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Abstract

We propose a new image compression method based on

geodesic Delaunay triangulations. Triangulations are gen-

erated by a progressive geodesic meshing algorithm which

exploits the anisotropy of images through a farthest point

sampling strategy. This seeding is performed according to

anisotropic geodesic distances which force the anisotropic

Delaunay triangles to follow the geometry of the image.

Geodesic computations are performed using a Riemannian

Fast Marching, which recursively updates the geodesic dis-

tance to the seed points. A linear spline approximation

on this triangulation allows to approximate faithfully sharp

edges and directional features in images. The compression

is achieved by coding both the coefficients of the spline ap-

proximation and the deviation of the geodesic triangulation

from an Euclidean Delaunay triangulation. Numerical re-

sults show that taking into account the anisotropy improves

the approximation by isotropic triangulations of complex

images. The resulting geodesic encoder competes well with

wavelet-based encoder such as JPEG-2000 on geometric

images.

1. Introduction

Image compression requires the extraction of meaningful

features of an image to minimize the rate distortion curve.

A popular tool is the wavelet transform, that offers a sparse

representation of natural images. Wavelet coefficients are

mapped to a binary code using an adaptive arithmetic en-

coder such as in the JPEG-2000 standard, see for instance

[13]. Because of their square support, wavelets are however

sub-optimal to extract geometric features such as edges or

directional textures.

Geometric compression. Anisotropic representations such

as curvelets [4] or bandlets [16] allows one to improve over

the wavelet approximation, but their extension to practical

coders remains difficult. Another attractive representation is

the design of an adaptive triangulation to approximate the

image with linear splines whose supports follow the geo-

metric features of the image. Optimal adaptation of trian-

gulations is a NP-hard problem [1], and one has to use ap-

proximate greedy schemes to design the sampling and the

triangulation layout.

Triangulation simplification. Methods from computer

graphics based on mesh simplification are efficient for sur-

face approximation [7]. Similar methods based on thin-

ning together with Euclidean Delaunay triangulations have

been applied to image compression [5]. Using an Euclidean

metric might be problematic in highly anisotropic regions

where an optimal triangulation deviates from an Euclidean

Delaunay triangulation.

Triangulation refinement. Mesh adaptation using vertex

insertion is popular for the resolution of PDEs whose solu-

tions might exhibit singular features [8]. The first attempt to

use anisotropic metric for Delaunay refinement [11] makes

use of an approximate Riemannian geodesic metric.

Contributions. We propose to define a truly Riemannian

geodesic sampling, and use the anisotropic Delaunay trian-

gulation for image approximation. This combines in a com-

mon framework several important features from previous

works, including fast Delaunay insertions, anisotropic sam-

pling [6, 15], anisotropic triangulations [12, 11, 17, 2, 3].

We show that these properties are indeed crucial to improve

over the sate of the art for the compression of geometric

images.

2. Approximation by Triangulation and

Anisotropy

2.1. Image approximation by triangulations

It is possible to approximate an image, expressed as a

function f ∈ L2(Ω), using m linear spline functions de-

fined on a triangulation (V,F), where V = {vi}
i=n
i=1 ⊂Ω de-

notes the vertex set and F ⊂{1, . . . ,m}3 the triangle set.

Each triangle of F is represented as a triplet of vertex indi-

cies. The resulting approximated image is given by

fm =
∑

i

aiϕi, (1)
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where ϕi is linear on each triangle of F , and ϕi(vj) = 1
if i= j and 0 otherwise. The coefficients ai are computed

such that fm is the othogonal projection of f on the space

V generated by the ϕi, e.g.

fm = argmin
g∈V

‖f − g‖. (2)

This leads to solve the linear system Φa=F , where

Φi,j = 〈ϕi, ϕj〉 and Fi = 〈f, ϕi〉.
To minimize the error ‖f − fm‖ relative to the triangu-

lation (V,F), it is necessary to optimize the position of the

vertices and the connections between these vertices. We

must put more points near areas of strong image gradient,

and use strongly anisotropic triangles oriented in the direc-

tion of contours. For a cartoon image, which is a C2 func-

tion outside C2 contours, such an optimization of the trian-

gulation leads to an error in ‖f − fm‖=O(m−1), see for

instance [13, 4]. In this case, the side length ∆1 and ∆2 of

the triangles must verify ∆2 ≈ ∆2
1. We propose an efficient

triangulation algorithm adapted to this problem. This latter

result is far better than the wavelet m-terms approximation,

based on isotropic triangulations, which generates an error

in O(m−1/2).

