn|. Since, by assumption, |Jn| = |Rn| → ∞ a.s. as
n→ ∞ and P(M j 6⊃M) → 0 as j → ∞, we obtain

lim
n→∞

1

|Jn|
∑

j∈Jn

P(M j 6⊃ M) = 0 a.s.

The conclusion follows by applying Lebesgue’s dominated convergence The-
orem. The second statement of the lemma is obtained from the following
chain of inequalities:

E

[
1

|Ln|
1{Ln 6=∅}

]
= E

[
1

|Rn|
(
1 − |Lc

n|/|Rn|
)1{Ln 6=∅}

]

= E

[
1

|Rn|
(
1 − |Lc

n|/|Rn|
)1{|Lc

n|≤|Rn|/2}

]

+E

[
1

|Ln|
1{|Lc

n|>|Rn|/2}1{Ln 6=∅}

]

≤ 2E

[
1

|Rn|

]
+ P

(
|Lc

n| >
|Rn|

2

)

≤ 2E

[
1

|Rn|

]
+ 2E

[ |Lc
n|

|Rn|

]
.

Applying the first part of the lemma completes the proof.

�
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Lemma 6.3 Denote by Z⋆ and Z⋆
1 the random variables Z⋆ = X⋆/‖X⋆‖,

Z⋆
1 = X⋆

1/‖X⋆
1‖, and let ξ(Z⋆) = P(S(Z⋆,Z⋆

1) > 1/2 |Z⋆). Then

P

(
2kn > |Ln|ξ(Z⋆)

∣∣Ln,M
)
≤ 2E

[
kn

|Rn|
∣∣∣Ln

]
E

[
1

ξ(Z⋆)

∣∣∣M
]

+ E

[ |Lc
n|

|Rn|
∣∣∣Ln,M

]
.

Proof of Lemma 6.3. If M is fixed, Z⋆ is independent of Ln and Rn.
Thus, by Markov’s inequality,

P

(
2kn > |Ln|ξ(Z⋆)

∣∣Ln,M,Rn

)

= P

(
2kn > |Rn|ξ(Z⋆) − |Lc

n|ξ(Z⋆)
∣∣Ln,M,Rn

)

= P

(
2kn + |Lc

n|ξ(Z⋆) ≥ |Rn|ξ(Z⋆)
∣∣Ln,M,Rn

)

≤ 2kn

|Rn|
E

[
1

ξ(Z⋆)

∣∣∣M
]

+
|Lc

n|
|Rn|

.

The proof is completed by observing that Rn and M are independent random
variables.

�

Let B(x, ε) be the closed Euclidean ball in R
d centered at x of radius ε. Recall

that the support of a probability measure µ is defined as the closure of the
collection of all x with µ(B(x, ε)) > 0 for all ε > 0. The next lemma can be
proved with a slight modification of the proof of Lemma 10.2 in Devroye et
al. [8].

Lemma 6.4 Let µ be a probability measure on R
d with a compact support.

Then ∫
1

µ(B(x, r))
µ(dx) ≤ C,

with C > 0 a constant depending upon d and r only.

Lemma 6.5 Suppose that |M | ≥ 2, and let the event

An =
[
∃i ∈ Lc

n : X
(n)
i is among the kn-MS of X⋆ in {X(n)

i , i ∈ Rn}
]
.

Then

P(An) ≤ C

{
E

[
kn

|Rn|

]
+ E

[
1

|Rn|
∑

i∈Rn

Eαni

]
+ E

[
∏

i∈Rn

αni

]}
.

23



Proof of Lemma 6.5. Recall that, for a fixed i ∈ Rn, the random variable
X⋆

i = (X⋆
i1, . . . , X

⋆
id) is defined by

X⋆
ij =

{
Xij if j ∈M
0 otherwise,

and X
(n)
i = X⋆

i as soon as M ⊂Mn+1−i
i .

We first prove the inclusion

An ⊂
[
|{j ∈ Ln : S(X⋆,X⋆

j) > 1/2}| ≤ kn

]
. (6.1)

Take i ∈ Lc
n such that X

(n)
i is among the kn-MS of X⋆ in {X(n)

i , i ∈ Rn}.
Then, for all j ∈ Ln such that S(X⋆,X⋆

j) > 1/2, we have

S(X⋆,X⋆
j) >

1

2
≥ p

(n)
i S̄(X⋆,X

(n)
i ) = S(X⋆,X

(n)
i )

since p
(n)
i ≤ 1 − 1/|M | ≤ 1/2 if |M | ≥ 2. If

|{j ∈ Ln : S(X⋆,X⋆
j) > 1/2}| > kn,

then X
(n)
i is not among the kn-MS of X⋆ among the {X(n)

i , i ∈ Rn}. This

contradicts the assumption on X
(n)
i and proves inclusion (6.1).

