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A Probabilistic Numerical Method for Fully Nonlinear

Parabolic PDEs ∗

Arash Fahim† Nizar Touzi‡ Xavier Warin§

March 10, 2009

Abstract

We consider the probabilistic numerical scheme for fully nonlinear PDEs suggested
in [10], and show that it can be introduced naturally as a combination of Monte Carlo
and finite differences scheme without appealing to the theory of backward stochastic dif-
ferential equations. Our first main result provides the convergence of the discrete-time
approximation and derives a bound on the discretization error in terms of the time step.
An explicit implementable scheme requires to approximate the conditional expectation
operators involved in the discretization. This induces a further Monte Carlo error. Our
second main result is to prove the convergence of the latter approximation scheme,
and to derive an upper bound on the approximation error. Numerical experiments are
performed for the approximation of the solution of the mean curvature flow equation in
dimensions two and three, and for two and five-dimensional (plus time) fully-nonlinear
Hamilton-Jacobi-Bellman equations arising in the theory of portfolio optimization in
financial mathematics.

Key words: Viscosity Solutions, monotone schemes, Monte Carlo approximation,
second order backward stochastic differential equations.
AMS 2000 subject classifications: 65C05, 49L25.

1 Introduction

We consider the probabilistic numerical scheme for the approximation of the solution of a
fully-nonlinear parabolic Cauchy problem suggested in [10]. In the latter paper, a repre-
sentation of the solution of the PDE is derived in terms of the newly introduced notion of
second order backward stochastic differential equations, assuming that the fully-nonlinear
parabolic Cauchy problem has a smooth solution. Then, similarly to the case of backward
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by Société Générale, the Chair Derivatives of the Future sponsored by the Fédération Bancaire Française,

the Chair Finance and Sustainable Development sponsored by EDF and Calyon.
†CMAP, Ecole Polytechnique Paris & Sharif University of Technology, Tehran,

arash.fahim@polytechnique.edu.
‡CMAP, Ecole Polytechnique Paris, nizar.touzi@polytechnique.edu.
§EDF R&D, Paris, xavier.warin@edf.fr.

1



stochastic differential equations which are connected to semi-linear PDEs, this representa-
tion suggests a backward probabilistic numerical scheme.

The representation result of [10] can be viewed as an extension of the Feynman-Kac
representation result, for the linear case, which is widely used in order to approach the
numerical approximation problem from the probabilistic viewpoint, and to take advantage
of the high dimensional properties of Monte Carlo methods. Previously, the theory of
backward stochastic differential equations provided an extension of these approximation
methods to the semilinear case. See for instance Chevance [11], El Karoui, Peng and Quenez
[15], Bally and Pagès [2], Bouchard and Touzi [9] and Zhang [28]. In particular, the latter
papers provide the convergence of the “natural” discrete-time approximation of the value
function and its partial space gradient with the same L2 error of order

√
h, where h is the

length of time step. The discretization involves the computation of conditional expectations,
which need to be further approximated in order to result into an implementable scheme.
We refer to [2], [9] and [17] for an complete asymptotic analysis of the approximation,
including the regression error.

In this paper, we observe that the backward probabilistic scheme of [10] can be introduced
naturally without appealing to the notion of backward stochastic differential equation. This
is shown is Section 2 where the scheme is decomposed into three steps:
(i) The Monte Carlo step consists in isolating the linear generator of some underlying
diffusion process, so as to split the PDE into this linear part and a remaining nonlinear
one.
(ii) Evaluating the PDE along the underlying diffusion process, we obtain a natural discrete-
time approximation by using finite differences approximation in the remaining nonlinear
part of the equation.
(iii) Finally, the backward discrete-time approximation obtained by the above steps (i)-(ii)
involves the conditional expectation operator which is not computable in explicit form. An
implementable probabilistic numerical scheme therefore requires to replace such conditional
expectations by a convenient approximation, and induces a further Monte Carlo type of
error.

In the present paper, we do not require the fully nonlinear PDE to have a smooth solution,
and we only assume that it satisfies a comparison result in the sense of viscosity solutions.
Our main objective is to establish the convergence of this approximation towards the unique
viscosity solution of the fully-nonlinear PDE, and to provide an asymptotic analysis of the
approximation error.

Our main results are the following. We first prove the convergence of the discrete-time
approximation for general nonlinear PDEs, and we provide bounds on the corresponding
approximation error for a class of Hamilton-Jacobi-Bellamn PDEs. Then, we consider the
implementable scheme involving the Monte Carlo error, and we similarly prove a conver-
gence result for general nonlinear PDEs, and we provide bounds on the error of approxi-
mation for Hamilton-Jacobi-Bellman PDEs. We observe that our convergence results place
some restrictions on the choice of the diffusion of the underlying diffusion process. First, a
uniform ellipticity condition is needed; we believe that this technical condition can be re-
laxed in some future work. More importantly, the diffusion coefficient is needed to dominate
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the partial gradient of the remaining nonlinearity with respect to its Hessian component.
Although we have no theoretical result that this condition is necessary, our numerical ex-
periments show that the violation of this condition leads to a serious mis-performance of
the method, see Figure 5.

Our proofs rely on the monotonic scheme method developed by Barles and Souganidis
[7] in the theory of viscosity solutions, and the recent method of shaking coefficients of
Krylov [21], [22] and [23] and Barles and Jakobsen [6], [5] and [4]. The use of the latter
type of methods in the context of a stochastic scheme seems to be new. Notice however,
that our results are of a different nature than the classical error analysis results in the
theory of backward stochastic differential equations, as we only study the convergence of
the approximation of the value function, and no information is available for its gradient or
Hessian with respect to the space variable.

A related work in the context of Hamilton-Jacobi-Bellman nonlinear PDEs, is by Bonnans
and Zidani [8] who introduced a finite difference scheme which satisfies the crucial mono-
tonicity condition of Barles and Souganidis [7] so as to ensure its convergence. Their main
idea is to discretize both time and space, approximate the underlying controlled forward
diffusion for each fixed control by a controlled local Markov chain on the grid, approximate
the derivatives in certain directions which are found by solving some further optimization
problem, and optimize over the control. Beyond the curse of dimensionality problem which
is encountered by finite differences schemes, we believe that our method is much simpler as
the monotonicity is satisfied without any need to treat separately the linear structures for
each fixed control, and without any further investigation of some direction of discretization
for the finite differences.

We finally observe a connection with the recent work of Kohn and Serfaty [20] who provide
a deterministic game theoretic interpretation for fully nonlinear parabolic problems. The
game is time limited and consists of two players. At each time step, one tries to maximize her
gain and the other to minimize it by imposing a penalty term to her gain. The nonlinearity
of the fully nonlinear PDE appears in the penalty. Also, although the nonlinear penalty
does not need to be elliptic, a parabolic nonlinearity appears in the limiting PDE. This
approach is very similar to the representation of [10] where such a parabolic envelope
appears in the PDE, and where the Brownian motion plays the role of the nature playing
against the player.

The paper is organized as follows. In Section 2, we provide a natural presentation of
the scheme without appealing to the theory of backward stochastic differential equations.
Section 3 is dedicated to the asymptotic analysis of the discrete-time approximation, and
contains our first main convergence result and the corresponding error estimate. In Section
4, we introduce the implementable backward scheme, and we further investigate the induced
Monte Carlo error. We again prove convergence and we provide bounds on the approxi-
mation error. Finally, Section 5 contains some numerical results for the mean curvature
flow equation on the plane and space, and for a five-dimensional Hamilton-Jacobi-Bellman
equation arising in the problem of portfolio optimization in financial mathematics.

Notations For scalars a, b ∈ R, we write a ∧ b := min{a, b}, a ∨ b := max{a, b}, and
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a+ := max{a, 0}. By M(n, d), we denote the collection of all n × d matrices with real
entries. The collection of all symmetric matrices of size d is denoted Sd, and its subset of
nonnegative symmetric matrices is denoted by S+

d . For a matrix A ∈ M(n, d), we denote
by AT its transpose. For A,B ∈ M(n, d), we denote A · B := Tr[ATB]. In particular, for
d = 1, A and B are vectors of Rn and A ·B reduces to the Euclidean scalar product.

For a function u from [0, T ] × Rd to R, we say that u has q−polynomial growth (resp.
α−exponential growth) if

sup
t≤T, x∈Rd

|u(t, x)|
1 + |x|q

<∞, (resp. sup
t≤T, x∈Rd

e−α|x||u(t, x)| <∞).

For a suitably smooth function ϕ on QT := (0, T ]× Rd, we define

|ϕ|∞ := sup
(t,x)∈QT

|ϕ(t, x)| and |ϕ|1 := |ϕ|∞ + sup
QT×QT

|ϕ(t, x)− ϕ(t′, x′)|
|x− x′|+ |t− t′|

1
2

.

Finally, we denote the Lp−norm of a r.v. R by ‖R‖p := (E[|R|p])1/p.

2 Discretization

Let µ and σ be two maps from R+ × Rd to M(d, d) and Rd. With a := σσT be the map
from R+ × Rd to S+

d , and define the linear operator:

LXϕ :=
∂ϕ

∂t
+ µ ·Dϕ+

1
2
a ·D2ϕ.

Given a map

F : (t, x, r, p, γ) ∈ R+ × Rd × R× Rd × Sd 7−→ F (x, r, p, γ) ∈ R

we consider the Cauchy problem:

−LXv − F
(
·, v,Dv,D2v

)
= 0, on [0, T )× Rd, (2.1)

v(T, ·) = g, on ∈ Rd. (2.2)

Under some conditions, a stochastic representation for the solution of this problem was pro-
vided in [10] by means of the newly introduced notion of second order backward stochastic
differential equations. As an important implication, such a stochastic representation sug-
gests a probabilistic numerical scheme for the above Cauchy problem.

The chief goal of this section is to obtain the probabilistic numerical scheme suggested
in [10] by a direct manipulation of (2.1)-(2.2) without appealing to the notion of backward
stochastic differential equations.

To do this, we consider an Rd-valued Brownian motion W on a filtered probability space
(Ω,F ,F,P), where the filtration F = {Ft, t ∈ [0, T ]} satisfies the usual completeness condi-
tions, and F0 is trivial.

