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Introduction

Linear system theory over dioids

Discrete Event Dynamic Systems (DEDS) involving
synchronization

developed by analogy with conventional theory 1

Applications

1 manufacturing systems 2

2 communication networks

3

3 transportation systems:

railway networks

4

urban traffic

5

1
F. Baccelli, G. Cohen, G. J. Olsder and J. P. Quadrat, Synchronization and Linearity, 1992,

Wiley.
2

S. Lahaye, L. Hardouin, J.-L. Boimond, Models Combination in (Max,+) Algebra for the

Implementation of a Simulation and Analysis Software, 2003
3

J.Y. Le Boudec and P. Thiran, Network Calculus, 2001, Springer Verlag.
4

H. Braker, Algorithms and applications in timed discrete event systems, PhD thesis, 1993.
5

P. Lolito, E. Mancinelli and J.P. Quadrat, A minplus derivation of the fundamental car-traffic

law, 2001.
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Dioid

A dioid (D,⊕ ,⊗) is a set with two inner operations.

⊕ : commutative, associative, idempotent and admits a
neutral element ε

⊗ : associative, distributive with respect to the sum
and admits a neutral element e.

Order relation

The equivalence: a � b ⇔ a = a⊕ b defines a partial
order relation.

Example

Zmax = (Z ∪ {+∞,−∞},max ,+)
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Residuation theory 6

f residuated ⇔ inequation f (x) � b admits
a greatest solution f ](b)

f ] is called residual of f .

Example

La : x 7→ a⊗ x is residuated,
greatest solution of La(x) � b is L]

a(b) = b
a .

Application to JIT control

Composed mapping residuation 7

Let f : D → C and g : C → B. If f and g are residuated
then g ◦ f is residuated and (g ◦ f )] = f ] ◦ g ].

6
T. S. Blyth and M. F. Janowitz, Residuation theory,1972, Pergamon press

7
F. Baccelli, G. Cohen, G. J. Olsder and J. P. Quadrat, Synchronization and Linearity, §4.4.2,

1992, Wiley.
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Mapping restriction

Let f : D → C a mapping and A ⊆ D. We denote
f|A : A → C the mapping defined by f|A = f ◦ IdA where
IdA : A → D is the canonical injection.

A

6

D C-

�
��3IdA

f

f|A

Constrained residuation 8

Such problems consist in finding the greatest solution of
f|A(x) � b, with f residuated.

Proposition

If IdA is residuated, the constrained residuation problem
admits an optimal solution which is
f ]
|A(b) = (f ◦ IdA)](b) = Id ]

A ◦ f ](b).

8
G. Cohen, Residuation and applications, 1998.
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Fixed-point equations 9

x = Ax ⊕ b

x = A∗b least solution of equation x = Ax ⊕ b,

with A∗ =
+∞⊕
i=0

Ai .

x =
x

A
∧ b

x =
b

A∗
greatest solution of equation x =

x

A
∧ b.

9
F. Baccelli, G. Cohen, G. J. Olsder and J. P. Quadrat, Synchronization and Linearity, §4.5,

1992, Wiley.
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Representation of DEDS using dioids

I dater x(k): date of the k + 1-th occurence

I state representation:

{
x(k) = Ax(k − 1)⊕ Bu(k)
y(k) = Cx(k)

I γ-transform x of a dater x(k): x =
⊕
k∈Z

x(k)γk

ZmaxJγK: dioid of power series in γ

I state representation in ZmaxJγK:{
x = γAx ⊕ Bu
y = Cx .

I input/output representation:
y = C (γA)∗B ⊗ u = H ⊗ u
H: transfer matrix



Modelling and control
of urban bus networks

in dioids algebra

L. Houssin, S. Lahaye,
J.L. Boimond

Introduction

Preliminaries
Elements of dioid theory
Residuation theory
Representation of DEDS

Urban bus networks
Modelling
Functioning

Timetables synthesis
Problem description
Problem formalization
Solving the problem

Example

Conclusion

7/17

Representation of DEDS using dioids

I dater x(k): date of the k + 1-th occurence

I state representation:

{
x(k) = Ax(k − 1)⊕ Bu(k)
y(k) = Cx(k)

I γ-transform x of a dater x(k): x =
⊕
k∈Z

x(k)γk

ZmaxJγK: dioid of power series in γ

I state representation in ZmaxJγK:{
x = γAx ⊕ Bu
y = Cx .

