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We prove a weak version of the dynamic programming principle for standard stochastic control problems and mixed control-stopping problems, which avoids the technical difficulties related to the measurable selection argument. In the Markov case, our result is tailor-made for the derivation of the dynamic programming equation in the sense of viscosity solutions.

1. Introduction. Consider the standard class of stochastic control problems in the Mayer form

V (t, x) := sup ν∈U E [f (X ν T )|X ν t = x] ,
where U is the controls set, X ν is the controlled process, f is some given function, 0 < T ≤ ∞ is a given time horizon, t ∈ [0, T ) is the time origin, and x ∈ R d is some given initial condition. This framework includes the general class of stochastic control problems under the so-called Bolza formulation, the corresponding singular versions, and optimal stopping problems.

A key-tool for the analysis of such problems is the so-called dynamic programming principle (DPP), which relates the time-t value function V (t, .) to any later time-τ value V (τ, .) for any stopping time τ ∈ [t, T ) a.s. A formal statement of the DPP is:

V (t, x) = v(t, x) := sup ν∈U E [V (τ, X ν τ )|X ν t = x] . (1.1) 
In particular, this result is routinely used in the case of controlled Markov jumpdiffusions in order to derive the corresponding dynamic programming equation in the sense of viscosity solutions, see Lions [START_REF] Lions | Optimal Control of Diffusion Processes and Hamilton-Jacobi-Bellman Equations I[END_REF][START_REF] Lions | Optimal Control of Diffusion Processes and Hamilton-Jacobi-Bellman Equations, Part II: Viscosity Solutions and Uniqueness[END_REF], Fleming and Soner [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], Touzi [START_REF] Touzi | Stochastic Control Problems, Viscosity Solutions, and Application to Finance[END_REF], for the case of controlled diffusions, and Oksendal and Sulem [START_REF] Oksendal | Applied Stochastic Control of Jump Diffusions[END_REF] for the case of Markov jump-diffusions. The statement (1.1) of the DPP is very intuitive and can be easily proved in the deterministic framework, or in discrete-time with finite probability space. However, its proof is in general not trivial, and requires on the first stage that V be measurable.

When the value function V is known to be continuous, the abstract measurability arguments are not needed and the proof of the dynamic programming principle is significantly simplified. See e.g. Fleming and Soner [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF], or Kabanov and Klueppelberg [START_REF] Kabanov | A geometric approach to portfolio optimization in models with transaction costs[END_REF] in the context of a special singular control problem in finance. Our objective is to reduce the proof to this simple context in a general situation where the value function has no a priori regularity.

The inequality "V ≤ v" is the easy one but still requires that V be measurable. Our weak formulation avoids this issue. Namely, under fairly general conditions on the controls set and the controlled process, it follows from an easy application of the tower property of conditional expectations that

V (t, x) ≤ sup ν∈U E [V * (τ, X ν τ )|X ν t = x] ,
where V * is the upper semicontinuous envelope of the function V . The proof of the converse inequality "V ≥ v" in a general probability space turns out to be difficult when the function V is not known a priori to satisfy some continuity condition. See e.g. Bertsekas and Shreve [START_REF] Bertsekas | Stochastic Optimal Control : The Discrete Time Case[END_REF], Borkar [START_REF] Borkar | Optimal Control of Diffusion Processes[END_REF], and El Karoui [START_REF] Karoui | Les Aspects probabilistes du contrôle stochastique[END_REF].

Our weak version of the DPP avoids the non-trivial measurable selection argument needed to prove the inequality V ≥ v in (1.1). Namely, in the context of a general control problem presented in Section 2, we show in Section 3 that:

V (t, x) ≥ sup ν∈U E [ϕ(τ, X ν τ )|X t = x] for every upper-semicontinuous minorant ϕ of V.
We also show that an easy consequence of this result is that

V (t, x) ≥ sup ν∈U E V * (τ ν n , X ν τ ν n )|X t = x ,
where τ ν n := τ ∧inf {s > t : |X ν s -x| > n}, and V * is the lower semicontinuous envelope of V .

This result is weaker than the classical DPP (1.1). However, in the controlled Markov jump-diffusions case, it turns out to be tailor-made for the derivation of the dynamic programming equation in the sense of viscosity solutions. Section 5 reports this derivation in the context of controlled jump diffusions.

Finally, Section 4 provides an extension of our argument in order to obtain a weak dynamic programming principle for mixed control-stopping problems.

2. The stochastic control problem. Let (Ω, F, P) be a probability space supporting a càdlàg R d -valued process Z with independent increments. Given T > 0, let F := {F t , 0 ≤ t ≤ T } be the completion of its natural filtration on [0, T ]. Note that F satisfies the usual conditions, see e.g. [START_REF] Dellacherie | Probabilité et Potentiel, Théorie du potentiel[END_REF]. We assume that F 0 is trivial and that F T = F.

For every t ≥ 0, we set F t := (F t s ) s≥0 , where F t s is the completion of σ(Z r -Z t , t ≤ r ≤ s ∨ t) by null sets of F.

We denote by T the collection of all F-stopping times. For τ 1 , τ 2 ∈ T with τ 1 ≤ τ 2 a.s., the subset T [τ1,τ2] is the collection of all τ ∈ T such that τ ∈ [τ 1 , τ 2 ] a.s. When τ 1 = 0, we simply write T τ2 . We use the notations T t [τ1,τ2] and T t τ2 to denote the corresponding sets of F t -stopping times.

Throughout the paper, the only reason for introducing the filtration F through the process Z is to guarantee the following property of the filtrations F t . remark 2.1. Notice that F t s -measurable random variables are independent of F t for all s, t ≤ T , and that F t s is the trivial degenerate σ-algebra for s ≤ t. Similarly, all F t -stopping times are independent of F t .