Next, define Z⋆ = X⋆/‖X⋆‖, Z⋆
i = X⋆

i /‖X⋆
i ‖, i = 1, . . . , n, and let ξ(Z⋆) =

P(S(Z⋆,Z⋆
1) > 1/2 |Z⋆). If kn − |Ln|ξ(Z⋆) ≤ −(1/2)|Ln|ξ(Z⋆) and Ln 6= ∅,

we deduce from (6.1) that

P

(
An

∣∣∣Ln,Z
⋆
)

≤ P

(
∑

j∈Ln

1{S(Z⋆,Z⋆
j
)>1/2} ≤ kn

∣∣∣Ln,Z
⋆

)

= P

(
∑

j∈Ln

(
1{S(Z⋆,Z⋆

j )>1/2} − ξ(Z⋆)
)
≤ kn − |Ln|ξ(Z⋆)

∣∣∣Ln,Z
⋆

)

≤ P

(
∑

j∈Ln

(
1{S(Z⋆,Z⋆

j )>1/2} − ξ(Z⋆)
)
≤ −1

2
|Ln|ξ(Z⋆)

∣∣∣Ln,Z
⋆

)

≤ 4|Ln|ξ(Z⋆)

(|Ln|ξ(Z⋆))2 =
4

|Ln|ξ(Z⋆)

(by Tchebychev’s inequality).
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In the last inequality, we use the fact that, since σ(M) ⊂ σ(Z⋆), the random
variables {Z⋆

i , i ∈ Ln} are independent conditionally on Z⋆ and Ln. Using
again the inclusion σ(M) ⊂ σ(Z⋆), we obtain, on the event [Ln 6= 0],

P

(
An

∣∣∣Ln,M
)

= E

[
P

(
An

∣∣∣Ln,Z
⋆
) ∣∣∣Ln,M

]

≤ 4

|Ln|
E

[
1

ξ(Z⋆)

∣∣∣Ln,M

]
+ P

(
kn − |Ln|ξ(Z⋆) > −1

2
|Ln|ξ(Z⋆)

∣∣∣Ln,M

)

=
4

|Ln|
E

[
1

ξ(Z⋆)

∣∣∣M
]

+ P

(
|Ln|ξ(Z⋆) < 2kn

∣∣∣Ln,M
)
.

Applying Lemma 6.3, on the event [Ln 6= ∅],

P

(
An

∣∣∣Ln,M
)

≤ 4

|Ln|
E

[
1

ξ(Z⋆)

∣∣∣M
]

+ 2E

[
kn

|Rn|
∣∣∣Ln

]
E

[
1

ξ(Z⋆)

∣∣∣M
]

+ E

[ |Lc
n|

|Rn|
∣∣∣Ln,M

]
.

Moreover, by fact 4.1,

ξ(Z⋆) = P

(
S(Z⋆,Z⋆

1) >
1

2

∣∣∣Z⋆

)
≥ P

(
d2(Z⋆,Z⋆

1) ≤
1

2

∣∣∣Z⋆

)
.

Thus, denoting by νM the distribution of Z⋆ conditionally to M , we deduce
from Lemma 6.4 that

E

[
1

ξ(Z⋆)

∣∣∣M
]
≤
∫

1

νM (B(z, 1/
√

2))
νM(dz) ≤ C,

where the constant C does not depend on M . Putting all the pieces together,
we obtain

P(An) ≤ C

{
E

[
1

|Ln|
1{Ln 6=∅}

]
+ E

[
kn

|Rn|

]
+ E

[ |Lc
n|

|Rn|

]}
+ P(Ln = ∅).

We conclude the proof with Lemma 6.1 and Lemma 6.2.

�

In the sequel, we let X⋆
(1), . . . ,X

⋆
(|Ln|)

be the sequence {X⋆
i , i ∈ Ln} reordered

according to decreasing similarities S(X⋆,X⋆
i ), i ∈ Ln, that is,

S
(
X⋆,X⋆

(1)

)
≥ . . . ≥ S

(
X⋆,X⋆

(|Ln|)

)
.

