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Abstract

We prove global internal controllability in large time for the nonlinear Schrödinger equation on
some compact manifolds of dimension 3. The result is proved under some geometrical assumptions
: geometric control and unique continuation. We give some examples where they are fulfilled on
T3, S3 and S2 × S1. We prove this by two different methods both inherently interesting. The
first one combines stabilization and local controllability near 0. The second one uses successive
controls near some trajectories. We also get a regularity result about the control if the data are
assumed smoother. If the H1 norm is bounded, it gives a local control in H1 with a smallness
assumption only in L2. We use Bourgain spaces.
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Introduction

In this article, we study the internal stabilization and exact controllability for the defocusing nonlinear
Schrödinger equation (NLS) on some compact manifolds of dimension 3.

{
i∂tu+ ∆u = |u|2u on [0,+∞[×M

u(0) = u0 ∈ H1(M).
(1)

where ∆ is the Laplace-Beltrami operator on M . The solution displays two conserved energy : the L2

energy ‖u‖L2 and the nonlinear energy, or H1 energy

E(t) =
1

2

∫

M

|∇u|2 +
1

4

∫

M

|u|4 .

Some similar results where obtained in dimension 2 in the article of B. Dehman, P. Gérard and G.
Lebeau [13] where exact controllability in H1 is proved for defocusing NLS on compact surfaces. Yet,
the proof is based on Strichartz estimates which provide uniform wellposedness in dimension 3, only
in Hs for s > 1. In [8], N. Burq, P. Gérard and N. Tzvetkov managed to prove global existence
and uniqueness in H1 but failed to prove uniform wellposedness, which appears of great importance
in control problems. Yet, for certain specific manifolds, the strategy of Xs,b spaces of J. Bourgain,
extended to some other manifolds by Burq, Gérard and Tzvetkov, succeeded in proving uniform
wellposedness in Hs for some lower regularities.

For control results, the Xs,b spaces have already been used in dimension 1 at L2 regularity : first L.
Rosier and B. Y. Zhang [34] obtained local results and independently, we proved global controllability
in large time in [26]. The Xs,b spaces will also be our framework in this paper.
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Under some specific assumptions that will be precised later, we prove global controllability in
large time by two different ways, interesting for their own : by stabilization and control near 0 or by
some successive controls near some trajectories. This will provide global controllability towards 0, the
general result will follow by reversing time.

The assumptions are fulfilled in the following cases (ω ⊂M is the support of the control) :
- T3 with ω = {x ∈ R3/(θ1Z × θ2Z × θ3)Z |∃i ∈ {1, 2, 3}, xi ∈] − ε, ε[+θiZ} (that is a neighborhood of
each face of the ”cube”, fundamental volume of T3) with θi ∈ R. Moreover, we can easily extend this
result to a cuboid with Dirichlet or Neumann boundary conditions, see [26] or [34].
- S3 with ω a neighborhood of {x4 = 0} in S3 ⊂ R4.
-S2 × S1 with ω = (ω1 × S1) ∪ (S2×]0, ε[) where ω1 is a neighborhood of the equator of S2.

Theorem 0.1. For any open set ω ⊂M satisfying Assumption 1, 2, 3 (see below) and R0 > 0, there
exist T > 0 and C > 0 such that for every u0 and u1 in H1(M) with

‖u0‖H1(M) ≤ R0 and ‖u1‖H1(M) ≤ R0

there exists a control g ∈ C([0, T ], H1) with ‖g‖L∞([0,T ],H1) ≤ C supported in [0, T ] × ω, such that the

unique solution u in X1,b
T of the Cauchy problem

{
i∂tu+ ∆u = |u|2u+ g on [0, T ] ×M

u(0) = u0 ∈ H1(M)
(2)

satisfies u(T ) = u1.

In all the rest of the article, ω will be related to a cut-off function a = a(x) ∈ C∞(M) (whose
existence is guaranteed by Whitney Theorem), taking real values and such that

ω = {x ∈M : a(x) 6= 0} .(3)

The stabilization system we consider is

{
i∂tu+ ∆u− a(x)(1 − ∆)−1a(x)∂tu = (1 + |u|2)u on [0, T ] ×M

u(0) = u0 ∈ H1(M).
(4)

The link with the original equation can be made by the change of variable w = e−itu. The well
posedness of this system will be proved in Section 2.1 and we can check that it satisfies the energy
decay

E(u(t)) − E(u(0)) = −

∫ t

0

∥∥(1 − ∆)−1/2a(x)∂tu
∥∥2

L2 .(5)

Our theorem states that under some geometrical hypotheses, this yields an exponential decay.

Theorem 0.2. Let M , ω satisfying Assumption 1, 2, 3. Let a ∈ C∞(M), as in (3). There exists
γ > 0 such that for every R0 > 0, there is a constant C > 0 such that inequality

‖u(t)‖H1 ≤ Ce−γt ‖u0‖H1 t > 0

holds for every solution u of system (4) with initial data u0 such that ‖u0‖H1 ≤ R0.

3
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The independence of C and of the time of control T on the bound R0 are an open problem. The fact
that γ is independant on the size lies on the fact that it only describes the behavior near 0. However,
it is unknown whether there is really a minimal time of controllability. This is in strong contrast with
the linear case where exact controllability occurs in arbitrary small time and the conditions are only
geometric for the open set ω. Moreover, some recent studies have analysed the explosion of the control
cost when T tends to 0 : K.- D. Phung [31] by reducing to the heat or wave equation, L. Miller [29]
with resolvent estimates, G. Tenenbaum and M. Tucsnak [35] with number theoretic arguments.

Let us now describe our assumptions. The first two deal with classical geometrical assumptions in
control theory.

Assumption 1. Geometric control : there exists T0 > 0 such that every geodesic of M , travelling with
speed 1 and issued at t = 0, enters the set ω in a time t < T0.

This condition is known to be sufficient for linear controllability, see G. Lebeau [27]. In Section 9,
we prove that it is necessary on S3 for the nonlinear stabilization. Yet, there are some geometrical
situation (especially when there are some unstable geodesics) in which it is not necessary. For example,
we have linear controllability for any open set ω of T3, see S. Jaffard [23] and V. Komornik [25] (see also
[11]). This also holds for M = S2 × S1 with ω = S2×]0, ε[ or ω = ω1 × S1 where ω1 is a neighborhood
of the equator. In that cases, our method fails to prove global results and we can only prove local
controllability by perturbation (see Theorem 0.4).

Assumption 2. Unique continuation : For every T > 0, the only solution in C∞([0, T ] ×M) to the
system

{
i∂tu+ ∆u+ b1(t, x)u+ b2(t, x)u = 0 on [0, T ] ×M

u = 0 on [0, T ] × ω
(6)

where b1(t, x) and b2(t, x) ∈ C∞([0, T ] ×M) is the trivial one u ≡ 0.

We do not know if there exists a link between these two assumptions. In our three particular
cases, this can be proved using Carleman estimates. There are some existing results about this, as the
one of V. Isakov [22](for general anisotropic PDE’s), L. Baudouin and J.P. Puel [2](global Carleman
estimates) or A. Mercado, A. Osses and L. Rosier[28](in the special case of Schrödinger with flat metric
but weaker geometrical assumptions). Then, for the convenience of the reader, we have chosen to give
a proof of this, which, we believe, clarifies the problem in the case of a non flat metric. It is given in
the Appendix, Section B.

The last assumption is a technical assumption that ensures that the Cauchy problem is well posed
in H1. It yields a bilinear loss of s0 < 1.

Assumption 3. There exists C > 0 and 0 ≤ s0 < 1 such that for any f1, f2 ∈ L2(M) satisfying

fj = 1√
1−∆∈[Nj ,2Nj [

(fj), j = 1, 2, 3, 4

one has the following bilinear estimates

‖u1u2‖L2([0,T ]×M) ≤ Cmin(N,L)s0 ‖f1‖L2(M) ‖f2‖L2(M)(7)

uj(t) = eit∆fj, j = 1, 2

4
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It is known to be true in the following examples (1/2+ means any s > 1/2):
- T3 with s0 = 1/2+, see [4]
- the irrational torus R3/(θ1Z × θ2Z × θ3Z) with θi ∈ R, for which an estimate with s0 = 2/3+ has
been recently obtained in [5]. An easier proof for s0 = 3/4+ can also be found in the beginning of [5]
and in [12]
- S3 with s0 = 1/2+, see [10]
- S2 × S1 with s0 = 3/4+, see [10].

It yields some trilinear estimates in Bourgain spaces (see the definition below). For the control
near a trajectory, we still have some particular assumptions that are again fulfilled in the particular
geometries described above. Our result reads as follow

Theorem 0.3. Let T > 0 and M , ω such that Assumptions 1, 3, 4 and 5 are fulfilled (see below). Let
1 ≥ s > s0 and w ∈ X1,b

T be a solution of

{
i∂tw + ∆w ± |w|2w = g

w(x, 0) = w0(x)
(8)

with g ∈ C([0, T ], H1) supported in [0, T ] × ω.
Then, there exists ε > 0, such that for every u0 ∈ Hs with ‖u0 − w(0)‖Hs < ε, there exists g1 ∈

C([0, T ], Hs) supported in [0, T ]× ω such that the unique solution u in Xs,b
T of (8) with u(0) = u0 and

g replaced by g1 fulfills u(T ) = w(T ).
Moreover, for any u0 ∈ H1 with ‖u0 − w(0)‖Hs < ε, the same conclusion holds with g ∈ C([0, T ], H1).

An interesting fact is that the smallness assumption only concerns the Hs norm, even if we want
a control in H1. For example, as in [14], if we assume ‖u0‖H1 ≤ R0, we can find N ∈ N large enough
such that the smallness asumption only concerns the N first frequencies (see Corollary 8.2).

Let us describe the new hypothesis. Assumption 4 is a unique continuation result at weaker
regularity.

Assumption 4. Unique continuation in H1: For every T > 0, the only solution in C([0, T ], H1) to
the system

{
i∂tu+ ∆u+ b1(t, x)u+ b2(t, x)u = 0 on [0, T ] ×M

u = 0 on [0, T ] × ω
(9)

where b1(t, x) and b2(t, x) ∈ L∞([0, T ], L3) is the trivial one u ≡ 0.

We do not know if it is really stronger than Assumption 2 but for the moment, there are some
example where we are able to prove Assumption 2 and not Assumption 4 using some weak Carleman
estimates (see Appendix, Section B). For instance, on T3, we are able to prove Assumption 2 for
ω = {x ∈ R3/Z3 |x1 ∈]0, ε[+Z} but not Assumption 4. Yet, for the moment, we do not manage to
deduce a controllability result from this statement.

The other new assumption is technical and yields quadrilinear estimates for a commutator

Assumption 5. There exists C > 0 and 0 ≤ s0 < 1 such that for any f1, f2, f3, f4 ∈ L2(M) satisfying

fj = 1√
1−∆∈[Nj ,2Nj [

(fj), j = 1, 2, 3, 4

5
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one has the following quadrilinear estimate

sup
τ∈R

∣∣∣∣
∫

R

∫

M

χ(t)eitτu1u2

(
(−∆)ε/2u3u4 − u3(−∆)ε/2u4

)
dxdt

∣∣∣∣(10)

≤ C(N ε
1 +N ε

2 ) (m(N1, · · ·, N4))
s0 ‖f1‖L2(M) ‖f2‖L2(M) ‖f3‖L2(M) ‖f4‖L2(M)

uj(t) = eit∆fj , j = 1, 2, 3, 4

where χ ∈ C∞
0 (R) is arbitrary and m(N1, · · ·, N4) is the product of the smallest two numbers among

N1, N2, N3, N4.
Moreover, the same result holds with ui replaced by ui for i in a subset of {1, 2, 3, 4}.

For the three treated examples, we prove in Appendix, Section A, that Assumption 5 holds true
with the same s0 as in Assumption 3. We believe that it is the case for any manifold, but we did not
manage to prove it.

As explained before, there are some examples for which we know that geometric control assumption
is not necessary. For instance, for any pair of manifolds M1, M2 and ω1 ⊂ M1 such that ω1 satisfies
observability estimate, ω1×M2 satisfies observability estimate for the linear Schrödinger equation. We
can then use this remark and the work of S. Jaffard [23] and V. Komornik [25] for the linear equation
on Tn to get some local nonlinear results . Since Theorem 0.3 is proved by a perturbative argument,
we can also deduce controllability near 0 from these already known linear control results.

Theorem 0.4. If w ≡ 0 and (M,ω) is either :
-(T3,any open set)
-(S2 × S1, ω1 × S1) where ω1 is a neighborhood of the equator of S2

-(S2 × S1,S2×]0, ε[)
Then, the same conclusion as Theorem 0.3 is true.

Rosier and Zhang [33] have communicated to us that they simultaneoulsy obtained the same result
for T3.

The proof of stabilization and of linear control with potential follows the same scheme as [13]. In
a contradiction argument, we are led to prove the strong convergence to zero in Xs,b

T of some weakly
convergent sequence (un) solution to damped NLS or Schrödinger with potential. Since the equation
is subcritical, we use some linearisability properties of NLS in H1 (see the work of P. Gérard [19] for
the wave equation).

We first establish the strong convergence by some propagation of compactness. We adapt the
argument of [13] inspired by C. Bardos and T. Masrous [1]. We use microlocal defect measures
introduced by P. Gérard [18]. For a sequence (un) weakly convergent to 0 in Xs,b

T satisfying

{
i∂tun + ∆un → 0 in Xs−1+b,−b

T

a(x)un → 0 in L2([0, T ], Hs),

we prove that un → 0 in L2
loc([0, T ], Hs).

Once we know that the convergence is strong, we infer that the limit u is solution to NLS. We
would like to use Assumption 2 or 4 of unique continuation to prove that it is 0. Yet, more regularity is
needed to apply them. Again, we adapt the proof for Xs,b spaces of propagation results of microlocal
regularity coming from [13].

6

ha
l-0

03
66

91
2,

 v
er

si
on

 1
 - 

10
 M

ar
 2

00
9



In this article, b′ will be a constant such that estimates of Lemma 1.1 holds. Actually, each of the
trilinear estimates (with different s) that will be done will yield one b′ < 1/2 but remains true if we
choose a greater one. So we take b′ < 1/2 as the largest of these constants. This allows to choose one
b > 1/2 with 1 > b+ b′.

In all the rest of the paper, C will denote any constant whose value could change along the article.

1 Some properties of Xs,b spaces

Since M is compact, ∆ has a compact resolvent and thus, the spectrum of ∆ is discrete. We choose
ek ∈ L2(M), k ∈ M an orthonormal basis of eigenfunctions of −∆, associated to eigenvalues λk.
Denote Pk the orthogonal projector on ek. We equip the Sobolev space Hs(M) with the norm (with
〈x〉 =

√
1 + |x|2),

‖u‖2
Hs(M) =

∑

k

〈λk〉
s ‖Pku‖

2
L2(M) .

The Bourgain space Xs,b is equipped with the norm

‖u‖2
Xs,b =

∑

k

〈λk〉
s
∥∥∥〈τ + λk〉

b P̂k(τ)u
∥∥∥

2

L2(Rτ×M)
=

∥∥u#
∥∥2

Hb(R,Hs(M))

where u = u(t, x), t ∈ R, x ∈ M , u#(t) = e−it∆u(t) and P̂ku(τ) denotes the Fourier transform of Pku
with respect to the time variable.

Xs,b
T is the associated restriction space with the norm

‖u‖Xs,b
T

= inf {‖ũ‖Xs,b |ũ = u on ]0, T [×M }

We also write ‖u‖Xs,b
I

if the infinimum is taken on functions ũ equalling u on an interval I. The

following properties of Xs,b
T spaces are easily verified.

1. Xs,b and Xs,b
T are Hilbert spaces.

2. If s1 ≤ s2, b1 ≤ b2 we have Xs2,b2 ⊂ Xs1,b1 with continuous embedding.

3. For every s1 < s2, b1 < b2 and T > 0, we have Xs2,b2
T ⊂ Xs1,b1

T with compact imbedding.

4. For 0 < θ < 1, the complex interpolation space
(
Xs1,b1, Xs2,b2

)
[θ]

is X(1−θ)s1+θs2,(1−θ)b1+θb2 .

4. can be proved with the interpolation theorem of Stein-Weiss for weighted Lp spaces (see [3] p 114).
Then, we list some additional trilinear estimates that will be used all along the paper.

Lemma 1.1. If Assumption 3 is fulfilled, for every r ≥ s > s0, there exist 0 < b′ < 1/2 and C > 0
such that for any u and ũ ∈ Xr,b′

∥∥|u|2u
∥∥

Xr,−b′ ≤ C ‖u‖2
Xs,b′ ‖u‖Xr,b′(11) ∥∥|u|2ũ

∥∥
Xr,−b′ ≤ C ‖u‖Xs,b′ ‖u‖Xr,b′ ‖ũ‖Xr,b′(12)

∥∥|u|2u− |ũ|2ũ
∥∥

Xs,−b′ ≤ C
(
‖u‖2

Xs,b′ + ‖ũ‖2
Xs,b′

)
‖u− ũ‖Xs,b′ .(13)

Moreover, the same estimates hold with z1z2z3 replaced by any R-trilinear form on C.