For a positive integer n, let h := T/n, ti = ih, i = 0, . . . , n, and consider the one step
ahead Euler discretization

X̂t,x
h := x+ µ(t, x)h+ σ(t, x)(Wt+h −Wt), (2.3)

4



of the diffusion X corresponding to the linear operator LX . Our analysis does not require
any existence and uniqueness result for the underlying diffusionX. However, the subsequent
formal discussion assumes it in order to provides a natural justification of our numerical
scheme.

Assuming that the PDE (2.1) has a classical solution, it follows from Itô’s formula that

Eti,x

[
v

(
ti+1, Xti+1

)]
= v (ti, x) + Eti,x

[∫ ti+1

ti

LXv(t,Xt)dt
]

where we ignored the difficulties related to local martingale part, and Eti,x := E[·|Xti = x]
denotes the expectation operator conditional on {Xti = x}. Since v solves the PDE (2.1),
this provides

Eti,x

[
v

(
ti+1, Xti+1

)]
= v(ti, x)− Eti,x

[∫ ti+1

ti

F (·, v,Dv,D2v)(t,Xt)dt
]
.

By approximating the Riemann integral, and replacing the process X by its Euler dis-
cretization, this suggest the following approximation of the value function v

vh(T, .) := g and vh(ti, x) := Th[vh](ti, x), (2.4)

where we denoted for a function ψ : R+ × Rd −→ R with exponential growth:

Th[ψ](t, x) := E
[
ψ(t+ h, X̂t,x

h )
]

+ hF (·,Dhψ) (t, x), (2.5)

Dk
hψ(t, x) := E[Dkψ(t+ h, X̂t,x

h )], k = 0, 1, 2, Dhψ :=
(
D0

hψ,D1
hψ,D2

hψ
)
, (2.6)

and Dk is the k−th order partial differential operator with respect to the space variable x.
The differentiations in the above scheme are to be understood in the sense of distributions.
This algorithm is well-defined whenever g has exponential growth and F is a Lipschitz
map. To see this, observe that any function with exponential growth has weak gradient
and Hessian because the Gaussian kernel is a Schwartz function, and the exponential growth
is inherited at each time step from the Lipschitz property of F .

At this stage, the above backward algorithm presents the serious drawback of involving
the gradient Dvh(ti+1, .) and the Hessian D2vh(ti+1, .) in order to compute vh(ti, .). The
following result avoids this difficulty by an easy integration by parts argument.

Lemma 2.1 For every function ϕ : QT → R with exponential growth, we have:

Dhϕ(ti, x) = E[ϕ(ti+1, X̂
ti,x
h )Hh(ti, x)],

where Hh = (Hh
0 ,H

h
1 ,H

h
2 ) and

Hh
0 = 1, Hh

1 =
(
σT

)−1 Wh

h
, Hh

2 =
(
σT

)−1 WhW
T
h − hId

h2
σ−1. (2.7)

Proof. The main ingredient is the following easy observation. Let G be a one dimensional
Gaussian random variable with unit variance. Then, for any function f : R −→ R with
exponential growth, we have:

E[f(G)Hk(G)] = E[f (k)(G)], (2.8)
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where f (k) is the k−th order derivative of f in the sense of distributions, and Hk is the
one-dimensional Hermite polynomial of degree k.
1 Now, let ϕ : Rd −→ R be a function with exponential growth. Then, by direct
conditioning, it follows from (2.8) that

E
[
ϕ(X̂t,x

h )W i
h

]
= h

d∑
j=1

E
[
∂ϕ

∂xj
(X̂t,x

h )σji(t, x)
]
,

and therefore:

E
[
ϕ(X̂t,x

h )Hh
1 (t, x)

]
= σ(t, x)TE

[
∇ϕ(X̂t,x

h )
]
.

2 For i 6= j, it follows from (2.8) that

E
[
ϕ(X̂t,x

h )W i
hW

j
h

]
= h

d∑
k=1

E
[
∂ϕ

∂xk
(X̂t,x

h )W j
hσki(t, x)

]

= h2
d∑

k,l=1

E
[

∂2ϕ

∂xk∂xl
(X̂t,x

h )σlj(t, x)σki(t, x)
]
,

and for j = i:

E
[
ϕ(X̂t,x

h )((W i
h)2 − h)

]
= h2

d∑
k,l=1

E
[

∂2ϕ

∂xk∂xl
(X̂t,x

h )σli(t, x)σki(t, x)
]
.

This provides:

E
[
ϕ(X̂t,x

h )Hh
2 (t, x)

]
= σ(t, x)TE

[
∇2ϕ(X̂t,x

h )σ(t, x)
]
.

2

In view of Lemma 2.1 the iteration which computes vh(ti, .) out of vh(ti+1, .) in (2.4)-(2.5)
does not involve the gradient and the Hessian of the latter function.

Remark 2.1 Clearly, one can proceed to different choices for the integration by parts in
Lemma 2.1. One such possibility leads to the representation of Dh

2ϕ as:

Dh
2ϕ(t, x) = E

[
ϕ(X̂t,x

h )(σT)−1Wh/2

(h/2)

WT
h/2

(h/2)
σ−1

]
.

This representation shows that the backward scheme (2.4) is very similar to the probabilistic
numerical algorithm suggested in [10].

Observe that the choice of the drift and the diffusion coefficients µ and σ in the nonlinear
PDE (2.1) is arbitrary. So far, it has been only used in order to define the underlying
diffusion X. Our convergence result will however place some restrictions on the choice of
the diffusion coefficient, see Remark 3.2.

Once the linear operator LX is chosen in the nonlinear PDE, the above algorithm handles
the remaining nonlinearity by the classical finite differences approximation. This connection
with finite differences is motivated by the following formal interpretation of Lemma 2.1,
where for ease of presentation, we set d = 1, µ ≡ 0, and σ(x) ≡ 1:
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• Consider the binomial random walk approximation of the Brownian motion Ŵtk :=∑k
j=1wj , tk := kh, k ≥ 1, where {wj , j ≥ 1} are independent random variables

distributed as 1
2

(
δ√h + δ−

√
h

)
. Then, this induces the following approximation:

D1
hψ(t, x) := E

[
ψ(t+ h,Xt,x

h )Hh
1

]
≈ ψ(t, x+

√
h)− ψ(t, x−

√
h)

2
√
h

,

which is the centered finite differences approximation of the gradient.

• Similarly, consider the trinomial random walk approximation Ŵtk :=
∑k

j=1wj , tk :=
kh, k ≥ 1, where {wj , j ≥ 1} are independent random variables distributed as
1
6

(
δ{
√

3h} + 4δ{0} + δ{−
√

3h}

)
, so that E[wn

j ] = E[Wn
h ] for all integers n ≤ 4. Then,

this induces the following approximation:

D2
hψ(t, x) := E

[
ψ(t+ h,Xt,x

h )Hh
2

]
≈ ψ(t, x+

√
3h)− 2ψ(t, x) + ψ(t, x−

√
3h)

3h
,

which is the centered finite differences approximation of the Hessian.

In view of the above interpretation, the numerical scheme studied in this paper can be
viewed as a mixed Monte Carlo–Finite Differences algorithm. The Monte Carlo component
of the scheme consists in the choice of an underlying diffusion process X. The finite dif-
ferences component of the scheme consists in approximating the remaining nonlinearity by
means of the integration-by-parts formula of Lemma 2.1.

3 Asymptotics of the discrete-time approximation

3.1 The main results

Our first main convergence results follow the general methodology of Barles and Souganidis
[7], and requires that the nonlinear PDE (2.1) satisfies a comparison result in the sense of
viscosity solutions.

Definition 3.1 We say that (2.1) has strong comparison for bounded functions if for any
bounded upper semicontinuous viscosity supersolution v and any bounded lower semicontin-
uous subsolution v on [0, T )× Rd, satisfying
• either v(T, ·) ≥ v(T, ·),
• or the viscosity property of v and v holds true on [0, T ]× Rd,
we have v ≥ v.

The strong comparison principle is an important notion in the theory of viscosity solutions
which allows to handle situations where the boundary condition g is not compatible with
the equation. We recall that, if v is a continuous viscosity solution of (2.1)-(2.2), then v is
the unique continuous viscosity solution of (2.1) on [0, T )×Rd which is in addition satisfies
in the viscosity sense:

max
{
−LXv − F

(
·, v,Dv,D2v

)
, v − g

}
≥ 0 on {T} × Rd

min
{
−LXv − F

(
·, v,Dv,D2v

)
, v − g

}
≤ 0 on {T} × Rd.

(3.1)
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Remark 3.1 We could have imposed some technical assumption on F and g which ensure
that the above strong comparison assumption is satisfied. For more discussion, see Remark
4.8(2) in [10]. Moreover, notice that in some cases the strong comparison hypothesis in
theorem 3.1 could be replaced by weak comparison hypothesis.

In the sequel, we denote by Fr, Fp and Fγ the partial gradients of F with respect to r, p
and γ, respectively. We recall that any Lipschitz function is differentiable a.e.

Assumption F The nonlinearity F is Lipschitz-continuous with respect to (r, p, γ) uni-
formly in (t, x) and |F (t, x, 0, 0, 0)|∞ <∞. Moreover, F is uniformly elliptic and dominated
by the diffusion of the linear operator LX , i.e.

εId ≤ ∇γF ≤ a on Rd × R× Rd × Sd for some ε > 0. (3.2)

Remark 3.2 The above Condition (3.2) places some restrictions on the choice of the linear
operator LX in the nonlinear PDE (2.1). First, F is required to be uniformly elliptic,
implying an upper bound on the choice of the diffusion matrix σ. Since σσT ∈ S+

d , this
implies in particular that our main results do not apply to general degenerate nonlinear
parabolic PDEs. Second, the diffusion of the linear operator σ is required to dominate the
nonlinearity F which places implicitly a lower bound on the choice of the diffusion σ.

