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In this paper, we study fully non-linear elliptic equations in nondivergence form which can be degenerate or singular when "the gradient is small". Typical examples are either equations involving the m-Laplace operator or Bellman-Isaacs equations from stochastic control problems. We establish an Alexandroff-Bakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of such non-linear elliptic equations.

Introduction

Following the original strategy of Krylov and Safonov [START_REF] Krylov | An estimate for the probability of a diffusion process hitting a set of positive measure[END_REF][START_REF]A property of the solutions of parabolic equations with measurable coefficients[END_REF], Delarue [START_REF] Delarue | Krylov and Safonov estimates for degenerate quasilinear elliptic PDEs[END_REF] proved by probabilistic methods a Harnack inequality for quasi-linear elliptic equations of the form [START_REF] Alvarez | Convex viscosity solutions and state constraints[END_REF] -Tr (A(x, u, Du)D 2 u) + H(x, u, Du) = 0 , x ∈ Ω (where Ω is a domain of R n ) in the case where the n × n matrix A(x, p) can degenerate. Precisely, he assumes

Λ -1 λ(p)I ≤ A(x, u, p) ≤ Λλ(p)I (2) H(x, u, p) ≤ Λ(1 + λ(p))(1 + |p|) (3) 
where Λ ≥ 1, λ : R n → R + is continuous and such that λ(p) ≥ λ F if |p| ≥ M F . In [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF], I denotes the identity matrix and the inequalities are understood in the sense of the usual partial order on the set of real symmetric matrices. The model example of [START_REF] Alvarez | Convex viscosity solutions and state constraints[END_REF] is the m-Laplace equation where A(x, p) = |p| m-2 for some m > 2. An important application of the Harnack inequality is the derivation of a Hölder estimate for the solution of [START_REF] Alvarez | Convex viscosity solutions and state constraints[END_REF].

In this paper, we generalize this result to the case of fully non-linear elliptic equations in non-divergence form [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] F (x, u, Du, D 2 u) = 0 , x ∈ Ω which can be either degenerate or singular. We do so by proving first an Alexandroff-Bakelman-Pucci (ABP for short) estimate. This is the first main difference with [START_REF] Delarue | Krylov and Safonov estimates for degenerate quasilinear elliptic PDEs[END_REF] and the first main contribution of this paper. Important examples of (4) which are out of the scope of [START_REF] Delarue | Krylov and Safonov estimates for degenerate quasilinear elliptic PDEs[END_REF] are Bellman-Isaacs equations appearing in the context of stochastic control problems. We also generalize and/or recover results from [START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF][START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF] where an ABP estimate and a Harnack inequality respectively are obtained for (5)

F 0 (Du, D 2 u) + b(x) • Du|Du| α + cu|u| α + f 0 (x) = 0 , x ∈ Ω
where F is positively homogeneous of order α ∈ (-1, 1) (see Section 6 for precise assumptions). If α ∈ [0, 1), the equation is degenerate. If α ∈ (-1, 0], the equation is singular. Even if this equation does not formally enter into our general framework, we will explain how the results of [START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF][START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF] can be derived from ours.

Known results. Krylov and Safonov [START_REF] Krylov | An estimate for the probability of a diffusion process hitting a set of positive measure[END_REF][START_REF]A property of the solutions of parabolic equations with measurable coefficients[END_REF] first proved a Harnack inequality for second order elliptic equations in non-divergence form with measurable coefficients. This result is often presented as the counterpart of the De Giorgi and Nash estimates [START_REF] Giorgi | Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF][START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] for divergence form equations.

As far as degenerate elliptic equations are concerned, De Giorgi and Nash estimates were obtained for equations in divergence form and for degeneracies of p-Laplace type. See for instance [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF][START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF].

Krylov and Safonov estimates were obtained by Caffarelli [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF] for fully nonlinear elliptic equations of the form F (x, D 2 u) = 0 (see also [START_REF]Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). As explained in [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF], a fondamental tool in this approach is the Alexandroff-Bakelman-Pucci estimate. Many authors extended these results since then; see for instance [START_REF] Fok | A nonlinear Fabes-Stroock result[END_REF][START_REF] Koike | Maximum principle for fully nonlinear equations via the iterated comparison function method[END_REF][START_REF] Capuzzo-Dolcetta | The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains[END_REF][START_REF] Quaas | Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators[END_REF] and references therein.

To the best of our knowledge and as far as degenerate elliptic equations in non-divergence form are concerned, the Krylov and Safonov estimates obtained by Delarue [START_REF] Delarue | Krylov and Safonov estimates for degenerate quasilinear elliptic PDEs[END_REF] are the first ones.

After this work was completed, Birindelli and Demengel [START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF] obtained a Harnack inequality for degenerate elliptic equations of the form [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF] with α ∈ [0, 1) in dimension 2. Reading their interesting paper, we understood that we could recover (and in fact extend) their results and deal with singular equations. We will explain how to get the same estimate in any dimension (see Section 6). Their work aims at generalizing the results of Dávila, Felmer and Quaas [START_REF] Dávila | Harnack inequality for singular fully nonlinear operators and some existence results[END_REF] where the same elliptic equation is considered but with α ∈ (-1, 0]. Hence, the equation is singular. We also mention that an ABP estimate is proved in [START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF] for degenerate and singular equations. We will explain that it can be derived from ours; see Section 6 where our results are compared with the ones in [START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF][START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF].

Main results.

Let us now describe a bit more precisely our main results. We use the techniques developed by Caffarelli [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF] (see also [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]) instead of probability arguments to get, apart from the Alexandroff-Bakelman-Pucci estimate, a weak Harnack inequality and a local maximum principle. It is then easy to derive a Harnack inequality and a Hölder estimate of a solution of (4).

First and foremost, we mention that, as in [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF][START_REF] Delarue | Krylov and Safonov estimates for degenerate quasilinear elliptic PDEs[END_REF], we use the notion of viscosity solution [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] since the equation is fully non-linear. We recall that if singular equations of the form (5) are considered, the classical notion of viscosity solutions must be adapted; see [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF].

We next make precise the standing assumptions that the non-linearity F must satisfy. Throughout the paper, S n denotes the space of real symmetric n × n matrices and B R denotes the open ball of radius R ≥ 0.

Assumption (A). • F is continuous on Ω × R × R n \ B MF × S n for some M F ≥ 0; • F is (degenerate) elliptic, i.e. for all x ∈ Ω, r ∈ R, p ∈ R n (p = 0 for singular equation) and X, Y ∈ S n , X ≤ Y ⇒ F (x, r, p, Y ) ≤ F (x, r, p, X) .
• F is proper i.e. it is non-decreasing with respect to its r variable.