7
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The proof of the previous lemma can be found in [6], [9] or [20]. Yet, in the Appendix, we prove
some slightly different estimates, but the proof gives an idea of how Lemma 1.1 is established. We
also give some variants that will be used in the linearized version of our equations.

Lemma 1.2. If Assumption 3 is fulfilled, for every −1 ≤ s ≤ 1 and any s0 < r ≤ 1, there exist
0 < b′ < 1/2 and C > 0 such that for any u ∈ Xs,b′ and a1, a2 ∈ X1,b′

‖a1a2u‖Xs,−b′ ≤ C ‖a1‖X1,b′ ‖a2‖X1,b′ ‖u‖Xs,b′(14) ∥∥|a1|
2u

∥∥
Xs,−b′ ≤ C ‖a1‖X1,b′ ‖a1‖Xr,b′ ‖u‖Xs,b′(15)

Moreover, the same estimates hold with z1z2z3 replaced by any R-trilinear form on C.

Proof. We first prove (15). Estimate (12) of Lemma 1.1 implies that the operator of multiplication
by |a1|

2 maps X1,b′ into X1,−b′ with norm ‖a1‖X1,b′ ‖a1‖Xr,b′ . IBy duality, it maps X−1,b′ into X−1,−b′

with the same norm. We get the same result for −1 ≤ s ≤ 1 by interpolation, which yields (15). For
(14), we observe that estimate

‖a1a2u‖X1,−b′ ≤ C ‖a1‖X1,b′ ‖a2‖X1,b′ ‖u‖X1,b′

holds whatever the position of the conjugate operator and we conclude similarly.

Let us study the stability of the Xs,b spaces with respect to some particular operations.

Lemma 1.3. Let ϕ ∈ C∞
0 (R) and u ∈ Xs,b then ϕ(t)u ∈ Xs,b.

If u ∈ Xs,b
T then we have ϕ(t)u ∈ Xs,b

T .

Proof. We write

‖ϕu‖Xs,b =
∥∥e−it∆ϕ(t)u(t)

∥∥
Hb(R,Hs)

=
∥∥ϕu#

∥∥
Hb(R,Hs)

≤ C
∥∥u#

∥∥
Hb(R,Hs)

≤ C ‖u‖Xs,b

We get the second result by applying the first one on any extension of u and taking the infinimum.

In the case of pseudodifferential operators in the space variable, we have to deal with a loss in Xs,b

regularity compared to what we could expect. Some regularity in the index b is lost, due to the fact
that a pseudodifferential operator does not keep the structure in time of the harmonics.
This loss is unavoidable as we can see, for simplicity on the torus T1 : we take un = ψ(t)einxei|n2|t

(where ψ ∈ C∞
0 equal to 1 on [−1, 1]) which is uniformly bounded in X0,b for every b ≥ 0. Yet, if we

consider the operator B of order 0 of multiplication by eix, we get ‖eixun‖X0,b ≈ nb. Yet, we do not
have such loss for operator of the form (−∆)r which acts from any Xs,b to Xs−2r,b. But if we do not
make any further assumption on the pseudodifferential operator, we can show that our example is the
worst one :

Lemma 1.4. Let −1 ≤ b ≤ 1 and B be a pseudodifferential operator in the space variable of order ρ.
For any u ∈ Xs,b we have Bu ∈ Xs−ρ−|b|,b.
Similarly, B maps Xs,b

T into X
s−ρ−|b|,b
T .

Proof. We first deal with the two cases b = 0 and b = 1 and we will conclude by interpolation and
duality.

8
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For b = 0, Xs,0 = L2(R, Hs) and the result is obvious.
For b = 1, we have u ∈ Xs,1 if and only if

u ∈ L2(R, Hs) and i∂tu+ ∆u ∈ L2(R, Hs)

with the norm
‖u‖2

Xs,1 = ‖u‖2
L2(R,Hs) + ‖i∂tu+ ∆u‖2

L2(R,Hs)

Then, we have

‖Bu‖2
Xs−ρ−1,1 = ‖Bu‖2

L2(R,Hs−ρ−1) + ‖i∂tBu+ ∆Bu‖2
L2(R,Hs−ρ−1)

≤ C
(
‖u‖2

L2(R,Hs−1) + ‖B (i∂tu+ ∆u)‖2
L2(R,Hs−ρ−1) + ‖[B,∆] u‖2

L2(R,Hs−ρ−1)

)

≤ C
(
‖u‖2

L2(R,Hs−1) + ‖i∂tu+ ∆u‖2
L2(R,Hs−1) + ‖u‖2

L2(R,Hs)

)

≤ C ‖u‖2
Xs,1

Hence, B maps Xs,0 into Xs−ρ,0 and Xs,1 into Xs−ρ−1,1. Then, we conclude by interpolation that B
maps Xs,b = (Xs,0, Xs,1)[b] into (Xs−ρ,0, Xs−ρ−1,1)[b] = Xs−ρ−b,b which yields the b loss of regularity as
announced.

By duality, this also implies that for 0 ≤ b ≤ 1, B∗ maps X−s+ρ+b,−b into X−s,−b. As there is no
assumption on s ∈ R, we also have the result for −1 ≤ b ≤ 0 with a loss −b = |b|.
To get the same result for the restriction spaces Xs,b

T , we write the inequality for an extension ũ of u,
which yields

‖Bu‖
X
s−ρ−|b|,b
T

≤ ‖Bũ‖Xs−ρ−|b|,b ≤ C ‖ũ‖Xs,b

Taking the infinimum on all the ũ, we get the claimed result.

We will also use the following elementary estimate (see e.g. [21] or [4]).

Lemma 1.5. Let (b, b′) satisfying

0 < b′ <
1

2
< b, b+ b′ ≤ 1.(16)

If we note F (t) = Ψ
(

t
T

) ∫ t

0
f(t′)dt′, we have for T ≤ 1

‖F‖Hb ≤ CT 1−b−b′ ‖f‖H−b′ .

In the futur aim of using a boot-strap argument, we will need some continuity in T of the Xs,b
T

norm of a fixed function :

Lemma 1.6. Let 0 < b < 1 and u in Xs,b then the function

{
f : ]0, T ] −→ R

t 7−→ ‖u‖Xs,b
t

is continuous. Moreover, if b > 1/2, there exists Cb such that

lim
t→0

f(t) ≤ Cb ‖u(0)‖Hs .
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Proof. By reasoning on each component on the basis, we are led to prove the result in Hb(R). The
most difficult case is the limit near 0. It suffices to prove that if u ∈ Hb(R), with b > 1/2, satisfies
u(0) = 0, and Ψ ∈ C∞

0 (R) with Ψ(0) = 1, then

Ψ

(
t

T

)
u −→

T→0
0 in Hb.

Such a function u can be written
∫ t

0
f with f ∈ Hb−1. Then, Lemma 1.5 gives the result we want

if u ∈ Hb+ε. Nevertheless, if we only have u ∈ Hb, Ψ( t
T
)u is uniformly bounded. We conclude by a

density argument.

The following lemma will be useful to control solutions on large intervals that will be obtained by
piecing together solutions on smaller ones. We state it without proof.

Lemma 1.7. Let 0 < b < 1. If
⋃

]ak, bk[ is a finite covering of [0, 1], then there exists a constant C
depending only of the covering such that for every u ∈ Xs,b

‖u‖Xs,b
[0,1]

≤ C
∑

k

‖u‖Xs,b
[ak,bk]

.

2 Existence of solution to NLS with source and damping

term

2.1 Nonlinear equation

Let a ∈ C∞(M) taking real values fixed.
We will prove the existence for defocusing non linearity of degree 3 : they will have the form αu+β|u|2u,
with α, β ≥ 0.

Proposition 2.1. Let T > 0 and s ≥ 1. Assume that M satisfies Hypothesis 3. Then, for every
g ∈ L2([0, T ], Hs) and u0 ∈ Hs, there exists a unique solution u on [0, T ] in Xs,b

T to the Cauchy
problem

{
i∂tu+ ∆u− αu− β|u|2u = a(x)(1 − ∆)−1a(x)∂tu+ g on [0, T ] ×M

u(0) = u0 ∈ Hs(17)

Moreover the flow map

F : Hs(M) × L2([0, T ], Hs(M)) → Xs,b
T

(u0, g) 7→ u

is Lipschitz on every bounded subset.

Proof. It is strongly inspired by the one of Bourgain [4] and Dehman, Gérard, Lebeau [13] for the
stabilization term. The proof is mainly based on estimates of Lemma 1.1.

First, we establish that the operator J defined by Jv = (1+ia(x)(1−∆)−1a(x))v is an isomorphism
of Hs and Xs,b (s ∈ R and −1 ≤ b ≤ 1 ).

J is an isomorphism of L2 because of its decomposition in identity plus an antiselfadjoint part
J = 1 + A. It is then an isomorphism of Hs with s ≥ 0 by ellipticity and for every s ∈ R by
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duality. Using Lemma 1.4, we infer that if −1 ≤ b ≤ 1, A maps Xs,b into itself. Moreover, J−1

(considered for example acting on L2([0, T ] × M)) is a pseudodifferential operator of order 0 and
satisfies J−1 = 1 − AJ−1. Then, using again Lemma 1.4, we get that AJ−1 maps Xs,b into Xs−|b|+2

and J is an isomorphism of Xs,b.
In the sequel of the proof, v will denote Ju. Hence, we can write system (17) as





∂tv − i∆v − R0v + iβ|u|2u = −ig on [0, T ] ×M
v = Ju

v(0) = v0 = Ju0 ∈ Hs
(18)

where R0 = −i∆AJ−1 + iαJ−1 is a pseudo-differential operator of order 0.
First, we notice that if g ∈ L2([0, T ], Hs), it also belongs to Xs,−b′

T as b′ ≥ 0.
We consider the functional

Φ(v)(t) = eit∆v0 +

∫ t

0

ei(t−τ)∆
[
R0v − iβ |u|2 u− ig

]
(τ)dτ

We will apply a fixed point argument on the Banach space Xs,b
T . Let ψ ∈ C∞

0 (R) be equal to 1 on
[−1, 1]. Then by construction, (see [21]) :

∥∥ψ(t)eit∆v0

∥∥
Xs,b = ‖ψ‖Hb(R) ‖v0‖Hs

Thus, for T ≤ 1 we have ∥∥eit∆v0

∥∥
Xs,b
T

≤ C ‖v0‖Hs ≤ C ‖u0‖Hs

For T ≤ 1, the one dimensional estimate of Lemma 1.5 implies

∥∥∥∥ψ(t/T )

∫ t

0

ei(t−τ)∆F (τ)

∥∥∥∥
Xs,b

≤ CT 1−b−b′ ‖F‖Xs−b′

and then
∥∥∥∥
∫ t

0

ei(t−τ)∆
[
R0v − iβ |u|2 u− ig

]
(τ)dτ

∥∥∥∥
Xs,b
T

≤ CT 1−b−b′
∥∥R0v − βi |u|2 u− ig

∥∥
Xs,−b′

T

≤ CT 1−b−b′ ‖R0v‖Xs,0
T

+
∥∥|u|2 u

∥∥
Xs,−b′

T

+ ‖g‖
Xs,−b′

T

≤ CT 1−b−b′ ‖v‖Xs,b
T

(
1 + ‖v‖2

X1,b
T

)
+ ‖g‖

Xs,−b′

T

(19)

Thus

‖Φ(v)‖Xs,b
T

≤ C ‖u0‖Hs + ‖g‖
Xs,−b′

T

+ CT 1−b−b′ ‖v‖Xs,b
T

(
1 + ‖v‖2

X1,b
T

)
(20)

and similarly,

‖Φ(v) − Φ(ṽ)‖Xs,b
T

≤ CT 1−b−b′ ‖v − ṽ‖Xs,b
T

(
1 + ‖v‖2

Xs,b
T

+ ‖ṽ‖2
Xs,b
T

)
(21)

These estimates imply that if T is chosen small enough Φ is a contraction on a suitable ball of
Xs,b

T . Moreover, we have uniqueness in the class Xs,b
T for the Duhamel equation and therefore for the

Schrödinger equation.
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We also prove propagation of regularity.
If u0 ∈ Hs, with s > 1, we have an existence time T for the solution in X1,b

T and another time T̃ for
the existence in Xs,b

T̃
. By uniqueness in X1,b

T , the two solutions are the same on [0, T̃ ]. Assume T̃ < T .

Then, ‖u(t, .)‖Hs explodes as t tends to T̃ whereas ‖u(t, .)‖H1 remains bounded. Using local existence
in H1 and Lemma 1.7, we get that ‖u‖X1,b

T̃

is finite. Applying tame estimate (20) on a subinterval

[T − ε, T ], with ε small enough such that Cε1−b−b′
(
1 + ‖v‖2

X1,b
T

)
< 1/2, we obtain

‖v‖Xs,b
T

≤ C ‖u(T − ε)‖Hs + ‖g‖
Xs,−b′

T

.

Therefore, u ∈ Xs,b

T̃
, and this contradicts the explosion of ‖u(t, .)‖Hs near T̃ .

Next, we use energy estimates to get global existence.
First, we will consider the energy :

E(t) =
1

2

∫

M

|∇u|2 +
1

2
α

∫

M

|u|2 + β
1

4

∫

M

|u|4

The energy is conserved if g = 0 and a = 0. It is nonincreasing if g = 0. In general, multiplying our
equation by ∂tū, we have the relation :

E(t) −E(0) = −

∫ t

0

∥∥(1 − ∆)−1/2a(x)∂tu
∥∥2

L2 − ℜ

∫ t

0

∫

M

g∂tu

= −

∫ t

0

∥∥(1 − ∆)−1/2a(x)∂tu
∥∥2

L2 − ℜ

∫ t

0

∫

M

(J−1∗g)∂tv

= −

∫ t

0

∥∥(1 − ∆)−1/2a(x)∂tu
∥∥2

L2 − ℜ

∫ t

0

∫

M

(J−1∗g)i∆v +R0v − iβ|u|2u− ig

If 0 ≤ t ≤ T (for this equation, there is not global existence in negative time) and β > 0, we get

E(t) ≤ E(0)) + C

∫ t

0

∥∥∇(J−1∗g)
∥∥

L2 ‖∇u‖L2 +

∫ t

0

‖g‖L2 ‖u‖L2

+

∫ t

0

‖g‖L4 ‖u‖
3
L4 + ‖g‖2

L2([0,T ]×M)

≤ E(0) + C

∫ t

0

‖g(τ)‖H1

√
E(τ) + C

∫ t

0

‖g(τ)‖L2 (E(τ))1/4

+C

∫ t

0

‖g(τ)‖H1 (E(τ))3/4 + ‖g‖2
L2([0,T ]×M)

≤ E(0) + C

∫ t

0

‖g(τ)‖H1

[
1 + (E(τ))3/4

]
+ ‖g‖2

L2([0,T ]×M)

Therefore

max
0≤τ≤t

E(τ) ≤ E(0) + C(

[
1 + max

0≤τ≤t
E(τ)3/4

]
‖g‖L1([0,T ],H1) + ‖g‖2

L2([0,T ]×M)

So we have finally

E(t) ≤ C
(
1 + E(0)4 + ‖g‖8

L2([0,T ]×M) + ‖g‖4
L1([0,T ],H1)

)
(22)
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This implies that the energy is bounded if g ∈ L2([0, T ], H1) and yields global existence in X1,b
T for

every T > 0. The fact that the flow is locally Lipschitz follows from estimate (21).

Remark 2.1. If g = 0, the solution of (17) satisfies the energy decay

E(t) − E(0) = −

∫ t

0

∥∥(1 − ∆)−1/2a(x)∂tu
∥∥2

L2

This is obtained for initial data in H2 by multiplying the equation by ∂tū and can be extended to initial
data in H1 by approximation.

Remark 2.2. We have also proved that for any u0, g with ‖u0‖H1 + ‖g‖L2([0,T ],H1) ≤ A, the solution
u of (17) satisfies

‖u‖X1,b
T

≤ C(T,A).

Remark 2.3. If we look carefully at inequality (19), we see that we have for 0 < ε < 1 − b− b′

∥∥∥∥
∫ t

0

e(t−τ)∆
[
R0v − i |u|2 u− iJg

]
(τ)dτ

∥∥∥∥
X1,b+ε

≤ CT 1−b−b′−ε
∥∥R0v − i |u|2 u− iJg

∥∥
X1,−b′

T

≤ CT 1−b−b′−ε ‖v‖X1,b
T

(
1 + ‖v‖2

X1,b
T

)
+ ‖g‖L2([0,T ],H1)(23)

And we can then conclude that u is bounded in X1,b+ε
T .