For τ ∈ T and a subset A of a finite dimensional space, we denote by L 0 τ (A) the collection of all F τ -measurable random variables with values in A. H 0 (A) is the collection of all F-progressively measurable processes with values in A, and H 0 rcll (A) is the subset of all processes in H 0 (A) which are right-continuous with finite left limits.

In the following, we denote by B r (z) (resp. ∂B r (z)) the open ball (resp. its boundary) of radius r > 0 and center z ∈ R , ∈ N.

Througout this note, we fix an integer d ∈ N, and we introduce the sets:

S := [0, T ] × R d andS o := (τ, ξ) : τ ∈ T T and ξ ∈ L 0 τ (R d ) .
We also denote by USC(S) (resp. LSC(S)) the collection of all upper-semicontinuous (resp. lower-semicontinuous) functions from S to R. The set of control processes is a given subset U o of H 0 (R k ), for some integer k ≥ 1, so that the controlled state process defined as the mapping:

(τ, ξ; ν) ∈ S × U o -→ X ν τ,ξ ∈ H 0 rcll (R d )for some S withS ⊂ S ⊂ S o
is well-defined and satisfies:

θ, X ν τ,ξ (θ) ∈ Sfor all(τ, ξ) ∈ S and θ ∈ T [τ,T ] .
A suitable choice of the set S in the case of jump-diffusion processes driven by Brownian motion is given in Section 5 below. Given a Borel function f : R d -→ R and (t, x) ∈ S, we introduce the reward function J : S × U -→ R:

J(t, x; ν) := E f X ν t,x (T ) (2.1)
which is well-defined for controls ν in

U := ν ∈ U o : E |f (X ν t,x (T ))| < ∞, ∀ (t, x) ∈ S . (2.2) 
We say that a control ν ∈ U is t-admissible if it is F t -progressively measurable, and we denote by U t the collection of such processes. The stochastic control problem is defined by: V (t, x) := sup ν∈Ut J(t, x; ν)for(t, x) ∈ S.

(2.3) remark 2.2. The restriction to control processes that are F t -progressively measurable in the definition of V (t, •) is natural and consistent with the case where t = 0, since F 0 is assumed to be trivial, and is actually commonly used, compare with e.g. [START_REF] Yong | Stochastic Controls: Hamiltonian Systems and HJB Equations[END_REF]. It will be technically important in the following. It also seems a-priori necessary in order to ensure that Assumption A4 below makes sense, see Remark 3.2 and the proof of Proposition 5.4 below. However, we will show in Remark 5.2 below that it is not restrictive.

3. Dynamic programming for stochastic control problems. For the purpose of our weak dynamic programming principle, the following assumptions are crucial.

Assumption A For all (t, x) ∈ S and ν ∈ U t , the controlled state process satisfies: 

A1 (Independence) The process X ν t,x is F t -progressively measurable. A2 (Causality) For ν ∈ U t , τ ∈ T t [t,T ] and A ∈ F t τ , if ν = ν on [t, τ ] and ν1 A = ν1 A on (τ, T ], then X ν t,x 1 A = X ν t,
ν1 [0,θ] + ν1 (θ,T ] ∈ U t .
A4 (Consistency with deterministic initial data) For all θ ∈ T t [t,T ] , we have: a. For P-a.e ω ∈ Ω, there exists νω ∈ U θ(ω) such that

E f X ν t,x (T ) |F θ (ω) ≤ J(θ(ω), X ν t,x (θ)(ω); νω ). b. For t ≤ s ≤ T , θ ∈ T t [t,s]
, ν ∈ U s , and ν := ν1 [0,θ] + ν1 (θ,T ] , we have:

E f X ν t,x (T ) |F θ (ω) = J(θ(ω), X ν t,x ( 
θ)(ω); ν)forP -a.e. ω ∈ Ω. remark 3.1. Assumption A2 above means that the process X ν t,x is defined (caused) by the control ν pathwise. remark 3.2. Let θ be equal to a fixed time s in A4-b. If ν is allowed to depend on F s , then the left-hand side in A4-b does not coincide with E f (X ν s,X ν t,x (s)(ω) (T )) . Hence, the above identity can not hold in this form. remark 3.3. In Section 5 below, we show that Assumption A4-a holds with equality in the jump-diffusion setting. Although we have no example of a control problem where the equality does not hold, we keep Assumption A4-a under this form because the proof only needs this requirement. remark 3.4. Assumption A3 above implies the following property of the controls set which will be needed later:

A5 (Stability under bifurcation) For ν 1 , ν 2 ∈ U t , τ ∈ T t
[t,T ] and A ∈ F t τ , we have:

ν := ν 1 1 [0,τ ] + (ν 1 1 A + ν 2 1 A c ) 1 (τ,T ] ∈ U t .
To see this, observe that τ

A := T 1 A + τ 1 A c is a stopping time in T t [t,T ] (the indepen- dence of F t follows from Remark 2.1), and ν = ν 1 1 [0,τ A ] +ν 2 1 (τ A ,T ]
is the concatenation of ν 1 and ν 2 at the stopping time τ A . Given ν as constructed above, it is clear that this control can be concatenated with another control ν 3 ∈ U t by following the same argument. Iterating the above property, we therefore see that for 0 ≤ t ≤ T and τ ∈ T t [t,T ] , we have the following extension: for a finite sequence (ν 1 , . . . , ν n ) of controls in U t with ν i = ν 1 on [0, τ ], and for a partion (A i ) 1≤i≤n of Ω with A i ∈ F t τ for every i ≤ n:

ν := ν 1 1 [0,τ ] + 1 (τ,T ] n i=1 ν i 1 Ai ∈ U t .
Our main result is the following weak version of the dynamic programming principle which uses the following notation:

V * (t, x) := lim inf (t ,x )→(t,x) V (t , x ), V * (t, x) := lim sup (t ,x )→(t,x) V (t , x ),(t, x) ∈ S.
Theorem 3.5. Let Assumptions A hold true and assume that V is locally bounded. Then for every (t, x) ∈ S, and for every family of stopping times

{θ ν , ν ∈ U t } ⊂ T t [t,T ] , we have V (t, x) ≤ sup ν∈Ut E V * (θ ν , X ν t,x (θ ν )) . (3.1)
Assume further that J(.; ν) ∈ LSC(S) for every ν ∈ U o . Then, for any function ϕ : S -→ R:

ϕ ∈ USC(S) and V ≥ ϕ =⇒ V (t, x) ≥ sup ν∈U ϕ t E ϕ(θ ν , X ν t,x (θ ν )) , (3.2) 
where

U ϕ t = ν ∈ U t : E ϕ(θ ν , X ν t,x (θ ν )) + < ∞ or E ϕ(θ ν , X ν t,x (θ ν )) -< ∞ .
Before proceeding to the proof of this result, we report the following consequence. Corollary 3.6. Let the conditions of Theorem 3.5 hold. For (t, x) ∈ S, let {θ ν , ν ∈ U t } ⊂ T t [t,T ] be a family of stopping times such that

X ν t,x 1 [t,θ ν ] is L ∞ -bounded for all ν ∈ U t . Then, sup ν∈Ut E V * (θ ν , X ν t,x (θ ν )) ≤ V (t, x) ≤ sup ν∈Ut E V * (θ ν , X ν t,x (θ ν )) . (3.3) 
Proof. The right-hand side inequality is already provided in Theorem 3.5. Fix r > 0. It follows from standard arguments, see e.g. Lemma 3.5 in [START_REF] Reny | On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games[END_REF], that we can find a sequence of continuous functions (ϕ n ) n such that ϕ n ≤ V * ≤ V for all n ≥ 1 and such that ϕ n converges pointwise to V * on [0, T ] × B r (0). Set φ N := min n≥N ϕ n for N ≥ 1 and observe that the sequence (φ N ) N is non-decreasing and converges pointwise to V * on [0, T ] × B r (0). Applying (3.2) of Theorem 3.5 and using the monotone convergence Theorem, we then obtain:

V (t, x) ≥ lim N →∞ E φ N (θ ν , X ν t,x (θ ν )) = E V * (θ ν , X ν t,x (θ ν )) .
remark 3.7. Notice that the value function V (t, x) is defined by means of U t as the set of controls. Because of this, the lower semicontinuity of J(., ν) required in the second part of Theorem 3.5 does not imply that V is lower semicontinuous in its t-variable. See however Remark 5.3 below.

Proof. [Theorem 3.5] 1. Let ν ∈ U t be arbitrary and set θ := θ ν . The first assertion is a direct consequence of Assumption A4-a. Indeed, it implies that, for P-almost all ω ∈ Ω, there exists νω ∈ U θ(ω) such that

E f X ν t,x (T ) |F θ (ω) ≤ J(θ(ω), X ν t,x (θ)(ω); νω ) .
Since, by definition, J(θ(ω), X ν t,x (θ)(ω); νω ) ≤ V * (θ(ω), X ν t,x (θ)(ω)), it follows from the tower property of conditional expectations that

E f X ν t,x (T ) = E E f X ν t,x (T ) |F θ ≤ E V * θ, X ν t,x (θ) .
2. Let ε > 0 be given. Then there is a family (ν (s,y),ε ) (s,y)∈S ⊂ U o such that: ν (s,y),ε ∈ U s and J(s, y; ν (s,y),ε ) ≥ V (s, y) -ε,for every(s, y) ∈ S.

(3.4)

By the lower-semicontinuity of (t , x ) → J(t , x ; ν (s,y),ε ), for fixed (s, y) ∈ S, together with the upper-semicontinuity of ϕ, we may find a family (r (s,y) ) (s,y)∈S of positive scalars so that, for any (s, y) ∈ S, ϕ(s, y)-ϕ(t , x ) ≥ -ε and J(s, y; ν (s,y),ε )-J(t , x ; ν (s,y),ε ) ≤ ε for (t , x ) ∈ B(s, y; r (s,y) ), (3.5) where, for r > 0 and (s, y) ∈ S, 

B(s, y; r) := {(t , x ) ∈ S : t ∈ (s -r, s], |x -y| < r} . ( 3 
, r i ) i≥1 of elements of S × R, with 0 < r i ≤ r (ti,xi) for all i ≥ 1, such that S ⊂ {0} × R d ∪ (∪ i≥1 B(t i , x i ; r i )). Set A 0 := {T } × R d , C -1 := ∅,
and define the sequence

A i+1 := B(t i+1 , x i+1 ; r i+1 ) \ C i whereC i := C i-1 ∪ A i , i ≥ 0.
With this construction, it follows from (3.4), (3.5), together with the fact that V ≥ ϕ, that the countable family

(A i ) i≥0 satisfies (θ, X ν t,x (θ)) ∈ ∪ i≥0 A i P-a.s., A i ∩A j = ∅ for i = j ∈ N, and J(•; ν i,ε ) ≥ ϕ-3ε on A i for i ≥ 1, (3.7 
) where ν i,ε := ν (ti,xi),ε for i ≥ 1.