2.2. Anisotropic metric

The desired anisotropy of a triangulation (V,F) can be

represented by a tensor field H : Ω→R
2×2. At each point

x∈Ω, the local metric H(x) characterizes the shape (its

size and its orientation) of the mesh elements surrounding

x. It can be defined as a symmetric positive definite matrix,

and diagonalized as

H(x) = λ1(x)e1(x)e1(x)T + λ2(x)e2(x)e2(x)T , (3)

where the eigenvalue fields λ1 and λ2 satisfying 0 <
λ1(x) ≤ λ2(x), and e1, e2 are the orthogonal unoriented

eigenvector fields.

Each triangle of (V,F) conforming to H must be in-

scribed in an ellipsoid centered at x0

(x0 − x)T H(x0)(x0 − x) ≤ tm,

where tm depends on the number m of triangles in F . Tri-

angle sides are thus aligned with e1(x0), and they satisfy

the ratio ∆1/∆2 ≈
√

λ2(x0)/λ1(x0).
For a C2 function f , the ratio λ2(x0)/λ1(x0) can be

taken as the ratio |µ2(x0)/µ1(x0)| of the eigenvalues of

the Hessian of f at x0. This improves the constant in the

approximation error ‖f − fm‖=O(m−1) [14]. However,

this estimate is quite unstable and cannot be used to treat

noisy images, oriented textures, or cartoon images with

non-smoothed contours.

So, we propose to use the structure tensor [10] which is

computed from the image gradient by

Tσ(x) = Gσ ∗T0(x), (4)

where Gσ is a Gaussian kernel applied to each component

of the 1-rank tensor T0(x) = (∇xf)T∇xf . The parameter

σ allows a robust estimation in the presence of noise. We

have chosen σ =5/n for an image of size n×n.

From the diagonalization T (x) =µ1(x)e1(x)e1(x)T +
µ2(x)e2(x)e2(x)T , we define the triangulation tensor as

H(x) = (ǫ + µ1(x))
α

e1(x) + (ǫ + µ2(x))
α

e2(x), (5)

where ǫ > 0 controls the isotropic adaptivity of the triangu-

lation (the variation of density, see [17]), and α > 0 controls

the anisotropic adaptivity. A metric with a high value of ǫ
is almost constant, and a metric with a low value of α is al-

most isotropic. We have fixed ǫ to 10−5 and the influence of

the parameter α is adapted to the type of images to process.

2.3. Geodesic distance

As explained in Section 2.2, at each point x0 ∈Ω , the

local metric H(x0) defines the size of triangles around x0,

which must be of constant size tm for the modified metric

‖x0−x‖H(x0) =
√

(x0−x)T H(x0)(x0−x).

We compute a point set that achieves this condition by sam-

pling them uniformly according to a global metric dH(x, y)
between any pair of points (x, y)∈Ω×Ω.

The length of a piecewise smooth curve γ : [0, 1]→Ω,

according to the metric H , is measured by

LH(γ) =

∫ 1

0

‖γ′(t)‖H(γ(t))dt,

=

∫ 1

0

√
γ′(t)T H(γ(t))γ′(t)dt.

A curve γ reaching a point γ(t) =x of Ω, with speed γ′(t),
has a shorter local length if γ′(t) is approximately collinear

to e1(x) rather than to another direction. The geodesic dis-

tance between two points x and y of Ω is the length of the

shortest curve joining x and y

dH(x, y) = min
γ∈P (x,y)

L(γ), (6)

where P (x, y) = {γ : γ(0)= x∧ γ(1)= y} denotes the set

of piecewise smooth curves joining the points x and y. A

curve γ, which satisfies LH(γ) = dH(x, y), is a geodesic.