Remark 2.4. We notice that for a solution of the equation, the term of stabilization a(x)(1 −
∆)−1a(x)∂tu belongs to L∞([0, T ], H1(M)) as expected. Actually, for a solution, this term acts as
an operator of order 0. This is more visible using the equation fulfilled by v = Ju.

Then, in the aim of obtaining controllability near trajectories, we prove an appropriate existence
theorem.

Proposition 2.2. Suppose that Assumption 3 is fulfilled. Let T > 0 and w solution in X1,b
T of

{
i∂tw + ∆w = ±|w|2w + g1 on [0, T ] ×M

w(0) = w0 ∈ H1(24)

with g1 ∈ L2([0, T ], H1). Then, for any s ∈]s0, 1], there exists ε > 0 such that for any u0 ∈ Hs and
g ∈ L2([0, T ], Hs) with ‖u0 − w0‖Hs + ‖g1 − g‖L2([0,T ],Hs) ≤ ε there exists a unique solution u in Xs,b

T

of equation (24).
Moreover for any 1 ≥ r ≥ s there exists C = C(r, ‖w‖X1,b

T
, T ) > 0 such that, if u0 ∈ Hr and

g ∈ L2([0, T ], Hr), we have u ∈ Xr,b
T and

‖u− w‖Xr,b
T

≤ C
(
‖u0 − w0‖Hr + ‖g1 − g‖L2([0,T ],Hr)

)
.(25)

Remark 2.5. In the focusing case, the existence of w is not guaranteed for any w0 g1 and T , and the
result we prove assumes this existence.

Remark 2.6. Here, we emphasize the fact that the asumption of smallness only concerns the Hs norm
and not Hr. This is a consequence of the subcritical behavior.
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Proof. We want to linearize the equation. If u = w + r and g = g1 + gr, then

|w + r|2 (w + r) = |w|2w + 2 |w|2 r + w2r̄ + 2 |r|2w + r2w̄ + |r|2 r

= |w|2w + 2 |w|2 r + w2r̄ + F (w, r).

We are looking for r solution of

{
i∂tr + ∆r = 2 |w|2 r + w2r̄ + F (w, r) + gr

r(x, 0) = r0(x)
(26)

We make a proof similar to Proposition 2.1. We only write the necessary estimates. (11) and (12)
yield

‖r‖Xr,b
T

≤ C
(
‖r0‖Hr + ‖gr‖L2([0,T ],Hr)

)
+ CT 1−b−b′ ‖w‖2

X1,b
T

‖r‖Xr,b
T

+CT 1−b−b′
(
‖w‖X1,b

T
‖r‖Xr,b

T
‖r‖Xs,b

T
+ ‖r‖Xr,b

T
‖r‖2

Xs,b
T

)
.

With T such that CT 1−b−b′ ‖w‖2
X1,b
T
< 1/2, it yields

‖r‖Xr,b
T

≤ C
(
‖r0‖Hr + ‖gr‖L2([0,T ],Hr)

)

+CT 1−b−b′
(
‖w‖X1,b

T
‖r‖Xr,b

T
‖r‖Xs,b

T
+ ‖r‖Xr,b

T
‖r‖2

Xs,b
T

)
.(27)

First, we apply this with r = s. As we have proved in Lemma 1.6 the continuity with respect to T of
‖r‖Xs,b

T
we are in position to apply a boot-strap argument : for ‖r0‖Hs + ‖gr‖L2([0,T ],Hs) small enough

(depending only on ‖w‖X1,b
T

), we obtain :

‖r‖Xs,b
T

≤ C ‖r0‖Hs + ‖gr‖L2([0,T ],Hs) .

Repeating the argument on every small interval, using that ‖r‖Xs,b
T

controls L∞(Hs) and matching

solutions with Lemma 1.7, we get the same result for every large interval, with a smaller constant ε,
depending only on s, T and ‖w‖X1,b

T
.

Then, we return to the general case r ≥ s and CT 1−b−b′ ‖w‖2
X1,b
T
< 1/2. For T small enough (depending

only on r, ε and ‖w‖X1,b
T

), estimate (27) becomes

‖r‖Xr,b
T

≤ C
(
‖r0‖Hr + ‖gr‖L2([0,T ],Hr)

)

Again, we obtain the desired result by piecing solutions together.

2.2 Linear equation with rough potential

The control near trajectories will be obtained by a perturbation of control of linear Schrödinger equa-
tion with rough potential. The equation considered are the linearization of nonlinear equations and
its dual version. We establish here the necessary estimates.
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Proposition 2.3. Suppose Assumption 3. Let T > 0, s ∈ [−1, 1], A > 0 and w ∈ X1,b
T with

‖w‖X1,b
T

≤ A.

For every u0 ∈ Hs and g ∈ Xs,−b′

T there exists a unique solution u in Xs,b
T of equation

{
i∂tu+ ∆u = ±2|w|2u± w2u+ g on [0, T ] ×M

u(0) = u0 ∈ Hs(28)

Moreover there exists C = C(s, A, T ) > 0 such that

‖u‖Xs,b
T

≤ C (‖u0‖Hs + ‖g‖Xs,−b′ ) .(29)

Proof. We make the same arguments as above using estimates of Lemma 1.2.

3 Linearisation in H1

The following result show that any sequence of solutions with Cauchy data weakly convergent to 0
asymptotically behave as solutions of the linear equation. These types of results were first introduced
by P. Gérard in [19] for the wave equation and are typical of subcritical situations.

Proposition 3.1. Suppose Assumption 3 is fulfilled. Let (un) ∈ X1,b
T be a sequence of solutions of

{
i∂tun + ∆un − un − |un|

2un = a(x)(1 − ∆)−1a(x)∂tun on [0, T ] ×M
un(0) = un,0 ∈ H1(M)

(30)

such that
un,0 ⇀

H1(M)
0.

Then
|un|

2un −→
X1,−b′

T

0.

Proof. We prove that any subsequence (still denoted un) admits another subsequence converging to 0.
The main point is the tame Xs,b

T estimate of Lemma 1.1. For one s0 < s < 1 we have
∥∥|un|

2un

∥∥
X1,−b′

T

≤ ‖un‖
2
Xs,b
T

‖un‖X1,b
T

(31)

First, using Remark 2.2, we conclude that un is bounded in X1,b
T , and actually by Remark 2.3, un

is bounded in X1,b+ε
T for some ε > 0. By compact embedding of X1,b+ε

T into Xs,b
T we obtain that un

admits a subsequence converging weakly in X1,b
T and strongly in Xs,b

T to a function u ∈ Xs,b
T with

u(0) = 0. un(0) strongly converges to 0 in Hs and by continuity of the nonlinear flow in Hs, un

strongly converges to 0 in Xs,b
T . This yields the desired result thanks to (31).

4 Propagation of compactness

In this section, we adapt some theorems of Dehman-Gerard-Lebeau [13] in the case of Xs,b spaces. We
recall that S∗M denotes the cosphere bundle of the Riemannian manifold M ,

S∗M = {(x, ξ) ∈ T ∗M : |ξ|x = 1}
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Proposition 4.1. Let r ∈ R. Let un be a sequence of solutions to

i∂tun + ∆un = fn

such that for one 0 ≤ b ≤ 1, we have

‖un‖Xr,b
T

≤ C, ‖un‖Xr−1+b,−b
T

→ 0 and ‖fn‖Xr−1+b,−b
T

→ 0

Then, there exists a subsequence (un′) of (un) and a positive measure µ on ]0, T [×S∗M such that
for every tangential pseudodifferential operator A = A(t, x,Dx) of order 2r and of principal symbol
σ(A) = a2r(t, x, ξ),

(A(t, x,Dx)un′, un′)L2(]0,T [×M) →

∫

]0,T [×S∗M

a2r(t, x, ξ) dµ(t, x, ξ)

Moreover, if Gs denotes the geodesic flow on S∗M , one has for every s ∈ R,

Gs(µ) = µ

Proof. Existence of the measure : it is based on Gärding inequality, see [18] for an introduction.
Propagation : Denote L the operator L = i∂t + ∆. Let ϕ = ϕ(t) ∈ C∞

0 (]0, T [), B(x,Dx) be a
pseudodifferential operator of order 1, with principal symbol b2r−1, A(t, x,Dx) = ϕ(t)B(x,Dx). For
ε > 0, we denote Aε = ϕBε = Aeε∆ for the regularization.

As Aεun and A∗
εun are C∞, we can write (Lun, A

∗
εun)L2(]0,T [×M) = (fn, A

∗
εun)L2(]0,T [×M) and

(Aεun, Lun)L2(]0,T [×M) = (Aεun, fn)L2(]0,T [×M). We write by a classical way

αn,ε = (Lun, A
∗
εun)L2(]0,T [×M) − (Aεun, Lun, )L2(]0,T [×M)

= ([Aε,∆]un, un) − i(∂t(Aε)un, un)

We will strongly use Lemma 1.3 and 1.4 without citing them.
∂t(Aε) is of order 2r − 1 uniformly in ε, then,

sup
ε

(∂t(Aε)un, un)L2(]0,T [×M) ≤ C‖∂t(Aε)un‖X−r+1−b,b
T

‖un‖Xr−1+b,−b
T

≤ C‖un‖Xr,b
T
‖un‖Xr−1+b,−b

T

which tends to 0 if n→ ∞.
But we have also

αn,ε = (fn, A
∗
εun)L2(]0,T [×M) − (Aεun, fn)L2(]0,T [×M)

∣∣(fn, A
∗
εun)L2(]0,T [×M)

∣∣ ≤ ‖fn‖Xr−1+b,−b
T

‖A∗
εun‖X−r+1−b,b

T

≤ ‖fn‖Xr−1+b,−b′

T

‖un‖Xr,b
T

Then, supε

∣∣(fn, A
∗
εun)L2(]0,T [×M)

∣∣ → 0 when n → ∞. The same estimate for the other terms gives
supε αn,ε → 0.

Finally, taking the supremum on ε tending to 0, we get

(ϕ[B,∆]un, un)L2(]0,T [×M) → 0 when n→ ∞

which means, in terms of measure
∫

]0,T [×S∗M

ϕ(t) {σ2(∆), b2r−1} dµ(t, x, ξ) = 0.

This is precisely the propagation along the geodesic flow.
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Corollary 4.1. Let r ∈ R. Assume that ω ⊂ M satisfies Assumption 1 and a ∈ C∞(M), as in (3).

Let un be a sequence bounded in Xr,b′

T with 0 < b′ < 1/2, weakly convergent to 0 and satisfying
{

i∂tun + ∆un → 0 in Xr,−b′

T

a(x)un → 0 in L2([0, T ], Hr)
(32)

Then, we have un → 0 in Xr,1−b′.

Proof. Let (unk) be a quelconque subsequence of (un). The asumption on b′ and compact embedding
allow us to apply Proposition 4.1. We can attach to (unk) a microlocal defect measure in L2([0, T ], Hr)
that propagates along the geodesics with infinite speed. The second assumption gives a(x)µ = 0. By
Assumption 1, and the fact that a is elliptic on ω, we have µ = 0 on ]0, T [×S∗M , ie (un′) → 0 in
L2([0, T ], Hr), and un → u in L2([0, T ], Hr).
Then, we can pick t0 such that un(t0) → 0 in Hr.
Using Lemma 1.5 and asumptions on b′, we get for T ≤ 1

∥∥∥∥
∫ t

0

ei(t−τ)∆fn(τ)dτ

∥∥∥∥
Xr,1−b′

T

≤ C ‖fn‖Xr,−b′

T

Using Duhamel formula, we conclude un → 0 in Xr,1−b′

T .
Then, the hypothesis T ≤ 1 is easily removed by piecing solutions together as in Lemma 1.7.

5 Propagation of regularity

We write Proposition 13 of [13] with some Xs,b asumptions on the second term of the equation.

Proposition 5.1. Let T > 0, 0 ≤ b < 1 and u ∈ Xr,b
T , r ∈ R solution of

i∂tu+ ∆u = f ∈ Xr,−b
T

Given ω0 = (x0, ξ0) ∈ T ∗M \ 0, we assume that there exists a 0 − order pseudo-differential operator
χ(x,Dx), elliptic in ω0 such that

χ(x,Dx)u ∈ L2
loc(]0, T [, Hr+ρ)

for some ρ ≤ 1−b
2

. Then, for every ω1 ∈ Γω0, the geodesic ray starting at ω0, there exists a pseudodif-
ferential operator Ψ(x,Dx), elliptic in ω1 such that

Ψ(x,Dx)u ∈ L2
loc(]0, T [, Hr+ρ)

Corollary 5.1. With the notations of the Proposition, if an open set ω satisfies Assumption 1 and
a(x)u ∈ L2

loc(]0, T [, Hr+ρ), with a ∈ C∞(M), as in (3), then u ∈ L2
loc(]0, T [, Hr+ρ(M).

Proof : We first regularize : un = e
1
n

∆u with ‖un‖Xr,b
T

≤ C. Set s = r + ρ

Let B(x,Dx) be a pseudodifferential operator of order 2s− 1 = 2r + 2ρ− 1, that will be chosen later
and A = A(t, x,Dx) = ϕ(t)B(x,Dx) where ϕ ∈ C∞

0 (]0, T [).
If L = i∂t + ∆, we write

(Lun, A
∗un)L2(]0,T [×M) − (Aun, Lun, )L2(]0,T [×M)

= ([A,∆]un, un)L2(]0,T [×M) − (iϕ′Bun, un)L2(]0,T [×M)
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|(Aun, fn)L2(]0,T [×M)| ≤ ‖Aun‖X−r,b
T

‖fn‖Xr,−b
T

≤ ‖un‖Xr+2ρ−1+b,b
T

‖fn‖Xr,−b
T

As we have chosen ρ ≤ 1−b
2

, we have r + 2ρ− 1 + b ≤ r and so

|(Aun, fn)L2(]0,T [×M)| ≤ C‖un‖Xr,b
T
‖fn‖Xr,−b

T
≤ C.

Similarly

|(ϕ′Bun, un)L2(]0,T [×M)| ≤ C‖un‖Xr,b
T
‖un‖Xr,−b

T
≤ C

Then,

([A,∆]un, un)L2(]0,T [×M) =

∫ T

0

ϕ(t)([B,∆]un(t), un(t))L2(M)dt

is uniformly bounded. Then, we select B by means of symplectic geometry. Take ω1 ∈ Γω0, U and
V two small conical neighborhoods, respectively of ω1 and ω0. For every symbol c(x, ξ), of order s,
supported in U , one can find a symbol b(x, ξ) of order 2s− 1 such that

1

i
{σ2(∆), b(x, ξ)} = |c(x, ξ)|2 + r(x, ξ)

with r(x, ξ) of order 2s and supported in V . We take B a pseudodifferential operator with principal
symbol b so that [B,∆] is a pseudodifferential operator of principal symbol |c(x, ξ)|2 + r(x, ξ). Then,
if we choose c(x, ξ) elliptic at ω1, we conclude

∫ t

0

ϕ(t) ‖c(x,Dx)un(t, x)‖
2
L2 dt ≤ C.

This ends the proof of Proposition 5.1.

Corollary 5.2. Here dim M ≤ 3 and b > 1/2. Let u ∈ X1,b
T solution of

{
i∂tu+ ∆u = |u|2u+ u on [0, T ] ×M

∂tu = 0 on ]0, T [×ω
(33)

where ω satisfies Assumption 1.
Then u ∈ C∞(]0, T [×M).

Proof : We have u ∈ L∞([0, T ], H1), and so in L∞([0, T ], L6) by Sobolev embedding. Then, we
infer that |u|2u ∈ L∞([0, T ], L2(M)).
On ]0, T [×ω, we have

∆u = |u|2 u+ u.

Therefore, ∆u ∈ L2([0, T ], L2(ω)) and u ∈ L2(]0, T [×H2(ω)). Since H2(ω) is an algebra, we can go on
the same reasonning to conclude that u ∈ C∞(]0, T [×ω).

By applying once Corollary 5.1, we get u ∈ L2
loc([0, T ], H1+ 1−b

2 ). Then we can pick t0 such that

u(t0) ∈ H1+ 1−b
2 . We can then solve in X1+ 1−b

2
,b our nonlinear Schrödinger equation with initial data

u(t0). By uniqueness in X1,b
T , we can conclude that u ∈ X

1+ 1−b
2

,b

T .
By iteration, we get that u ∈ L2(]0, T [, Hr) for every r ∈ R and u ∈ C∞([0, T ],M).
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Corollary 5.3. If, in addition to Corollary 5.2, ω satisfies Assumption 2, then u = 0.

Proof. Using Corollary 5.2, we infer that u ∈ C∞(]0, T [×M).
Taking time derivative of equation (33), v = ∂tu satisfies

{
i∂tv + ∆v + f1 v + f2 v̄ = 0

v = 0 on ]0, T [×ω
(34)

for some f1, f2 ∈ C∞(]0, T [×M). Assumption 2 gives v = ∂tu = 0. Multiplying (33) by ū and
integrating , we get ∫

M

|∇u|2 +

∫

M

|u|4 +

∫

M

|u|2 = 0

and so u = 0.