Example 3.1 Let us consider the nonlinear PDE in the one-dimensional case −∂v
∂t −

1
2

(
a2v+

xx − b2v−xx

)
where 0 < b < a are given constants. Then if we restrict the choice

of the diffusion to be constant, it follows from Condition F that 1
2a

2 ≤ σ2 ≤ b2, which
implies that a2 ≤ 2b2. If the parameters a and b do not satisfy the latter condition, then
the diffusion σ has to be chosen to be state and time dependent.

Theorem 3.1 (Convergence) Let Assumption F hold true, and assume that the fully
nonlinear PDE (2.1) has strong comparison for bounded functions. Then for every bounded
function g, there exists a bounded function v so that

vh −→ v locally uniformly.

In addition, v is the unique bounded viscosity solutionof the relaxed boundary problem (2.1)-
(2.2).

Remark 3.3 Assume that the coefficients µ and σ are bounded. Then, The restriction to
bounded terminal data g in the above Theorem 3.1 can be relaxed by an immediate change
of variable. Let g be a function with α−exponential growth for some α > 0. Fix some
M > 0, and let ρ be an arbitrary smooth positive function with:

ρ(x) = eα|x| for |x| ≥M,

so that both ρ(x)−1∇ρ(x) and ρ(x)−1∇2ρ(x) are bounded. Let

u(t, x) := ρ(x)−1v(t, x) for (t, x) ∈ [0, T ]× Rd.
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Then, the nonlinear PDE problem (2.1)-(2.2) satisfied by v converts into the following
nonlinear PDE for u:

−LXu− F̃
(
·, u,Du,D2u

)
= 0, on [0, T )× Rd and v(T, ·) = g̃ := ρ−1g on ∈ Rd,(3.3)

where

F̃ (t, x, r, p, γ) := rµ(x) · ρ−1∇ρ+
1
2
Tr

[
a(x)

(
rρ−1∇2ρ+ 2pρ−1∇ρT

)]
+ρ−1F

(
t, x, rρ, r∇ρ+ pρ, r∇2ρ+ 2p∇ρT + ργ

)
.

Recall that the coefficients µ and σ are assumed to be bounded. Then, it is easy to see
that F̃ satisfies the same conditions as F . Since g̃ is bounded, the convergence Theorem
3.1 applies to the nonlinear PDE (3.3). 2

Remark 3.4 The strong comparison assumption can be relaxed under some conditions to
the standard comparison assumption. For example if F is bounded or σ is constant and
F (x, r, p, γ) is between two linear functions in γ, then one can show that the subsolution
v∗ and supersolution v∗, introduced in [7], will satisfy the final condition:

v∗(T, ·) = v∗(T, ·) = g.

One can also check that, if g is C2 and F is Lipschitz continuous, standard comparison is
enough to achieve the results of this paper.

Remark 3.5 Theorem 3.1 states that the right hand-side inequality of (3.2) (i.e. diffusion
must dominate the nonlinearity in γ) is sufficient for the convergence of the Monte Carlo–
Finite Differences scheme. We do not know whether this condition is necessary:
• Subsection 3.4 suggests that this condition is not sharp in the simple linear case,
• however, our numerical experiments of Section 5 reveal that the method may have a poor
performance in the absence of this condition, see Figure 5.

We next provide bounds on the rate of convergence of the Monte Carlo–Finite Differences
scheme in the context of nonlinear PDEs of the Hamilton-Jacobi-Bellman type in the same
context as [6]. The following assumptions are stronger than Assumption F and imply that
the nonlinear PDE (2.1) satisfies a strong comparison result for bounded functions.

Assumption HJB The nonlinearity F satisfies (3.2), and is of the Hamilton-Jacobi-
Bellman type:

F (t, x, r, p, γ) = inf
α∈A

{Lα(t, x, r, p, γ)}

Lα(t, x, r, p, γ) :=
1
2
Tr[σασαT(t, x)γ] + bα(t, x)p+ cα(t, x)r + fα(t, x)

where the functions µ, σ, σα, bα, cα and fα satisfy:

|µ|∞ + |σ|∞ + sup
α∈A

(|σα|1 + |bα|1 + |cα|1 + |fα|1) < ∞.
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Assumption HJB+ The nonlinearity F satisfies HJB, and for any δ > 0, there exists
a finite set {αi}Mδ

i=1 such that for any α ∈ A:

inf
1≤i≤Mδ

|σα − σαi |∞ + |bα − bαi |∞ + |cα − cαi |∞ + |fα − fαi |∞ ≤ δ.

Theorem 3.2 (Rate of Convergence) Assume that the final condition g is bounded Lipschitz-
continuous. Then, there is a constant C > 0 such that:

(i) under Assumption HJB, we have v − vh ≤ Ch1/4,

(ii) under the stronger condition HJB+, we have −Ch1/10 ≤ v − vh ≤ Ch1/4.

The above bounds can be improved in some specific examples. See Subsection 3.4 for the
linear case where the rate of convergence is improved to

√
h.

We also observe that, in the PDE Finite Differences literature, the rate of convergence
is usually stated in terms of the discretization in the space variable |∆x|. In our context
of stochastic differential equation, notice that |∆x| is or the order of h1/2. Therefore, the
above upper and lower bounds on the rate of convergence corresponds to the classical rate
|∆x|1/2 and |∆x|1/5, respectively.

3.2 Proof of the convergence result

We now provide the proof Theorem 3.1 by building on Theorem 2.1 and Remark 2.1 of
Barles and Souganidis [7]. In this subsection, we show that our scheme is consistent,
monotone and stable in the sense of [7] as required by their Theorem 2.1.

Lemma 3.1 Let ϕ be a smooth function with bounded derivatives. Then for all (t, x) ∈
[0, T ]× Rd:

lim
(t′, x′) → (t, x)

(h, c) → (0, 0)

t′ + h ≤ T

[c+ ϕ](t′, x′)−Th[c+ ϕ](t′, x′)
h

= −
(
LXϕ+ F (·, ϕ,Dϕ,D2ϕ)

)
(t, x).

The proof is a straightforward application of Itô’s formula, and is omitted.

Lemma 3.2 Let ϕ,ψ : [0, T ]×Rd −→ R be two functions with exponential growth. Then:

ϕ ≤ ψ =⇒ Th[ϕ](t, x) ≤ Th[ψ](t, x) + Ch E[(ψ − ϕ)(t+ h, X̂t,x
h )] for some C > 0.

Proof. By Lemma 2.1 the operator Th can be written as:

Th[ψ](t, x) = E
[
ψ(X̂t,x

h )
]

+ hF
(
t, x,E[ψ(X̂t,x

h )Hh(t, x)]
)
.

10



Let f := ψ − ϕ ≥ 0 where ϕ and ψ are as in the statement of the lemma. Let Fτ denote
the partial gradient with respect to τ = (r, p, γ). By the mean value Theorem:

Th[ψ](t, x)−Th[ϕ](t, x) = E
[
f(X̂t,x

h )
]

+ hFτ (θ) · Dhf(X̂t,x
h )

= E
[
f(X̂t,x

h ) (1 + hFτ (θ) ·Hh(t, x))
]
,

for some θ = (t, x, r̄, p̄, γ̄). By the definition of Hh(t, x):

Th[ψ]−Th[ϕ] = E
[
f(X̂t,x

h )
(
1 + hFr + Fp.σ

T−1
Wh + h−1Fγ · σT−1

(WhW
T
h − hI)σ−1

)]
,

where the dependence on θ and x has been omitted for notational simplicity. Since Fγ ≤ a

by (3.2) of Assumption F, we have 1− a−1 · Fγ ≥ 0 and therefore:

Th[ψ]−Th[ϕ] ≥ E
[
f(X̂t,x

h )
(
hFr + Fp.σ

T−1
Wh + h−1Fγ · σT−1

WhW
T
h σ

−1
)]

= E
[
f(X̂t,x

h )
(
hFr + |Ah|2 −

h

4
FT

p (Fγ)−1Fp

)]
where

Ah :=
1√
h
F 1/2

γ σT−1
Wh +

√
h

2
F−1/2

γ Fp. (3.4)

Hence:

Th[ψ]−Th[ϕ] ≥ E
[
f(X̂t,x

h )
(
hFr −

h

4
FT

p F
−1
γ Fp

)]
≥ −ChE

[
f(X̂t,x

h )
]

for some constant C > 0, where the last inequality follows from the Lipschitz property of
F and the fact that |F−1

γ |∞ <∞ by (3.2). 2

The following observation will be used in the proof of Theorem 3.2 below.

Remark 3.6 The monotonicity result of the previous Lemma 3.2 is slightly different from
that required in [7]. However, as it is observed in Remark 2.1 in [7], their convergence
theorem holds under this approximate monotonicity. From the previous proof, we observe
that if the function F satisfies the condition:

Fr −
1
4
FT

p F
−1
γ Fp ≥ 0, (3.5)

then, the standard monotonicity condition

ϕ ≤ ψ =⇒ Th[ϕ](t, x) ≤ Th[ψ](t, x) (3.6)

holds. Using the parabolic feature of the equation, we may introduce a new function
u(t, x) := eθ(T−t)v(t, x) which solves a nonlinear PDE satisfying (3.5). Indeed, direct cal-
culation shows that the PDE inherited by u is:

−LXu− F
(
·, u,Du,D2u

)
= 0, on [0, T )× Rd (3.7)

u(T, x) = g(x), on Rd, (3.8)

where F (t, x, r, p, γ) = eθ(T−t)F (t, x, e−θ(T−t)r, e−θ(T−t)p, e−θ(T−t)γ) + θr. Then, it is easily
seen that F satisfies the same conditions as F together with (3.5) for sufficiently large θ.
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Lemma 3.3 Let ϕ,ψ : [0, T ]×Rd −→ R be two L∞−bounded functions. Then there exists
a constant C > 0 such that

|Th[ϕ]−Th[ψ]|∞ ≤ |ϕ− ψ|∞(1 + Ch)

In particular, if g is L∞−bounded, the family (vh)h defined in (2.4) is L∞−bounded, uni-
formly in h.

