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Spherical magnetic nanoparticles: magnetic structure

and interparticle interaction

V. Russier ∗

ICMPE, UMR 7182 CNRS and Université Paris Est,

2-8 Rue Henri Dunant, F-94320 Thiais, France.

Abstract

The interaction between spherical magnetic nanoparticles is investigated from micromagnetic
simulations and ananlysed in terms of the leading dipolar interaction energy between magnetic
dipoles. We focus mainly on the case where the particles present a vortex structure. In a first step
the local magnetic structure in the isolated particle is revisited. For particles bearing a uniaxial
magnetocrystaline anisotropy, it is shown that the vortex core orientation relative to the easy axis
depends on both the particle size and the anisotropy constant. When the particles magnetization
present a vortex structure, it is shown that the polarization of the particles by the dipolar field of
the other one must be taken into account in the interaction. An analytic form is deduced for the
interaction which involves the vortex core magnetization and the magnetic susceptibility which are
obtained from the magnetic properties of the isolated particle.
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1 Introduction

With the increasing progress in the synthethis of magnetic objects of nanometric scale such as spherical

nanoparticles, nanodots, nanorings or layered films the diversity of systems made of such nano-objects

as building blocks either as 2D or 3D assemblies in non magnetic environment [1,2,3,4] or in colloidal

suspensions as ferrofluids [5,6] is continously growing. The magnetic behavior of magnetic nanometric

particles either isolated or in nanostructured bulk materials is now quite well undertood both from

experiments or numerical calculations [1, 3, 7] but a precise knowledge of interparticles interactions

and of their influence on the macrocopic properties is still needed. Indeed, the interparticle coupling

has been investigated in a variety of systems, such as nanograins [8, 9, 10,11,12] nanorings [13,14,15]

or cylindrical nanodots [16, 17, 18, 19] with a predominant attention paid on short range effects, such

as exchange coupling, or on the influence of the coupling between single domain particles on the

global magnetic properties. Conversely the long ranged interaction still deserves attention especially

in cases where the magnetic structure of the isolated particle is complex (vortex [20, 21, 22, 23, 24]

or onion [25, 26] states for examples). A lot of work remains to be done on this point especially for

spherical particles; in particular it seems important to develop models including the long ranged and

anisotropic dipolar interaction. In the simple case of single domain particles the leading term in the

interaction is the long range dipolar interaction which may lead to complex structures according to the

shape of the particles on the one hand and the density and the dimensionality of the whole sytstem on

the other hand [27, 28, 29, 30]. In the case of particles with a non trivial internal magnetic structure,

the interaction between particles is to be determined first. Indeed, it is generally admitted that when

particles present a vortex structure, the resulting strong reduction of the magnetic moment at zero

external field makes the dipolar interaction negligible. One aim of this work is to examine this point

more precisely. In this work we focus on the interaction between spherical particles made of soft

magnetic material (permalloy as an example) when they reach the vortex regime. We consider the

simple situation of only two approaching spheres in a dumbell configuration. We especially compare

the caculated interaction to the expected dipolar term. It is shown that two parameters characterizing

the isolated particle play a central role: the magnetization of the vortex core and the suceptibility

from which the polarization energy of one sphere in the dipolar field due the second one is calculated.

2 Magnetization structure and hysteresis

Since our purpose is to model soft magnetic particles in a general way rather than to focus on particles

of a given material, the magnetic characteristics are somewhat arbitrary and correspond roughly to

permalloy: the value of the exchange constant is Ax = 1.10−11J/m, the saturation magnetization

Js = 1T and the anisotropy is of uniaxial symmetry with a constant K1 ranging from K1 = 0 to

K1 = 7.104J/m3. The particle radius is varied from R = 10 nm to 45 nm. In the following the

particle volume will be denoted by vs. We determine the magnetization structure in the framework of
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the micromagnetism formalism from the minimization of the total energy which is given by

Etot = Ex + Ea + Edm + EZ

=

∫

Ω

[

AxΣi(∇mi(~r))
2 + K1(1 − (~m(~r).â)2) −

1

2
µ0Ms ~m(~r). ~Hdem − µ0Ms

~Hex.~m(~r)

]

d~r (1)

where Ex, Ea, Edm and EZ are the exchange, anisotropy, demagnetizing and Zeeman terms respec-

tively, â is the unit vector in the direction of the easy axis and Ω is the total volume of magnetic

material, wich can include more than one particle. ~m(~r) is the reduced magnetization density, related

to the total magnetization by Mt =
∫

Ω Ms ~m(~r)d~r. The calculations are performed with the micro-

magnetic code MAGPAR [31] which is based upon a finite element method. The problem includes

two length scales, namely the exchange length, lex = (2µ0Ax/J2
s )1/2 and the Bloch wall length lB =

√

Ax/K1. Here, given the parameters chosen we have lex = 5.013nm and lB > 12nm. The value of

the dimensionless parameter, K = 2K1/(µ0M
2
s ) as defined in [20] ranges in between 0 and 0.175. The

mesh used in the calculations is such that the largest tetaedron size is smaller than lex which imposes

typically a mesh with Nfe ∼ 105 elements for one sphere of radius R ≃ 40 nm. We first calculate the

magnetic structure of one isolated sphere in terms of both the size and the anisotropy constant K1.