Remark 5.1. We have the same conclusion for u ∈ X1,b
T solution of

{
i∂tu+ ∆u = u on [0, T ] ×M

∂tu = 0 on ]0, T [×ω
(35)

6 Stabilization

Theorem 0.2 is a consequence of the following Proposition

Proposition 6.1. Let a ∈ C∞(M), as in (3). Under Hypothesis 1, 2 and 3, for every T > 0 and
every R0 > 0, there exists a constant C > 0 such that inequality

E(0) ≤ C

∫ T

0

∥∥(1 − ∆)−1/2a(x)∂tu
∥∥2

L2 dt

holds for every solution u of the damped equation
{
i∂tu+ ∆u− (1 + |u|2)u = a(x)(1 − ∆)−1a(x)∂tu on [0, T ] ×M

u(0) = u0 ∈ H1(36)

and ‖u0‖H1 ≤ R0.

Proof of Proposition 6.1 ⇒ Theorem 0.2. For any f ∈ H1(M), Sobolev embeddings yield

E(f) ≤ C
(
‖f‖2

H1 + ‖f‖4
H1

)

‖f‖H1 ≤ C (E(f))1/2 .

As the energy is decreasing, if ‖u0‖H1 ≤ R0, we can find another R̃0 such that ‖u(t)‖H1 ≤ R̃0 for any
t > 0. For this range of values, we have

C−1 (E(f))1/2 ≤ ‖f‖H1 ≤ C (E(f))1/2(37)

for one C > 0 depending on R0.
We apply Proposition 6.1 with this bound and obtain E(t) ≤ Ce−γ(R0)tE(0). Then, for t > t(R0),

we have ‖u(t)‖H1 ≤ 1.
We take γ(1) the decay rate corresponding to the bound 1. Therefore, for t > t(R0), we get

‖u(t)‖H1 ≤ Ce−γ(1)(t−t(R0)) ‖u(t(R0))‖H1 . This yields a decay rate independant of R0 as announced,
while the coefficient C may strongly depend on R0.
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Remark 6.1. If we make the change of unknown w = e−itu, w is solution of the new damped equation

{
i∂tw + ∆w − |w|2w = a(x)(1 − ∆)−1a(x)(∂tw − iw) on [0, T ] ×M

w(0) = u0 ∈ H1

This modification is necessary because there is not exponential decay for the damped equation (36) with
|u|2u instead of (1 + |u|2)u. We check for example that for a = 1, the solution with constant Cauchy
data u0 satisfies

|u(t)|2 =
|u0|

1 + |u0|t
.

Moreover, it also proves that the solution is global in time only on R+ (this restriction remains with
the non linearity (1 + |u|2)u).

Proof of Proposition 6.1. We argue by contradiction, we suppose the existence of a sequence (un) of
solutions of (36) such that

‖un(0)‖H1 ≤ R0

and
∫ T

0

∥∥(1 − ∆)−1/2a(x)∂tun

∥∥2

L2 dt ≤
1

n
E(un(0))(38)

We note αn = E(un(0))1/2. By the Sobolev embedding for the L4 norm, we have αn ≤ C(R0). So, up
to extraction, we can suppose that αn −→ α.
We will distinguich two cases : α > 0 and α = 0.

First case : αn −→ α > 0
By decreasing of the energy, (un) is bounded in L∞([0, T ], H1) and so in X1,b

T . Then, as X1,b
T is a

separable Hilbert we can extract a subsequence such that un ⇀ u weakly in X1,b
T ans strongly in Xs,b′

T

for one u ∈ X1,b
T and s > s0. Therefore, |un|

2un converges to |u|2u in Xs,−b′

T .
Using (38) and passing to the limit in the equation verified by un, we get

{
i∂tu+ ∆u = |u|2u+ u on [0, T ] ×M

∂tu = 0 on ]0, T [×ω

Using Corollary 5.3, we infer u = 0.
Therefore, we have, up to new extraction, un(0) ⇀ 0 in H1. Using Proposition 3.1 of linearisation, we

infer that |un|
2un → 0 in X1,−b′

T .
Moreover, because of (38) we have

a(x)(1 − ∆)−1a(x)∂tun −→
L2([0,T ],H1)

0

and the convergence is also in X1,−b′

T .
Then, estimate (38) also implies a(x)∂tun −→

L2([0,T ],H−1)
0.

Using equation (36), we obtain

a(x)
[
∆un − un − |un|

2un − a(x)(1 − ∆)−1a(x)∂tun

]
−→

L2([0,T ],H−1)
0
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By Sobolev embedding, un tends to 0 in L∞([0, T ], Lp) for any p < 6. Therefore, |un|
2un converges to

0 in L∞([0, T ], Lq) for q < 2 and so in L2([0, T ], H−1). Thus, we get

a(x)(∆ − 1)un −→
L2([0,T ],H−1)

0.

Therefore, (1 − ∆)1/2a(x)un = (1 − ∆)−1/2a(x)(1 − ∆)un + (1 − ∆)−1/2[(1 − ∆), a(x)]un converges to
0 in L2([0, T ], L2).

In conclusion, we have





un ⇀ 0 in X1,b′

T

a(x)un → 0 in L2([0, T ], H1)

i∂tun + ∆un − un −→ 0 in X1,−b′

T

Thus, changing un into eitun and using that the multiplication by eit is continuous on any Xs,b
T (see

Lemma 1.3), we are in position to apply Corollary 4.1. Hence, as we have 1 − b′ > 1/2, it yields

un(0) −→
H1

0.

In particular, E(un(0)) → 0 which is a contradiction to our hypothesis α > 0.

Second case : αn −→ 0
Let us make the change of unknown vn = un/αn. vn is solution of the system

i∂tvn + ∆vn − a(x)(1 − ∆)−1a(x)∂tvn = vn + α2
n|vn|

2vn

and

∫ T

0

∥∥(1 − ∆)−1/2a(x)∂tvn

∥∥2

L2 dt ≤
1

n
(39)

For a constant depending on R0, we still have (37). Therefore, we write

‖vn(t)‖H1 =
‖un(t)‖H1

E(un(0))1/2
≤ C

E(un(t))1/2

E(un(0))1/2
≤ C

‖vn(0)‖H1 =
‖un(0)‖H1

E(un(0))1/2
≥ C > 0(40)

Thus, we have ‖vn(0)‖H1 ≈ 1 and vn is bounded in L∞([0, T ], H1).
By the same estimates we made in the proof of Proposition 2.1, we obtain

‖vn‖X1,b
T

≤ C ‖vn(0)‖H1 + CT 1−b−b′
(
‖vn‖X1,b

T
+ α2

n ‖vn‖
3
X1,b
T

)

Then, if we take CT 1−b−b′ < 1/2, independant of vn, we have

‖vn‖X1,b
T

≤ C(1 + α2
n ‖vn‖

3
X1,b
T

).
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By a boot strap argument, we conclude that, ‖vn‖X1,b
T

is uniformly bounded. Using Lemma 1.7, we

conclude that it is bounded on X1,b
T for some large T and then, α2

n|vn|
2vn tends to 0 in X1,−b′

T .
Then, we can extract a subsequence such that vn ⇀ v in X1,b

T where v is solution of

{
i∂tv + ∆v = v on [0, T ] ×M

∂tv = 0 on ]0, T [×ω

It implies v = 0 by Remark 5.1.
Estimate (39) yields that a(x)(1 − ∆)−1a(x)∂tvn converges to 0 in L2([0, T ], H1) and so in X1,−b′

T .
We finish the proof as in the first case to conclude the convergence of vn to 0 in X1,b

T . This
contradicts (40).

7 Controllability of the linear equation

7.1 Observability estimate

Proposition 7.1. Assume that (M,ω) satisfies Hypothesis 1, 3 and 4. Let a ∈ C∞(M), as in (3),
taking real values. Then, for every −1 ≤ s ≤ 1, T > 0 and A > 0, there exists C such that estimate

‖u0‖
2
Hs ≤ C

∫ T

0

‖au(t)‖2
Hs dt

holds for every solution u(t, x) ∈ Xs,b
T of the system

{
i∂tu+ ∆u = ±2|w|2u± w2ū on [0, T ] ×M

u(0) = u0 ∈ Hs(41)

with one w satisfying ‖w‖X1,b
T

≤ A.

Proof. We only treat the case with 2|w|2u+ w2ū. The others are similar. We argue by contradiction.
Let un ∈ Xs,b

T be a sequence of solution to (41) with some associated wn such that

‖un(0)‖Hs = 1,

∫ T

0

‖aun‖
2
Hs → 0(42)

and
‖wn‖X1,b

T
≤ A.

Proposition 2.3 of existence yields that un is bounded in Xs,b
T and we can extract a subsequence such

that un converges strongly in Xs−1+b,−b
T to some u ∈ Xs,b

T (b < 1 − b′ < 1).

Then, using Lemma 1.2, we infer that 2|wn|
2un + w2

nūn is bounded in Xs,−b′

T . We can extract another
subsequence such that it converges strongly in Xs−1+b,−b

T (here we use −b < −1/2 < −b′) to some

Ψ ∈ Xs,−b′

T .
Denoting rn = un − u and fn = 2|wn|

2un + w2
nūn −Ψ, we can apply Proposition 4.1 of propagation of

compactness. As ω satisfies geometric control and aun → 0 in L2([0, T ], Hs), we obtain that rn → 0
in L2

loc([0, T ], Hs).
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rn is also bounded in Xs,b
T and we deduce, by interpolation, that rn tends to 0 in Xs,b′

I for every
I ⊂⊂]0, T [.

Now, we want to prove that u ≡ 0 using unique continuation. As wn is bounded in X1,b
T , we can

extract a subsequence such that it converges weakly to some w ∈ X1,b
T . We have to prove that u is

solution of a linear Schrödinger equation with potential. But the fact that |wn|
2un converges weakly to

|w|2u is not guaranteed and actually uses the fact that the regularity H1 is subcritical (see the article
of L. Molinet [30] where the limit of the product is not the expected one).
We decompose

un|wn|
2 − u|w|2 = (un − u)|wn|

2 + u
[
|wn − w|2 − w(w − wn) − w(w − wn)

]

= 1 + 2 + 3 + 4

Term 1 converges strongly to 0 in Xs,−b′

T because un −u tends to 0 in Xs,b′

T and wn is bounded in X1,b
T .

For term 2, we use tame estimate for ε such that 1 − ε > s0

∥∥u|wn − w|2
∥∥

Xs,−b′

T

≤ ‖u‖Xs,b
T

‖wn − w‖
X1−ε,b′

T

‖wn − w‖
X1,b′

T

.

By compact embedding, wn − w converges, up to extraction, strongly to 0 in X1−ε,b′

T and Term 2

converges strongly in Xs,−b′

T . Terms 3 and 4 converge weakly to 0 in X−1,−b
T and so in the distributional

sense.
Finally, we conclude that the limit of un|wn|

2 is u|w|2. We obtain similarly that w2
nun converges in

the distributional sense to w2ū. Therefore, u is solution of
{
i∂tu+ ∆u = 2|w|2u+ w2ū

u = 0 on [0, T ] × ω

Using Corollary 5.1, we infer that u ∈ L2
loc([0, T ], Hs+ 1−b

2 ) and existence Proposition 2.3 yields that it

actually belongs to X
s+ 1−b

2
,b

T . By iteration, we obtain that u ∈ X1,b
T . Then, we can apply Assumption

4 and we have in fact u = 0.
We pick t0 ∈ [0, T ] such that un(t0) converges strongly to 0 in Hs. Estimate (29) of existence

Proposition 2.3 yields strong convergence to 0 of un in Xs,b
T . Therefore, ‖un(0)‖Hs tends to 0, which

contradicts (42).

7.2 Linear control

Proposition 7.2. Assume that (M,ω) satisfies Hypothesis 1, 3 and 4. Let −1 ≤ s ≤ 1, T > 0 and
w ∈ X1,b

T . For every u0 ∈ Hs(M) there exists a control g ∈ C([0, T ], Hs) supported in [0, T ] × ω, such
that the unique solution u in Xs,b

T of the Cauchy problem
{
i∂tu+ ∆u = ±2|w|2u± w2u+ g on [0, T ] ×M

u(0) = u0 ∈ Hs(M)
(43)

satisfies u(T ) = 0.

Proof. We only treat the case with 2|w|2u+w2ū. Let a(x) ∈ C∞(M) real valued, as in (3). We apply
the HUM method of J.L. Lions. We consider the system

{
i∂tu+ ∆u = 2|w|2u+ w2u+ g g ∈ L2([0, T ], Hs) u(T ) = 0
i∂tv + ∆v = 2|w|2v − w2v v(0) = v0 ∈ H−s
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These equations are well posed in Xs,b
T and X−s,b

T thanks to Proposition 2.3. The equation verified by
v is the dual as the one of u for the real duality (the equation is not C linear). Then, multiplying the
first system by iv, integrating and taking real part, we get (the computation is true for w, g and v0

smooth, we extend it by approximation)

ℜ(u0, v0)L2 = ℜ

∫ T

0

(ig, v)L2dt

where (·, ·)L2 is the complex duality on L2(M). We define the continuous map S : H−s → Hs by
Sv0 = u0 with the choice

g = Av = −ia(x)(1 − ∆)−sa(x).

This yields

ℜ(Sv0, v0)L2 = ℜ

∫ T

0

(a(x)(1 − ∆)−sa(x)v, v) =

∫ T

0

∥∥1 − ∆)−s/2a(x)v
∥∥2

L2 =

∫ T

0

‖a(x)v‖2
H−s

Thus, S is self-adjoint and positive-definite thanks to observability estimate of Proposition 7.1. It
therefore defines an isomorphism from H−s into Hs. Moreover, we notice that the norms of S and S−1

are uniformly bounded as w is bounded in X1,b
T .

Proposition 7.3. Assume 0 ≤ s ≤ 1, w = 0 and (M,ω) is either :
-(T3,any open set)
-(S2 × S1,(a neighborhood of the equator)×S1)
-(S2 × S1,S2× (any open set of S1))
Then, the same conclusion as Proposition 7.2 holds.

Proof. By following the proof of Proposition 7.2, we are reduced to proving an observability estimate

‖u0‖
2
H−s ≤ C

∫ T

0

∥∥a(x)eit∆u0

∥∥2

H−s dt

These results are already known for s = 0 :
-for T3, this was first proved by S. Jaffard [23] in dimension 2 and generalized to any dimension by V.
Komornik [25].
-the others example are of the form (M1 ×M2, ω1 ×M2) were ω1 satisfies observability estimate.

We can extend them to any s, with 0 ≤ s ≤ 1 by writing ‖u0‖H−s =
∥∥(1 − ∆)−s/2u0

∥∥
L2 . We

conclude using observablility estimate in L2 and commutator estimates.
Actually, Proposition 7.4 of the next section proves that controllability in L2 implies controllability in
Hs, 0 ≤ s ≤ 1, with the HUM operator constructed on L2. This yields the observability estimate in
H−s and for that reason, we do not detail the previous argument.

7.3 Regularity of the control

This section is strongly inspired by the work of B. Dehman and G. Lebeau [14]. It express the fact
that the HUM operator constructed on a space Hs propagates some better regularity. We extend this
result to the Schrödinger equation with some rough potentials.
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Let T > 0, s ∈ [−1, 1] and w ∈ X1,b
T . As in the the proof of Proposition 7.2, we denote S = Ss,T,w,a :

H−s → Hs the HUM operator of control associated to the trajectory w by SΦ0 = u0 where
{
i∂tΦ + ∆Φ = 2|w|2Φ − w2Φ

Φ(x, 0) = Φ0(x) ∈ H−s

and u solution of
{
i∂tu+ ∆u = 2|w|2u+ w2u+ AΦ

u(T ) = 0

where A = −ia(x)(1 − ∆)−sa(x).

Proposition 7.4. Suppose Assumptions 3 and 5 are fulfilled. Let 0 ≤ s0 < s ≤ 1, ε = 1 − s and
w ∈ X1,b

T . Denote S = Ss,T,w,a the operator defined above. We assume that S is an isomorphism from
H−s into Hs. Then, S is also an isomorphism from H−s+ε into Hs+ε = H1.

Proof. First, we show that S maps H−s+ε into Hs+ε.
Let Φ0 ∈ H−s+ε. By existence Proposition 2.3, we have Φ ∈ X−s+ε,b

T , then AΦ ∈ L2([0, T ], Hs+ε)
and existence Proposition 2.3 gives again u ∈ Xs+ε,b

T and u(0) = SΦ0 ∈ Hs+ε.
To finish, we only have to prove that SΦ0 = u0 ∈ Hs+ε implies Φ0 ∈ H−s+ε. As we already know

that Φ0 ∈ H−s, we need to prove that (−∆)ε/2Φ0 ∈ H−s. We use the fact that S is an isomorphism
from H−s into Hs. Denote Dε = (−∆)ε/2.