Proof. Let f := ϕ− ψ. Then, arguing as in the previous proof,

Th[ϕ]−Th[ψ] = E
[
f(X̂h)

(
1− a−1 · Fγ + |Ah|2 + hFr −

h

4
FT

p F
−1
γ Fp

)]
where Ah is given by (3.4). Since 1−Tr[a−1Fγ ] ≥ 0 and |F−1

γ |∞ <∞ by (3.2) of Assumption
F, it follows from the Lipschitz property of F that

|Th[ϕ]−Th[ψ]|∞ ≤ |f |∞
(
1− a−1 · Fγ + E[|Ah|2] + Ch

)
= |f |∞

(
1 +

h

4
FT

p F
−1
γ Fp + Ch

)
≤ |f |∞(1 + Ch).

To prove that the family (vh)h is bounded, we proceed by backward induction. By the
assumption of the lemma vh(T, .) = g is L∞−bounded. We next fix some i < n and we
assume that |vh(tj , .)|∞ ≤ Cj for every i + 1 ≤ j ≤ n − 1. Proceeding as in the proof of
Lemma 3.2 with ϕ ≡ vh(ti+1, .) and ψ ≡ 0, we see that∣∣∣vh(ti, .)

∣∣∣
∞

≤ h |F (t, x, 0, 0, 0)|+ Ci+1(1 + Ch).

Since F (t, x, 0, 0, 0) is bounded by Assumption F, it follows from the discrete Gronwall
inequality that |vh(ti, .)|∞ ≤ CeCT for some constant C independent of h. 2

3.3 Derivation of the rate of convergence

The proof of Theorem 3.2 is based on Barles and Jakobsen [6], which uses the Krylov
method of shaking coefficients [21].

3.3.1 Comparison result for the scheme

Because F does not satisfy the standard monotonicity condition (3.6) of Barles and Sougani-
dis [7], we need to introduce the nonlinearity F of Remark 3.6 so that F satisfies (3.5). Let
uh be the familiy of functions defined by

uh(T, .) = g and uh(ti, x) = Th[uh](ti, x), (3.9)

where for a function ψ from [0, T ]× Rd to R with exponential growth:

Th[ψ](t, x) := E
[
ψ(t+ h, X̂t,x

h )
]

+ hF (·,Dhψ) (t, x),

and set

vh(ti, x) := e−θ(T−ti)uh(ti, x), i = 0, . . . , n. (3.10)

The following result shows that the difference vh − vh is of higher order, and thus reduces
the error estimate problem to the analysis of the difference vh − v.

12



Lemma 3.4 Under Assumption F, we have

lim sup
h↘0

h−1|(vh − vh)(t, .)|∞ < ∞.

Proof. By definition of F , we directy calculate that:

vh(t, x) = e−θh(1 + hθ)E[vh(t+ h, X̂t,x
h )] + hF

(
t+ h, x,Dhv

h(t, x)
)
.

Since 1 + hθ = eθh +O(h2), this shows that vh(t, x) = Th[vh](t, x) +O(h2). By lemma 3.3,
we conclude that:

|(vh − vh)(t, ·)|∞ ≤ (1 + Ch)|(vh − vh)(t+ h, ·)|∞ +O(h2),

which shows by the Gronwall inequality that |(vh− vh)(t, ·)|∞ ≤ O(h) for all t ≤ T −h. 2

By Remark 3.6, the operator Th satisfies the standard monotonicity condition (3.6):

ϕ ≤ ψ =⇒ Th[ϕ] ≤ Th[ψ]. (3.11)

The key-ingredient for the derivation of the error estimate is the following comparison result
for the scheme.

Proposition 3.1 Let Assumption F holds true, and consider two arbitrary bounded func-
tions ϕ and ψ satisfying:

h−1
(
ϕ−Th[ϕ]

)
≤ g1 and h−1

(
ψ −Th[ψ]

)
≥ g2 (3.12)

for some bounded functions g1 and g2. Then, for every i = 0, · · · , n:

(ϕ− ψ)(ti, x) ≤ eβ(T−ti)|(ϕ− ψ)+(T, ·)|∞ + (T − h)eβ(T−ti)|(g1 − g2)+|∞ (3.13)

for some parameter β > |Fr|∞.

To prove this comparison result, we need the following strengthening of the monotonicity
condition:

Lemma 3.5 Let Assumption F hold true, let λ := |Fr|∞, and choose some parameter
β > |Fr|∞. Then, for every a ∈ R, b ∈ R+ and c ∈ R, and every bounded functions ϕ ≤ ψ,
the function δ(t) := eβ(T−t)(a+ b(T − t)) + c satisfies:

Th[ϕ+ δ](t, x) ≤ Th[ψ](t, x) + δ(t)− h(b− λc), t ≤ T − h, x ∈ Rd.

Proof. Because δ does not depend on x, we have Dh[ϕ + δ] = Dhϕ + δ(t + h)e1, where
e1 := (1, 0, 0). Then, it follows from the regularity of F that there exist some ξ such that:

F
(
t+ h, x,Dh[ϕ+ δ](t, x)

)
= F

(
t+ h, x,Dhϕ(t, x)

)
+ δ(t+ h)F r

(
t+ h, x, ξe1 +Dhϕ(t, x)

)
,
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and

Th[ϕ+ δ](t, x) = δ(t+ h) + E[ϕ(t+ h, X̂t,x
h )] + hF

(
t+ h, x,Dhϕ(t, x)

)
+hδ(t+ h)F r

(
t+ h, x, ξe1 +Dhϕ(t, x)

)
= T̄h[ϕ](t, x) + δ(t+ h)

{
1 + hF r

(
t+ h, x, ξe1 +Dhϕ(t, x)

)}
≤ Th[ϕ](t, x) +

(
1 + h|F r|∞

)
δ(t+ h).

Since Th satisfies the standard monotonicity condition (3.11), this provides:

T̄h[ϕ+ δ](t, x) ≤ Th[ψ](t, x) + δ(t) + ζ(t), where ζ(t) :=
(
1 + h|F r|∞

)
δ(t+ h)− δ(t).

It remains to prove that ζ(t) ≤ h(−b+λc) for a suitable choice of λ and β. We now choose
β > |F r|∞ and λ = |F r|∞. From the smoothness of δ, we have δ(t+ h)− δ(t) = hδ′(t̄) for
some t̄ ∈ [t, t+ h)]. Then, since δ is decreasing in t, we see that

h−1ζ(t) = δ′(t̄) + λδ(t+ h) ≤ δ′(t̄) + λδ(t̄) ≤ −beβ(T−t̄) + λc,

and the required estimate follows from the restriction b ≥ 0. 2

Proof of Proposition 3.1. We may refer directly to the similar result of [6]. However
in our context, we give the following simpler proof. Observe that we may assume without
loss of generality that

ϕ(T, ·) ≤ ψ(T, ·) and g1 ≤ g2. (3.14)

Indeed, one can otherwise consider the function

ψ̄ := ψ + eβ(T−t) (a+ b(T − t)) where a = |(ϕ− ψ)+(T, ·)|∞, b = |(g1 − g2)+|∞,

and β is the parameter defined in the previous Lemma 3.5, so that ψ̄(T, ·) ≥ ϕ(T, ·) and,
by Lemma (3.5), ψ̄(t, x)−Th[ψ̄](t, x) ≥ h(g1 ∨ g2). Hence (3.14) holds true for ϕ and ψ̄.

We now prove the required result by induction. First ϕ(T, ·) ≤ ψ(T, ·) by (3.14). We next
assume that ϕ(t + h, ·) ≤ ψ(t + h, ·) for some t + h ≤ T . Since Th satisfies the standard
monotonicity condition (3.11), it follows from (3.14) that

Th[ϕ](t, x) ≤ Th[ψ](t, x).

On the other hand, under (3.14), the hypothesis of the lemma implies:

ϕ(t, x)−Th[ϕ](t, x) ≤ ψ(t, x)−Th[ψ](t, x).

Then ϕ(t, ·) ≤ ψ(t, ·). 2

3.3.2 Proof of Theorem 3.2 (i)

Under the conditions of Assumption HJB on the coefficients, we may build a bounded
subsolution vε of the nonlinear PDE, by the method of shaking the coefficients, which is
Lipschitz in x, 1/2−Hölder continuous in t, and approximates uniformly the solution v:

v − ε ≤ vε ≤ v.

14



Let ρ(t, x) be a C∞ positive function supported in {(t, x) : t ∈ [0, 1], |x| ≤ 1} with unit
mass, and define

wε(t, x) := vε ∗ ρε where ρε(t, x) :=
1

εd+2
ρ

(
t

ε2
,
x

ε

)
(3.15)

so that, from the convexity of the operator F ,

wε is a subsolution of (2.1), |wε − v| ≤ 2ε. (3.16)

Moreover, since vε is Lipschitz in x, and 1/2−Hölder continuous in t,

wε is C∞, and
∣∣∣∂β0

t Dβwε
∣∣∣ ≤ Cε1−2β0−|β|1 for any (β0, β) ∈ N× Nd \ {0}, (3.17)

where |β|1 :=
∑d

i=1 βi, and C > 0 is some constant. As a consequence of the consistency
result of Lemma 3.1 above, we know that

Rh[wε](t, x) :=
wε(t, x)−Th[wε](t, x)

h
+ LXwε(t, x) + F (·, wε, Dwε, D2wε)(t, x)

converges to 0 as h→ 0. The next key-ingredient is to estimate the rate of convergence of
Rh[wε] to zero:

Lemma 3.6 For a family {ϕε}0<ε<1 of smooth functions satisfying (3.17), we have:

|Rh[ϕε]|∞ ≤ R(h, ε) := C hε−3 for some constant C > 0.

The proof of this result is reported at the end of this section. From the previous estimate
together with the subsolution property of wε, we see that wε ≤ Th[wε] +Ch2ε−3. Then, it
follows from Proposition 3.1 that

wε − vh ≤ C|(wε − vh)(T, .)|∞ + Chε−3 ≤ C(ε+ hε−3). (3.18)

We now use (3.16) and (3.18) to conclude that

v − vh ≤ v − wε + wε − vh ≤ C(ε+ hε−3).