Our first main result (Theorem 1) is an ABP estimate for lower semi-continuous super-solutions of (4) on a ball B d where F is strictly elliptic for "large gradients"

(6) X ≥ 0 |p| ≥ M F F (x, r, p, X) ≥ 0    ⇒ -λ F tr(X) + σ(x)|p| + g(x, u) ≥ 0
for some continuous functions g and σ and some constants M F ≥ 0, λ F > 0. This condition holds true if F satisfies [START_REF] Capuzzo-Dolcetta | The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains[END_REF] but it is more general. An ABP estimate permits us to control sup B d u -in terms of M ∂ = sup ∂B d u -and the L n -norms of g(x, M ∂ ) and σ appearing in [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]. In order to get such an estimate, we use the techniques from [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF]. As we already mentioned it in [START_REF] Imbert | Convexity of solutions and C 1,1 estimates for fully nonlinear elliptic equations[END_REF], the ABP estimate that we are able to obtain differs slightly from classical ones in the sense that we can prove it under a weaker condition than [START_REF] Capuzzo-Dolcetta | The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains[END_REF]; moreover, the supersolution is only lower semi-continuous. We recall that this is an a priori estimate: structure conditions ensuring the uniqueness of the solution are not required. We finally mention that when the equation is strictly elliptic (M F = 0), we recover the classical ABP estimate.

Our second main result (Corollary 1) is a Harnack inequality for (4). This inequality is a consequence of a weak Harnack inequality and a local maximum principle proved by generalizing in an appropriate way (2) and (3). In view of (2), one can consider the quasilinear equation [START_REF] Alvarez | Convex viscosity solutions and state constraints[END_REF] where A and H are replaced with

Ã(x, u, Du) = 1 λ(Du) A(x, u, Du) and H(x, u, Du) = 1 λ(Du) H(x, u, Du) .
Hence, the new quasi-linear equation is uniformly elliptic. However, the first order term is, in this case, eventually singular and (2) can be seen as an assumption concerning the first order term. In the case of the m-Laplace equation, λ(p) = |z| m-2 and H has therefore a polynomial growth of order m -1. Assumptions ( 2), (3) are replaced with

|p| ≥ M F F (x, u, p, X) ≥ 0 ⇒ M + (X) + σ(x)|p| + γ F u + f (x) ≥ 0 , (7) |p| ≥ M F F (x, u, p, X) ≤ 0 ⇒ M -(X) -σ(x)|p| + γ F u -f (x) ≤ 0 (8)
where σ, f : B → R are continuous and M F and γ F are non-negative constants. It is important to remark that if F satisfies ( 7), [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], then it can be degenerate or singular and it can have a superlinear growth in p.

An important consequence of the Harnack inequality is the Hölder regularity of solutions of (4) (see Theorem 2). As far as the regularity of solutions of ( 4) is concerned, we notice that by assuming [START_REF] Capuzzo-Dolcetta | The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains[END_REF] and ( 8), we cannot expect more than Lipschitz continuity. Indeed, by making such an assumption, we somehow forget about all small gradients and we cannot expect these small gradients to be regular. We also point out that it is easier to prove the uniqueness of a Hölder continuous function than to prove a strong comparison result between discontinuous viscosity sub-and super-solutions (which is the classical way to get uniqueness of viscosity solutions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]). To finish with, we shed light on the fact that, as for the ABP estimate, we recover the Harnack inequality of [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF] in the strictly elliptic case (M F = 0).

Extensions. We will explain how to deal with non-linearities, after redefining them if necessary, growing quadratically with respect to the gradient. Precisely, [START_REF] Capuzzo-Dolcetta | The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains[END_REF] and ( 8) are replaced with

|p| ≥ M F F (x, u, p, X) ≥ 0 ⇒ M + (X) + σ(x)|p| + σ 2 |p| 2 + γ F u + f (x) ≥ 0 , (9) |p| ≥ M F F (x, u, p, X) ≤ 0 ⇒ M -(X) -σ(x)|p| -σ 2 |p| 2 + γ F u -f (x) ≤ 0 (10)
where σ, f : B → R are continuous and M F , σ 2 and γ F are non-negative constants. In this case, it is known [START_REF]Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations[END_REF][START_REF] Koike | Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients[END_REF] that it is not possible to get a weak Harnack inequality which does not depend on the L ∞ -norm of the solution. See Section 5 for more details and comments.

As far as extensions of these results are concerned, we would like to mention next that we could have used L p -viscosity solutions [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] instead of classical continuous viscosity solutions in order to be able to deal with discontinuous coefficients. We chose not to do so in order to avoid technicalities but we think that this can be done. We also mention that it is sometimes more difficult to get a classical ABP estimate when using this notion of solution; for instance in [START_REF] Koike | Maximum principle for fully nonlinear equations via the iterated comparison function method[END_REF], the ABP estimate does not involve the contact set of the function.

We also mention that the parabolic case will be addressed in a future work.

Additional comments. Assumption (6) permits to take into account nonlinearity growing linearly with respect to the gradient. Such an assumption appears in [START_REF] Trudinger | Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations[END_REF] where Trudinger proved that strong solutions satisfy a weak Harnack inequality for such non-linearities if σ is sufficiently integrable. This result has been generalized to viscosity solutions since then; see for instance [START_REF] Fok | Some maximum principles and continuity estimates for fully nonlinear elliptic equations of second order[END_REF][START_REF] Koike | Maximum principle and existence of L pviscosity solutions for fully nonlinear uniformly elliptic equations with measurable and quadratic terms[END_REF]. We recall that it is possible to use the techniques introduced in [START_REF] Ishii | Viscosity solutions of fully nonlinear secondorder elliptic partial differential equations[END_REF] in order to prove the Hölder regularity of viscosity solutions much more easily. But the estimate of the Hölder constant depends in this case on the modulus of continuity of the coefficients of the equation.

Organization of the article. The paper is organized as follows. In Section 2, we construct a barrier function that will be used when proving the Harnack inequality. We also recall the definition of two Pucci operators. In Section 3, we establish an ABP estimate. In Section 4, we successively prove a weak Harnack inequality and a local maximum principle. We also derive from these two results a Harnack inequality. In Section 5, we explain how to deal with elliptic equations with quadratic dependence on the gradient. As applications of our results, we generalize and/or recover some results from [START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF][START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF] in Section 6. Section 7 is dedicated to proofs of our main results. Appendix A is added for the sake of completeness of proofs and for the reader's convenience. We give in Appendix A detailed proofs of results which can be easily derived from classical ones.

Notation. A ball of radius r centered at x is denoted by B(x, r) or B r (x). If x = 0, we simply write B r . ω n denotes the volume of the unit ball. The hypercube Π n i=1 (x ir/2, x i + r/2) is denoted by Q r (x). If x = 0, we simply write Q r .

Given a vector a = 0, â denotes a/|a|. I denotes the identity matrix. The set of real symmetric n × n matrices is denoted by S n .

A constant is universal if it only depends on n (dimension), q (constant greater than n fixed in all the paper), λ F and Λ F (ellipticity constants).

Given a lower semi-continuous function u, D 2,-u(x) (resp. D2,u(x)) denotes the set of all subjets (resp. limiting subjets) of u at point x. See [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for definitions.
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Preliminaries

Pucci operators. We recall the definition of two important second order non-linear elliptic operators. For all M ∈ S n , we define

M + (M ) = sup A∈A λ F ,Λ F (-Tr (AM )) M -(M ) = inf A∈A λ F ,Λ F (-Tr (AM ))
where

A λF ,ΛF = {A ∈ S n : λ F I ≤ A ≤ Λ F I}.
We will refer to these operators as the maximal and minimal Pucci operators. Remark that M + is subadditive. More precisely, it is the support function of the set -A λF ,ΛF . We will also use the fact that

M -(M ) = -M + (-M ).
Construction of a barrier. We now construct a barrier that will be used when proving the (weak) Harnack inequality.