‖DεΦ0‖H−s ≤ C ‖SDεΦ0‖Hs ≤ C ‖SDεΦ0 −DεSΦ0‖Hs + C ‖DεSΦ0‖Hs

≤ C ‖SDεΦ0 −Dεu0‖Hs + C ‖u0‖Hs+ε

Let ϕ solution of
{
i∂tϕ+ ∆ϕ = 2|w|2ϕ− w2ϕ

ϕ(x, 0) = DεΦ0(x)

and v solution of
{
i∂tv + ∆v = 2|w|2v + w2v + Aϕ

v(T ) = 0

So that v(0) = SDεΦ0. We need to estimate ‖v(0) −Dεu0‖Hs. But r = v −Dεu is solution of
{
i∂tr + ∆r = 2|w|2r + w2r − 2[Dε, |w|2]u− [Dε, w2]u+ A(ϕ−DεΦ) − [Dε, A]Φ

r(T ) = 0

Then, using Proposition 2.3 we obtain

‖r0‖Hs ≤ C ‖r‖Xs,b
T

≤ C
(∥∥[Dε, |w|2]u

∥∥
Xs,−b′

T

+
∥∥[Dε, w2]

∥∥
Xs,−b′

T

+ ‖A(ϕ−DεΦ)‖
Xs,−b′

T

+ ‖[Dε, A]Φ‖
Xs,−b′

T

)

Lemma A.3 of the Appendix, Section A gives us some estimates about the commutators. For the last
term, we notice that [Dε, A] is a pseudodifferential operator of order ε− 2s− 1 ≤ −2s.

‖r0‖Hs ≤ C
(
‖w‖2

Xs+ε,b′

T

‖u‖
Xs,b′

T

+ ‖A(ϕ−DεΦ)‖
Xs,−b′

T

+ ‖Φ‖L2([0,T ],H−s)

)
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We already know that u ∈ Xs,b′

T , w ∈ Xs+ε,b′

T and Φ ∈ X−s,b
T . We only have to estimate

‖A(ϕ−DεΦ)‖
Xs,−b′

T

≤ C ‖ϕ−DεΦ‖L2([0,T ],H−s). But d = ϕ−DεΦ is solution of

{
i∂td+ ∆d = 2|w|2d− w2d− 2[Dε, |w|2]Φ + [Dε, w2]Φ

d(x, 0) = 0

Thus, using Proposition 2.3, we get

‖ϕ−DεΦ‖L2([0,T ],H−s) ≤ C ‖d‖X−s,b
T

≤ C
(∥∥[Dε, |w|2]Φ

∥∥
X−s,−b′

T

+
∥∥[Dε, w2]Φ

∥∥
X−s,−b′

T

)

The second part of Lemma A.3 of the Appendix allows us to conclude.

8 Control near a trajectory

Theorem 0.3 and 0.4 are consequences of the following Proposition

Proposition 8.1. Suppose Assumptions 3 and 5 are fulfilled. Let T > 0 and w ∈ X1,b
T a controlled

trajectory, i.e. solution of

i∂tw + ∆w = ±|w|2w + g1 on [0, T ] ×M

with g1 ∈ L2([0, T ], H1(M)), supported in ω. Let 1 ≥ s > s0 ≥ 0 . Assume that the HUM operator
S = Ss,T,w,a, defined in Subsection 7.3, is an isomorphism from H−s into Hs.
There exists ε > 0 such that for every u0 ∈ Hs with ‖u0 − w(0)‖Hs < ε, there exists g ∈ C([0, T ], Hs)

supported in [0, T ] × ω such that the unique solution u in Xs,b
T of

{
i∂tu+ ∆u = ±|u|2u+ g

u(x, 0) = u0(x)
(44)

fulfills u(T ) = w(T ).
Moreover, we can find another ε > 0 depending only on T ,s, ω and ‖w‖X1,b

T
such that for any u0 ∈ H1

with ‖u0 − w(0)‖Hs < ε, the same conclusion holds with g ∈ C([0, T ], H1).

Proof. In the demonstration, we denote C some constants that could actually depend on T , ‖w‖X1,b
T

and s. The final ε will have the same dependence. We make the proof for the defocusing case, but
since there is no energy estimate, it is the same in the other situation.

We linearize the equation as in Proposition 2.2. If u = w + r, then r is solution of
{
i∂tr + ∆r = 2 |w|2 r + w2r̄ + F (w, r) + g − g1

r(x, 0) = r0(x)

with F (w, r) = 2 |r|2w + r2w̄ + |r|2 r. We seek g under the form g1 + AΦ where Φ is solution of the
dual linear equation and A = −ia(x)(1 − ∆)−sa(x), as in the linear control. The purpose is then to
choose the adequat Φ0 and the system is completely determined.
With ‖r0‖Hs small enough, we are looking for a control such that r(T ) = 0.
More precisely, we consider the two systems

{
i∂tΦ + ∆Φ = 2|w|2Φ − w2Φ

Φ(x, 0) = Φ0(x) ∈ H−s
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and
{
i∂tr + ∆r = 2 |w|2 r + w2r̄ + F (w, r) + AΦ
r(x, T ) = 0

Let us define the operator

L : H−s(M) → Hs(M)
Φ0 7→ LΦ0 = r(0).

We split r = v + Ψ with Ψ solution of
{
i∂tΨ + ∆Ψ = 2|w|2Ψ + w2Ψ + AΦ

Ψ(T ) = 0

This corresponds to the linear control, and so Ψ(0) = SΦ0. v is solution of
{
i∂tv + ∆v = 2|w|2v + w2v + F (w, r)

v(T ) = 0
(45)

Then, r, v, Ψ belong to Xs,b
T and r(0) = v(0) + Ψ(0), which we can write

LΦ0 = KΦ0 + SΦ0

where KΦ0 = v(0).
LΦ0 = r0 is equivalent to Φ0 = −S−1KΦ0 + S−1r0. Defining the operator B : H−s → H−s by

BΦ0 = −S−1KΦ0 + S−1r0,

the problem LΦ0 = r0 is now to find a fixed point of B near the origin of H−s. We will prove that B
is contracting on a small ball BH−s(0, η) provided that ‖r0‖Hs is small enough.
We may assume T < 1, and fix it for the rest of the proof (actually the norm of S−1 depends on T
and even explode when T tends to 0, see [29] and [35]).
We have

‖BΦ0‖H−s ≤ C (‖KΦ0‖Hs + ‖r0‖Hs)

So, we are led to estimate ‖KΦ0‖Hs = ‖v(0)‖Hs .
If we apply to equation (45) the estimate of Proposition 2.3 we get

‖v(0)‖Hs ≤ ‖v‖Xs,b
T

≤ C ‖F (w, r)‖
Xs,−b′

T

≤ C ‖w‖X1,b
T

‖r‖2
Xs,b
T

+ ‖r‖3
Xs,b
T

Then, we use the linear behavior near a trajectory of Proposition 2.2. We conclude that for
‖AΦ‖L2([0,T ],Hs) ≤ ‖Φ‖X−s,b

T
≤ C ‖Φ0‖H−s < Cη (see Proposition 2.3) small enough, we have

‖r‖Xs,b
T

≤ C ‖Φ0‖H−s .

This yields

‖BΦ0‖H−s ≤ C
(
‖Φ0‖

2
H−s + ‖Φ0‖

3
H−s + ‖r0‖Hs

)
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Choosing η small enough and ‖r0‖Hs ≤ η/2C, we obtain ‖BΦ0‖H−s ≤ η and B reproduces the ball
BH−s(0, η).

If u0 ∈ H1, we want one g in C([0, T ], H1), that is Φ0 ∈ H1−2s. We prove that B reproduces
BH−s(0, η) ∩BH1−2s(0, R) for R large enough.

Proposition 7.4 yields that S is an isomorphism from H1−2s into H1. Then, we have by the same
arguments as above

‖BΦ0‖H1−2s ≤ C (‖KΦ0‖H1 + ‖r0‖H1)

‖v(0)‖H1 ≤ C ‖v‖X1,b
T

≤ C ‖F (w, r)‖
X1,−b′

T

≤ C ‖w‖X1,b
T

‖r‖Xs,b
T

‖r‖X1,b
T

+ ‖r‖2

Xs,b
T

‖r‖X1,b
T

and
‖r‖X1,b

T
≤ C ‖Φ0‖H1−2s .

Then,
‖BΦ0‖H1−2s ≤ C

(
Rη +Rη2 + ‖r0‖H1

)

Choosing η such that C(η+ η2) < 1/2 (it is important to notice here that this bound does not depend
on the size of r0 in H1) and R large enough, we obtain that B reproduces BH−s(0, η) ∩ BH1−2s(0, R).

Let us prove that it is contracting for the H−s norm. For that, we examine the systems

{
i∂t(r − r̃) + ∆(r − r̃) = 2|w|2(r − r̃) + w2(r − r̃) + F (w, r) − F (w, r̃) + A(Φ − Φ̃)

(r − r̃)(T ) = 0
(46)

{
i∂t(v − ṽ) + ∆(v − ṽ) = 2|w|2(v − ṽ) + w2(v − ṽ) + F (w, r)− F (w, r̃)

(v − ṽ)(T ) = 0

We obtain
∥∥∥BΦ0 − BΦ̃0

∥∥∥
H−s

≤ C ‖(v − ṽ)(0)‖Hs ≤ C ‖F (w, r)− F (w, r̃)‖
Xs,−b′

T

≤ C
(
‖r‖Xs,b

T
+ ‖r̃‖Xs,b

T
+ ‖r‖2

Xs,b
T

+ ‖r̃‖2
Xs,b
T

)
‖r − r̃‖Xs,b

T

≤ C(η + η2) ‖r − r̃‖Xs,b
T

≤ Cη ‖r − r̃‖Xs,b
T

(47)

Considering equation (46), we deduce

‖r − r̃‖Xs,b
T

≤ C ‖F (w, r)− F (w, r̃)‖
Xs,−b′

T

+ C
∥∥∥A(Φ − Φ̃)

∥∥∥
L2([0,T ],Hs)

≤ Cη ‖r − r̃‖Xs,b
T

+ C
∥∥∥Φ0 − Φ̃0

∥∥∥
H−s

If η is taken small enough it yields

‖r − r̃‖Xs,b
T

≤ C
∥∥∥Φ0 − Φ̃0

∥∥∥
H−s

.(48)
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Combining (48) with (47) we finally get
∥∥∥BΦ0 − BΦ̃0

∥∥∥
H−s

≤ Cη
∥∥∥Φ0 − Φ̃0

∥∥∥
H−s

This yields that B is a contraction on a small ball BH−s(0, η), which completes the proof of Proposition
8.1.

Corollary 8.1. Let T > 0 and (M,ω) such that Assumptions 1, 3, 4 and 5 are fulfilled.
Then, the set of reachable states is open in Hs for s0 < s ≤ 1.

In the next corollary, f̂(k) denotes the coordinates of a function f in the basis of eigenfunction of
M .

Corollary 8.2. Suppose the same assumptions as Proposition 8.1. Let E0 > ‖w0‖H1.
Then, there exist N and ε such that for every u0 and u1 ∈ H1 with

‖u0‖H1 ≤ E0 ‖u1‖H1 ≤ E0(49) ∑

|k|≤N

|û0(k) − ŵ0(k)|
2 ≤ ε

∑

|k|≤N

|û1(k) − ŵT (k)|2 ≤ ε(50)

we can find a control g ∈ L∞([0, T ], H1) supported in [0, T ] × ω such that the unique solution of (44)
with control g and u(0) = u0 satisfies u(T ) = u1.

Proof. We build the control in two steps : the first brings the system from u0 to w(T/2) and the second
from w(T/2) to u1. Actually, the second step is the same by reversing time and we only describe the
first one.

Let s0 < s < 1. We first check that the first part of the conclusion of Proposition 8.1 is true
without Assumption 5. It gives one ε̃ > 0 such that if ‖u0 − w0‖Hs ≤ ε̃ we have a control to w(T/2)
in time T/2 with g ∈ C([0, T/2], H1). We only check that once E0 is chosen, we can find N and ε such
that assumptions (49) and (50) imply ‖u0 − w0‖Hs ≤ ε̃.

We also obtain a first proof of global controllability. The Assumptions we make are stronger than
Theorem 0.1 that will be proved using stabilization. Yet, in the examples we treat, the Assumptions
are fulfilled.

Corollary 8.3. Theorem 0.1 is true under the stronger Assumptions 1, 3 and 4.

Proof. We will make successives controls near some free nonlinear trajectory so that the energy de-
crease. The main argument is that the ε of Theorem 0.3 only depends on ‖w‖X1,b

T
and if the trajectory

is a free nonlinear trajectory, then the ε only depends on ‖w0‖H1. We just have to be careful that each
new free trajectory fulfills ‖w‖X1,b

T
≤ A for one fixed constant A.

Fix T > 0. There exist C1 such that

‖f‖H1 ≤ C1

(
E(f) +

√
E(f)

)1/2

∀f ∈ H1(M).

Denote A = C1

(
E(w0) +

√
E(w0)

)
. There exists a constant such that ‖w0‖H1 ≤ A implies ‖w‖X1,b

T
≤

B for w solution of
{
i∂tw + ∆w = |w|2w on [0, T ] ×M

w(0) = w0
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Let ε the constant so that Theorem 0.3 si true for any w with ‖w‖X1,b
T

≤ B. We choose the arrival

point uT = (1 − ε/A)wT such that

‖uT − wT‖H1 = ε/A ‖wT‖H1 ≤ C1

(
E(wT ) +

√
E(wT )

)
ε/A = ε.

We have a control g supported in [0, T ] × ω such that the solution u of
{
i∂tu+ ∆u = |u|2u+ g on [0, T ] ×M

u(0) = w0

satisfies u(T ) = uT . If 1 − ε/A ∈ [0, 1], we have

E(uT ) =
1

2

∫

M

|(1 − ε/A)∇wT |
2 +

1

4

∫

M

|(1 − ε/A)wT |
4 ≤ (1 − ε/A)2E(wT )

Moreover, we still have

‖uT‖H1 ≤ C1

(
E(uT ) +

√
E(uT )

)1/2

≤ A.

Then, we can reiterate this processus with the same ε. We construct a sequence of solutions un ∈
X1,b

[nT,(n+1)T ] and of controls gn ∈ C([nT, (n + 1)T ], H1) such that

{
i∂tun + ∆un = |un|

2un + gn on [nT, (n + 1)T ] ×M
un(nT ) = un−1(nT )

and
E(un(nT )) ≤ (1 − ε/A)2nE(w0) ≤ C(1 − ε/A)2n

(
‖w0‖

2
H1 + ‖w0‖

4
H1

)

But, we have

‖un(nT )‖2
H1 ≤ C1

(
E(un(nT )) +

√
E(un(nT ))

)1/2

.

Therefore, it can be made arbitrary small for large n. This allows to use local controllability near the
trajectory 0. We obtain global controllability making the same proof in negative time.

9 Necessity of geometric control assumption on S3

In this section, we prove that on S3, the geometric control is necessary for stabilization to occur. The
argument uses some concentration of eigenfunctions. This concentration was also used by N. Burq, P.
Gérard and N. Tzvetkov [7] to prove some ill-posedness results.

Proposition 9.1. Let Γ be a geodesic of S3 and a ∈ C∞(S3) such that Supp(a) ∩ Γ = ∅. Then, for
every R0 > 0, C and γ > 0 there exist T > 0 and u0 ∈ H1(S3) with ‖u0‖H1 ≤ R0 such that

‖u(T )‖H1 > Ce−γT ‖u‖H1

for u solution of equation
{
i∂tu+ ∆u− (1 + |u|2)u = a(x)(1 − ∆)−1a(x)∂tu on [0, T ] × S3

u(0) = u0 ∈ H1(51)
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Proof. Let T such that Ce−γT ≤ 1/2.
By changes of coordinates, we can assume that Γ = {x3 = x4 = 0}. We will use the eigenfunctions

Φn = cn(x1 + ix2)
n that concentrates on the subset {x3 = x4 = 0}. cn is chosen such that ‖Φn‖H1 = R0

and so cn ≈ n1/2−1. We have −∆Φn = λnΦn with λn = n(n + 2). Let un be the solution of (51) with
un(0) = Φn. Let vn = ei(λn−1)tΦn be the solution of the linear equation

{
i∂tvn + ∆vn − vn = 0 on [0, T ] × S3

vn(0) = Φn

Then, rn = un − vn is solution of
{
i∂trn + ∆rn − rn = a(x)(1 − ∆)−1a(x)∂trn +Rn on [0, T ] × S3

rn(0) = 0

with Rn = |un|
2un + a(x)(1 − ∆)−1a(x)∂tvn.

Proposition 3.1 of linearisation yields that |un|
2un −→ 0 in X1,−b′

T .
For the other term in Rn, we use the concentration of the Φn.

∥∥a(x)(1 − ∆)−1a(x)∂tvn

∥∥
X1,−b′

T

≤
∥∥a(x)(1 − ∆)−1a(x)∂tvn

∥∥
L2([0,T ],H1)

≤ ‖a(x)∂tvn‖L2([0,T ],H−1) ≤ (λn + 1) ‖a(x)Φn‖L∞(S3)

Let δ > 0, such that we have x2
3 + x2

4 > δ on Supp a. Hence, we have |(x1 + ix2)|
2 = x2

1 + x2
2 =

1 − x2
3 − x2

4 < 1 − δ.