Lemma 6.6 below states the rate of convergence to 1 of S(X⋆,X⋆
(1)).
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Lemma 6.6 Suppose that |M | ≥ 4. Then there exists C > 0 such that, on
the event [Ln 6= ∅],

1 − E
[
S(X⋆,X⋆

(1)) |M,Ln

]
≤ C

|Ln|2/(|M |−1)
.

Proof of Lemma 6.6. Observe that

E
[
1 − S(X⋆,X⋆

(1)) |X⋆,Ln

]

=

∫ 1

0

P
(
1 − S(X⋆,X⋆

(1)) > ε
∣∣X⋆,Ln

)
dε

=

∫ 1

0

P
(
∀i ∈ Ln : 1 − S(X⋆,X⋆

i ) > ε
∣∣X⋆,Ln

)
dε.

Since σ(M) ⊂ σ(X⋆), given X⋆ and Ln, the random variables {X⋆
i , i ∈ Ln}

are independent and identically distributed. Hence,

E
[
1 − S(X⋆,X⋆

(1)) |X⋆,Ln

]
=

∫ 1

0

[
P
(
1 − S(X⋆,X⋆

1) > ε
∣∣X⋆

)]|Ln|
dε.

Denote by νM the conditional distribution of X⋆/‖X⋆‖ givenM . The support
of νM is contained in both the unit sphere of R

d and in a |M |-dimensional
vector space. Thus, for simplicity, we shall consider that the support of νM is
contained in the unit sphere of R

|M |. Let B|M |(x, r) be the closed Euclidean
ball in R

|M | centered at x of radius r. Since X⋆ (resp. X⋆
1) only depends

on M and X (resp. X1), then, given X⋆, the random variable X⋆
1/‖X⋆

1‖ is
distributed according to νM . Thus, for any ε > 0, we may write (fact 4.1)

P
(
1 − S(X⋆,X⋆

1) > ε
∣∣X⋆

)
= 1 − νM

(
B|M |

(
X⋆

‖X⋆‖ ,
√

2ε

))
,

and, consequently,

E
[
1 − S(X⋆,X⋆

(1)) |X⋆,Ln

]
=

∫ 1

0

[
1 − νM

(
B|M |

(
X⋆

‖X⋆‖ ,
√

2ε

))]|Ln|

dε.

Using the inclusion σ(M) ⊂ σ(X⋆), we obtain

E
[
1 − S(X⋆,X⋆

(1)) |M,Ln

]

=

∫ 1

0

E

[{
1 − νM

(
B|M |

(
X⋆

‖X⋆‖ ,
√

2ε

))}|Ln| ∣∣∣M,Ln

]
dε. (6.2)
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Fix ε > 0, and denote by S(M) the support of νM . There exists Euclidean
balls A1, . . . , AN(ε) in R

|M | with radius
√

2ε/2 such that

S(M) ⊂
N(ε)⋃

j=1

Aj and N(ε) ≤ C

ε(|M |−1)/2
,

for some C > 0 which may be chosen independently of M . Clearly, if x ∈
Aj ∩ S(M), then Aj ⊂ B|M |(x,

√
2ε). Thus,

E

[{
1 − νM

(
B|M |

(
X⋆

‖X⋆‖ ,
√

2ε

))}|Ln| ∣∣∣M,Ln

]

≤
N(ε)∑

j=1

∫

Aj

E

[{
1 − νM

(
BM

(
X⋆

‖X⋆‖ ,
√

2ε

))}|Ln| ∣∣∣M,Ln

]
νM(dx)

≤
N(ε)∑

j=1

∫

Aj

(
1 − νM (Aj)

)|Ln|
νM(dx)

≤
N(ε)∑

j=1

νM (Aj)
(
1 − νM (Aj)

)|Ln|

≤ N(ε) max
t∈[0,1]

t(1 − t)|Ln|

≤ C

|Ln| ε(|M |−1)/2
.

Combining this inequality and equality (6.2), we obtain

E
[
1 − S(X⋆,X⋆

(1)) |M,Ln

]
≤
∫ 1

0

min

(
1,

C

|Ln| ε(|M |−1)/2

)
dε.

Since |M | ≥ 4, an easy calculation shows that there exists C > 0 such that

E
[
1 − S(X⋆,X⋆

(1)) |M,Ln

]
≤ C

|Ln|2/(|M |−1)
,

which leads to the desired result.

�
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