Lemma 1 (Construction of a barrier). Given a constant ε 0 > 0, there exists a smooth function ϕ : R n → R, a universal constant M B > 1 and constants

C B > 0, R, r > 0 (with R ≥ (3r/2) √ n) depending only on the dimension n, λ F , Λ F and ε 0 , such that ϕ ≥ 0 in R n \ B R (11) ϕ ≤ -2 in Q 3r (12) ϕ ≥ -M B in R n (13) |Dϕ| ≤ ε 0 in R n (14) M -ϕ + C B ξ ≥ 0 in R n (15)
where ξ : R n → [0, 1] is a continuous function supported in Qr . Remark 1. We recall that this barrier function will be used to prove the weak Harnack inequality. At first glance, it is not clear why we need to construct a function ϕ such that M -ϕ ≥ 0 on Q r and ϕ ≤ -2 on Q 3r . This will be clearer when applying the cube decomposition in order to estimate the volume of all the level sets (and not only one) of a super-solution. And we choose R ≥ (3r/2)

√ n in order that Q 3r ⊂ B R .
Proof. We follow [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF] by choosing ϕ under the following form for

x / ∈ B r ϕ(x) = M 1 -M 2 |x| -α
where α > 0 will be chosen later and M 1 , M 2 > 0 have to be chosen such that [START_REF] Giorgi | Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF], ( 12) and ( 14)

hold true for x / ∈ B r (with R ≥ (3r/2) √ n). It is enough to impose M 2 ≤ M 1 R α , ((3r/2) √ n) α (M 1 + 2) ≤ M 2 , M 2 ≤ ε 0 r α+1 α or equivalently ((3r/2) √ n) α (M 1 + 2) ≤ M 2 ≤ min(M 1 R α , ε 0 r α+1 /α) .
One can choose M 2 and M 1 so that they satisfy the previous condition if and only if

2 ((3r/2) √ n) α R α -((3r/2) √ n) α ≤ M 1 ≤ ε 0 α((3/2) √ n) α r -2 .
Hence, we choose R = q(3r/2) √ n with q > 1 and r > 0 satisfying

2 q α -1 ≤ ε 0 α((3/2) √ n) α r -2 .
It is now enough to choose q > 1 such that 2 q α -1 ≤ 1 and r such that

ε 0 α((3/2) √ n) α r ≥ 3 .
We now choose α > 0 so that (15) holds true. If x / ∈ B r , we have

M -(D 2 ϕ(x)) = -αM 2 |x| -(α+2) (Λ F (n -1) -λ F (α + 1)) .
Hence it is enough to choose α > max(0, ΛF λF (n -1) -1) to conclude. It is next easy to extend ϕ on R n such that ( 12) and ( 14) remain true and ( 13) is satisfied too for some universal constant M B > 1. Indeed, we have outside

B r ϕ ≥ M 1 -M 2 r -α ≥ 2 1 q α -1 - ε 0 r α .
It is now enough to remark that q and ε 0 r can be choosen universal and we also saw above that α can be chosen universal too. Hence M B can be chosen universal.

Rescaling solutions. We will have to rescale sub-or super-solutions several times. We need to know how non-linearities are rescaled in order, for instance, to determine if these new F 's satisfy assumptions.

Lemma 2 (Rescaling solutions). Given R 0 > 0, t 0 > 0 and x 0 ∈ R n , let u be a super-solution of F on Q t0R0 (x 0 ). Consider the linear map T :

Q R0 → Q t0R0 (x 0 ) defined by T (y) = x 0 + t 0 y. Then the scaled solution u s (y) = 1 M0 u(T (y)) is a super-solution of F s = 0 in Q R0 with F s (y, v, q, Y ) = t 2 0 M 0 F (x 0 + t 0 y, M 0 v, t -1 0 M 0 q, t -2 0 M 0 Y ) . If F satisfies (7) (resp. (8)), then F s satisfies (7) (resp. ( 8 
)
) with constants M s , γ s and functions σ s and f s

M s = t 0 M F M 0 , γ s = t 2 0 γ F , σ s = t 0 .σ • T, f s = t 2 0 M 0 f • T .
In particular,

f s L n (QR 0 ) = t 0 M 0 f L n (Q t 0 R 0 (x 0 ) ) , σ s L q (QR 0 ) = t 1-n q 0 σ L q (Qt 0 R 0 (x0)) .

An ABP estimate

As explained in the introduction, we can prove an ABP estimate as soon as the non-linearity F satisfies a strict ellipticity condition "for large gradients". We must also prescribe a growth condition with respect to first order terms. We thus assume that F satisfies [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]. Our first main result is the following theorem.

Theorem 1 (ABP estimate). Consider a non-linearity F which satisfies (A) and [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]. Let u be a (lsc) super-solution of (4) in B d . Then [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] sup

B d u -≤ sup ∂B d u -+ Cd   M F + B d ∩{u+M ∂ =Γ(u)} (f + ) n 1/n   where M ∂ = sup ∂B d u -, Γ(u) is the convex hull of min(u + M ∂ , 0) extended by 0 on B 2d , f (x) = g(x, -M ∂ ) and C is a constant (only) depending on σ L n (B d ) , n and λ F .
Remark 2. Remark that when the equation is not degenerate (M F = 0), Eq. ( 16) corresponds to the classical ABP estimate.

Remark 3. The constant C equals 3e CABP(1+||σ|| n L n (B d ) )
where

C ABP = n2 n-2 ωnλ n F .
Sketch of proof. The proof follows the ideas of [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF][START_REF] Imbert | Convexity of solutions and C 1,1 estimates for fully nonlinear elliptic equations[END_REF]. The key lemma is the following one.

Lemma 3. The function Γ(u) is C 1,1 on B = {x ∈ B d : |DΓ(u)(x)| ≥ M F }.
Remark 4. Remark that before knowing that Γ(u) is C 1,1 , DΓ(u) is not uniquely determined. Hence B should be first defined as follows

B = {x ∈ B d : ∀(p, A) ∈ D 2,-Γ(u)(x), |p| ≥ M F } .
Lemma 3 is proved together with Lemma 4. The Hessian of Γ(u) satisfies on B the following properties

1. D 2 Γ(u) = 0 a.e. in B \ {u + M ∂ = Γ(u)} ; 2. D 2 Γ(u)(x) ≤ λ -1 F σ(x)|DΓ(u)(x)|+f + (x) I a.e. in B∩{u+M ∂ = Γ(u)}.
Proofs of these two lemmata can be adapted from the classical ones by remarking that points x i called by x ∈ B when computing the convex hull Γ(u) (see Proposition 1 in Appendix A) satisfy DΓ(u)(x i ) = DΓ(u)(x). In particular, x i ∈ B, i.e. |DΓ(u)(x i )| ≥ M F and consequently ( 6) can be used. The reader is referred to Appendix A where detailed proofs are given for his convenience.