(λn + 1) ‖a(x)Φn‖L∞(S3) ≤ C(λn + 1)cn(1 − δ)n/2

Since λn and cn are at most polynomial in n, we deduce thatRn tends to 0 inX1,−b′

T . By some arguments
similar to the proof of the continuity of the flow map of Proposition 2.1,, we infer that rn tends to 0
in X1,b

T . Then, ‖un(T )‖H1 tends to R0 and for n large enough, we have ‖un(T )‖H1 > R0/2.

With a similar proof, we could show the same result on S2 ×S1 if Supp(a)∩ (Γ×S1) = ∅ for some
geodesic Γ of S2. Yet, it does not imply geometric control.

The construction of J. V. Ralston [32] proves that actually, a necessary condition for stabilization
is that the support of a(x) intersects any stable closed geodesic (see also the work of L. Thomann [36]
where this concentration is used to prove ill-posedness). In the case of S3, we use the geometric fact
that every closed geodesic is stable.

A Some commutator estimates

This section is devoted to the proof of some commutator estimates used in Proposition 7.4. More
precisely, we study the action of [(−∆)ε/2, a1a2] on Xs,b where ai are rough. We first give a simple
proof for T3 (rational or not) and then a general one under Assumption 5. Then, we show that this
assumption is fulfilled for S3 and S2 × S1. We will need an elementary lemma.

Lemma A.1. If 0 ≤ ε ≤ 1, we have for any norm ||k|ε − |k3|
ε| ≤ |k − k3|

ε.

Proof. Using triangular inequality, we get ||k| − |k3||
ε ≤ |k − k3|

ε . Then, we are reduced to the case
of R+∗ : we prove that for z, t ∈ R+∗, we have (z + t)ε − zε ≤ tε, which is an easy consequence of
Minkowsky inequality for 1 ≤ 1/ε ≤ +∞.
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A.1 An easier proof for T3

Lemma A.2. Let M = R3/(θxZ × θyZ × θzZ) with (θx, θy, θz) ∈ R3. Denote s0 the constant taken
from Assumption 3. Let s > s0 and 0 ≤ ε ≤ 1.
Then, there exists b′ < 1/2 such that u3 7→ [∆ε/2, u1u2]u3 maps any Xs,b′ into Xs,−b′, where u1u2

denotes the operator of multiplication by u1u2 with ui ∈ Xs+ε,b′ for i ∈ {1, 2}.
This function [∆ε/2, u1u2] also maps X−s,b′ into X−s,−b′.
Moreover, the same result holds with ui replaced by ui for i in a subset of {1, 2, 3}.

Proof. We choose the norm |k| =
√

(θxkx)2 + (θyky)2 + (θzkz)2 so that

−̂∆u(k) = |k|2û(k)

By duality, it is equivalent to prove

∫

R×M

[(−∆)ε/2, u1u2]u v ≤ C ‖u1‖Xs+ε,b′ ‖u2‖Xs+ε,b′ ‖u‖Xs,b′ ‖v‖X−s,b′

Using Parseval theorem and denoting k = k1 + k2 + k3, τ = τ1 + τ2 + τ3
∫

R×M

[(−∆)ε/2, u1u2]u v =

∫

τ1,τ2,τ3

∑

k1,k2,k3

û1(k1, τ1)û2(k2, τ2)(|k|
ε − |k3|

ε)û(k3, τ2)v̂(k, τ)

≤

∫

τ1,τ2,τ3

∑

k1,k2,k3

||k|ε − |k3|
ε|

∣∣∣û1(k1, τ1)û2(k2, τ2)û(k3, τ3)v̂(k, τ)
∣∣∣

Lemma A.1 and k − k3 = k1 + k2 yields

∣∣∣∣
∫

R×M

[(−∆)ε/2, u1u2]u v

∣∣∣∣ ≤ C

∫

τ1,τ2,τ3

∑

k1,k2,k3

(|k1|
ε + |k2|

ε) |û1(k1, τ1)| |û2(k2, τ2) || û(k3, τ3)| |v̂(k, τ)|

Denoting u§1 the function with Fourier transform |û1(k1, τ1)| we obtain.

∣∣∣∣
∫

R×M

[(−∆)ε/2, u1u2]u v

∣∣∣∣ ≤ C

∫

R×M

(
∆ε/2u§1

)
u§2u

§ v§ +

∫

R×M

u§1

(
∆ε/2u§2

)
u§ v§

≤ C ‖u1‖Xs+ε,b′ ‖u2‖Xs+ε,b′ ‖u‖Xs,b′ ‖v‖X−s,b′

Here, we have finished the proof using the trilinear Bourgain estimate because s > s0. If we estimate
this integral using the trilinear estimate at the negative level H−s, we obtain the second result we
announced.

A.2 General proof under Assumption 5

Lemma A.3. Denote s0 the constant taken from Assumption 5. Let s > s0 and 0 ≤ ε ≤ 1.
Then, there exists b′ < 1/2 such that u3 7→ [(−∆)ε/2, u1u2]u3 maps any Xs,b′ into Xs,−b′, where u1ua2

denotes the operator of multiplication by u1u2 with ui ∈ Xs+ε,b′ for i ∈ {1, 2}.
This function [∆ε/2, u1u2] also maps X−s,b′ into X−s,−b′.
Moreover, the same result holds with ui replaced by ui for i in a subset of {1, 2, 3}.
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Proof. The proof follows the techniques of J. Bourgain and N. Burq, P. Gérard, N. Tzvetkov. Here,
we were inspired more precisely by [20]. We recall the notations u# = e−it∆u(t), uN = 1√

1−∆∈[N,2N [u
where N is a dyadic number and û(τ) is the Fourier transform of u with respect to the time variable.
First, with some dyadic integers Ni fixed, we estimate the integral

I(N1, .., N4) =

∫

R×M

uN1
1 uN2

2

[
((−∆)ε/2uN3

3 ) u4
N − uN3

3 (−∆)ε/2u4
N

]
dtdx

=
1

(2π)4

∫

R×M

∫∫∫∫

R4

eit(τ1+τ2+τ3−τ)eit∆ ̂uN1#
1 (τ1)e

it∆ ̂uN2#
2 (τ2)

×

[
((−∆)ε/2eit∆ ̂uN3#

3 (τ3))eit∆ûN#
4 (τ) − eit∆ ̂uN3#

3 (τ3)(−∆)ε/2eit∆ ̂uN4#
4 (τ)

]
dτ1 dτ2 dτ3dτ4 dtdx

By nearly orthogonality in Hb and partition of unity, uj =
∑

n∈Z
ϕ(t − n/2)uj(t), we are led to the

special case where the uj are supported in time in the interval ]0, 1[. Select χ ∈ C∞
0 (R) such that χ = 1

on [0, 1]. Thus, estimates (10), applied with τj fixed, and Cauchy-Schwarz inequality in (τ1, τ2, τ3, τ4)
gives for any b > 1/2

|I(N1, .., N4)| ≤ C(N ε
1 +N ε

2 ) (m(N1, · · ·, N4))
s0

4∏

j=1

∫

τj

∥∥∥∥
̂
u

Nj#
j (τj)

∥∥∥∥
L2(M)

≤ C(N ε
1 +N ε

2 ) (m(N1, · · ·, N4))
s0

4∏

j=1

∥∥∥uNj
j

∥∥∥
X0,b(R×M)

(52)

This estimate is very satisfactory for the space regularity. Yet, for the regularity in time, it requires
b > 1/2 which is too much for our purpose. We will interpolate with some crude estimates in space
but better in time.
For the case where N1 is large, we estimate |I(N1, · · ·, N)| using Sobolev embeddings H1/4(R) ⊂ L4(R)
:

|I(N1, · · ·, N4)| ≤ C(N ε
3 +N ε

4 ) (m(N1, · · ·, N4))
3/2

4∏

j=1

∥∥∥uNj
j

∥∥∥
X0,1/4(R×M)

(53)

In another case where the frequency N3 is large, we will use an argument near [15]. In that case, we
can not afford a loss in the frequency N3. We use the fact that [uN1

1 uN2
2 ,∆ε/2] is a pseudodifferential

operator of order less than 0 (if ε ≤ 1). Then,

|I(N1, · · ·, N4)| =

∣∣∣∣
∫

R×M

[uN1
1 uN2

2 ,∆ε/2]uN3
3 uN4

4

∣∣∣∣

≤ C

∫

R

∥∥[u1(t)
N1u2(t)

N2 ,∆ε/2]
∥∥

L2→L2 ‖u3(t)‖L2(M) ‖u4(t)‖L2(M) dt

≤

∫

R

m∑

α=0

‖∂αu1u2(t)‖L∞(M) ‖u3(t)‖L2(M) ‖u4(t)‖L2(M) dt

≤ Cmax (N1, N2)
µ

4∏

j=1

∥∥∥uNj
j

∥∥∥
X0,1/4(R×M)

(54)
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where µ depends on the dimension and on ε.
Let us now begin the summation of the harmonics. As in [20], we decompose each function

u =
∑

K

uK , uK = 1K≤〈i∂t+∆〉<2K(u)

where K denotes the sequence of dyadic integers. Notice that

‖u‖2
X0,b ≈

∑

K

K2b ‖uK‖2
L2(R×M) ≈

∑

K

‖uK‖2
X0,b .

Then, we decompose the integral in sum of the following elementary integrals

I(N1, · · ·, N4, K1, · · ·, K4) =

∫

R×M

aN1,K1

1 aN2,K2

2

[
((−∆ε/2)uN3,K3)vN,K − uN3,K3(−∆ε/2)vN,K

]
dtdx

Estimate (52) leads to (for every b > 1/2)

|I(N1, · · ·, N4, K1, · · ·, K4)| ≤ (N ε
1 +N ε

2 )m(N1, · · ·, N4)
s0(K1K2K3K4)

b

4∏

j=1

∥∥∥uNj ,Kj

j

∥∥∥
L2
.

We will interpolate this estimate with different inequalities. We distinguish three cases : N4 ≤
C(N1+N2+N3) with N3 < max(N1, N2) or max(N1, N2) ≤ N3, and the last case N4 > C(N1+N2+N3)
with C large enough. Without loss of generality, we can assume N1 ≥ N2.

First case : N3 < max(N1, N2) = N1 and N4 ≤ C(N1 +N2 +N3)
Estimate (53) gives

|I(N1, · · ·, N4, K1, · · ·, K4)| ≤ (N ε
3 +N ε

4 )m(N1, · · ·, N4)
3/2

(K1K2K3K4)
1/4

4∏

j=1

∥∥∥uNj ,Kj

j

∥∥∥
L2

Then, for every θ ∈ [0, 1]

|I(N1, · · ·, N4, K1, · · ·, K4)| ≤ C(N ε
1 +N ε

2 )1−θ(N ε
3 +N ε

4 )θm(N1, · · ·, N4)
(1−θ)s0+3θ/2

(K1K2K3K)b(1−θ)+θ/4
4∏

j=1

∥∥∥uNj ,Kj

j

∥∥∥
L2

We denote s(θ) = (1 − θ)s0 + 3θ/2 and b(θ) = b(1 − θ) + θ/4.

|I(N1, · · ·, N,K1, · · ·)| ≤ C(N ε
1 +N ε

2 )1−θ(N ε
3 +N ε

4 )θm(N1, · · ·, N4)
s(θ)

(K1K2K3K4)
b(θ)−b′

4∏

j=1

∥∥∥uNj
j

∥∥∥
X0,b′

By choosing some appropriate θ and b′ < 1/2 < b, we can make the serie inK convergent if b(θ)−b′ < 0.
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This yields :

|I(N1, · · ·, N4)| ≤ C(N ε
1 +N ε

2 )1−θ(N ε
3 +N ε

4 )θm(N1, · · ·, N4)
s(θ)

4∏

j=1

∥∥∥uNj
j

∥∥∥
X0,b′

≤ CN
(1−θ)ε−s−ε
1 N s+θε

4 N
s(θ)−s−ε
2 N

s(θ)+θε−s
3

2∏

j=1

‖uj‖Xs+ε,b′ ‖u3‖Xs,b′ ‖u4‖X−s,b′

≤

(
N4

N1

)s+θε

N
s(θ)−s−ε
2 N

s(θ)+θε−s
3

2∏

j=1

‖uj‖Xs+ε,b′ ‖u3‖Xs,b′ ‖u4‖X−s,b′

The series is convergent thanks toN4 ≤ CN1 and after choosing θ small enough such that s(θ)+θε−s <
0 with b(θ) − b′ < 0.

Second case : N1 = max(N1, N2) ≤ N3 and so N4 ≤ CN3.
This time, N3 is a large frequency and we can not have any loss N θε

3 from the interpolation. We
proceed with the same interpolation procedure but between (52) and (54). After summation in K and
a good choice of b′ < 1/2 < b and

|I(N1, · · ·, N4)| ≤ CN
(1−θ)(s0+ε)+θµ−s−ε
1 N s

4N
(1−θ)s0−s−ε
2 N−s

3

2∏

j=1

‖uj‖Xs+ε,b′ ‖u3‖Xs,b′ ‖u4‖X−s,b′

≤

(
N4

N3

)s

N
(1−θ)(s0+ε)+θµ−s−ε
1 N

(1−θ)s0−s−ε
2

2∏

j=1

‖uj‖Xs+ε,b′ ‖u3‖Xs,b′ ‖u4‖X−s,b′

We choose θ small enough such that (1 − θ)(s0 + ε) + θµ− s− ε ≤ s0 + θµ− s < 0 and b(θ) − b′ < 0.
And we conclude by the same summation as in the first case.

Last case : N4 ≥ C(N1 +N2 +N3)
This case is trivial in the particular case of T3, S3 or S2 × S1 since this integral is zero for C large
enough. In the general case, we apply the following lemma which is a variant of Lemma 2.6 in [6].

Lemma A.4. There exists C > 0 such that, if for any j = 1, 2, 3, Cµkj ≤ µk4, then for every p > 0,
there exists Cp > 0 such that for every wj ∈ L2(M), j = 1, 2, 3, 4

∫

M

Πk1w1Πk2w2

[
(−∆)ε/2Πk3w3 Πk4w4 − Πk3w3 (−∆)ε/2Πk4w4

]
dx ≤ Cpµ

−p
k4

4∏

j=1

‖wj‖L2

where Πk denotes the orthogonal projection on the eigenfunction ek associated to the eigenvalue µk.

This ends the proof of the fist statement of Lemma A.3. The second one is obtained by duality.

A.3 S3 and S2 × S1 fulfill Assumption 5

Lemma A.5. Assumption 5 holds true with any s0 > 1/2 on S3 and any s0 > 3/4 on S2 × S1.

Proof. We first treat the case of S3 and follow the scheme of Proposition 3 of [20]. We write

fj =
∑

nj

H(j)
nj
,
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where H
(j)
nj are spherical harmonics of degree nj , and where the sum on nj bears on the domain

Nj ≤
√

1 + nj(nj + 2) < 2Nj .(55)

Then, the solution uj are given by

uj(t) = eit∆fj =
∑

nj

e−itnj(nj+2)H(j)
nj

and we have to estimate

Q(f1, · · ·, f4, τ) =

∫

R

∫

S3

χ(t)eitτu1u2

[
(−∆)ε/2u3u4 − u3(−∆)ε/2u4

]
dxdt

=
∑

n1,···,n4

χ̂(

4∑

j=1

εjnj(nj + 2) − τ)I(H(1)
n1
, · · ·, H(4)

n4
),

with εj = −1 or 1 depending on the position of conjugates and

I(H(1)
n1
, · · ·, H(4)

n4
) = (

√
n3(n3 + 2)

ε
−

√
n4(n4 + 2)

ε
)

∫

S3

H(1)
n1
H(2)

n2
H(3)

n3
H

(4)

n4
dx

We notice that
∫
Hn1Hn2Hn3Hn4 6= 0 implies n4 ≤ n1 + n2 + n3 and n3 ≤ n1 + n2 + n4, that is

|n4 − n3| ≤ n1 + n2. Then, using Lemma A.1 and fundamental theorem of calculus, we have

∣∣∣
√
n3(n3 + 2)

ε
−

√
n4(n4 + 2)

ε
∣∣∣ ≤

∣∣∣
√
n3(n3 + 2) −

√
n4(n4 + 2)

∣∣∣
ε

≤ C |n4 − n3|
ε ≤ C(N ε

1 +N ε
2 )(56)

Moreover, bilinear eigenfunctions estimates (see Theorem 2 of [10] or Theorem 2.5 of [9]) yield

∣∣I(H(1)
n1
, · · ·, H(4)

n4
)
∣∣ ≤ C(N ε

1 +N ε
2 )

∣∣∣∣
∫

S3

H(1)
n1
H(2)

n2
H(3)

n3
H

(4)

n4
dx

∣∣∣∣

≤ C(N ε
1 +N ε

2 )m(N1, · · ·, N4)
1/2+

4∏

j=1

∥∥∥H(j)
nj

∥∥∥
L2

Using the fast decay of χ̂ at infinity, we infer

|Q(f1, · · ·, f4, τ)| ≤ C(N ε
1 +N ε

2 )m(N1, · · ·, N4)
1/2+

∑

l∈Z

(1 + |l|2)−1
∑

Λ([τ ]+l)

4∏

j=1

∥∥∥H(j)
nj

∥∥∥
L2

≤ C(N ε
1 +N ε

2 )m(N1, · · ·, N4)
1/2+ sup

k∈Z

∑

Λ(k)

4∏

j=1

∥∥∥H(j)
nj

∥∥∥
L2

where Λ(k) denotes the set of (n1, · · ·, n4) satisfying (55) for j = 1, 2, 3, 4 and

4∑

j=1

εjnj(nj + 2) = k.
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Now, we write
{1, 2, 3, 4} = {α, β, γ, δ}

with m(N1, · · ·, N4) = NαNβ and we split the sum on Λ(k) as

|Q(f1, · · ·, f4, τ)| ≤ C(N ε
1 +N ε

2 )m(N1, · · ·, N4)
1/2+ sup

k∈Z

∑

a∈Z

S(a)S ′(k − a)

where

S(a) =
∑

Γ(a)

∥∥H(α)
nα

∥∥
L2

∥∥H(γ)
nγ

∥∥
L2 ; S ′(a′) =

∑

Γ′(a′)

∥∥∥H(β)
nβ

∥∥∥
L2

∥∥H(δ)
nδ

∥∥
L2 ,

Γ(a) = {(nα, nγ) : (55) holds for j = α, γ,
∑

j=α,γ

εjnj(nj + 2) = a},

Γ′(a′) = {(nβ, nδ) : (55) holds for j = β, δ,
∑

j=β,δ

εjnj(nj + 2) = a′}.