Given a point set S = {xk}k ⊂Ω, its minimal action map

is defined as

US(x) = min
xk∈S

dH(x, xk). (7)

An important theoretical result is if H is a smooth field, US

is the unique viscosity solution of the following Hamilton-

Jacobi equation

‖∇xUS‖H(x)−1 =1, with US(xk) = 0, ∀k. (8)



Figure 1. Examples of geodesic distance map US from a central

point S = {x0}, together with a few geodesic curves. The metric

H is computed from the image f on the left using the structure

tensor (5) with an increasing value of ǫ and α = .75, so that the

metric becomes more isotropic from left to right.

The numerical solution of this equation can be computed

on a regular grid of N =n×n pixels. In the case of an

isotropic metric H(x) =λ(x)Id2, the Fast Marching (FM)

algorithm, introduced by Sethian [19], allows to efficiently

solve a discretization of (8) in O(N log N) operations. Sev-

eral extensions of the FM algorithm have been proposed to

solve (8) for a generic metric, see for instance [18]. Figure

1 shows examples of geodesics distance and minimal paths.

3. Anisotropic Geodesic Meshes

Computing a triangulation (V,F) conformed to a ten-

sor field H is a difficult optimization problem. The con-

formity constraint on V imposes that the vertices must be

uniformely distributed according to the geodesic distance

dH . This implies that dH(vi, vj) is approximately constant

if (vi, vj) is an edge of a face of F . A uniform distribution

of the vertices satisfies

∀x∈Ω, UV(x) ≤ δ, (9)

where δ > 0 controls the density of the vertex set. Such

a sample set of Ω can be computed using a farthest point

sampling strategy.

3.1. Anisotropic farthest point sampling

The farthest point strategy (FPS) has been introduced by

Eldar et al. [6] for image sampling. It is an iterative method

which starts with an initial sample set V ⊂Ω. Each iteration

places a new sample at the farthest point p∈Ω from the

(a) isotropic (b) anisotropic
Figure 2. Results of the FM-FPS algorithm for 2000 samples.

previously computed samples

p = argmax
q∈Ω

UV(q), (10)

until condition (9) is reached. This sampling strategy is

summed up by the following algorithm:

Algorithm: FPS(V, ǫ)
1. Find the point p∈Ω satisfying (10).

2. If UV(p) < ǫ, then exit, otherwise set V ←V ∪{p}.
3. Update the distance map UV , and goto 1.

Step 3 only requires a local update of the distance map in the

region {x\U{q}(x) ≤ UV−{q}(x)}. This makes the whole

seeding process becoming faster as new points are inserted.

In the case of the Euclidean distance, the FPS is linked

to the incremental construction of Voronoi diagrams. As

pointed out by Eldar et al. [6], the farthest point from the set

V corresponds to the farthest vertex of the Voronoi diagram

of V , which is to the center of the largest ball not containing

any point of V . This nice property allows to compute effi-

ciently the farthest point from the Voronoi diagram. How-

ever, it does not extend to the case of geodesic distances, for

which the farthest point does not necessarily correspond to

a vertex of the geodesic Voronoi diagram. Even if this draw-

back is not taken into account, computing geodesic Voronoi

diagrams is not possible with classical computational ge-

ometry techniques (see for instance [12, 11]).

To sample images with the FPS, Eldar et al. [6] proposed

to assign a weight to the vertices of the (Euclidean) Voronoi

diagram with an application-dependent function, and to se-

lect the next point to include in V as the Voronoi vertex

having the maximum weight. Later, Peyré and Cohen [17],

and Moenning and Dodgson [15], proposed independently

to approximate the geodesic distance with the fast marching

method, leading to a fast marching FPS (FM-FPS).

With an anisotropic fast marching algorithm, the pro-

posed extension of the FM-FPS to anisotropic metrics is

obvious. Nevertheless, it should be useful for the reso-

lution of problems which need a step of point selection.



Using the structure tensor (4) as a metric, the anisotropic

FM-FPS concentrates the samples near the most important

image structures, see Figure 2 for a comparison with the

isotropic FM-FPS (computed with H(x) =µ1(x)Id2).