We now prove (3.2). We fix

ν ∈ U t and θ ∈ T t [t,T ] . Set A n := ∪ 0≤i≤n A i , n ≥ 1. Given ν ∈ U t , we define ν ε,n s := 1 [t,θ] (s)ν s + 1 (θ,T ] (s) ν s 1 (A n ) c (θ, X ν t,x (θ)) + n i=1 1 Ai (θ, X ν t,x (θ))ν i,ε s ,fors ∈ [t, T ]. Notice that {(θ, X ν t,x (θ)) ∈ A i } ∈ F t θ
as a consequence of Assumption A1. Then, it follows from the stability under concatenation Assumption A3, Remark 3.4 that ν ε,n ∈ U t . By the definition of the neighbourhood (3.6)

, notice that θ = θ ∧ t i ≤ t i on {(θ, X ν t,x (θ)) ∈ A i }.
Then, using Assumptions A4-b, A2, and (3.7), we deduce that:

E f X ν ε,n t,x (T ) |F θ 1 A n θ, X ν t,x (θ) = E f X ν ε,n t,x (T ) |F θ 1 A0 θ, X ν t,x (θ) + n i=1 E f X ν ε,n t,x (T ) |F θ∧ti 1 Ai θ, X ν t,x (θ) = V T, X ν ε,n t,x (T ) 1 A0 θ, X ν t,x (θ) + n i=1 J(θ∧t i , X ν t,x (θ∧t i ); ν i,ε )1 Ai θ, X ν t,x (θ) ≥ n i=0 ϕ(θ, X ν t,x (θ)) -3ε 1 Ai θ, X ν t,x (θ) = ϕ(θ, X ν t,x (θ)) -3ε 1 A n θ, X ν t,x (θ) ,
which, by definition of V and the tower property of conditional expectations, implies

V (t, x) ≥ J(t, x; ν ε,n ) = E E f X ν ε,n t,x (T ) |F θ ≥ E ϕ θ, X ν t,x (θ) -3ε 1 A n θ, X ν t,x (θ) + E f X ν t,x (T ) 1 (A n ) c θ, X ν t,x (θ) .
Since f X ν t,x (T ) ∈ L 1 , it follows from the dominated convergence theorem that:

V (t, x) ≥ -3ε + lim inf n→∞ E ϕ(θ, X ν t,x (θ))1 A n θ, X ν t,x (θ) = -3ε + lim n→∞ E ϕ(θ, X ν t,x (θ)) + 1 A n θ, X ν t,x (θ) -lim n→∞ E ϕ(θ, X ν t,x (θ)) -1 A n θ, X ν t,x (θ) = -3ε + E ϕ(θ, X ν t,x (θ)) ,
where the last equality follows from the left-hand side of (3.7) and from the monotone convergence theorem, due to the fact that either E ϕ(θ, X ν t,x (θ))

+ < ∞ or E ϕ(θ, X ν t,x (θ)) -< ∞. The proof of (3.
2) is completed by the arbitrariness of ν ∈ U t and ε > 0.

remark 3.8. (Lower-semicontinuity condition I) It is clear from the above proof that it suffices to prove the lower-semicontinuity of (t, x) → J(t, x; ν) for ν in a subset Ũo of U o such that sup ν∈ Ũt J(t, x; ν) = V (t, x). Here Ũt is the subset of Ũo whose elements are F t -progressively measurable. In most applications, this allows to reduce to the case where the controls are essentially bounded or satisfy a strong integrability condition. remark 3.9. (Lower-semicontinuity condition II) In the above proof, the lowersemicontinuity assumption is only used to construct the balls B i on which J(t i , x i ; ν i,ε )-J(•; ν i,ε ) ≤ ε. Clearly, it can be alleviated, and it suffices that the lower-semicontinuity holds in time from the left, i.e. lim inf 

(t ,x )→(ti,xi), t ≤ti J(t , x ; ν i,ε ) ≥ J(t i , x i ; ν i,ε ).
V (t, x) := sup ν∈Ut E T t Y ν t,x,1 (s)g s, X ν t,x (s), ν s ds + Y ν t,x,1 (T )f X ν t,x (T ) ,
where

dY ν t,x,y (s) = -Y ν t,x,y (s)k s, X ν t,x (s), ν s ds , Y ν t,x,y (t) = y > 0 .
Then, it is well known that this problem can be converted into the Mayer formulation (2.3) by augmenting the state process to (X, Y, Z), where

dZ ν t,x,y,z (s) = Y ν t,x,y (s)g s, X ν t,x (s), ν s ds , Z ν t,x,y,z (t) = z ∈ R ,
and considering the value function

V (t, x, y, z) := sup ν∈Ut E Z ν t,x,y,z (T ) + Y ν t,x,y (T )f X ν t,x (T ) = yV (t, x) + z .
In particular, V (t, x) = V (t, x, 1, 0). The first assertion of Theorem 3.5 implies

V (t, x) ≤ sup ν∈Ut E Y ν t,x,1 (θ ν )V * (θ ν , X ν t,x (θ ν )) + θ ν t Y ν t,x,1 (s)g s, X ν t,x (s), ν s ds . (3.8)
Given a upper-semicontinuous minorant ϕ of V , the function φ defined by φ(t, x, y, z) := yϕ(t, x) + z is an upper-semicontinuous minorant of V . From the second assertion of Theorem 3.5, we see that for a family {θ ν , ν

∈ U t } ⊂ T t [t,T ] , V (t, x) ≥ sup ν∈U φ t E φ θ ν , X ν t,x (θ ν ), Y ν t,x,1 (θ ν ), Z ν t,x,1,0 (θ ν ) = sup ν∈U φ t E Y ν t,x,1 (θ ν )ϕ(θ ν , X ν t,x (θ ν )) + θ ν t Y ν t,
x,1 (s)g s, X ν t,x (s), ν s ds .