Then, we use a number theoretic result involving the ring of Gauss integers (see Lemma 3.2 of [6]).

Lemma A.6. Let σ ∈ {±1}. For every η > 0, there exists Cη such that, given M ∈ Z and a positive
integer N ,

#{(k1, k2) ∈ N2 : N ≤ k1 ≤ 2N, k2
1 + σk2

2 = M} ≤ CηN
η.

Noticing that nj(nj + 2) = (nj + 1)2 − 1, we get

sup
a

#Γ(a) ≤ CηN
η
α; sup

a′

#Γ′(a′) ≤ CηN
η
β ,

and consequently, by the Cauchy-Schwarz inequality and the orthogonality of the H
(j)
nj

∑

a∈Z

S(a)S ′(k − a) ≤ Cη(NαNβ)η/2 ×


∑

a

∑

Γ(a)

∥∥H(α)
nα

∥∥2

L2

∥∥∥H(γ)
nγ

∥∥∥
2

L2




1/2 
∑

a

∑

Γ′(k−a)

∥∥∥H(β)
nβ

∥∥∥
2

L2

∥∥H(δ)
nδ

∥∥2

L2




1/2

≤ Cη(NαNβ)η/2
4∏

j=1

‖fj‖L2 .

This completes the proof for S3.
For S2 × S1, we adapt this argument with some slight modifications.

First, the formulae should be changed to

uj(t)(x, y) = eit∆fj =
∑

nj ,pj

e−itnj(nj+1)−ip2
j tH(j)

nj ,pj
(x)eipjy
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where H
(j)
nj ,pj are spherical harmonics on S2 of degree nj . Estimate (56) becomes

∣∣∣∣
√
n3(n3 + 1) + p2

3

ε

−
√
n4(n4 + 2) + p2

4

ε
∣∣∣∣ ≤

∣∣∣∣
√
n3(n3 + 1) + p2

3 −
√
n4(n4 + 1) + p2

4

∣∣∣∣
ε

≤

∣∣∣∣
[√

n3(n3 + 1) −
√
n4(n4 + 1)

]2

+ (p3 − p4)
2

∣∣∣∣
ε/2

≤
∣∣C(n3 − n4)

2 + (p3 − p4)
2
∣∣ε/2

≤ C
∣∣(n1 + n2)

2 + (p1 + p2)
2
∣∣ε/2

≤ C(N ε
1 +N ε

2 )

where we have used |n3 − n4| ≤ |n1 + n2| and |p3 − p4| ≤ |p1| + |p2| for the integral to be non zero.
Bilinear eigenfunctions estimates for S2 yield

∣∣I(H(1)
n1,p1

, · · ·, H(4)
n4,p4

)
∣∣ ≤ C(N ε

1 +N ε
2 )m(N1, · · ·, N4)

1/4
4∏

j=1

∥∥∥H(j)
nj ,pj

∥∥∥
L2
.

We finish the proof similarly, replacing the formula for Γ(a) by

Γ(a) = {(nα, pα, nγ , pγ) : Nj ≤
√

1 + nj(nj + 2) + p2
j ≤ 2Nj, j = α, γ

and
∑

j=α,γ

εj [nj(nj + 2) + p2
j ] = a}

In that case, the same number theoretic arguments yield supa #Γ(a) ≤ CηN
1+η
α and finally, after

Cauchy-Schwarz inequality, we obtain

|Q(f1, · · ·, f4, τ)| ≤ C(N ε
1 +N ε

2 )m(N1, · · ·, N4)
1/4+(1+η)/2

4∏

j=1

‖fj‖L2 .

B Unique continuation

B.1 Carleman estimates

This section is only a variant in the Riemannian setting of some results of A. Mercado, A. Osses and
L. Rosier [28]. We follow their proof very closely, sometimes line by line.
For sake of simplicity, we will assume that u is supported in a fixed compact K of a Riemannian
manifold Ω. Yet, the same reasonning as in [28] would allow to handle the case of Dirichlet boundary
conditions for u. We have changed the notation of the manifold from M to Ω because the Carleman
estimates will not be used on the whole compact manifold M but only on some open set Ω.
D denotes the Levi-Civita connection associated to the metric g. Then, it is torsion-free and the
Hessian of the functions are symmetrics.
· , | |, ∇ and ∆ denote the scalar product, the norm, the gradient and the Laplacian with respect
to the metric g. Moreover, the scalar product will be the real one : if X = a + ib and Y = c + id,
X.Y = a · c− b · d+ i(b · c+ a · d) and |X|2 = X ·X. vg denotes the Riemannian volume form and all
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the integrals are defined with this (even if it will be often omitted).
First, we list a few formulae that will be used along the proof. For any functions f, h ∈ C∞(Ω) with
h compactly supported and any vector fields X, Y and Z, we have

DZ(X · Y ) = (DZX) · Y +X · (DZY )

∇f · Z = DZf

(DX∇f) · Y = Hess(f)(X, Y )∫

Ω

(∆f)h dvg = −

∫

Ω

∇f · ∇h dvg

∇(fh) = (∇f)h+ f(∇h)

div(fX) = fdiv(X) +X · ∇f

For brevity,
∫∫

will denote the integral over ] − T, T [×Ω and
∫∫

ω
the integral over ] − T, T [×ω

where ω is an open subset of Ω.
Let Ψ ∈ C4(Ω) real valued . We assume that Ψ satisfies the following properties

∇Ψ 6= 0 in Ω\ ω(57)

Ψ(x) ≥ 2/3 ‖Ψ‖L∞ .(58)

(58) is technical and is easily fulfilled by replacing Ψ by Ψ + C with C large enough. We distinguish
two cases : strong pseudoconvexity and weak pseudoconvexity.
The case of strong pseudoconvexity can be found in Isakov[22] but with local in time estimates, it
reads

Hess(Ψ(x))(ξ, ξ) + |∇Ψ(x) · ξ|2 > 0 ∀(x, ξ) ∈ TΩ\ Tω,(59)

which implies since the support is compact that

Hess(Ψ(x))(ξ, ξ) + |∇Ψ(x) · ξ|2 > C |ξ|2 ∀(x, ξ) ∈ TΩ\ Tω, x ∈ K(60)

Weak pseudoconvexity is defined by

Hess(Ψ(x))(ξ, ξ) + |∇Ψ(x) · ξ|2 ≥ 0 ∀(x, ξ) ∈ TΩ\ Tω.(61)

Set CΨ = 2 ‖Ψ‖L∞(Ω) and

θ(t, x) :=
eλΨ(x)

(T − t)(T + t)
, ϕ(t, x) :=

eλCΨ − eλΨ(x)

(T − t)(T + t)
, ∀(t, x) ∈] − T, T [×Ω

Denote by L(q) = i∂tq + ∆q the linear Schrödinger operator.

Proposition B.1. Let T > 0. Let Ω be a Riemannian manifold and K a compact subset of Ω.
Assume that there exists a function Ψ ∈ C4(Ω) such that (57), (58) and (60) hold for some open
set ω ⊂ Ω. Then, there exist constants λ0, s0 and C such that for all λ ≥ λ0, all s ≥ s0 and
q ∈ L2(] − T, T [, H1(Ω)), supported in K, with L(q) ∈ L2(] − T, T [×Ω) we have

∫∫ [
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ(62)

≤ C

∫∫
|L(q)|2 e−2sϕ + C

∫∫

ω

[
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ
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Proposition B.2. If in Proposition B.1, we replace Assumption (60) by (61), we obtain the same
result with

∫∫ [
s3λ4θ3|q|2 + sλ2θ |∇Ψ · ∇q|2

]
e−2sϕ(63)

≤ C

∫∫
|L(q)|2 e−2sϕ + C

∫∫

ω

[
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ

Proof. Using regularisation in a standard way, we are reduced to consider q ∈ C∞(]−T, T [×Ω). Denote
u = e−sϕq and w = e−sϕL(q) = e−sϕL(esϕu). We notice that u and all its time derivatives vanish at
t = −T and t = T . Thus, all the integrations by part in time do not create any boundary term. We
compute

w = Pu = iut + isϕtu+ ∆u+ 2s∇ϕ · ∇u+ s(∆ϕ)u+ s2|∇ϕ|2u

We decompose P = P1 + P2 with

P1u := isϕtu+ 2s∇ϕ · ∇u+ s(∆ϕ)u

P2u := iut + ∆u+ s2|∇ϕ|2u

‖w‖2
L2(−T,T [×Ω) = ‖P1u+ P2u‖

2 = ‖P1u‖
2 + ‖P2u‖

2 + 2ℜ(P1u, P2u)

As usual in Carleman estimates, we only use

2ℜ(P1u, P2u) ≤ ‖w‖2
L2(−T,T [×Ω) .

We also decompose 2ℜ(P1u, P2u) = I1 + I2 + I3 with

I1 := 2ℜ

∫∫
(2s∇ϕ · ∇u+ s(∆ϕ)u)(−iut + ∆u+ s2|∇ϕ|2u))

I2 := 2ℜ

∫∫
isϕtu(−iut + ∆u)

I3 := 2ℜ

∫∫
isϕtu(s

2|∇ϕ|2u) = 0

We first deal with I1.

I1 = 2ℜ

∫∫
(2s∇ϕ · ∇u+ s(∆ϕ)u)((∆u+ s2|∇ϕ|2u) − 2ℜ

∫∫
i(2s∇ϕ · ∇u+ s(∆ϕ)u)ut

= I1
1 + I2

1 .

Set J =
∫∫

(∇ϕ · ∇u)∆u = −
∫∫

∇u · ∇(∇ϕ · ∇u)). We have

∇u · ∇(∇ϕ · ∇u)) = D∇u(∇ϕ · ∇u) = (D∇u∇ϕ) · ∇u+ ∇ϕ · (D∇u∇u)

= Hess(ϕ)(∇u,∇u) +Hess(u)(∇u,∇ϕ)

Actually

∇ϕ · ∇|∇u|2 = D∇ϕ(∇u · ∇u) = (D∇ϕ∇u) · ∇u+ ∇u · (D∇ϕ∇u) = 2ℜ(D∇ϕ∇u) · ∇u

= 2ℜHess(u)(∇ϕ,∇u)

40

ha
l-0

03
66

91
2,

 v
er

si
on

 1
 - 

10
 M

ar
 2

00
9



Therefore,

2ℜJ = −2

∫∫
Hess(ϕ)(∇u,∇u) +

∫∫
∆ϕ |∇u|2

Expanding I1
1 , we obtain

I1
1 = 2ℜ

{
2sJ +

∫∫
s(∆ϕ)u∆u+

∫∫
2s3(∇ϕ · ∇u)|∇ϕ|2u+

∫∫
s3(∆ϕ)|u|2|∇ϕ|2

}

= 4sℜJ − 2sℜ

∫∫
((∇∆ϕ)u+ ∆ϕ∇u) · ∇u

+

∫∫
2s3|∇ϕ|2∇ϕ · ∇|u|2) + 2

∫∫
s3(∆ϕ)|u|2|∇ϕ|2

where we have used ∇|u|2 = 2ℜ(u∇u). Then, we remark that

−2sℜ

∫∫
(∇∆ϕ)u · ∇u = −s

∫∫
(∇∆ϕ) · ∇|u|2

= s

∫∫
(∆2ϕ)|u|2,

2

∫∫
s3(∆ϕ)|u|2|∇ϕ|2 = −2s3

∫∫
∇ϕ · (|∇ϕ|2∇|u|2 + |u|2∇|∇ϕ|2).

We simplify

I1
1 = −4sℜ

∫∫
Hess(ϕ)(∇u,∇u) + 2s

∫∫
∆ϕ |∇u|2

+s

∫∫
(∆2ϕ)|u|2 − 2s

∫∫
∆ϕ|∇u|2 − 2s3

∫∫
|u|2∇ϕ · ∇|∇ϕ|2

= −4s

∫∫
Hess(ϕ)(∇u,∇u) + s

∫∫
(∆2ϕ)|u|2 − 2s3

∫∫
(∇ϕ · ∇|∇ϕ|2)|u|2

Expanding 2ℜa = a+ a for I2
1 and performing integration by part in t for the first term, we get

−I2
1 =

∫∫
i(2s∇ϕ · ∇u+ s(∆ϕ)u)ut − i

∫∫
(2s∇ϕ · ∇u+ s(∆ϕ)u)ut

=

∫∫
−i [2s∇ϕt · ∇u+ 2s∇ϕ · ∇ut + s(∆ϕt)u+ s(∆ϕ)ut] u

−i

∫∫
2s(∇ϕ · ∇u)ut − i

∫∫
s(∆ϕ)uut

Integration by part in x yields

−i

∫∫
2s(∇ϕ · ∇u)ut = 2is

∫∫
(∆ϕ)uut + 2is

∫∫
(∇ϕ · ∇ut)u
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As a consequence

−I2
1 =

∫∫
−i2s(∇ϕt · ∇u)u− is

∫∫
(∆ϕt)|u|

2 =

∫∫
−i2s(∇ϕt · ∇u)u+ is

∫∫
∇ϕt · ∇|u|2

= i

∫∫
s∇ϕt · (u∇u− u∇u)) = 2sℜi

∫∫
∇ϕt · (u∇u)).

Finally,

I1 = −4sℜ

∫∫
Hess(ϕ)(∇u,∇u) + s

∫∫
(∆2ϕ)|u|2

−2s3

∫∫
∇ϕ · ∇|∇ϕ|2|u|2 − 2sℜi

∫∫
∇ϕt · (u∇u))

On the other hand, we have

∇ϕ · ∇|∇ϕ|2 = D∇ϕ(∇ϕ · ∇ϕ) = 2D∇ϕ∇ϕ · ∇ϕ = 2Hess(ϕ)(∇ϕ,∇ϕ)

We now turn to the other term I2 :

I2 = 2ℜ

∫∫
isϕtu(−iut + ∆u) = s

∫∫
ϕt∂t|u|

2 + 2sℜi

∫∫
ϕtu∆u

= −s

∫∫
ϕtt|u|

2 − 2sℜi

∫∫
(∇ϕtu+ ϕt∇u) · ∇u

= −s

∫∫
ϕtt|u|

2 − 2sℜ

∫∫
i(∇ϕt · ∇u)u

Consequently, our final result is

2ℜ(M1u,M2u) =

∫∫ [
−4s3Hess(ϕ)(∇ϕ,∇ϕ) − sϕtt + s(∆2ϕ)

]
|u|2(64)

−4sℜ

∫∫
Hess(ϕ)(∇u,∇u)(65)

−4sℜ

∫∫
iu∇ϕt · ∇u(66)

(64) and (65) are the main parts in |u|2 and |∇u|2 respectively. (66) is a remainder term that will be
estimated from above.