Minimizing the right hand-side estimate over the choice of ε > 0, this implies the upper
bound on the error v − vh:

v − vh ≤ Ch1/4. (3.19)

3.3.3 Proof of Theorem 3.2 (ii)

The results of the previous section, together with the reinforced assumption HJB+, allow
to apply the switching system method of Barles and Jakobsen [6] which provides the lower
bound on the error:

v − vh ≥ − inf
ε>0
{Cε1/3 +R(h, ε)} = −C ′h1/10,
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for some constants C,C ′ > 0. The required rate of convergence follows again from Lemma
3.4 which states that the difference vh− vh is dominated by the above rate of convergence.

Proof of Lemma 3.6 Notice that the evolution of the Euler approximation X̂t,x
h between

t and t+ h is driven by a constant drift µ(t, x) and a constant diffusion σ(t, x). Since Dϕε

is bounded, it follows from Itô’s formula that:

1
h

[
Eϕε(t+ h, X̂x

h)− ϕε(t, x)
]
− LXϕε(t, x) =

1
h

E
∫ t+h

t

(
LX̂t,x

ϕε(u, X̂x
u)− LXϕε(t, x)

)
du,

where LX̂t,x
is the Dynkin operator associated to the Euler scheme:

LX̂t,x
ϕ(t′, x′) = ∂tϕ(t′, x′) + µ(t, x)Dϕ(t′, x′) +

1
2
Tr

[
a(t, x)D2ϕ(t′, x′)

]
.

Applying again Itô’s formula, and using the fact that LX̂t,x
Dϕε is bounded, leads to

1
h

[
Eϕε(t+ h, X̂x

h)− ϕε(t, x)
]
− LXϕε(t, x) =

1
h

E
∫ t+h

t

∫ u

t
LX̂t,xLX̂t,x

ϕε(s, X̂x
s )dsdu.

Using the boundedness of the coefficients µ and σ, it follows from (3.17) that for ε ∈ (0, 1):∣∣∣∣∣Eϕε(t+ h, X̂x
h)− ϕε(t, x)
h

− LXϕε(t, x)

∣∣∣∣∣ ≤ R0(h, ε) := C hε−3.

Step 2 This implies that

|Rh[ϕε](t, x)| ≤

∣∣∣∣∣Eϕε(t+ h, X̂t,x
h )− ϕε(t, x)
h

− LXϕε(t, x)

∣∣∣∣∣
+

∣∣F (x, ϕε(t, x), Dϕε(t, x), D2ϕε(t, x))− F (·,Dh[ϕε](t, x))
∣∣

≤ R0(h, ε) + C
2∑

k=0

∣∣∣EDkϕε(t+ h, X̂t,x
h )−Dkϕε(t, x)

∣∣∣ (3.20)

by the Lipschitz continuity of the nonlinearity F .
By a similar calculation as in Step 1, we see that:

|EDiϕε(t+ h, X̂t,x
h )−Dϕε(t, x)| ≤ Chε−1−i, i = 0, 1, 2,

which, together with (3.20), provides the required result. 2

Remark 3.7 Let µ and σ be Lipschitz in x and 1/2−Hölder-continuous in t. Then under
Assumption F, the function vh is Lipschitz in x and 1/2−Hölder-continuous in t, uniformly
in h.
We only report the proof that vh is Lipschitz in x, the 1/2−Hölder continuity follows the
same line of argument. We also report the following calculation in the one-dimensional case
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d = 1 in order to simplify the presentation. For fixed t ∈ [0, T −h], we argue as in the proof
of Lemma 3.2 to see that for x, x′ ∈ Rd with x 6= x′:

|vh(t, x)− vh(t, x′)| ≤
∣∣∣E[(

vh(t+ h, X̂t,x
h )− vh(t+ h, X̂t,x′

h )
)

(
1− σ−2(x)Fγ + h−1Fγσ

−2(x)W 2
h + Ch

)
+FγDv

h(t+ h, X̂t,x′

h )
(
σ−1(x)− σ−1(x′)

)
Wh

]∣∣∣,
for some positive constant C. Assuming that vh(t + h, .) is Lipschitz with constant Lt+h,
this shows that

lim sup
|x−x′|→0

|vh(t, x)− vh(t, x′)|
|x− x′|

≤
∣∣∣E[

Dvh(t+ h, X̂t,x
h )

{
(1 + ah+ b

√
hN)(1− α+ αN2 + Ch)

−βb
√
hN

}]∣∣∣,
where a := µ′(x), b := σ′(x), and β := σ−2(x)Fγ are all bounded and deterministic, and N
is a standard normal distribution. Let P̃ be the probability measure equivalent to P with
density Z := (1− α+ αN2 + Ch)/(1 + Ch). Then

lim sup
|x−x′|→0

|vh(t, x)− vh(t, x′)|
|x− x′|

≤ Lt+hEP̃
[∣∣∣(1 + ah+ b

√
hN)(1 + Ch)− βb

√
hNZ−1

∣∣∣]
≤ Lt+h

(
EP̃

[∣∣∣(1 + ah+ b
√
hN)(1 + Ch)− βb

√
hNZ−1

∣∣∣2])1/2

= Lt+h

(
E

[
Z

∣∣∣(1 + ah+ b
√
hN)(1 + Ch)− βb

√
hNZ−1

∣∣∣2])1/2

.

We next develop the calculation of the square term inside the expectation, and collect the
terms which are multiplied by the same power of h. The crucial observation is that the
coefficient

√
h is multiplied by (1 + Ch)bNZ − 2βbN which has zero mean. Hence

lim sup
|x−x′|→0

|vh(t, x)− vh(t, x′)|
|x− x′|

≤ Lt+h

√
1 + C ′h

for some constant C ′. Since the scheme consists of T/h steps, the latter estimate shows
that vh(t, .) is Lipschitz with constant bounded by:

LT

√
1 + C ′h

T/h ∼ LT e
TC′/2.

2

3.4 The rate of convergence in the linear case

In this subsection, we specialize the discussion to the linear one-dimensional case

F (γ) = cγ, (3.21)

for some c > 0. The multi-dimensional case d > 1 can be handled similarly. Assuming that
g is bounded, the linear PDE (2.1)-(2.2) has a unique bounded solution

v(t, x) = E
[
g

(
x+

√
1 + 2c WT−t

)]
for (t, x) ∈ [0, T ]× Rd. (3.22)
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We also observe that this solution v is C∞ ([0, T )× R) with

Dkv(t, x) = E
[
g(k)

(
x+

√
1 + 2c WT−t

)]
, t < T, x ∈ R. (3.23)

This shows in particular that v has bounded derivatives of any order, whenever the terminal
data g is C∞ and has bounded derivatives of any order.

Of course, one can use the classical Monte Carlo estimate to produce an approximation
of the function v of (3.22). The objective of this section is to analyze the error of the
numerical scheme outlined in the previous sections. Namely:

vh(T, ·) = g, vh(ti−1, x) = E
[
vh(ti, x+Wh)

]
+ chE

[
vh(ti, x+Wh)Hh

2

]
, i ≤ n. (3.24)

Here, σ = 1 and µ = 0 are used to write the above scheme.

Proposition 3.2 Consider the linear F of (3.21), and assume that D(2k+1)v is bounded
for every k ≥ 0. Then

lim sup
h→0

h−1/2|vh − v|∞ < ∞.

Proof. Since v has bounded first derivative with respect to x, it follows from Itô’s formula
that:

v(t, x) = E [v(t+ h, x+Wh)] + cE
[∫ h

0
4v(t+ s, v +Ws)ds

]
,

Then, in view of Lemma 2.1, the error u := v−vh satisfies u(tn, Xtn) = 0 and for i ≤ n−1:

u (ti, Xti) = Ei

[
u

(
ti+1, Xti+1

)]
+ ch Ei

[
4u

(
ti+1, Xti+1

)]
+cEi

∫ h

0

[
4v (ih+ s,Xih+s)−4v

(
(i+ 1)h,X(i+1)h

)]
ds, (3.25)

where Ei := E[·|Fti ] is the expectation operator conditional on Fti .
Step 1 Set

ak
i := E

[
4ku (ti, Xti)

]
, bki := E

∫ h

0

[
4kv

(
ti−1 + s,Xti−1+s

)
−4kv (ti, Xti)

]
ds,

and we introduce the matrices

A :=



1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 1 −1

0 · · · · · · 0 1


, B :=



0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · · · · · · · 0


,

and we observe that (3.25) implies that the vectors ak := (ak
1, . . . , a

k
n)T and bk := (bk1, . . . , b

k
n)T

satisfy Aak = chBak+1 + cBbk for all k ≥ 0, and therefore:

ak = chA−1Bak+1 + cA−1Bbk where A−1 =


1 1 · · · 1
0 1 · · · 1
...

. . . . . .
...

0 · · · 0 1

 . (3.26)
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By direct calculation, we see that the powers (A−1B)k are given by:

(A−1B)k
i,j = 1{j≥i+k}

(
j − i− 1
k − 1

)
for all k ≥ 1 and i, j = 1, . . . , n.

In particular, because ak
n = 0, (A−1B)n−1ak = 0. Iterating (3.26), this provides:

a0 = ch(A−1B)a1 + c(A−1B)b0 = . . . =
n−2∑
k=0

ck+1hk(A−1B)k+1bk,

and therefore:

u(0, x) = a0
1 = c

n−2∑
k=0

(ch)k(A−1B)k+1
1,j b

k. (3.27)

Because of

(A−1B)k
1,j = 1{j≥1+k}

(
j − 2
k − 1

)
for all k ≥ 1 and j = 1, . . . , n.

we can write (3.27):

u(0, x) = c
n−2∑
k=0

(ch)k
n∑

j=k+2

(
j − 2
k

)
bk−1
j .

By changing the order of the summations in the above we conclude that:

u(0, x) = c

n∑
j=2

j−2∑
k=0

(ch)k

(
j − 2
k

)
bk−1
j . (3.28)

Step 2 From our assumption that D2k+1v is L∞−bounded for every k ≥ 0, it follows that

|bkj | ≤ E

[∫ ti

ti−1

∣∣∣4kv(s,Xs)−4kv(tj , Xtj )
∣∣∣ ds] ≤ Ch3/2

for some constant C. We then deduce from (3.28) that:

|u(0, x)| ≤ cCh3/2
n∑

j=2

j−2∑
k=0

(ch)k

(
j − 2
k

)
So,

|u(0, x)| ≤ cCh3/2
n∑

j=2

(1 + ch)j−2 = cCh3/2 (1 + ch)n−1 − 1
ch

≤ Const
√
h
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4 Probabilistic Numerical Scheme

In order to implement the backward scheme (2.4), we still need to discuss the numerical
computation of the conditional expectations involved in the definition of the operators Th

in (2.5). In view of the Markov feature of the process X, these conditional expectations
reduce to simple regressions. Motivated by the problem of American options in financial
mathematics, various methods have been introduced in the literature for the numerical
approximation of these regressions. We refer to [9] and [17] for a detailed discussion.