(3.9) remark 3.11. (Infinite Horizon) Infinite horizon problems can be handled similarly. Following the notations of the previous Remark 3.10, we introduce the infinite horizon stochastic control problem:

V ∞ (t, x) := sup ν∈Ut E ∞ t Y ν t,x,1 (s)g s, X ν t,x (s), ν s ds .
Then, it is immediately seen that V ∞ satisfies the weak dynamic programming principle (3.8)-(3.9).

4. Dynamic programming for mixed control-stopping problems. In this section, we provide a direct extension of the dynamic programming principle of Theorem 3.5 to the larger class of mixed control and stopping problems.

In the context of the previous section, we consider a Borel function f : R d -→ R, and we assume |f | ≤ f for some continuous function f . For (t, x) ∈ S the reward J : S × Ū × T [t,T ] -→ R:

J(t, x; ν, τ ) := E f X ν t,x (τ ) , (4.1) 
which is well-defined for every control ν in

Ū := ν ∈ U o : E sup t≤s≤T f (X ν t,x (s)) < ∞ ∀ (t, x) ∈ S .
The mixed control-stopping problem is defined by:

V (t, x) := sup (ν,τ )∈ Ūt×T t [t,T ] J(t, x; ν, τ ) , (4.2) 
where Ūt is the subset of elements of Ū that are F t -progressively measurable.

The key ingredient for the proof of (4.6) is the following property of the set of stopping times T T :

For all θ, τ 1 ∈ T t T and τ 2 ∈ T t [θ,T ] ,we haveτ 1 1 {τ1<θ} + τ 2 1 {τ1≥θ} ∈ T t T . (4.3) 
In order to extend the result of Theorem 3.5, we shall assume that the following version of A4 holds: Assumption A4' For all (t, x) ∈ S, (ν, τ ) ∈ Ūt × T t [t,T ] and θ ∈ T t [t,T ] , we have: a. For P-a.e ω ∈ Ω, there exists (ν ω , τω ) ∈ Ūθ(ω) × T θ(ω)

[θ(ω),T ] such that

1 {τ ≥θ} (ω)E f X ν t,x (τ ) |F θ (ω) ≤ 1 {τ ≥θ} (ω)J θ(ω), X ν t,x (θ)(ω); νω , τω b. For t ≤ s ≤ T , θ ∈ T t [t,s] , (ν, τ ) ∈ Ūs × T s [s,T ]
, τ := τ 1 {τ <θ} + τ 1 {τ ≥θ} , and ν := ν1 [0,θ] + ν1 (θ,T ] , we have for P-a.e. ω ∈ Ω:

1 {τ ≥θ} (ω)E f X ν t,x (τ ) |F θ (ω) = 1 {τ ≥θ} (ω)J(θ(ω), X ν t,x ( 
θ)(ω); ν, τ ). Theorem 4.1. Let Assumptions A1, A2, A3 and A4' hold true. Then for every (t, x) ∈ S, and for all family of stopping times {θ ν , ν ∈ Ūt } ⊂ T t [t,T ] :

V (t, x) ≤ sup (ν,τ )∈ Ūt×T t [t,T ] E 1 {τ <θ ν } f (X ν t,x (τ )) + 1 {τ ≥θ ν } V * (θ ν , X ν t,x (θ ν )) . (4.4)
Assume further that the map (t, x) -→ J(t, x; ν, τ ) satisfies the following lowersemicontinuity property

lim inf t ↑t,x →x J(t , x ; ν, τ ) ≥ J(t, x; ν, τ )for every(t, x) ∈ S and (ν, τ ) ∈ Ū × T . (4.5)
Then, for any function ϕ ∈ USC(S) with V ≥ ϕ:

V (t, x) ≥ sup (ν,τ )∈ Ū ϕ t ×T t [t,T ] E 1 {τ <θ ν } f (X ν t,x (τ )) + 1 {τ ≥θ ν } ϕ(θ ν , X ν t,x (θ ν )) , (4.6)
where

Ūϕ t = ν ∈ Ūt : E ϕ(θ ν , X ν t,x (θ ν )) + < ∞ or E ϕ(θ ν , X ν t,x (θ ν )) -< ∞ .
For simplicity, we only provide the proof of Theorem 4.1 for optimal stopping problems, i.e. in the case where Ū is reduced to a singleton. The dynamic programming principle for mixed control-stopping problems is easily proved by combining the arguments below with those of the proof of Theorem 3.5.

Proof. (for optimal stopping problems) We omit the control ν from all notations, thus simply writing X t,x (•) and J(t, x; τ ). Inequality (4.4) follows immediately from the tower property together with Assumptions A4'-a, recall that J ≤ V * .

We next prove (4.6). Arguing as in Step 2 of the proof of Theorem 3.5, we first observe that, for every ε > 0, we can find a countable family Āi ⊂ (t i -r i , t i ]×A i ⊂ S, together with a sequence of stopping times τ i,ε in T ti [ti,T ] , i ≥ 1, satisfying Ā0 = {T } × R d and ∪ i≥0 Āi = S, Āi ∩ Āj = ∅ for i = j ∈ N,and J(•; τ i,ε ) ≥ ϕ -3ε on Āi for i ≥ 1 .