In order to characterize the magnetic state in the particle, we consider the local magnetization profile,

~m(r), which in the vortex regime, is decomposed in its cylindrical components using the vortex axis,

say v̂, as the cylindrical axis

~m(r) = mv v̂ + mϕϕ̂ + mρρ̂ (2)

where ρ̂ and ϕ̂ are the radial and tangential unit vectors of the projection of r in the plane normal to

v̂. In the following, hatted letters denote unit vectors. The axis v̂ is defined and actually determined

as the mean direction of the local magnetization in the central part of the vortex, as shown in figure

(1). In a first step we focus on the behavior of the magnetization M in terms of the external field,

Hex, especially for the variation of the field from small values up to saturation field; however we do

not focus on the nucleation field. First of all, as is well known, small particles up to a threshold value,

RSD, are uniformly magnetized in a single magnetic domain and the hysteresis curve is a square. With

our set of parameters, we get RSD = 18 nm, for K1 = 0 and 22 nm for K1 = 3 104 J/m3, in agreement

with the result of the micromagnetic calculations of [32] and with the estimation given in [20]. Then

a vortex structure is obtained, characterized by a vanishing value of the radial component mρ(r), and

|mϕ(ρ)| varying from |mϕ(ρ)| = 0 inside the vortex core, ρ < rc, to |mϕ(ρ)| = 1 in the vicinity of the

particle surface ρ ∼ ρmax = Rsin(θ(z)). At zero external field, the vortex direction, v̂ is arbitrary

when K1 = 0, while for K1 6= 0, the direction taken by v̂ relative to the easy axis â is controlled by

the anisotropy energy which tends to allign ~m(~r) on â. The anisotropy energy depends on both the

value of K1 and the volume fraction of the particle where m̂(~r) is oriented parallel or antiparallel to

â (|m̂.â| ≃ 1). The ratio of the volume fraction corresponding to the vortex core vc, characterized by

m̂ oriented parallel to v̂, to the volume fraction where ~m(~r) is oriented normal to v̂ is directly related

to the volume of the particle, vs. Roughly speaking the ratio of the total volume where |m̂.â| ≃ 1 is

3



either vc/vs or (1/2)(vs − vc)/vs if v̂ is parallel or normal to â respectively. According to this scheme

the stability condition for the vortex direction v̂ to be normal to â reads vc < (1/3)vs. We can refine

this very crude determination of the thershold by introducing the magnetization profile and imposing

in (2) mρ = 0. Then mϕ =
√

1 − m2
v and we get

E//
a = −K1

∫ R

−R
dz

∫ R(z)

0
mv(ρ)22πρdρ

E⊥
a = −K1

∫ R

−R
dz

∫ R(z)

0

1

2
(1 − mv(ρ)2)2πρdρ (3)

for v̂ parallel or normal to â respectively. Then we assume that the component mv(ρ) depends on ρ

only through r∗ = ρ/rsc, rsc being the pertinent scaling length (either lex for K1 = 0 or a function

of both lex and lB otherwise) and we neglect its dependence with respect to z. Hence, exploiting

mv(ρ > rc) = 0, we set the upper bound in the integral over mv to ∞ and we write (E⊥
a −E

//
a ) in the

form

E⊥
a − E//

a = −K1

(

1

2
vs − 3Rr2

scI

)

with I =

∫ ∞

0
mv(r

∗)22πr∗dr∗ (4)

The stability condition for a vortex normal to â is now

R

rsc
>

√

9I

2π
(5)

which must be read as R > rsc

√

9I/(2π) = Rth(K1) when R is varied at constant K1, or conversely

as rsc < R
√

2π/(9I) when the role of the magnetic characteristics is investigated for a given particle

size. Equation (5) can be rewritten in a more convenient form for the practical calculatioJ/m3ns of

I, namely : S∗ =
√

9I∗(rsc)/(2π) < 1 where I∗ is given by (4) with r∗ replaced by (r/R) and the

upper bound replaced by (r/R)max = 1. Of course I∗ is then dependent on the value of rsc which is

emphasized by the notation I∗(rsc). In any case, such an estimation is not supposed to provide an

accurate determination of the threshold value of either R or rsc for the orientation of v̂ normal to â

but to predict at a qualitative level the effect of either the particle size or the magnetic parameters

on the direction taken by the vortex. We can scale the vortex radius, rc on the smallest of the two

characteristic lengths, rsc = inf(lex, lB); however, this scaling may be taken with care and instead we

can consider, when lB increases, a scaling radius in the form of a function rsc(lex, lB). Notice that

when using S∗ instead of S one has not to explicit the dependence of rsc. Therefore, at both Ax and

Js kept constant, we deduce from equ. (5) that v̂ gets ⊥ â when the sphere radius is increased at

K1 constant or when K1 is increased at R constant. As we shall see in the following the stability

condition for the orientation of v̂ relative to â agrees with this qualitative conclusion. Notice that the

orientation of the vortex relative to the axis of easy magnetization is also found to be size dependent

in the case of the cubic anisotropy [32] : in this latter case, the vortex is parallel to the axis of easy

magnetization in large spheres.