Lemma 5. The following inclusion holds true

(17) B M/(3d) (0) \ B MF (0) ⊂ DΓ(u)(B) .
where M denotes (sup

B d u --sup ∂B d u -) + and B = {x ∈ B d : |DΓ(u)(x)| ≥ M F }.
Proof. This lemma is a consequence of the classical fact

B M/(3d) (0) ⊂ DΓ(u)(B d ) .
From now on, we assume without loss of generality that M/(3d) ≥ M F . We then use Lemma 3 in order to apply the area formula (see [START_REF] Federer | Geometric measure theory[END_REF]Theorem 3.2.5] and Remark 6 below) to the Lipschitz map DΓ(u) : B → R n and to the function g(p) = (|p| n/(n-1) + µ n/(n-1) ) (1-n) for some positive real number µ to be fixed later.

DΓ(u)(B) g(p)dp = B g(DΓ(u)) detD 2 Γ(u) .
On one hand, we can use Lemmata 4 and 5 in order to get

B M/(3d) (0)\BM F (0) g(p)dp ≤ DΓ(u)(B) g(p)dp ≤ B g(DΓ(u)) detD 2 Γ(u) ≤ 1 λ n F B∩{u+M ∂ =Γ(u)} g(DΓ(u))(σ|DΓ(u)| + f + ) n ≤ 1 λ n F B∩{u+M ∂ =Γ(u)} (|σ| n + µ -n (f + ) n ) .
If now one chooses µ such that µ n = B∩{u+M ∂ =Γ(u)} (f + ) n , we obtain from the inequality g(p) ≥ 2 2-n (|p| n + µ n ) -1 the following estimate

2 2-n n ω n ln (M/(3d)) n + µ n (M F ) n + µ n = 2 2-n ω n M/d MF r n-1 dr r n + µ n ≤ B M/d (0)\BM F (0) g(p)dp ≤ λ -n F (1 + ||σ|| n n )
where ω n denotes the volume of the unit ball. It is now easy to get [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF].

Remark 5. We see from the previous proof that Assumptions (A) and ( 6) on F are important in order to get the following property

(18) ∀(p, A) ∈ D 2,-u(x) : u(x) ≤ 0 A ≥ 0 |p| ≥ M F    ⇒ λ F Tr A ≤ σ(x)|p| + f (x) .
As a matter of fact, the previous piece of information is the relevant one in order to get [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. Indeed, in Lemma 4, the second estimate can be rewritten as follows

λ F D 2 Γ(u)(x) ≤ {σ(x)|DΓ(u)| + f (x)}I .
Remark 6. The area formula in [START_REF] Federer | Geometric measure theory[END_REF] is stated for maps G : R n → R n that are Lipschitz continuous on R n (in our case). However, the result still holds true if G is only Lipschitz continuous on B since it is always possible to extend it in a Lipschitz map G on R n with G = G on B.

Harnack inequality

In this section, we explain how to derive a Harnack inequality from the ABP estimate. As usual, we obtain it by deriving on one hand a weak Harnack inequality and on the other hand a local maximum principle for the fully nonlinear equation [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF].

In order to get a weak Harnack inequality and a local maximum principle respectively, Condition ( 6) is strengthened by assuming ( 7) and ( 8) respectively.

The Harnack inequality is obtained as a combination of the weak Harnack inequality and the local maximum principle. Here are precise statements.

Theorem 2 (Weak Harnack inequality). Given q > n and a non-linearity F satisfying (A) and (7) for some continuous functions f and σ in Q 1 , consider a non-negative super-solution u of (4) in Q 1 . Then [START_REF] Koike | Maximum principle and existence of L pviscosity solutions for fully nonlinear uniformly elliptic equations with measurable and quadratic terms[END_REF] u

L p 0 (Q 1/4 ) ≤ C( inf Q 1/2 u + max(M F , f L n (Q1) ))
where p 0 > 0 is universal and C (only) depends on n, q, λ F , Λ F , γ F and σ L q (Q1) .

Theorem 3 (Local maximum principle). Given q > n and a non-linearity F satisfying (A) and (8) for some continuous functions f and σ on Q 1 , consider a sub-solution u of (4) in Q 1 . Then for any p > 0, [START_REF] Koike | Maximum principle for fully nonlinear equations via the iterated comparison function method[END_REF] sup

Q 1/4 u ≤ C(p)( u + L p (Q 1/2 ) + max(M F , f L n (Q1) ))
where C(p) is a constant (only) depending on n, q, λ F , Λ F , γ F , σ L q (Q1) and p.

Combining these two results, we obtain the second main result of this paper.

Corollary 1 (Harnack inequality). Given q > n and a non-linearity F satisfying (A), ( 7) and (8) for some continuous functions f and σ on Q 1 , consider a non-negative solution u of (4) in Q 1 . Then

(21) sup Q 1/2 u ≤ C( inf Q 1/2 u + max(M F , f L n (Q1) ))
where C is a constant (only) depending on n, q, λ F , Λ F ,γ F and σ L q (Q1) .

An important consequence of Corollary 1 is the following regularity result.

Corollary 2 (Interior Hölder regularity). Given q > n and a non-linearity F satisfying (A), ( 7) and (8) for some continuous functions f and

σ on Q 1 , consider a solution u of (4) in Q 1 . Then u is α-Hölder continuous on Q 1 2 and (22) sup x,y∈Q 1 2 x =y |u(x) -u(y)| |x -y| α ≤ C α ( u L ∞ (Q1) + max(M F , f L n (Q1) + γ F u L ∞ (Q1) ))
where α and C α depend (only) on n, q, λ F , Λ F , γ F and σ L q (Q1) .

Quadratic growth in Du

In this section, we extend the results of the previous section to elliptic equations with a first order term (after changing the original equation if necessary; see the Introduction) which can grow quadratically with respect to the gradient. Precisely, [START_REF] Capuzzo-Dolcetta | The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains[END_REF] and ( 8) are replaced with ( 9) and [START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF].

Through a Cole-Hopf transform, an immediate consequence of Theorems 2 and 3 are the following results.

Theorem 4 (Weak Harnack inequality). Given q > n and a non-linearity F satisfying (A) and (9) for some continuous functions f and σ in Q 1 , consider a non-negative super-solution u of (4) in Q 1 . Then [START_REF]A property of the solutions of parabolic equations with measurable coefficients[END_REF] u

L p 0 (Q 1/4 ) ≤ C( inf Q 1/2 u + max(M F , f L n (Q1) ))
where p 0 > 0 is universal and C (only) depends on u L ∞ (Q1) , n, q, λ F , Λ F , γ F and σ L q (Q1) .

Remark 7. As explained in [START_REF]Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations[END_REF][START_REF] Koike | Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients[END_REF], one cannot expect to get weak Harnack inequality for such non-linearities with a constant C > 0 which does not depend on a bound on u. Remark 8. The constant C can be written

C = C 0 σ2 u L ∞ (Q 1 ) λF 1 -e - σ 2 u L ∞ (Q 1 ) λ F
where C 0 (only) depends on n, q, λ F , Λ F , γ F and σ L q (Q1) .

Theorem 5 (Local maximum principle). Given q > n and a non-linearity F satisfying (A) and (10) for some continuous functions f and σ on Q 1 , consider a sub-solution u of (4) in Q 1 . Then for any p > 0, [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF] sup

Q 1/4 u ≤ C( u + L p (Q 1/2 ) + max(M F , f L n (Q1) ))
where C (only) depends on u L ∞ (Q1) , n, q, λ F , Λ F , γ F , σ L q (Q1) and p.