In what follows, ε > 0 denote small constants (used in estimates from below) and C large ones
(used for estimates from above). We observe the following indentities, that will be used along the
proof,

∇ϕ = −λθ∇Ψ,

Hess(ϕ)(X, Y ) = (DX∇ϕ) · Y = −λDX(θ∇Ψ) · Y = −λθ(DX∇Ψ) · Y − λdθ(X)∇Ψ · Y

= −λθHess(Ψ)(X, Y ) − λ2θ(∇Ψ ·X)(∇Ψ · Y )

= −θλ [Hess(Ψ)(X, Y ) + λ(∇Ψ ·X)(∇Ψ · Y )] .
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Firstly, we estimate term (66),

|(66)| ≤ Cs

∫∫
|∇ϕt · ∇u||u| ≤ Cs

∫∫
tλeλΨ

(T 2 − t2)2
|∇Ψ · ∇u||u|

≤ Cs

∫∫
eλΨ

(T 2 − t2)
|∇Ψ · ∇u|2 + Cs

∫∫
(Tλ)2eλΨ

(T 2 − t2)3
|u|2

≤ Cs

∫∫
θ |∇Ψ · ∇u|2 + Csλ−1

∫∫
|∇ϕ|3 |u|2 + Cs

∫∫

ω

λ2θ3|u|2(67)

Then, we estimate term (64) using Assumptions (57) and (61) (or (60)). On (Ω\ω) ∩K, we have

−4s3Hess(ϕ)(∇ϕ,∇ϕ) = 4s3λθ
[
Hess(Ψ)(∇ϕ,∇ϕ) + λ |∇Ψ · ∇ϕ|2

]

≥ 4s3λθ(λ− 1) |∇Ψ · ∇ϕ|2 ≥ s3λ4θ3 |∇Ψ|4 ≥ εs3λ |∇ϕ|3

Assumption (58) gives Ψ(x) ≤ CΨ ≤ 3Ψ(x) and then, we have on (Ω\ω) ∩K

|sϕtt| ≤ Cs
eλCΨ

((T 2 − t2))3
≤ Cs

e3λΨ(x)

((T 2 − t2))3
≤ Cs |∇ϕ|3

Moreover, on (Ω\ω) ∩K we have

∣∣s∆2ϕ
∣∣ ≤ Csθλ4 ≤ Csλ |∇ϕ|3

Finally, for λ and s large enough

∫∫

Ω\ω

[
−4s3Hess(ϕ)(∇ϕ,∇ϕ) − sϕtt + s(∆2ϕ)

]
|u|2 ≥

∫∫

Ω\ω
εs3λ |∇ϕ|3 |u|2

For the domain ω, we have the estimate

∣∣∣∣
∫∫

ω

[
−4s3Hess(ϕ)(∇ϕ,∇ϕ) − sϕtt + s(∆2ϕ)

]
|u|2

∣∣∣∣ ≤ C

∫∫

ω

s3λ4θ3|u|2

The final estimate for (64) is

(64) ≥

∫∫

Ω\ω
εs3λ |∇ϕ|3 |u|2 − C

∫∫

ω

s3λ4θ3|u|2.(68)

Now, let us estimate (65). We begin with the integral on ω.

−4sℜ

∫∫

ω

Hess(ϕ)(∇u,∇u) = 4sℜ

∫∫

ω

θλ
[
Hess(Ψ)(∇u,∇u) + λ |∇Ψ · ∇u|2

]

≥ −Csλ

∫∫

ω

θ |∇u|2 + 4s

∫∫

ω

θλ2 |∇Ψ · ∇u|2

≥ −Csλ

∫∫

ω

θ |∇u|2

Now, for the integral on Ω\ω, we distinguish the two cases described above :
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Strong pseudoconvexity : end of the proof of Proposition B.1
Using assumption (60), we can estimate the part of (65) on Ω\ω by

−4sℜ

∫∫

Ω\ω
Hess(ϕ)(∇u,∇u) = 4sℜ

∫∫

Ω\ω
θλ

[
Hess(Ψ)(∇u,∇u) + λ |∇Ψ · ∇u|2

]

≥ εsλ

∫∫

Ω\ω
θ |∇u|2

The final estimate for (65) is

(65) ≥ εsλ

∫∫

Ω\ω
θ |∇u|2 − Csλ

∫∫

ω

θ |∇u|2(69)

Putting together (67), (68) and (69), we get for s, λ large enough

(64) + (65) + (66) ≥

∫∫

Ω\ω
εs3λ |∇ϕ|3 |u|2 − C

∫∫

ω

s3λ4θ3|u|2 − Csλ

∫∫

ω

θ |∇u|2

+εsλ

∫∫

Ω\ω
θ |∇u|2 − Cs

∫∫
θ |∇Ψ · ∇u|2

−Csλ−1

∫∫
|∇ϕ|3 |u|2 − Cs

∫∫

ω

λ2θ3|u|2

≥ ε

∫∫
s3λ4θ3|u|2 + εsλ

∫∫
θ |∇u|2

−C

∫∫

ω

s3λ4θ3|u|2 − Csλ

∫∫

ω

θ |∇u|2(70)

where we have used the decomposition
∫∫

Ω\ω =
∫∫

−
∫∫

ω
for the second inequality.

Replacing u by e−sϕq and computing ∇q = esϕ [∇u− sλθu∇Ψ] this yields after absorption

∫∫ [
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ ≤ C

∫∫ [
s3λ4θ3|u|2 + sλθ|∇u|2 + s3λ3θ3|∇ψ|2|u|2

]

≤ C

∫∫ [
s3λ4θ3|u|2 + sλθ|∇u|2

]
(71)

∫∫

ω

s3λ4θ3|u|2 + sλ

∫∫

ω

θ |∇u|2 ≤ C

∫∫

ω

[
s3λ4θ3|q|2 + sλθ |∇q|2 + s3λ3θ3|∇ψ|2|q|2

]
e−2sϕ

≤ C

∫∫

ω

[
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ(72)

Combining (70), (71) and (72), we get the expected result :

∫∫ [
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ

≤ C

∫∫
|i∂tq + ∆q|2 e−2sϕ + C

∫∫

ω

[
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ
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Weak pseudoconvexity : end of the proof of Proposition B.2
Assumption (61) yields that for λ large enough

−4sℜ

∫∫

Ω\ω
Hess(ϕ)(∇u,∇u) ≥ εs

∫∫

Ω\ω
θλ2 |∇Ψ · ∇u|2

We finish the proof similarly to get

(64) + (65) + (66) ≥ ε

∫∫

Ω\ω
s3λ |∇ϕ|3 |u|2 − C

∫∫

ω

s3λ4θ3|u|2 − Csλ

∫∫

ω

θ |∇u|2

+εs

∫∫

Ω\ω
θλ2 |∇Ψ · ∇u|2 − Cs

∫∫
θ |∇Ψ · ∇u|2

−Csλ−1

∫∫
|∇ϕ|3 |u|2 − Cs

∫∫

ω

λ2θ3|u|2

≥ ε

∫∫
s3λ4θ3|u|2 + εsλ2

∫∫
θ |∇Ψ · ∇u|2

−C

∫∫

ω

s3λ4θ3|u|2 − Csλ

∫∫

ω

θ |∇u|2

and then ∫∫ [
s3λ4θ3|q|2 + sλ2θ |∇Ψ · ∇q|2

]
e−2sϕ

≤ C

∫∫
|i∂tq + ∆q|2 e−2sϕ + C

∫∫

ω

[
s3λ4θ3|q|2 + sλθ |∇q|2

]
e−2sϕ.

B.2 Carleman estimates with potential L∞([−T, T ], L3)

The following result proves that the strong pseudoconvexity allows to absorb some potential terms
in L∞([−T, T ], L3). This is in contrast with the weak pseudoconvexity which only absorbs terms in
L∞([−T, T ] × Ω).

Proposition B.3. Assume dim(Ω) ≤ 3. Let V1, V2 ∈ L∞([−T, T ], L3). Then, Proposition B.1 holds
with L replaced by

L(q) = i∂tq + ∆q + V1q + V2q.

Proof. We use the notation of Proposition B.1. We write
∫∫

|i∂tq + ∆q|2 e−2sϕ ≤ 4
∥∥e−sϕL(q)

∥∥2

L2([0,T ],L2)
+ 4

∥∥e−sϕ(V1q)
∥∥2

L2([0,T ],L2)
+ 4

∥∥e−sϕ(V2q)
∥∥2

L2([0,T ],L2)

But, by Hölder inequality and Sobolev embedding, we have for s > 1
∥∥e−sϕV1q

∥∥2

L2([0,T ],L2)
≤ C ‖V1‖

2
L∞(L3)

∥∥e−sϕq
∥∥2

L2(L6)

≤ C
(∥∥e−sϕq

∥∥2

L2(L2)
+

∥∥∇(e−sϕq)
∥∥2

L2(L2)

)

≤ C
(∥∥e−sϕq

∥∥2

L2(L2)
+

∥∥e−sϕ∇q
∥∥2

L2(L2)
+ s2λ2

∥∥θ(∇Ψ)e−sϕq
∥∥2

L2(L2)

)

≤ C

(∫∫ [
s2λ2θ3|q|2 + θ |∇q|2

]
e−2sϕ

)
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where we have used θ ≥ C. We get the desired result using estimate (62) of Proposition B.1 for s
large enough.

Remark B.1. The uniqueness results we will obtain from the former Proposition are not optimal with
respect to the regularity of the potential. Indeed, some recent papers (see the work of H. Koch and D.
Tataru [24] or D. Dos Santos Ferreira [16]) establish Carleman type estimates in Lp which are much
better than what we get. They are more complicated and not required for our purpose. Yet, they would
become necessary if we considered nonlinearities |u|αu with α > 2.

B.3 Application to uniqueness

Proposition B.4. Let Ω, T, ω,Ψ fulfilling the same assumptions as Proposition B.1.
Let q ∈ L∞([−T, T ], H1(Ω)) compactly supported, solution of i∂tq + ∆q + V1q + V2q = 0 with Vi ∈
L∞([−T, T ], L3) .
Let D be an open subset of Ω such that m̃ = infx∈D {Ψ(x)} > supx∈ω {Ψ(x)} = m.
Then, q = 0 on ] − T, T [×D.

Remark B.2. By considering the maximum of Ψ, we see that the assumptions of Proposition B.4 can
not be fulfilled on a compact manifold. Therefore, we will only apply this result on an open set Ω of
M , and the compact support of u becomes important.

Since the previous Carleman estimates hold for every time interval (with constants depending on
its length), we are reduced to the following lemma :

Lemma B.1. Under assumptions of Proposition B.4, there exists one η > 0 such that q = 0 on
] − η, η[×D.

Proof. Fix λ ≥ λ0 > 1 (the next constants could depend on λ but not on s). Let T ≥ η > 0 to be
chosen later. Denote λ1 = eλCψ − eλ em and λ1 + ε = eλCψ − eλm with λ1 > 0 and ε > 0. By definition
of m̃ and m, we have for s ≥ 0

e−2sϕ ≤ e
−2s

λ1+ε

T2−t2 ∀(t, x) ∈] − T, T [×ω

e
−2s

λ1
T2−η2 ≤ e−2sϕ ∀(t, x) ∈] − η, η[×D

Moreover, once λ1 and ε are fixed, there exists some constant C such that y3e−2(λ1+ε)y ≤ Ce−2(λ1+ε/2)y

for y ≥ 0. Therefore, for every (t, x) ∈] − T, T [×Ω with x ∈ Supp u, we have

(sθ)3e
−2s

λ1+ε

T2−t2 ≤ C

(
s

T 2 − t2

)3

e
−2s

λ1+ε

T2−t2 ≤ Ce
−2s

λ1+ε/2

T2−t2 ≤ Ce−2s
λ1+ε/2

T2

Here, the constant C does not depend on s. Then, using Carleman estimate and θ ≥ C > 0, we get
∫∫

]−η,η[×D

s3|q|2e
−2s

λ1
T2−η2 ≤ C

∫∫

]−T,T [×ω

[
|u|2 + |∇q|2

]
e−2s

λ1+ε/2

T2

Therefore,

s3e
−2s

λ1
T2−η2

∫∫

]−η,η[×D

|q|2 ≤ Ce−2s
λ1+ε/2

T2 ‖q‖2
L2(H1)

Then, to finish the proof, we just have to choose η such that −2 λ1

T 2−η2 > −2λ1+ε/2
T 2 , that is η2 < T 2ε/2

λ1+ε/2

and let s tend to +∞.
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B.4 Geometrical examples

We give some geometrical examples where Proposition B.4 applies. Denote q ∈ L∞([−T, T ], H1(Ω)) a
solution of i∂tq+∆q+V1q+V2q = 0 with Vi ∈ L∞([−T, T ], L3). In these following cases, Assumptions
2 and 4 are fulfilled. For the convenience of the reader, we recall this assumption :

Proposition B.5. Let (M, ω̃) be either
- (T3, {x ∈ R3/(θ1Z × θ2Z × θ3Z) |∃i ∈ {1, 2, 3}, xi ∈] − ε, ε[+θiZ})
- (S3, ω̃) where ω̃ is a neighborhood of S3 ∩ {x4 = 0} in S3 ⊂ R4.
-(S2 × S1, (ω1 × S1) ∪ (S2×]0, ε[)) where ω1 is a neighborhood of the equator of S2.
For every T > 0, the only solution in C([0, T ], H1) to the system

{
i∂tq + ∆q + b1(t, x)q + b2(t, x)q = 0 on [0, T ] ×M

q = 0 on [0, T ] × ω̃
(73)

where b1(t, x) and b2(t, x) ∈ L∞([0, T ], L3) is the trivial one q ≡ 0.

B.4.1 M = T3

We assume q = 0 on ω̃ = {x ∈ R3/(θ1Z × θ2Z × θ3Z) |∃i ∈ {1, 2, 3}, xi ∈] − ε, ε[+θiZ}.
We define q̃ on R3 by q̃(x) = q(x) if x ∈ [0, θ1] × [0, θ2] × [0, θ3] and q̃(x) = 0 otherwise. q̃ satisfies the
same Schrödinger equation on R3 with compact support K. By translation, we can assume that 0 is
the center of the rectangle.
We use the function Ψ = ‖(x, y, z)‖2 +C. C is chosen large enough so that (58) is fulfilled on K. Let
δ > 0 small. Outside of ω = B(0, δ), Ψ is stricly convex ( that is strongly pseudoconvex for the flat
metric inherited from R3) and ∇Ψ 6= 0. Then, assumptions (57) and (60) are fulfilled.
We can apply Theorem B.4 with Ω = R3, ω = B(0, δ) and D = B(0, 2δ)c. As δ is arbitrary, we get
q̃ = 0 everywhere and so q = 0.

B.4.2 M = S3

Lemma B.2. Let Sn ⊂ Rn+1 be the unit sphere. Then, the function h : (x1, ···, xn+1) 7→ xn+1 restricted
to Sn ∩ {xn+1 < 0} has stricly positive Hessian for the metric induced by Rn+1.

Proof. h defined on Rn+1 is linear. Then, using Exercice 2.65 b) of [17], we get Hess(h) = −hg where
g is the bilinear form of the Riemannian structure. Then, Hess(h) is positive definite if and only if
h < 0.

We assume q = 0 on a neighborhood of x4 = 0. Let δ > 0 small. We choose Ω = {x ∈ S3|x4 < 0},
D = {x ∈ S3|x4 ∈] − 1 + 2δ, 0[} and ω = S3 ∩ {x4 ∈ [−1,−1 + δ[}. We use the function Ψ = x4 + C.
C is chosen large enough so that (58) is fulfilled on the support of q. On Ω\ ω, Ψ is stricly convex
thanks to Lemma B.2 and ∇Ψ 6= 0. Therefore, assumptions (57) and (60) are fulfilled. As the support
of q is compact in Ω, Theorem B.4 applies and we get q = 0 on D. Since δ is arbitrary, we get q = 0
on S3 ∩ {x4 < 0}. The symmetry of the problem gives q = 0 on S3.

B.4.3 M = S2 × S1

Let ω1 ⊂ S2 be a neighbourhood of the equator {x3 = 0} and ε > 0.
We assume q = 0 on (ω1 × S1)

⋃
(S2×] − ε, ε[).
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The geometric situation is quite similar to the case of T3 : this is a product of manifolds and the
weight function Ψ will be the sum of two pseudoconvex weights in each coordinate.
The current point x of S2 will be denoted by its coordinates in R3 and the current point y of S1 =
T1 = R/Z by its coordinates in R. Then, we can define q̃ on the open set Ω = {x ∈ S2|x3 < 0} × R

by q̃(x, y) = q(x, y) if y ∈ [0, 1] and 0 otherwise. q̃ is then compactly supported and is solution of the
same Schrödinger equation.
We choose Ψ(x, y) = x3+y

2+C with C large enough. Ψ is definite positive everywhere and nonsingular
everywhere outside of any ω = {(x, y) ∈ S2×R|x3 ∈ [−1,−1+δ[ and y2 < δ} for δ > 0. Then, choosing
D = {(x, y) ∈ S2 × R |x3 ∈] − 1 + 3δ, 0[ or y2 > 3δ} and applying Theorem B.4 we get q̃ = 0 on D.
Therefore, q = 0 on S2 × S1.
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tion to this problem and for helpful discussions and encouragements. He also thanks Belhassen Dehman
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