(4.7)

Set Ān := ∪ i≤n Āi , n ≥ 1. Given two stopping times θ, τ ∈ T t [t,T ] , it follows from (4.3) (and Assumption A1 in the general mixed control case) that

τ n,ε := τ 1 {τ <θ} + 1 {τ ≥θ} T 1 ( Ān ) c (θ, X t,x (θ)) + n i=1 τ i,ε 1 Āi (θ, X t,x (θ)) is a stopping time in T t [t,T ]
. We then deduce from the tower property together with Assumptions A4'-b and (4.7) that V (t, x) ≥ J(t, x; τ n,ε )

≥ E f X ν t,x (τ ) 1 {τ <θ} + 1 {τ ≥θ} (ϕ(θ, X t,x (θ)) -3ε) 1 Ān (θ, X t,x (θ)) +E 1 {τ ≥θ} f (X t,x (T ))1 ( Ān ) c (θ, X t,x (θ)) .
By sending n → ∞ and arguing as in the end of the proof of Theorem 3.5, we deduce that V (t, x) ≥ E f (X t,x (τ ))

1 {τ <θ} + 1 {τ ≥θ} ϕ(θ, X t,x (θ)) -3ε,
and the result follows from the arbitrariness of ε > 0 and τ ∈ T t [t,T ] .

Application to controlled Markov jump-diffusions.

In this section, we show how the weak DPP of Theorem 3.5 allows to derive the correponding dynamic programming equation in the sense of viscosity solutions. We refer to Crandal, Ishii and Lions [START_REF] Crandall | User's guide to viscosity solutions of second order Partial Differential Equations[END_REF] and Fleming and Soner [START_REF] Fleming | Controlled Markov Processes and Viscosity Solutions[END_REF] for a presentation of the general theory of viscosity solutions.

For simplicity, we specialize the discussion to the context of controlled Markov jump-diffusions driven by a Brownian motion and a compound Poisson process. The same technology can be adapted to optimal stopping and impulse control or mixed problems, see e.g. [START_REF] Bouchard | Optimal control of trading algorithms: a general impulse control approach[END_REF].

Problem formulation and verification of Assumption A.

We shall work on the product space Ω := Ω W ×Ω N where Ω W is the set of continuous functions from [0, T ] into R d , and Ω N is the set of integer-valued measures on [0, T ] × E with

E := R m for some m ≥ 1. For ω = (ω 1 , ω 2 ) ∈ Ω, we set W (ω) = ω 1 and N (ω) = ω 2 and define F W = (F W t ) t≤T (resp. F N = (F N t ) t≤T )
as the smallest right-continuous filtration on Ω W (resp. Ω N ) such that W (resp. N ) is optional. We let P W be the Wiener measure on (Ω W , F W T ) and P N be the measure on (Ω N , F N T ) under which N is a compound Poisson measure with intensity Ñ (de, dt) = λ(de)dt, for some finite measure λ on E, endowed with its Borel tribe E. We then define the probability measure P := P W ⊗ P N on (Ω, F W T ⊗ F N T ). With this construction, W and N are independent under P. Without loss of generality, we can assume that the natural rightcontinuous filtration F = (F t ) t≤T induced by (W, N ) is complete. In the following, we shall slightly abuse notations and sometimes write N t (•) for N (•, (0, t]) for simplicity.

We let U be a closed subset of R k , k ≥ 1, and µ : S×U -→ R d and σ : S×U -→ M d be two Lipschitz continuous functions, and β : S × U × E -→ R d a measurable function, Lipschitz-continuous with linear growth in (t, x, u) uniformly in e ∈ E. Here M d denotes the set of d-dimensional square matrices.

By U o , we denote the collection of all square integrable predictable processes with values U . For every ν ∈ U o , the stochastic differential equation: dX(r) = µ (r, X(r), ν r ) dr+σ (r, X(r), ν r ) dW r + E β(r, X(r-), ν r , e)N (de, dr), t ≤ r ≤ T, (5.1) has a unique strong solution X ν τ,ξ such that X ν τ,ξ (τ ) = ξ, for any initial condition (τ, ξ) ∈ S := (τ, ξ) ∈ S o : ξ is F τ -measurable, and E |ξ| 2 < ∞ . Moreover, this solution satisfies

E sup τ ≤r≤T |X ν τ,ξ (r)| 2 < C(1 + E |ξ| 2 ), (5.2) 
for some constant C which may depend on ν. remark 5.1. Clearly, less restrictive conditions could be imposed on β and N . We deliberately restrict here to this simple case, in order to avoid standard technicalities related to the definition of viscosity solutions for integro-differential operators, see e.g. [START_REF] Barles | Second-Order Elliptic Integro-Differential Equations: Viscosity Solutions' Theory Revisited[END_REF] and the references therein.

The following remark shows that in the present case, it is not necessary to restrict the control processes ν to U t in the definition of the value function V (t, x). remark 5.2. Let Ṽ be defined by

Ṽ (t, x) := sup ν∈U E f (X ν t,x (T )) .
The difference between Ṽ (t, •) and V (t, •) comes from the fact that all controls in U are considered in the former, while we restrict to controls independent of F t in the latter. We claim that Ṽ = V , so that both problems are indeed equivalent. Clearly, Ṽ ≥ V . To see that the converse holds true, fix (t, x) ∈ [0, T ) × R d and ν ∈ U. Then, ν can be written as a measurable function of the canonical process ν((ω s ) 0≤s≤t , (ω s -ω t ) t≤s≤T ), where, for fixed (ω s ) 0≤s≤t , the map ν (ωs) 0≤s≤t : (ω s -ω t ) t≤s≤T → ν((ω s ) 0≤s≤t , (ω s -ω t ) t≤s≤T ) can be viewed as a control independent on F t . Using the independence of the increments of the Brownian motion and the compound Poisson process, and Fubini's Lemma, it thus follows that

J(t, x; ν) = E f (X ν (ωs ) 0≤s≤t t,x (T )) dP((ω s ) 0≤s≤t ) ≤ V (t, x)dP((ω s ) 0≤s≤t )
where the latter equals V (t, x). By arbitrariness of ν ∈ U, this implies that Ṽ (t, x) ≤ V (t, x). remark 5.3. By the previous remark, it follows that the value function V inherits the lower semicontinuity of the performance criterion required in the second part of Theorem 3.5, compare with Remark 3.7. This simplification is specific to the simple stochastic control problem considered in this section, and may not hold in other control problems, see e.g. [START_REF] Bouchard | Optimal control of trading algorithms: a general impulse control approach[END_REF]. Consequently, we shall deliberately ignore the lower semicontinuity of V in the subsequent analysis in order to show how to derive the dynamic programming equation in a general setting.