Remark 9. The constant C can be written

C = C 0 σ2 u L ∞ (Q 1 ) λF 1 -e - σ 2 u L ∞ (Q 1 ) λ F
where C 0 (only) depends on n, q, λ F , Λ F , γ F , σ L q (Q1) and p.

It is now easy to derive a Harnack inequality and an interior Hölder estimate.

Corollary 3 (Harnack inequality). Given q > n and a non-linearity F satisfying (A), ( 9) and (10) for some continuous functions f and σ on Q 1 , consider a non-negative solution u of (4) in Q 1 . Then (25) sup

Q 1/2 u ≤ C( inf Q 1/2 u + max(M F , f L n (Q1) ))
where C (only) depends on u L ∞ (Q1) , n, q, λ F , Λ F ,γ F and σ L q (Q1) .

Corollary 4 (Interior Hölder regularity). Given q > n and a non-linearity F satisfying (A), ( 9) and (10) for some continuous functions f and σ on Q 1 , consider a solution u of (4) in Q 1 . Then u is α-Hölder continuous on Q 1 2 and (26)

sup x,y∈Q 1 2 x =y |u(x) -u(y)| |x -y| α ≤ C α ( u L ∞ (Q1) + max(M F , f L n (Q1) + γ F u L ∞ (Q1) ))
where α and C α depend (only) on u L ∞ (Q1) , n, q, λ F , Λ F , γ F and σ L q (Q1) .

6 Applications: results of [START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF][START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF] In [START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF][START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF], Eq. ( 5) is considered. In [START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF], α lies in [0, 1) and in [START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF], α > -1.

They assume

Assumption (H)

• (H1) F 0 (tp, µX) = |t| α µF 0 (p, X) for t = 0 and µ ≥ 0 for some α > -1;

• (H2) |p| α M -(N ) ≤ F 0 (p, M + N ) -F 0 (p, M ) ≤ |p| α M + (N ).
The ABP estimate obtained in [START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF] is the following one Theorem 6 ([10, Theorem 1]). Under Assumption (H) and c ≥ 0, any supersolution of (5) satisfies [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF] sup

B d u -≤ sup ∂B d u -+ Cd   B d ∩{u+M ∂ =Γ(u)} (f + 0 ) n 1/n   1 1+α
where M ∂ = sup ∂B d u -, Γ(u) is the convex hull of min(u + M ∂ , 0) extended by 0 on B 2d and C is a constant (only) depending on b L n (B d ) , n, α and c ∞ .

Dávila, Felmer and Quaas pointed out to us that it can be obtained from ours. See below.

The Harnack inequality obtained in [START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF] is the following one Theorem 7 ([3, Theorems 3.1 and 3.2]). Under Assumption (H) and c ≥ 0, any non-negative solution of (5) satisfies

(28) sup B u ≤ C(inf B u + f 0 1 1+α L n (B) ) .
where C is a constant (only) depending on n, q, λ F , Λ F , c ∞ , α and b L q (Q1) .

Remark 10. This result is proved in [START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF] only in dimension 2. Moreover, ours is slightly more precise since it depends on q and b L q (Q1) instead of b L ∞ (Q1) .

Their results are not included in ours but they can be derived with little additional work. We mention that Birindelli and Demengel do not prove this Harnack inequality by proving first an ABP estimate.

Proof of Theorem 6. Dávila, Felmer and Quaas kindly explained to us the link between their result and our result. We slightly adapt their argument to get the general case.

Assumption (H2) implies |p| α M -(X) ≤ F 0 (p, X) ≤ |p| α M + (X).

• If α ≥ 0, ( 7) and ( 8) are satisfied for any

M F > 0 with σ = |b|, f = f + 0 M α F
and γ F u is replaced with cu|u| α . Moreover, ( 6) is satisfied for any M F > 0 and with σ = |b| and g(x, u)

= (f0(x)+cu|u| α ) + M α F . In particular, g(x, -M ∂ ) ≤ f + 0 (x) M α F since c ≥ 0. Hence, our result gives sup B d u -≤ sup ∂B d u -+ Cd   M F + 1 M α F B d ∩{u+M ∂ =Γ(u)} (f + 0 ) n 1/n   .
Optimizing with respect to M F > 0 gives [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF].

• If α = -β < 0, then F (x, u, p, X) ≥ 0 and u ≤ 0 implies

M + (X) + |b(x)||p| + (f 0 + cu|u| -β ) + |p| β ≥ 0 . Now using g(p) = |p| -βn |p| n(n-β) n-1 + µ n n-1 -n
in the proof of Theorem 1 permits to conclude after very similar computations.

The Harnack inequality of [START_REF] Birindelli | Eigenfunctions for singular fully non linear equations in unbounded regular domain[END_REF] when c = 0 can be easily obtained from ours in any dimension (but not when c = 0). The case c = 0 can also be treated but it requires to modify proofs.

Proofs

Proof of the weak Harnack inequality

Proof of the weak Harnack inequality (Theorem 2). The proof of the weak Harnack inequality is performed in four steps. First, the problem is reduced to the case of a cube Q of universal side-length (Lemma 6), then it is proved that non-negative super-solutions can be bounded from above on Q by a universal constant on a set of universal positive measure (Lemma 7). Next, the measures of all level sets of super-solutions (restricted to Q) are (universally) estimated from above. Finally, we prove the weak Harnack inequality in Q.

Step 1. As explained above, we first reduce the problem to a simpler one.

Lemma 6 (Reduction of the problem). Consider a non-negative super-solution u of (4) in Q 2R . Then there exist universal constants p 0 , ε 0 and C satisfying [START_REF]Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations[END_REF] inf

Q3r u ≤ 1 max(M F , γ F , f L n (QR) , σ L q (QR) ) ≤ ε 0 ⇒ u L p 0 (Qr ) ≤ C .
We now explain how to derive the weak Harnack inequality from it. Let v be a super-solution of (4) in Q R/t for some t > 0. We then define a function v s (y) = v(ty) V with V > 0 and t ∈ (0, 1) to be chosen later. Thanks to Lemma 2 with x 0 = 0, M 0 = V , R 0 = R/t, the new function v s satisfies F s ≥ 0 in Q R for a non-linearity F s satisfying (A) and [START_REF] Capuzzo-Dolcetta | The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains[END_REF] with

M s = tM F V , γ s = γ F t 2 , σ s (y) = tσ(ty), f s (y) = f + (ty) V .
Hence, if one chooses

V = inf Q 3r/t v + δ + ε -1 0 max(M F , f L n (Q R/t ) ) t = σ L q (Q R/t ) ε 0 q/(q-n) + γ F ε 0 1/2 + 1 -1 we obtain that v satisfies inf Q3r v s ≤ 1 max(M s , γ s , f s L n (QR) , σ s L q (QR) ) ≤ ε 0 .
We thus can apply Lemma 6 and we obtain from ( 29) the following estimate (after letting δ → 0)

(30) v L p 0 (Q r/t ) ≤ C( inf Q 3r/t v + max(M F , f L n (Q R/t ) )) .
A standard covering procedure permits to get [START_REF] Koike | Maximum principle and existence of L pviscosity solutions for fully nonlinear uniformly elliptic equations with measurable and quadratic terms[END_REF].