The chief object of this section is to investigate the asymptotic properties of our suggested
numerical method when the expectation operator E in (2.4) is replaced by some estimator
ÊN corresponding to a sample size N :

T̃N
h [ψ](t, x) := ÊN

[
ψ(t+ h, X̂x

h)
]

+ hF
(
·, D̂hψ

)
(t, x), (4.1)

T̂N
h [ψ](t, x) := −Kh[ψ] ∨ T̃N

h [ψ](t, x) ∧Kh[ψ] (4.2)

where

D̂hψ(t, x) := ÊN
[
ψ(t+ h, X̂t,x

h )Hh(t, x)
]
, Kh[ψ] := ‖ψ‖∞(1 + C1h) + C2h,

and C1, C2 are derived from the proof of Lemma 3.3:

C1 =
1
4
‖FT

p F
−1
γ Fp + Fr‖∞ and C2 = ‖F (t, x, 0, 0, 0)‖∞.

The above bounds are needed for technical reasons which were already observed in [9].
With these notations, the implementable numerical scheme is:

v̂h
N (t, x, ω) = T̂N

h [v̂h
N ](t, x, ω), (4.3)

where T̂N
h is defined in (4.1)-(4.2), and the presence of ω throughout this section emphasizes

the dependence of our estimator on the underlying sample.
Let R be the family of random variables R of the form ψ(Wh)Hi(Wh) where ψ is a

bounded function and Hi’s are the Hermite polynomials:

H0(x) = 1, H1(x) = x and H2(x) = xTx− h ∀x ∈ Rd.

Assumption E There exist constants C, λ, ν > 0 such that
∥∥∥ÊN [R]− E[R]

∥∥∥
p
≤ Ch−λN−ν

for every R ∈ R, for some p ≥ 1.

Example 4.1 Consider the regression approximation based on the Malliavin integration
by parts as introduced in Lions and Reigner [24], Bouchard, Ekeland and Touzi [3], and
analyzed in the context of the simulation of backward stochastic differential equations by
[9] and [12]. Then Assumption E is satisfied for every p > 1 with the constants λ = d

4p and
ν = 1

2p , see [9].

Our next main result establishes conditions on the sample size N and the time step h

which guarantee the convergence of v̂h
N towards v.
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Theorem 4.1 Let Assumptions E and F hold true, and assume that the fully nonlinear
PDE (2.1) has strong comparison with growth q. Suppose in addition that

lim
h→0

hλ+2Nν
h = ∞. (4.4)

Assume that the final condition g is bounded Lipschitz, and the coefficients µ and σ are
bounded. Then, for almost every ω:

v̂h
Nh

(·, ω) −→ v locally uniformly,

where v is the unique viscosity solution of (2.1).

Proof. We adapt the argument of [7] to the present stochastic context. By Remark 3.6
and Lemma 3.4, we may assume without loss of generality that the strict monotonicity
(3.5) holds.

By (4.2), we see that v̂h is uniformly bounded. So, we can define:

v̂∗(t, x) := lim inf
(t′, x′) → (t, x)

h → 0

v̂h(t′, x′) and v̂∗(t, x) := lim sup
(t′, x′) → (t, x)

h → 0

v̂h(t′, x′). (4.5)

Our objective is to prove that v̂∗ and v̂∗ are respectively viscosity superpersolution and
subsolution of (2.1). By the comparison assumption, we shall then conclude that they
are both equal to the unique viscosity solution of the problem whose existence is given by
Theorem 3.1. In particular, they are both deterministic functions.

We shall only report the proof of the supersolution property, the subsolution property
follows from the same type of argument.

In order to prove that v̂∗ is a supersolution of (2.1), we consider (t0, x0) ∈ [0, T ) × Rn

together with a test function ϕ ∈ C2 ([0, T )× Rn), so that

0 = min{v̂∗ − ϕ} = (v̂∗ − ϕ)(t0, x0).

By classical manipulations, we can find a sequence (tn, xn, hn) → (t0, x0, 0) so that v̂hn(tn, xn) →
v̂∗(t0, x0) and

(v̂hn − ϕ)(tn, xn) = min{v̂hn − ϕ} =: Cn → 0.

Then, v̂hn ≥ ϕ+ Cn, and it follows from the monotonicity of the operator Th that:

Thn [v̂hn ] ≥ Thn [ϕ+ Cn].

By the definition of v̂hn in (4.3), this provides:

v̂hn(t, x) ≥ Thn [ϕ+ Cn](t, x)− (Thn − T̂hn)[v̂h
n](t, x),

where, for ease of notations, the dependence onNh has been dropped. Because v̂hn(tn, xn) =
ϕ(tn, xn) + Cn, the last inequality gives:

ϕ(tn, xn) + Cn −Thn [ϕ+ Cn](tn, xn) + hnRn ≥ 0, Rn := h−1
n (Thn − T̂hn)[v̂hn ](tn, xn).
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We claim that

Rn −→ 0 P− a.s. along some subsequence. (4.6)

Then, after passing to the subsequence, dividing both sides by hn, and sending n→∞, it
follows from Lemma 3.1 that:

−LXϕ− F
(
·, ϕ,Dϕ,D2ϕ

)
≥ 0,

which is the required supersolution property.
It remains to show (4.6). We start by bounding Rn with respect to the error of estimation

of conditional expectation. By Lemma 3.3, |Thn [v̂hn ]|∞ ≤ Khn and so by (4.2), we can
write: ∣∣∣(Thn − T̂hn

)
[v̂hn ](tn, xn)

∣∣∣ ≤
∣∣∣(Thn − T̃hn

)
[v̂hn ](tn, xn)

∣∣∣ . (4.7)

By the Lipschitz-continuity of F , we have:∣∣∣(Thn − T̂hn

)
[v̂hn ](tn, xn)

∣∣∣ ≤ C (E0 + hnE1 + hnE2) .

where:

Ei = |(E− Ê)[v̂hn(tn + hn, X
xn
hn

)Hhn
i (tn, xn)]|

∣∣∣(Thn − T̂hn

)
[v̂hn ](tn, xn)

∣∣∣ ≤ C
(∣∣∣(E− Ê)[R0

n]
∣∣∣ +

∣∣∣(E− Ê)[R1
n]

∣∣∣ + h−1
n

∣∣∣(E− Ê)[R2
n]

∣∣∣) .
where Ri

n = v̂hn
(
tn +hn, xn +σ(x)Wh

)
Hi(Wh), i = 1, 2, 3 and Hi is Hermite polynomial of

degree i. This leads the following estimate for the error Rn:

|Rn| ≤ C

hn

(∣∣∣(E− Ê)[R0
n]

∣∣∣ +
∣∣∣(E− Ê)[R1

n]
∣∣∣ + h−1

n

∣∣∣(E− Ê)[R2
n]

∣∣∣) . (4.8)

Because Ri
n ∈ R by Assumption E we have,:

‖Rn‖p ≤ Ch−λ−2
n N−ν

hn
,

so by (4.4) we have ‖Rn‖p −→ 0 which implies (4.6). 2

We finally discuss the choice of the sample size so as to keep the same rate for the error
bound.

Theorem 4.2 Let the nonlinearity F be as in Assumption HJB, and consider a regression
operator satisfying Assumption E. Let the sample size Nh be such that

lim
h→0

hλ+ 21
10Nν

h > 0. (4.9)

Then, for any bounded Lipschitz final condition g, we have the following Lp−bounds on the
rate of convergence:

‖v − v̂h‖p ≤ Ch1/10.
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Proof. By Remark 3.6 and Lemma 3.4, we may assume without loss of generality that the
strict monotonicity (3.5) holds true.

We proceed as in the proof of Theorem 3.2 to see that

v − v̂h ≤ v − vh + vh − v̂h = ε+R(h, ε) + vh − v̂h.

Since v̂h satisfies (4.3),

h−1
(
v̂h −Th[v̂h]

)
≥ −Rh[v̂h] where Rh[ϕ] :=

1
h

∣∣∣(Th − T̂h

)
[ϕ]

∣∣∣ ,
where, in the present context, Rh[v̂h] is a non-zero stochastic term. By Proposition 3.1, it
follows from the last inequality that:

v − v̂h ≤ C
(
ε+R(h, ε) +Rh[v̂h]

)
,

where the constant C > 0 depends only on the Lipschitz coefficient of F , β in Lemma 3.5
and the constant in Lemma 3.6.

Similarly, we follow the line of argument of the proof of Theorem 3.2 to show that a lower
bound holds true, and therefore:

|v − v̂h| ≤ C
(
ε1/3 +R(h, ε) +Rh[v̂h]

)
,

We now use (4.9) and proceed as in the last part of the proof of Theorem 4.1 to deduce
from (4.8) and Assumption F that

‖Rh[v̂h]‖p ≤ Ch1/10.

With this choice of the sample size N , the above error estimate reduces to

‖v̂h − v‖p ≤ C
(
ε1/3 +R(h, ε) + h1/10

)
,

and the additional term h1/10 does not affect the minimization with respect to ε. 2

Example 4.2 Let us illustrate the convergence results of this section in the context of the
Malliavin integration by parts repression method of [24] and [9] where λ = d

4p and ν = 1
2p

for every p > 1. So, for the convergence result we need to choose Nh of the order of h−α0

with α0 >
d
2 +4p. For the Lp-rate of convergence result, we need to choose Nh of the order

of h−α1 with α1 ≥ d
2 + 21p

5 .