In the sequel, we present a modified version of the FPS

algorithm which generates triangulations of images con-

formed to a metric H .

3.2. Anisotropic farthest point meshing

We have modified the farthest point strategy so that

the faces of the triangulation (V,F) are aligned with the

direction of anisotropy e1. This is imposed by defining F
from the dual complex of the anisotropic Voronoi diagram

of the sample set V .

Anisotropic Voronoi diagram. From the anisotropic

geodesic distance dH , the anisotropic Voronoi cell Vi(V)
generated by a point xi ∈V is defined as the set of points

p∈Ω for which the geodesic between p and xi is shorter

than the geodesics between p and the other points of V

Vi(V) = {x∈Ω : dH(x, xi) ≤ dH(x, xj), ∀sj ∈V}.

The union of all Voronoi cells, for i = 1, . . . , n, partition

Ω to form the bounded anisotropic Voronoi diagram of V ,

noted V (V). This diagram is also known as the Riemannian

Voronoi diagram [12].

Anisotropic Delaunay complex. The dual complex

of V (V) is the anisotropic Delaunay triangulation of (V ,

noted D(V). Contrary to the (Euclidean) Delaunay trian-

gulation, its anisotropic version D(V) does not necessarily

define a valid planar triangulation:

– Some vertices can be isolted (connected to only one

other vertex of D(V)).

– Some edges can overlap.

Also, when V is the result of the FPS, D(V) is not neces-

sarily a triangulation of Ω. Indeed, the boundary ∂Ω should

always be represented in D(V).

Farthest point meshing. To construct a valid planar

triangulation of Ω according to the density constraint (9),

we initialize the set V with at least the four corner points

of ∂Ω, such that the boundary of D(V) corresponds to ∂Ω.

Then the FPS is modified as follows.

The farthest point xk (see (10)) is inserted in V if

Vk(V)∩ ∂Ω = ∅. Otherwise, there exists a boundary edge

(xi, xj)∈D(V) which satisfies Vk(V)∩ (xi, xj) 6= ∅. In

this case, the edge is said to be encroached by xk. To en-

sure that ∂Ω is always represented in D(V), the encroached

edge is split into two sub-edges (xi, x̃k) and (x̃k, xj), where

x̃k = argminx∈(xi,xj)∩Vk(V)dH(x, xk).

Once the FPS with boundary constraints has been com-

puted, the proposed algorithm iteratively inserts points to V
while the triangulation is not planar:

– If a vertex xi ∈D(V) is isolated, it is connected

to one vertex xj ∈D(V). In this case, the point

x̂i = argminx∈Vi(V)∩Vj(V)dH(x, xi) is inserted to V .

– If a triangle (xi, xj , xl) is inverted, its dual Voronoi

vertex Vi,j,l =Vi(V) ∩ Vj(V) ∩ Vl(V) is inserted to V .

When there is no inverted triangle, then no edge can

overlap.

The farthest point meshing method is summed up by the

following algorithm:

Algorithm: FPM(V, ǫ)
1. Find the point xk ∈Ω satisfying (10).

2. If UV(xk) <ǫ goto 5.

3. If xk encroaches a boundary edge (xi, xj)∈D(V)
Split (xi, xj) into (xi, x̃k) and (x̃k, xj)
V ←V ∪{x̃k}, update UV and goto 1.

4. V ←V ∪{xk}, update UV and goto 1.

5. If ∃xi ∈D(V) isolated, then xk← x̂i and goto 3.

6. If ∃ inverted triangle (xi, xj , xl)∈D(V)
xk←Vi,j,l and goto 3.

This algorithm is similar to the anisotropic Delaunay

reffinement meshing algorithm of Labelle and Shewchuk

[11, 2]. The main difference is we use a truly anisotropic

geodesic distance, meanwhile they use the modified metric

(3). This is also the strategy adopted by Bougleux et

al. [3], but in a different context. This allows to obtain

better results, in particular for triangulations with a few

number of vertices, where the approximation with (3) can

be important.