Let f : R d -→ R be a lower semicontinuous function with linear growth, and define the performance criterion J by (2.1). Then, it follows that U = U o and, from (5.2) and the almost sure continuity of (t, x) → X ν t,x (T ), that J(., ν) is lower semicontinuous, as required in the second part of Theorem 3.5.

The value function V is defined by (2.3). Various types of conditions can be formulated in order to guarantee that V is locally bounded. For instance, if f is bounded from above, this condition is trivially satisfied. Alternatively, one may restrict the set U to be bounded, so that the linear growth of f implies corresponding bounds for V . We do not want to impose such a constraint because we would like to highlight the fact that our methodology applies to general singular control problems. We then leave this issue as a condition which is to be checked by specific arguments to the case in hand.

Proposition 5.4. In the above controlled diffusion context, assume further that V is locally bounded. Then, the value function V satisfies the weak dynamic programming principle (3.1)-(3.2).

Proof. Conditions A1, A2 and A3 from Assumption A are obviously satisfied in the present context. It remains to check that A4 holds true. For ω ∈ Ω and r ≥ 0, we denote ω r

• := ω .∧r and T r (ω

)(•) := ω •∨r -ω r so that ω • = ω r • + T r (ω)(•). Fix (t, x) ∈ S, ν ∈ U t , θ ∈ T t [t,T ]
, and observe that, by the flow property,

E f X ν t,x (T ) |F θ (ω) = f X ν(ω θ(ω) +T θ(ω) (ω)) θ(ω),X ν t,x (θ)(ω) (T )(T θ(ω) (ω)) dP(T θ(ω) (ω)) = f X ν(ω θ(ω) +T θ(ω) (ω)) θ(ω),X ν t,x (θ)(ω) (T )(T θ(ω) (ω)) dP(ω) = J(θ(ω), X ν t,x (θ)(ω); νω )
where, νω (ω) := ν(ω θ(ω) + T θ(ω) (ω)) is an element of U θ(ω) . This already proves A4-a.

As for A4-b, note that if ν := ν1 [0,θ] + ν1 (θ,T ] with ν ∈ U s and θ ∈ T t [t,s] , then the same computations imply

E f X ν t,x (T ) |F θ (ω) = f X ν(ω θ(ω) +T θ(ω) (ω)) θ(ω),X ν t,x (θ)(ω) (T )(T θ(ω) (ω)) dP(ω),
where we used the flow property together with the fact that X ν t,x = X ν t,x on [t, θ] and that the dynamics of X ν t,x depends only on ν after θ. Now observe that ν is independent of F s and therefore on ω θ(ω) since θ ≤ s P -a.s. It follows that

E f X ν t,x (T ) |F θ (ω) = f X ν(Ts(ω)) θ(ω),X ν t,x (θ)(ω) (T )(T θ(ω) (ω)) dP(ω) = J(θ(ω), X ν t,x ( 
θ)(ω); ν) . remark 5.5. It can be similarly proved that A4' holds true, in the context of mixed control-stopping problems.

PDE derivation.

We can now show how our weak formulation of the dynamic programming principle allows to characterize the value function as a discontinuous viscosity solution of a suitable Hamilton-Jacobi-Bellman equation.

Let C 0 denote the set of continuous maps on [0, T ]×R d endowed with the topology of uniform convergence on compact sets. To (t, x, p, A, ϕ) ∈ [0, T ]×R d ×R d ×M d ×C 0 , we associate the Hamiltonian of the control problem:

H(t, x, p, A, ϕ) := inf u∈U H u (t, x, p, A, ϕ),
where, for u ∈ U ,

H u (t, x, p, A, ϕ) := -µ(t, x, u), p - 1 2 Tr [(σσ )(t, x, u)A] - E (ϕ(t, x + β(t, x, u, e)) -ϕ(t, x)) λ(de),
and σ is the transpose of the matrix σ.

Notice that the operator H is upper-semicontinuous, as an infimum over a family of continuous maps (note that β is locally bounded uniformly with respect to its last argument and that λ is finite, by assumption). However, since the set U may be unbounded, it may fail to be continuous. We therefore introduce the corresponding lower-semicontinuous envelope:

H * (z) := lim inf z →z H(z )forz = (t, x, p, A, ϕ) ∈ S × R d × M d × C 0 . Corollary 5.6. Assume that V is locally bounded. Then: (i) V * is a viscosity subsolution of -∂ t V * + H * (., DV * , D 2 V * , V * ) ≤ 0on[0, T ) × R d . (ii) V * is a viscosity supersolution of -∂ t V * + H(., DV * , D 2 V * , V * ) ≥ 0on[0, T ) × R d .
Proof. 1. We start with the supersolution property. Assume to the contrary that there is (t

0 , x 0 ) ∈ [0, T ) × R d together with a smooth function ϕ : [0, T ) × R d -→ R satisfying 0 = (V * -ϕ)(t 0 , x 0 ) < (V * -ϕ)(t, x)for all(t, x) ∈ [0, T ) × R d , (t, x) = (t 0 , x 0 ), such that -∂ t ϕ + H(., Dϕ, D 2 ϕ, ϕ) (t 0 , x 0 ) < 0.
(5.3)