Step 2. In this step, we obtain a (universal) upper bound M for non-negative super-solutions in Q R on a set of (universal) positive measure µ if the L n -norm of f on Q R , the L q -norm of σ on Q R , M F and γ F are (universally) small.

Lemma 7 (Upper bound on a subset of positive measure). There exist universal constants r, R > 0, ε 0 > 0, µ ∈ (0, 1) and M B > 0 such that for any non-negative super-solution u of (4) in Q R , we have

inf Q3r u ≤ 1 max(M F , γ F , f L n (QR) , σ L q (QR) ) ≤ ε 0 ⇒ |{u ≤ M B } ∩ Q r | ≥ µ|Q r | .
The proof of this lemma relies on the barrier function ϕ that we constructed in the preliminary section and on the ABP estimate applied to w = u + ϕ.

Proof of Lemma 7. Given ε 0 > 0 to be fixed later, we consider ϕ from Lemma 1 and define w = u + ϕ. We want to apply the ABP estimate (Theorem 1) to the function w on the ball B R .

• First, u ≥ 0 and ϕ ≥ 0 on ∂B R hence M ∂ = sup ∂BR w -= 0.

• Since inf Q3r u ≤ 1 and ϕ ≤ -2 in Q 3r , we conclude that inf Q3r w ≤ -1;

in other words, we have sup Q3r w -≥ 1.

• We also claim that w is a super-solution of an appropriate equation. More precisely, we claim that w satisfies [START_REF] Ishii | Viscosity solutions of fully nonlinear secondorder elliptic partial differential equations[END_REF] in {w ≤ 0} ∩ B R for some appropriate continuous functions f and σ.

Let us justify the last assertion and make precise what f and σ are. We write

0 ≤ F (x, u, Du, D 2 u) = F (x, w -ϕ, Dw -Dϕ, D 2 w -D 2 ϕ) ≤ F (x, w + M B , Dw -Dϕ, D 2 w -D 2 ϕ) .
Assume next that |Dw| ≥ M F +ε 0 =: M F , D 2 w ≥ 0 (in the viscosity sense) and w ≤ 0. Then |Dw -Dϕ| ≥ M F and we obtain from (7) the following inequality

0 ≤ M + (D 2 w) -M -(D 2 ϕ) + σ|Dw| + γ F M B + σε 0 + f
(we used the fact that M + is subadditive and the relation between the two Pucci operators). Use next that D 2 w ≥ 0 and ϕ satisfies ( 15)

λ F ∆w ≤ σ|Dw| + C B ξ + γ F M B + σε 0 + f .
Hence (18) holds true with

σ = σ and f (x) = C B ξ + γ F M B + σε 0 + f .
By using the ABP estimate for w and the properties listed above satisfied by this function, we obtain

1 ≤ sup BR w -≤ 3e CABP(1+ σ n L n (B R ) ) R   MF + {Γ(w)=w}∩BR (f + ) n 1/n  
where Γ(w) is the convex hull of min(w, 0) after extending w to B 2R by setting w ≡ 0 outside B R . We now use the fact that

max(M F , γ F , f L n (QR) , σ L q (QR) ) ≤ ε 0 ,
together with definitions of f , M F and the fact that supp ξ ⊂ Q r in order to get

1 ≤ 3e CABP(1+(ωnR) n(1-n q ) ε n 0 ) R(3ε 0 +(ω n R) 1-n q ε 2 0 +ε 0 M B +C B |{Γ(w) = w}∩Q r |) .
It is now enough to remark that

{Γ(w) = w} ⊂ {w ≤ 0} ⊂ {u ≤ M B }
and to choose ε 0 ∈ (0, 1) such that 3e CABP(1+(ωnR) n(1-n q

) ε n 0 ) R(3ε 0 + (ω n R) 1-n q ε 2 0 + ε 0 M B ) ≤ 1 2
to conclude. We used here that M B is universal; in particular, it does not depend on ε 0 .

Step 3. We derive from the previous lemma (Lemma 7) an estimate of any level set of super-solutions u under consideration. Precisely, we use Lemma 2 together with the Calderón-Zygmund cube decomposition lemma (see Lemma 15 in Appendix A) in order to get the following result.

Lemma 8 (Estimate of the measure of level sets in Q r ). Let u be as in Lemma 7. Then there exist universal constants ε > 0 and d > 0 such that for all t > 0,

(31) |{u ≥ t} ∩ Q r | ≤ dt -ε .
The proof of Lemma 4.6 in [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF] can be easily adapted (with minor changes). For the reader's convenience, a detailed proof is given in Appendix A.

Step 4. We finally explain how to derive Lemma 6. We first recall the following useful fact: if u is a non-negative function, then

Qr u p0 = p 0 +∞ 0 t p0-1 |{u ≥ t} ∩ Q r |dt .
We can use the results of Lemmata 7 and 8: we thus choose p 0 = ε/2 where ε appears in (31) in order to get

1 p 0 Qr u p0 ≤ 1 0 t ε/2-1 |Q r |dt + +∞ 1 t ε/2-1 t -ε dt =: C .
This achieves the proof of Lemma 6 and the proof of Theorem 2.

Proof of the local maximum principle

The proof of the local maximum principle is easily adapted from [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]. However, we give a detailed proof for the sake of completeness.

Proof of Theorem 3. The proof is divided in two steps. First, the problem is reduced to the case where the L ε -norm of u is small; it is to be proven that u is bounded by a universal constant (Step 1). Then we explain how to get the universal bound (Steps 2 and 3).

Step 1. We state the lemma to be proven in Steps 2 and 3. Lemma 9. Consider a sub-solution u of (4) in Q R . Then there exists a universal constant C > 0 such that

u + L ε (Qr) ≤ d 1/ε max(M F , γ F , f L n (QR) , σ L q (QR) ) ≤ ε 0 ⇒ sup Q r 4 u ≤ C
where ε and d appears in Lemma 8.

We now explain how to derive Theorem 3 from this lemma. First, it is enough to get (20) for a particular p since the full result can be obtained by interpolation. In view of the previous lemma, we consider p = ε. By scaling u and by using a covering argument, we obtain the desired result.

Step 2. We remark that the assumption u + L ε (Qr ) ≤ d 1/ε implies for all t > 0,

|{u ≥ t} ∩ Q r | ≤ t -ε Qr (u + ) ε ≤ dt -ε .
Remark that this estimate already appeared in the proof of the weak Harnack inequality; see (31) above. We next prove the following lemma.

Lemma 10. Consider a sub-solution u of (4) in Q R satisfying (31) and F be such that max(M F , γ F , f L n (QR) , σ L q (QR) ) ≤ ε 0 .