I input/output representation:
y = C (γA)∗B ⊗ u = H ⊗ u
H: transfer matrix



Modelling and control
of urban bus networks

in dioids algebra

L. Houssin, S. Lahaye,
J.L. Boimond

Introduction

Preliminaries
Elements of dioid theory
Residuation theory
Representation of DEDS

Urban bus networks
Modelling
Functioning

Timetables synthesis
Problem description
Problem formalization
Solving the problem

Example

Conclusion

7/17

Representation of DEDS using dioids

I dater x(k): date of the k + 1-th occurence

I state representation:

{
x(k) = Ax(k − 1)⊕ Bu(k)
y(k) = Cx(k)

I γ-transform x of a dater x(k): x =
⊕
k∈Z

x(k)γk

ZmaxJγK: dioid of power series in γ

I state representation in ZmaxJγK:{
x = γAx ⊕ Bu
y = Cx .

I input/output representation:
y = C (γA)∗B ⊗ u = H ⊗ u
H: transfer matrix



Modelling and control
of urban bus networks

in dioids algebra

L. Houssin, S. Lahaye,
J.L. Boimond

Introduction

Preliminaries
Elements of dioid theory
Residuation theory
Representation of DEDS

Urban bus networks
Modelling
Functioning

Timetables synthesis
Problem description
Problem formalization
Solving the problem

Example

Conclusion

7/17

Representation of DEDS using dioids

I dater x(k): date of the k + 1-th occurence

I state representation:

{
x(k) = Ax(k − 1)⊕ Bu(k)
y(k) = Cx(k)

I γ-transform x of a dater x(k): x =
⊕
k∈Z

x(k)γk

ZmaxJγK: dioid of power series in γ

I state representation in ZmaxJγK:{
x = γAx ⊕ Bu
y = Cx .

I input/output representation:
y = C (γA)∗B ⊗ u = H ⊗ u
H: transfer matrix



Modelling and control
of urban bus networks

in dioids algebra

L. Houssin, S. Lahaye,
J.L. Boimond

Introduction

Preliminaries
Elements of dioid theory
Residuation theory
Representation of DEDS

Urban bus networks
Modelling
Functioning

Timetables synthesis
Problem description
Problem formalization
Solving the problem

Example

Conclusion

7/17

Representation of DEDS using dioids

I dater x(k): date of the k + 1-th occurence

I state representation:

{
x(k) = Ax(k − 1)⊕ Bu(k)
y(k) = Cx(k)

I γ-transform x of a dater x(k): x =
⊕
k∈Z

x(k)γk

ZmaxJγK: dioid of power series in γ

I state representation in ZmaxJγK:{
x = γAx ⊕ Bu
y = Cx .

I input/output representation:
y = C (γA)∗B ⊗ u = H ⊗ u
H: transfer matrix



Modelling and control
of urban bus networks

in dioids algebra

L. Houssin, S. Lahaye,
J.L. Boimond

Introduction

Preliminaries
Elements of dioid theory
Residuation theory
Representation of DEDS

Urban bus networks
Modelling
Functioning

Timetables synthesis
Problem description
Problem formalization
Solving the problem

Example

Conclusion

8/17

Modelling of a network: a first model

A =



ε ε ε a14 ε ε ε
a21 ε ε ε ε ε ε
ε a32 ε ε ε ε ε
ε ε a43 ε ε ε ε
ε ε ε ε a56 ε ε
ε ε ε ε ε a67 ε
ε ε ε ε a75 ε ε



xi (k) : departure time of the k+1-th bus at stop i .

x(k) ≥ Ax(k − 1)

Aij : travelling time from stop j to stop i
→ timetable

x(k) ≥ Bu(k)

Bii = e if buses respect timetable at stop i , Bij = ε
otherwise

x(k) = Ax(k − 1)⊕ Bu(k)
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Functioning of urban bus networks 10

Two stages:

1. Operating schedule

1 definition of the bus routes and the bus stops

2 choice of a level-of-service (resources distribution,
minimum and maximum headways)

3 synthesis of timetables

2. Regulation

adjustements of the operating schedule parameters in
reaction to the current functioning conditions.