5 Numerical Results

In this section, we provide an application of the Monte Carlo-finite differences scheme sug-
gested in this paper in the context of two different types of problems. We first consider
the classical mean curvature flow equation as the simplest front propagation example. We
test our backward probabilistic scheme on the example where the initial data is given by a
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sphere, for which an easy explicit solution is available. A more interesting geometric exam-
ple in space dimensions 2 is also considered. We next consider the Hamilton-Jacobi-Bellman
equation characterizing the classical optimal investment problem in financial mathematics.
Here, we again test our scheme in dimension two where an explicit solution is available, and
we consider more involved examples in space dimension 5, in addition to the time variable.

In all examples considered in this section the operator F (t, x, r, p, γ) does not depend on
the r−variable. We shall then drop this variable from our notations, and we simply write
the scheme as:

vh(T, .) := g and
vh(ti, x) := E[vh(ti+1, X̂

x
h)] + hF

(
ti, x,Dhv

h(ti, x)
) (5.1)

where

Dhψ :=
(
D1

hψ,D2
hψ

)
,

and D1
h and D2

h are defined in Lemma 2.1. We recall from Remark 2.1 that:

D2
2hϕ(ti, x) = E

[
ϕ(ti + 2h, X̂ti,x

2h )
(
σT

)−1 (Wti+h −Wti)(Wti+h −Wti)
T − hId

h2
σ−1

]
= E

[
D1

hϕ(ti + h, X̂ti,x
h )

(
σT

)−1 Wti+h −Wti

h

]
The second representation is the one reported in [10] where the present backward probabilis-
tic scheme was first introduced. These two representations induce two different numerical
schemes because once the expectation operator E is replaced by an approximation ÊN ,
equality does not hold anymore in the latter equation for finite N . In our numerical ex-
amples below, we provide results for both methods. The numerical schemes based on the
first (resp. second) representation will be referred to as scheme 1 (resp. 2). An important
outcome of our numerical experiments is that scheme 2 turns out to have a significantly
better performance than scheme 1.

Remark 5.1 The second scheme needs some final condition for D1
hϕ(T,XT−h,x

h ). Since g
is smooth in all our examples, we set this final condition to ∇g. Since the second scheme
turns out to have a better performnace, we may also use the final condition for Z suggested
by the first scheme.

We finally discuss the choice of the regression estimator in our implemented examples.
Two methods have been used:

• The first method is the basis projection a la Longstaff and Schwartz [25], as devel-
oped in [17]. We use regression functions with localized support : on each support
the regression functions are chosen linear and the size of the support is adaptative
according to the Monte Carlo distribution of the underlying process.

• The second method is based on the Malliavin integration by parts formula as suggested
in [24] and further developed in [3]. In particular, the optimal exponential localization
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function φk(y) = exp(−ηky) in each direction k is chosen as follows. The optimal
parameter ηk is provided in [3] and should be chosen for each conditional expectation
depending on k. Our numerical experiments however revealed that such optimal
parameters do not provide sufficiently good performance, and more accurate results
are obtained by choosing ηk = 5/

√
∆t for all values of k.

5.1 Mean curvature flow problem

The mean curvature flow equation describes the motion of a surface where each point moves
along the inward normal direction with speed proportional to the mean curvature at that
point. This geometric problem can be characterized as the zero-level set S(t) := {x ∈ Rd :
v(t, x) = 0} of a function v(t, x) depending on time and space satisfying the geometric
partial differential equation:

vt −∆v +
Dv ·D2vDv

|Dv|2
= 0 and v(0, x) = g(x) (5.2)

and g : Rd −→ R is a bounded Lipschitz-continuous function. We refer to [27] for more
details on the mean curvature problem and the corresponding stochastic representation.

To model the motion of a sphere in Rd with radius 2R > 0, we take g(x) := 2R− |x|2 so
that g is positive inside the sphere and negative outside. We first solve the sphere problem
in dimension 3. In this case, it is well-known that the surface S(t) is a sphere with a radius
R(t) equal to 2

√
R2 − t for t ∈ (0, R2). Reversing time, we rewrite (5.2) for t ∈ (0, T ) with

T = R2:

−vt −
1
2
σ2∆v + F (x,Dv,D2v) = 0 and v(T, x) = g(x), (5.3)

where

F (x, z, γ) := γ

(
1
2
σ2 − 1

)
+
z · γz
|z|2

.

We implement our Monte Carlo-finite differences scheme to provide an approximation v̂h of
the function v. As mentioned before, we implement four methods: Malliavin integration by
parts-based or basis projection-based regression, and scheme 1 or 2 for the representation
of the Hessian.

Given the approximation v̂h, we deduce an approximation of the surface Ŝh(t) := {x ∈
R3 : v̂h(t, x) = 0)} by using a dichotomic gradient descent method using the estimation
of the gradient D1v estimated along the resolution. The dichotomy is stopped when the
solution is localized within 0.01 accuracy.

Remark 5.2 Of course the use of the gradient is not necessary in the present context
where we know that S(t) is a sphere at any time t ∈ [0, T ). The algorithm described above
is designed to handle any type of geometry.

Remark 5.3 In our numerical experiments, the nonlinearity F is truncated so that it is
bounded by an arbitrary value taken equal to 200.
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Our numerical results show that Malliavin and basis projection methods give similar
results. However, for a given number of sample paths, the basis projection method of [17]
are slightly more accurate. Therefore, all results reported for this example correspond to
the basis projection method.

Figure 1 provides results obtained with one million particles and 10× 10× 10 mesh with
a time step equal to 0.0125. The diffusion coefficient σ is taken to be either 1 or 1.8.
We observe that results are better with σ = 1. We also observe that the error increases
near time 0.25 corresponding to an acceleration of the dynamics of the phenomenon, and
suggesting that a thinner time step should be used at the end of simulation.

Figure 1: Solution of the mean curvature flow for the sphere problem

Figure 2 plots the difference between our calculation and the reference for scheme 1 and
volatility 1 and 1.8 for varying time step. We notice that some points at time T = 0.25
are missing due to a non convergence of the gradient method for a diffusion σ = 1.8. The
corresponding results with scheme 2 are reported in figure 3. We observe that results for
scheme 2 are slightly better than results for scheme 1.

We finally report in Figure 4 some numerical results for the mean curvature flow problem
in dimension 2 with a more interesting geometry: the initial surface (i.e. the zero-level
set for v) consists of two disks with unit radius, with centers positioned at -1.5 and 1.5
and connected by a stripe of unit width. We give the resulting deformation with scheme 2
for a diffusion σ = 1, a time step h = 0.0125, and one million particles. Once again, the
Malliavin integration by parts based regression method and the basis projection method
with 10× 10 meshes produce similar results. We used 1024 points to describe the surface.
One advantage of this method is the total parallelization that can be performed to solve the
problem for different points on the surface : for the results given parallelization by Message
Passing (MPI) was achieved.
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Figure 2: Mean curvature flow problem for different time step and diffusion: scheme 1

Figure 3: Mean curvature flow problem for different time step and diffusions: scheme 2

5.2 Continuous-time portfolio optimization

We next report an application to the continuous-time portfolio optimization problem in
financial mathematics. Let {St, t ∈ [0, T ]} be an Itô process modeling the price evolution of
n financial securities. The investor chooses an adapted process {θt, t ∈ [0, T ]} with values
in Rn, where θi

t is the amount invested in the i−th security held at time t. In addition, the
investor has access to a non-risky security (bank account) where the remaining part of his
wealth is invested. The non-risky asset S0 is defined by a an adapted interest rates process
{rt, t ∈ [0, T ]}, i.e. dS0

t = S0
t rtdt, t ∈ [0, 1]. Then, the dynamics of the wealth process is

described by:

dXθ
t = θt ·

dSt

St
+ (Xθ

t − θt · 1)
dS0

t

S0
t

= θt ·
dSt

St
+ (Xθ

t − θt · 1)rtdt.

Let A be the collection of all adapted processes θ with values in Rn, which are integrable
with respect to S and such that the process Xθ is uniformly bounded from below. Given
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Figure 4: Mean curvature flow problem in 2D

an absolute risk aversion coefficient η > 0, the portfolio optimization problem is defined by:

v0 := sup
θ∈A

E
[
− exp

(
−ηXθ

T

)]
. (5.4)

Under fairly general conditions, this linear stochastic control problem can be characterized
as the unique viscosity solution of the corresponding HJB equation. The main purpose
of this subsection is to implement our Monte Carlo-finite differences scheme to derive an
approximation of the solution of the fully nonlinear HJB equation in non-trivial situations
where the state has a few dimensions. We shall first start by a two-dimensional example
where an explicit solution of the problem is available. Then, we will present some results
in a five dimensional situation.

5.2.1 A two dimensional problem

Let d = 1, rt = 0 for all t ∈ [0, 1], and assume that the security price process is defined by
the Heston model [18]:

dSt = µStdt+
√
YtStdW

(1)
t

dYt = k(m− Yt)dt+ c
√
Yt

(
ρdW

(1)
t +

√
1− ρ2dW

(2)
t

)
,

where W = (W (1),W (2)) is a Brownian motion in R2. In this context, it is easily seen that
the portfolio optimization problem (5.4) does not depend on the state variable s. Given
an initial state at the time origin t given by (Xt, Yt) = (x, y), the value function v(t, x, y)
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solves the HJB equation:

v(T, x, y) = −e−ηx and 0 = −vt − k(m− y)vy − 1
2c

2yvyy − sup
θ∈R

(
1
2
θ2yvxx + θ(µvx + ρcyvxy

)
= −vt − k(m− y)vy − 1

2c
2yvyy +

(µvx + ρcyvxy)2

2yvxx
.

(5.5)
A quasi explicit solution of this problem was provided by Zariphopoulou [29]:

v(t, x, y) = −e−ηx

∥∥∥∥exp
(
−1

2

∫ T

t

µ2

Ỹs

ds

)∥∥∥∥
L1−ρ2

(5.6)

where the process Ỹ is defined by

Ỹt = y and dỸt = (k(m− Ỹt)− µcρ)dt+ c

√
ỸtdWt.