Then there exists universal constants M 0 > 1 and Σ > 0 such that

x 0 ∈ Q r 2 , j ∈ N u(x 0 ) ≥ ν j-1 M 0 ⇒ sup Q l j (x0) u > ν j M 0 where l j = Σ M -ε/n 0 ν εj/n < r 2 and ν = M 0 /(M 0 -1/2) > 1.
Proof of Lemma 10. We first choose Σ and M 0 such that ΣM -ε/n 0 ≤ r 2 so that l j < r 2 and Q lj (x 0 ) ⊂ Q r . We now argue by contradiction by assuming that sup Q l j (x0) u ≤ ν j M 0 . We have to exhibit a contradiction.

On one hand, we have from (31) and the fact that r < R and l j < r/2

(32) |{u ≥ ν j M 0 2 } ∩ Q l j r R (x 0 )| ≤ dν -jε M 0 2 -ε
.

On the other hand, since we have sup Q l j (x0) u ≤ ν j M 0 by assumption, we can consider the following transformation

T (y) = x 0 + l j R y
which defines a bijection between Q R and Q lj (x 0 ). The function v defined on Q R as follows v(y) = νM 0 -u(T (y)) [START_REF] Capuzzo-Dolcetta | The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains[END_REF] with

ν j-1 (ν -1)M 0 ≥ 0 thus satisfies F s (y, v, Dv, D 2 v) = 0 in Q R with F s satisfying (A) and
M s = t ν j-1 (ν -1)M 0 M F , σ s (y) = tσ(x 0 + ty), γ s = t 2 γ F , f s (y) = t ν j-1 (ν -1)M 0 tf (x 0 + ty) where t = lj R < 1 2 . It is clear that γ s ≤ γ F ≤ ε 0 . Notice that (ν -1)M 0 = M 0 2M 0 -1 > 1 2 > t
hence M s ≤ M F ≤ ε 0 and f s (y) ≤ tf (x 0 + ty). We also have

σ s L q (QR) ≤ t 1-n q σ L q (QR) ≤ ε 0 f s L n (QR) ≤ f L n (QR) ≤ ε 0 . Moreover, v(0) = νM0- u(x 0 ) ν j-1
(ν-1)M0 ≤ 1 by assumption on u; thus inf Q3r v ≤ 1. Hence, v satisfies the assumptions of Lemma 7 and we therefore obtain from Lemma 8 the following estimate

|{v ≥ M 0 } ∩ Q r | ≤ dM -ε 0 .
We thus obtain

(33) |{u ≤ ν j M 0 2 } ∩ Q l j r R (x 0 )| ≤ l j R n dM -ε 0 .
Combining (32) and (33), we thus obtain

l j r R n ≤ dν -jε M 0 2 -ε + l j R n dM -ε 0 .
We also choose M 0 such that dM -ε 0 ≤ r n 2 , and we obtain 1 2

l j r R n ≤ dν -jε M 0 2 -ε
.

Use now the definition of l j and get

1 2 Σr R n ≤ d2 ε .
We next choose Σ > d

1 n 2 ε+1 n R
r in order to get a contradiction.

Step 3. We prove Lemma 9. By Step 2, we know that the sub-solution u satisfies the conclusion of Lemma 10. In particular, the series j l j converges and we can find a universal integer j 0 ≥ 1 such that j≥j0 l j ≤ r 8 . We now claim that sup Q r 4 u ≤ ν j0-1 M 0 . We argue by contradiction by assuming that this is not true and by exhibiting a contradiction. Let us assume that there exists x j0 ∈ Q r 4 such that u(x j0 ) ≥ ν j0-1 M 0 . Hence, we can apply Lemma 10 and we get a point x j0+1 such that |x j0+1x j0 | ∞ ≤ l j0 /2 and u(x j0+1 ) ≥ ν j0 M 0 . By induction, we construct a sequence (x j ) j≥j0 such that |x j+1x j | ≤ l j /2 and u(x j+1 ) ≥ ν j M 0 as long as x j ∈ Q r 2 . This is always the case since

|x j | ∞ ≤ |x j0 | ∞ + j-1 k=j0 |x k+1 -x k | ≤ r 8 + r 8 ≤ r 4 
.

We now get a contradiction since u is upper semi-continuous; indeed, it is bounded from above in Q r 2 so it cannot satisfy u(x j+1 ) ≥ ν j M 0 for all j ≥ j 0 . The proof is now complete.

Proofs of Theorems 4 and 5

Proofs of Theorems 4 and 5. Both proofs rely on a transform of Cole-Hopf type in order to remove quadratic terms.

In order to understand why the exponential change of variables is the right one, we consider v = h -1 (u) for some increasing convex function h and we remark that v satisfies

M + (D 2 v) + σ(x)|Dv| + f + (x) h ′ (v) ≥ 0 as soon as h satisfies λ F h ′′ -σ 2 (h ′ ) 2 = 0. We thus choose h(t) = λ F σ 2 ln 1 - σ 2 t λ F -1
.

We thus derive ( 23) from ( 19) by remarking that

1 -e - σ 2 u L ∞ (Q 1 ) λ F σ2 u L ∞ (Q 1 ) λF u ≤ v ≤ u and 1 h ′ (t) = 1 -σ2t λF ≤ 1.
We proceed in the same way in order to prove Theorem 5. Remark that we can assume without loss of generality that the solution is non-negative.

A Additional proofs A.1 Proofs of Lemmata 3 and 4

In this paragraph, we explain how to prove Lemmata 3 and 4 by adapting the techniques of [START_REF] Imbert | Convexity of solutions and C 1,1 estimates for fully nonlinear elliptic equations[END_REF].

We first recall useful facts from convex analysis. The first one deals with the convex hull U * * of a function U . Proposition 1. Let Ω be a bounded convex open set and U : Ω → R be lsc. For x ∈ Ω, consider (p, A) ∈ D 2,-U * * (x). There then exist x 1 , . . . , x q ∈ Ω, q ≤ n, λ 1 , . . . , λ q ∈ (0, 1],

q i=1 λ i = 1 such that (34) x = q i=1 λ i x i U * * (x) = q i=1 λ i U (x i ) .
Moreover U * * is linear on the convex hull of {x 1 , . . . , x q }. In particular, A ≤ 0 for a.e. x ∈ {U = U * * }.

We next recall a result from [START_REF] Imbert | Convexity of solutions and C 1,1 estimates for fully nonlinear elliptic equations[END_REF] (see also [START_REF] Alvarez | Convex viscosity solutions and state constraints[END_REF]) about the subjet of the convex hull U * * of a function U .

We now prove the following lemma in order to achieve the proof of Lemmata 3 and 4. Lemma 14. The function Γ(u) satisfies (36), (37) and (38).

Proof. We first remark that (38) is a consequence of Proposition 1 and of Alexandroff theorem.

We now turn to the proof of (36) and (37). Consider next x ∈ B and (p, A) ∈ D 2,-Γ(u)(x). Notice that we cannot just prove (36) for a.e. x ∈ B. In view of definition of B (see also Remark 4), we know that |p| ≥ M F . Thanks to Lemma 12, we can assume without loss of generality that A ≥ 0. We now distinguish two cases.

Case 1: x ∈ B ∩ {Γ(u) = u + M ∂ }. In such a case, (p, A) ∈ D 2,-Γ(u)(x) = D 2,-u(x)
, and since |p| ≥ M F , we have F (x, u(x), p, A) ≥ 0. Now (6) yields

-λ F TrA + σ(x)|p| + f + (x) ≥ 0
and since A ≥ 0, we conclude that (37) holds true and the right hand side is bounded in B d since Γ(u) is Lipschitz continuous and σ and f + are continuous.