10
S. Hayat and S. Maouche, Régulation du trafic des autobus : amélioration de la qualité des

correspondances, 1997
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reaction to the current functioning conditions.

10
S. Hayat and S. Maouche, Régulation du trafic des autobus : amélioration de la qualité des

correspondances, 1997
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Problem description 11

Find timetables which

ensure a level of service at particular stops of the
network: y(k) = C ′x(k) � z(k)

satisfy maximum and minimum headways:
u(k + 1) � 4minu(k)
u(k + 1) � 4maxu(k)

minimize waiting times :
we must consider a new model:

x(k) = A′x(k − 1)⊕ B ′u(k)

where A′ij = Aij if Aij 6= ε and
A′ij = wij if i in connection with j .

11
A. Ceder, B. Golany and O. Tal, Creating bus timetables with maximal synchronization,2000
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Problem formalization

In ZmaxJγK, find the greatest u such that{
LH(u) � z
u ∈ A (admissible domain)

(1)

where A is a subset of ZmaxJγK composed of series
satisfying minimum and maximum headways and
H = C ′(γA′)∗B ′.

A

6

ZmaxJγK ZmaxJγK-

�
�

�3
IdA

LH

LH|A

The constrained problem (1) is equivalent to solve:

LH|A(u) = LH ◦ IdA(u) � z
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Characterization of A
A is a subset of ZmaxJγK where

u ∈ A ⇔
{

4min γu � u
(4max)−1 γ−1u � u,

⇔ u =
u

(γ4min ⊕ γ−1(4max)−1)∗
=

u

p∗

A = {x ∈ ZmaxJγK | x = x
p∗ }

Details
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Residuability of IdA

By quotienting ZmaxJγK by the following equivalence
relation

{x R y} ⇐⇒ { x
p∗ = y

p∗ }

we can deduce that y
p∗ ∈ A is the greatest element of A

which is less than or equal to y .

⇔ the inequation IdA(x) � x ′ (with x ′ ∈ ZmaxJγK)
admits a greatest solution which is x ′

p∗ .
⇔ IdA is residuated and

Id ]
A(x ′) =

⊕
{x∈A|x�x ′}

x =
x ′

p∗

Proposition
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Since IdA is residuated, LH|A is residuated too and

L]
H|A

(z) = Id ]
|A ◦ L]

H(z) =
z
H
p∗

is the optimal solution to the constrained problem.
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Example

A′ =



ε ε 4 ε ε ε ε
3 ε ε ε ε ε ε
ε 5 ε ε ε ε ε
ε ε ε ε ε ε 1
e ε ε 7 ε ε ε
ε ε ε ε 8 ε ε
ε ε ε ε ε 8 ε



C ′ =
(

ε ε ε ε ε ε e
)

and B ′ = Id

target for x7:

k 1 2 3 4 5

z(k) 10 20 24 28 40

headway min 4min = 7
headway max 4max = 10
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k 1 2 3 4 5

y(k) 10 20 24 28 40

uopt6 (k) 12 16 20 32 >

uopt =
z

H

k 1 2 3 4 5

y(k) 7 14 21 28 38

uoptA6 (k) 6 13 20 30 40

uoptA =
z
H

p∗
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Conclusion

dioids algebra seems to be appropriate for the study
of public transportation networks :

• we have proposed a solution for the problem of
timetables generation

• stability of such networks has been studied

extension:
we try currently to control such systems considering
more general constraints.
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Just In Time control

For a given target z , find the greatest u such as
y = Hu � z .
→ residuation of LH leads to uopt = z

H .

Back
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Characterization of A{
4min u(k − 1) � u(k)

(4max)−1 u(k + 1) � u(k),

γ-transforms {
4min γu � u

(4max)−1 γ−1u � u,

and (4min γ ⊕ (4max)−1 γ−1) u � u.
Since product is residuated, we equivalently have

u =
u

4min γ ⊕ (4max)−1 γ−1
∧ u.

greatest solution:

u =
u

(γ4min ⊕ γ−1(4max)−1)∗
.

Back
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proposition

1 Each equivalence class of ZmaxJγK/R contains one

and only one element belonging to Π(ZmaxJγK) and
this element is explicitly given by x

p∗ for any x in the
class.

2 Element x
p∗ is the least element in [x ]R, and it is the

greatest element of Π(ZmaxJγK) which is less than x .

Back
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