In order to implement our Monte Carlo-finite differences scheme, we re-write (5.5) as:

−vt − k(m− y)vy −
1
2
c2yvyy −

1
2
σ2vxx + F

(
y,Dv,D2v

)
= 0, v(T, x, y) = −e−ηx, (5.7)

where σ > 0 and the nonlinearity F : R× R2 × S2 is given by:

F (y, z, γ) =
1
2
σ2γ11 +

(µz1 + ρcyγ12)2

2yγ11
.

Notice that the nonlinearity F does not to satisfy Assumption F, we consider the truncated
nonlinearity:

Fε,n :=
1
2
σ2γ11 − sup

ε≤θ≤n

(
1
2
θ2(y ∨ ε)vxx + θ(µvx + ρc(y ∨ ε)vxy

)
,

for some ε, n > 0 jointly chosen with σ so that Assumption F holds true. Under this form,
the forward two-dimensional diffusion is defined by:

dX
(1)
t = σdW

(1)
t , and dX

(2)
t = k(m−X

(2)
t )dt+ c

√
X

(2)
t dW

(2)
t . (5.8)

In order to guarantee the non-negativity of the discrete-time approximation of the process
X(2), we use the implicit Milstein scheme [19]:

X(2)
n =

X
(2)
n−1 + km∆t+ c

√
X

(2)
n−1ξn

√
∆t+ 1

4c
2∆(ξ2n − 1)

1 + k∆t
(5.9)

where (ξn)n≥1 is a sequence of independent random variable with distribution N(0, 1).
Our numerical results correspond to the following values of the parameter: µ = 0.15,

c = 0.2, k = 0.1, m = 0.3, Y0 = m, ρ = 0. The initial value of the portfolio is x0 = 1,
the maturity T is taken equal to one year. With this parameters, the value function is
computed from the quasi-explicit formula (5.6) to be v0 = −0.3534.

We also choose n = 40 for the truncation of the nonlinearity. This choice turned out to
be critical as an initial choice of n = 10 produced an important bias in the results.
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The two schemes have been tested with the Malliavin and basis projection methods. The
latter was applied with 40× 10 basis functions. We provide numerical results correspond-
ing to 2 millions particles. Our numerical results show that the Malliavin and the basis
projection methods produce very similar results, and achieve a good accuracy: with 2 mil-
lions particles, we calculate the variance of our estimates by performing 100 independent
calculations:

• the results of the Malliavin method exhibit a standard deviation smaller than 0.005
for scheme one (except for a step equal to 0.025 and a volatility equal to 1.2 where
standard deviation jumped to 0.038), 0.002 for scheme two ,

• the results of the basis projection method exhibit a standard deviation smaller than
0.002 for scheme 1 and 0.0009 for scheme two.

Figure 5 provides the plots of the errors obtained by the integration by parts-based
regression with Schemes one and two. All solutions have been calculated as the average
of 100 calculations. We first observe that for a small diffusion coefficient σ = 0.2, the
numerical performance of the algorithm is very poor: surprisingly, the error increases as
the time step shrinks to zero and the method seems to be biased. This numerical result
hints that the requirement that the diffusion should dominate the nonlinearity in Theorem
3.1, i.e. the right hand-side inequality in (3.2) of Assumption F, might be a sharp condition.
We also observe that Scheme one has a persistent bias even for a very small time step, while

Figure 5: Difference between calculation and reference for scheme one and two

Scheme two exhibits a better convergence towards the solution.

5.2.2 A five dimensional example

We now let n = 2, and we assume that the interest rate process is defined by the Ornstein-
Uhlenbeck process:

drt = κ(b− rt)dt+ ζdW
(0)
t .
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While the price process of the second security is defined by a Heston model, the first
security’s price process is defined by a CEV-SV models, see e.g. [26] for a presentation of
these models and there simulation:

dS
(i)
t = µiS

(i)
t dt+ σi

√
Y

(i)
t S

(i)
t

βi
dW

(i,1)
t , β2 = 1,

dY
(i)
t = ki

(
mi − Y

(i)
t

)
dt+ ci

√
Y

(i)
t dW

(i,2)
t

where
(
W (0),W (1,1),W (1,2),W (2,1),W (2,2)

)
is a Brownian motion in R5, and for simplicity

we considered a zero-correlation between the security price process and its volatility process.
Since β2 = 1, the value function of portfolio optimization problem (5.4) does not depend

on the s(2)−variable. Given an initial state (Xt, rt, S
(1)
t , Y

(1)
t , Y

(2)
t ) = (x, r, s1, y1, y2) at the

time origin t, the value function v (t, x, r, s1, y1, y2) satisfies the HJB equation:

0 = −vt − (Lr + LY + LS1
)v − rxvx

− sup
θ=(θ1,θ2)

{
θ1 · (µ− r1)vx + θ1σ

2
1y1s

2β1−1
1 vxs1 +

1
2
(θ2

1σ
2
1y1s

2β1−2
1 + θ2

2σ
2
2y2)vxx

}
= −vt − (Lr + LY + LS1

)v − rxvx

+
((µ1 − r)vx + σ2

1y1s
2β1−1
1 vxs1)

2

2σ2
1y1s

2β1−2
1 vxx

+
((µ2 − r)vx)2

2σ2
2y2vxx

(5.10)

where

Lrv = κ(b− r)vr +
1
2
ζ2vrr, LY v =

2∑
i=1

ki (mi − yi) vyi +
1
2
c2i yivyiyi ,

and LS1
v = µ1s1vs1 −

1
2
σ2

1s1y1vs1s1 .

In order to implement our Monte Carlo-finite differences scheme, we re-write (5.10) as:

−vt − (Lr + LY + LS1
)v − 1

2σ
2vxx + F

(
(x, r, s1, y1, y2), Dv,D2v

)
= 0,

v(T, x, r, s1, y1, y2) = −e−ηx,
(5.11)

where σ > 0, and the nonlinearity F : R× R2 × S2 is given by:

F (x, z, γ) =
1
2
σ2γ11 − x1x2z1 +

((µ1 − x2)z1 + σ2
1x4x

2β1−1
3 γ1,3)2

2σ2
1x4x

2β1−2
3 γ11

+
((µ2 − x2)z1)2

2σ2
2x5γ11

.

We next consider the truncated nonlinearity:

Fε,n :=
1
2
σ2γ11 − x1x2z1 + sup

ε≤|θ|≤n

{
(θ · (µ− r1)vx + θ1σ

2
1(y1 ∨ ε)(s1 ∨ ε)2β1−1vxs1

+
1
2
(θ2

1σ
2
1(y1 ∨ ε)(s1 ∨ ε)2β1−2 + θ2

2σ
2
2(y2 ∨ ε))vxx

}
,
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where ε, n > 0 are jointly chosen with σ so that Assumption F holds true. Under this form,
the forward two-dimensional diffusion is defined by:

dX
(1)
t = σdW

(0)
t , dX

(2)
t = κ(b−X

(2)
t )dt+ ζdW

(1)
t ,

dX
(3)
t = µ1X

(3)
t dt+ σ1

√
X

(4)
t X

(3)
t

β1
dW

(1,1)
t , dX

(4)
t = k(m1 −X

(4)
t )dt+ c1

√
X

(4)
t dW

(1,2)
t ,

dX
(5)
t = k(m2 −X

(5)
t )dt+ c2

√
X

(5)
t dW

(2,2)
t .

(5.12)
The component X(2)

t is simulated according to the exact discretization:

X
(2)
tn = b+ e−k∆t

(
X

(2)
tn−1

− b
)

+ ζ

√
1− exp(−2κ∆t)

2κ
ξn,

where (ξn)n≥1 is a sequence of independent random variable with distribution N(0, 1). The
following scheme for the price of the asset garantees non-negativity (see [1]) :

lnX(3)
n = lnX

(3)
n−1 + (µ1 −

1
2
σ2

1

(
X

(3)
n−1

)2(β1−1)
X

(4)
n−1)∆t+ σ1

(
X

(3)
n−1

)βi−1
√
X

(4)
n−1∆W

(1,2)
n

where ∆W (1,2)
n := W

(1,2)
n −W

(1,2)
n−1 . We take the following parameters µ1 = 0.10, σ1 = 0.3,

β1 = 0.5 for the first asset, k1 = 0.1, m1 = 1., c1 = 0.1 for the diffusion process of the
first asset. The second asset is defined by the same parameters as in the two dimensional
example: µ2 = 0.15, c2 = 0.2, m = 0.3 and Y

(2)
0 = m. As for the interest rate model we

take b = 0.07, X(2)
0 = b, ζ = 0.3.

The initial values of the portfolio the assets prices are all set to 1. For this test case
we first use the basis projection regression method with 4 × 4 × 4 × 4 × 10 meshes and
three millions particles. Figure 6 contains the plot of the solution obtained by Scheme
2, with different time steps. We only provide results for the implementation of Scheme 1
with a coarse time step, because the method was diverging with a thinner time step. We
observe that there is still a difference for very thin time step with the three considered
values of the diffusion. This seems to indicate that more particles and more meshes are
needed. While doing many calculation we observed that for the thinner time step mesh,
the solution sometimes diverges. We therefore report the results corresponding to thirty
millions particles with 4×4×4×4×40 meshes. First we notice that with this discretization
all results are converging as time step goes to zero: the exact solution seems to be very
closed to −0.258. During our experiments with thirty millions particles, the scheme was
always converging with a very low variance on the results.

Remark 5.4 With thirty millions particles, the memory needed forced us to use 64-bit
processors with more than four gigabytes of memory.

5.2.3 Conclusion on numerical results

We achieved calculation with both schemes with regression and Malliavin methods. We
observe that the second scheme give better results than the first whatever the method is
used to calculate the conditional expectation. On our test, regression methods achieved
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Figure 6: Five dimensional financial problem and its results for different volatilities with 3
millions and 30 millions particles

better performance both in term of results and time of calculation for a given number of
particles. In the proposed scheme, we gave results with different volatilities that the user
can choose. If we know that the volatility chosen has to be greater than a given value to be
able to get things work in demonstration ( equation 3.2 in assumption F) we notice that a
too high volatility force us to take to many meshes and too many particles giving too high
a calculation time. At last we could think to use some time varying volatility depending on
the evolution of the phenomenon we want to follow and the use of different volatilities could
be useful to estimate some errors on the solution given and lead to adaptative methods.
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