Remark that the previous inequality also holds true for A such that (p, A) ∈ D2,-Γ(u)(x), A ≥ 0, since the equation is also satisfied for limiting semi-jets.

Case 2: x ∈ B \ {Γ(u) = u + M ∂ }. There then exist x i ∈ Bd and λ i ∈ (0, 1], i = 1, . . . , q, such that (34) holds true (where U = u + M ∂ ). We know that there is at most one point x i on ∂B 2d and the others are in B d ; if not, Γ(u) ≡ 0 and there is nothing to prove. Moreover, x i ∈ B for i = 1, . . . , q.

By Proposition 2, for any ε > 0, there exist q matrices λ -1 i A i ≥ A ε ≥ 0 such that q i=1 λ -1 i A i ≥ A ε and (p, A i ) ∈ D2,u(x i ). If there are no points on ∂B 2d , we deduce from Case 1 that for all i, A i ≤ CI and A ε ≤ CI follows.

If x q ∈ ∂B 2d , say, then we deduce from (34) that λ q ≤ 2/3; hence, there exists i ∈ {1, . . . , q -1} such that λ i ≥ 1/3n. For instance i = 1. Then we conclude that

A ε ≤ 1 λ 1 A 1 ≤ 3nCI.
Passing to the limit on ε, we obtain A ≤ CI (for some new constant C).

A.2 Proof of Lemma 8

In order to prove Lemma 8, we need the Calderón-Zygmund cube decomposition such as stated in [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]. We thus first recall it. We use notation from [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]. Given r > 0, the cube Q r is split in 2 n cubes of half side-length. We do the same with all the new cubes and we iterate the process. The cubes obtained in this way are called dyadic cubes. If Q is a dyadic cube of Q r , Q denotes a dyadic cube such that Q is one of 2 n cubes obtained from Q.

Lemma 15 (Cube decomposition). Consider r > 0 and two measurable subsets A ⊂ B ⊂ Q r . Consider δ ∈ (0, 1) such that

• |A| ≤ δ|Q r | ; • if Q is a dyadic cube of Q r such that |A ∩ Q| > δ|Q|, then Q ⊂ B.
Then |A| ≤ δ|B|.

As far as the proof of this lemma is concerned, the reader is referred to [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]. We now turn to the proof of Lemma 8.

Proof of Lemma 8. We are going to prove the following estimate

(39) |{u ≥ (M B ) k } ∩ Q r | ≤ (1 -µ) k |Q r |
where M B and µ are given by Lemma 7. The reader can check that (31) derives from (39) with d = (1µ) -1 and ε =ln(1µ)/ ln M B . We prove (39) by induction. Lemma 7 implies that (39) holds for k = 1. We now consider k ≥ 2, we assume that (39) holds for k -1 and we prove it for k. To do so, we are going to apply Lemma 15 with the two following sets then the predecessor Q of Q satisfies Q ⊂ B. Consider such a dyadic cube Q = Q r 2 i (x 0 ) and suppose that Q is not contained in B. Then there exists x ∈ Q such that u(x) ≤ (M B ) k-1 . We now use Lemma 2 with R 0 = R, t 0 = 1 2 i and M 0 = (M B ) k-1 to get a rescaled function u s satisfying F s = 0 with F s such that [START_REF] Capuzzo-Dolcetta | The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains[END_REF] holds with constants M s ≤ M F , γ s ≤ γ F and functions f s , σ s satisfying f s L n (QR) ≤ f L n (QR) and σ s L q (QR) ≤ σ L q (QR) . We thus can apply Lemma 7 if inf Q3r u s ≤ 1. This is indeed the case inf

A ⊂ B ⊂ Q r A = {u > (M B ) k } ∩ Q r , B = {u > (M B ) k-1 } ∩ Q
Q3r u s ≤ u(x) (M B ) k-1 ≤ 1 .
Hence, |Q \ A| > (1µ)|Q| which contradicts (40).

A.3 Proof of Corollary 2

Proof of Corollary 2. We use the notation of [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]: for all r ∈ (0, 1), m r = inf Qr u, M r = sup Qr u, o r = M rm r = osc Qr u. The non-negative functions um 1 and M 1u satisfy equations F -= 0, F + = 0 respectively for some non-linearities F -and F + satisfying ( 7), ( 8) with f replaced with f + γ F M 1 . Hence, we can apply the Harnack inequality two M 1u and um 1 and get

M 1/2 -m 1 ≤ C(m 1/2 -m 1 + max(M F , f L n (Q1) + γ F |m 1 |)) , M 1 -m 1/2 ≤ C(M 1 -M 1/2 + max(M F , f L n (Q1) + γ F |M 1 |))
where we can assume without loss of generality that C > 1. Adding these two inequalities and rearranging terms, we obtain

osc Q 1/2 u ≤ C -1 C + 1 osc Q1 u + 2 max(M F , f L n (Q1) + γ F u L ∞ (Q1) ) .
We now use Lemma 8.3 in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] in order to get [START_REF] Krylov | An estimate for the probability of a diffusion process hitting a set of positive measure[END_REF].

  r and with δ = 1µ.Remark that A ⊂ {u > M B } ∩ Q r ; hence |A| ≤ (1µ)|Q r |. It thus remains to prove that if Q is a dyadic cube of Q r such that (40) |A ∩ Q| > (1µ)|Q|

Proposition 2 ([17, Proposition 3]). Let Ω be a bounded convex open set and U : Ω → R be lower semi-continuous. For x ∈ Ω, consider (p, A) ∈ D 2,-U * * (x). Consider x i and λ i such that (34) hold true. Then for every ε > 0, there are

where denotes the parallel sum of matrices. We recall that

We next recall a (necessary and) sufficient condition for a function to be semi-concave.

Lemma 11 Lemma 1]

). Consider a bounded convex open set Ω and U : Ω → R a lower semi-continuous function. Assume that there exists C > 0 such that for all x ∈ Ω and all (p, A)

We finally recall a useful approximation lemma from [START_REF] Alvarez | Convex viscosity solutions and state constraints[END_REF].

Lemma 12 ([1]

). Consider a convex set Ω and a convex function

n . We now turn to the proofs of the two lemmata.

Proofs of Lemmata 3 and 4. The function

with G(x, r, p, X) = F (x, r + M ∂ , p, X). Then Γ(u) is the convex hull of the function min(v, 0).

We first reduce the problem to the study of subjet of the function Γ(u).

Lemma 13. Assume that Γ(u) satisfies the following properties

Then Γ(u) satisfies conclusions of Lemmata 3 and 4.

Proof. Thanks to Lemma 11, Eq. (36) implies that Γ(u) is semi-concave in B. Since Γ(u) is convex, this implies that Γ(u) is C 1,1 in B. Hence Lemma 3 is proved. We next remark that (38) implies Point 1 in Lemma 4. Eventually, (37) together with Alexandroff theorem permits to get Point 2. We recall that Alexandroff theorem implies that a convex function is almost every twice differentiable. Hence the proof of Lemma 13 is now complete.