For ε > 0, let φ be defined by

φ(t, x) := ϕ(t, x) -ε(|t -t 0 | 2 + |x -x 0 | 4 ),
and note that φ converges uniformly on compact sets to ϕ as ε → 0. Since H is upper-semicontinuous and (φ, ∂ t φ, Dφ, D 2 φ)(t 0 , x 0 ) = (ϕ, ∂ t ϕ, Dϕ, D 2 ϕ)(t 0 , x 0 ), we can choose ε > 0 small enough so that there exist u ∈ U and r > 0, with t 0 + r < T , satisfying

-∂ t φ + H u (., Dφ, D 2 φ, φ) (t, x) < 0for all(t, x) ∈ B r (t 0 , x 0 ), (5.4) 
where we recall that B r (t 0 , x 0 ) denotes the ball of radius r and center (t 0 , x 0 ). Let (t n , x n ) n be a sequence in B r (t 0 , x 0 ) such that (t n , x n , V (t n , x n )) → (t 0 , x 0 , V * (t 0 , x 0 )), and let X n • := X u tn,xn (•) denote the solution of (5.1) with constant control ν = u and initial condition X n tn = x n , and consider the stopping time θ n := inf {s ≥ t n : (s, X n s ) / ∈ B r (t 0 , x 0 )} .

Note that θ n < T since t 0 + r < T . Applying Itô's formula to φ(•, X n ), and using (5.4) and (5.2), we see that φ(t n , x n ) = E φ(θ n , X n θn ) -θn tn ∂ t φ -H u (., Dφ, D 2 φ, φ) (s, X n s )ds ≤ E φ(θ n , X n θn ) .

Now observe that ϕ ≥ φ + η on ([0, T ] × R d ) \ B r (t 0 , x 0 ) for some η > 0. Hence, the above inequality implies that φ(t n , x n ) ≤ E ϕ(θ n , X n θn ) -η. Since (φ -V )(t n , x n ) → 0, we can then find n large enough so that V (t n , x n ) ≤ E ϕ(θ n , X n θn ) -η/2for sufficiently largen ≥ 1.

On the other hand, it follows from (3.2) that:

V (t n , x n ) ≥ sup ν∈Ut n E ϕ(θ n , X ν tn,xn (θ n )) ≥ E ϕ(θ n , X n θn ) ,
which is the required contradiction.

2. We now prove the subsolution property. Assume to the contrary that there is (t 0 , x 0 ) ∈ [0, T ) × R d together with a smooth function ϕ : [0, T ) × R d -→ R satisfying 0 = (V * -ϕ)(t 0 , x 0 ) > (V * -ϕ)(t, x)for all(t, x) ∈ [0, T ) × R d , (t, x) = (t 0 , x 0 ), such that -∂ t ϕ + H * (., Dϕ, D 2 ϕ, ϕ) (t 0 , x 0 ) > 0.

(5.5)

For ε > 0, let φ be defined by φ(t, x) := ϕ(t, x) + ε(|t -t 0 | 2 + |x -x 0 | 4 ), and note that φ converges uniformly on compact sets to ϕ as ε → 0. By the lowersemicontinuity of H * , we can then find ε, r > 0 such that t 0 + r < T and -∂ t φ + H u (., Dφ, D 2 φ, φ) (t, x) > 0for everyu ∈ U and (t, x) ∈ B r (t 0 , x 0 ). (5.6) Since (t 0 , x 0 ) is a strict maximizer of the difference V * -φ, it follows that sup ([0,T ]×R d )\Br(t0,x0) (V * -φ) ≤ -2η for some η > 0 .

(5.7)

Let (t n , x n ) n be a sequence in B r (t 0 , x 0 ) such that (t n , x n , V (t n , x n )) → (t 0 , x 0 , V * (t 0 , x 0 )).

For an arbitrary control ν n ∈ U tn , let X n := X ν n tn,xn denote the solution of (5.1) with initial condition X n tn = x n , and set θ n := inf {s ≥ t n : (s, X n s ) / ∈ B r (t 0 , x 0 )} .

Notice that θ n < T as a consequence of the fact that t 0 + r < T . We may assume without loss of generality that

|(V -φ)(t n , x n )| ≤ ηfor alln ≥ 1. (5.8) 
Applying Itô's formula to φ(•, X n ) and using (5.6) leads to φ(t n , x n ) = E φ(θ n , X n θn ) -θn tn ∂ t φ -H ν n (., Dφ, D 2 φ, φ) (s, X n s )ds ≥ E φ(θ n , X n θn ) .

In view of (5.7), the above inequality implies that φ(t n , x n ) ≥ E V * (θ n , X n θn ) + 2η, which implies by (5.8) that:

V (t n , x n ) ≥ E V * (θ n , X n θn ) + ηforn ≥ 1.
Since ν n ∈ U tn is arbitrary, this contradicts (3.1) for n ≥ 1 fixed.

remark 3 .

 3 [START_REF] Lions | Optimal Control of Diffusion Processes and Hamilton-Jacobi-Bellman Equations I[END_REF]. (The Bolza and Lagrange formulations) Consider the stochastic control problem under the so-called Lagrange formulation:

  .6) Note that we do not use here balls of the usual form B r (s, y) and consider the topoly induced by half-closed intervals on [0, T ]. The fact that t ≤ s for (t , x ) ∈ B(s, y; r) will play an important role when appealing to Assumption A4-b in Step 3 below. Clearly, {B(s, y; r) : (s, y) ∈ S, 0 < r ≤ r (s,y) } forms an open covering of (0, T ] × R d . It then follows from the Lindelöf covering Theorem, see e.g.[START_REF] Dugundj | Topology, Allyn and Bacon series in Advanced Mathematics[END_REF] Theorem 6.3 Chap. VIII, that we can find a countable sequence (t i , x i
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