4. Image Approximation and Compression

4.1. Spline approximation

Once the image f has been triangulated with the

anisotropic farthest point meshing method, its spline ap-

proximation fm, given by (1), is progressively refined as

the value of m increases. Figure 5 (left column) shows ex-

amples of triangulations for two values of m and α =0.75.

As shown in Figure 4, we found the error ‖f − fm‖min-

imal for α≈ 0.75, with fm the image of Figure 5 (bottom

left), and this for a wide range of m. Following an experi-

mental study, α≈ 0.75 seems to be an acceptable choice for

a wide range of natural images. From now on, that is the

value we are going to use in the paper.

Figure 3 shows the evolution of SNR, according to m, for

an anisotropic Delaunay triangulation. It is compared to the

SNR of the Euclidean Delaunay triangulation of the sample
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Figure 3. For α = 0.75, SNR according to m for the anisotropic

Delaunay triangulation (solid) and for the Euclidean Delaunay tri-
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Figure 4. For m = 230, 260, 300, SNR according to α (bottom).

set generated with α =0.75. This shows the importance to

compute both an appropriate sampling and a suitable con-

nectivity to obtain a better approximation.

4.2. Quantification

To encode the approximation fm, we quantify the posi-

tion of the vertices of V with a setp Tv , as well as the coef-

ficients ai with a step Ta. Thus, we obtain rounded integer

values v̄i = [ai / Tv] and āi = [ai / Ta]. The coefficients ā
and v̄ are encoded with an arithmetic encoder on Rv +Ra

bits. The decoder can compute the decompressed positions

Ṽ = {ṽi}i and coefficients by ṽi =(v̄i + sign(v̄i) / 2)Tv and

ãi =(āi + sign(āi) / 2)Ta. The decompressed approxima-

tion is thus given by

f̃m =
∑

i

ãiϕ̃i,

where ϕ̃i is the spline basis assocated to the vertex ṽi.

The triangulation connectivity must also be encoded, on

Rc bits. In order to reduce this number Rc, we transform the

anisotropic Delaunay triangulation (Ṽ,F) to the Euclidean

Delaunay triangulation of Ṽ , which can be constructed by

the encoder and the decoder. We use the local optimiza-

tion procedure of Lawson (see for instance [9]) to compute

this transformation. Given an interior edge (vi, vj)⊂ F̃ in-

cident to the triangles (vi, vj , vk) and (vi, vj , vl), this edge

is replaced by the edge (vk, vl) if the triangles are not in

the Euclidean Delaunay triangulation. The number of bits

needed to encode F is reduced to Rc =K log2(A), where

K is the number of substitutions and A the number of edges

in F .

Other image compression methods, based on triangula-

tions, have already been proposed in litterature, see for in-

stance [5]. These methods begin with a dense triangulation

which is decimated to reduce the approximation error. Our

approach is different, it progressively refines the triangu-

lation, which is very fast for low values of m. Moreover,

it uses a Delaunay triangulation based on an anisotropic

geodesic distance, where the elongation of triangles easily

adapts to the image structures, contrary to the Euclidean De-

launay triangulation used for instance in [5].

The choice of Tv and Ta can be optimized to minimize

the curve of coding rate ‖f − fm‖ according to the number

of bits R =Rv +Ra +Rc. To simplify matters, we have

used Rv =10−2 and Ra = ‖f‖∞/100. Figure 5 (left) com-

pares compressions given by our method and JPEG-2000

(see [13]). This shows that for low coding rate, and for

images with sufficient geometric structures, our method im-

proves the current standard.

5. Conclusion and Perspectives

We have presented a new image compression method

based on anisotropic geodesic Delaunay triangulations. The

anisotropy of images is exploited to generate triangula-

tions through a farthest point sampling approach. Images

are then approximated by linear splines on the triangula-

tions. Finally, the compression is achieved by coding both

the coefficients of the spline approximation and the devia-

tion between the geodesic Delaunay triangulation and the

Euclidean one. By experimentation, we have shown that

the resulting geodesic encoder competes well with wavelet-

based encoder such as JPEG-2000.
Since anisotropic geodesic distances can also be com-

puted on meshes with fast marching methods, the proposed
approach can be extended, with some modifications, to
compress meshes.
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