The orientation of the vortex relative to â can be determined from the magnetization profile, m̂(~r)
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as well as from the magnetization curve in terms of the external field, M(Hex) by chosing the direction

of the external field, ĥex either parallel or normal to â. Indeed, we expect the magnetization process

to differ according to the direction of the external field relative to the vortex one. We keep in mind the

well known behavior of the vortex in the flat cylindrical nanodots where the magnetization is found

to result from the shift of the vortex core when the field is applied normal to the vortex direction.

Here, in the case of v̂(Hex = 0) ⊥ â we expect a similar behavior for small values of the external

field when ĥex = â, up to the rotation of the vortex core along the direction of the field for high

values of Hex before the magnetization in the whole volume of the sphere becomes oriented along ĥex.

Morever, in this case, we expect to have no remanence in the direction of the field, since in the vicinity

of Hex = 0 there is no net magnetization normal to the vortex direction. On the other hand a non

vanishing magnetization at Hex = 0, corresponding to the vortex polarization in the direction v̂ ⊥ â =

ĥex will be obtained. Conversely, the magnetization curve corresponding to ĥex ⊥ â still for a sphere

characterized by v̂(Hex = 0) ⊥ â will present the more usual shape of a loop located in between ±Hc

with a non zero remanence corresponding to the vortex polarization.

Then we focus on the external field induced magnetization in the spherical particle. As is generally

obtained in nanodots or spherical soft magnetic particles [33, 35, 36], the magnetization M in the

direction of the external field is found to vary nearly linearly with respect to the field, at least in the

vicinity of Hex = 0 and of course away from switching points where the vortex reverses as a whole.

Such a linear behavior is observed both when ĥex = v̂ or ĥex ⊥ v̂. (or equivalently ĥex ⊥ â or ĥex =

â when R > Rth(K1)). This means that the susceptibility χ defined as

∂M

∂Hex
= χ (6)

does not depend on the value of the field to a very good approximation. We emphasize that the

suceptibility is well defined for particles in the vortex regime since no multidomain state occurs and

therefore a demagnetized state at Hex = 0 can be ruled out. Notice that the value of χ depends on the

direction of the field as will be discussed below, and we should distinguish χ‖ from χ⊥ according to

the direction of the field relative to v̂. When such a distinction is not necessary it will be omitted to

lighten the notations and χ is to be understood as its value corresponding to the orientation chosen for

the field. Only in the case of an external field direction ĥex neither parallel nor normal to the vortex

direction the consideration of the two values of χ is necessary. The independence of χ with respect to

Hex can be exploited for obtaining the variation of the total energy with respect to the external field.

We consider the variation of M starting from Hex = 0 to a value of Hex such that no switching of

the magnetization occurs up to Hex and we analyse the corresponding variation of the magnetization,

∆M as the polarization of the sphere induced by the field. We have ∆M(Hex) = χHex. On the other

hand, we can deduce ∆M(Hex) from the energy, E(Hex) by writting an equilibrium equation

∂Etot(∆M)

∂∆M
= 0 (7)

which determine the equilibrium value of ∆M . The total energy depends explicitly on Hex through
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the Zeeman term, −µ0Hex(m(0)v̂.ĥex + ∆M), where we have expressed the permanent magnetization

in the absence of the field as ~M (Hex = 0) = m(0)v̂, m(0) being the magnitude of the vortex core

magnetization in the absence of the field. Then from (7) we get

∂

∂∆M
(Edm + Ex + Ea) = µ0Hex (8)

Therefore we get the variation of the total energy in the form

E = E(Hex = 0) +

∫ ∆M

0
µ0Hex(∆M ′)d∆M ′ − µ0Hex(m(0)v̂.ĥex + ∆M) (9)

= E(Hex = 0) + µ0
∆M2

2χ
− µ0Hex(m(0)v̂.ĥex + ∆M) (10)

where we have used ∆M(Hex) = χHex. Notice that both (8) and (9) are exact equations while (10)

holds only in the case of a linear dependence of ∆M(Hex) with respect to Hex. The second term of

the r.h.s. of (9) or (10) has a simple interpretation: it is the energy of polarization of the sphere and

corresponds to the energy cost of the reorientation of the magnetization inside the sphere. Equ. (10) is

to be compared to the expression of the energy density of an array of coupled dots presenting a vortex

structure obtained in [34]; more precisely the polarization energy coincides with the second term of

equ.(5) of Ref. [34] where the induced magnetization in the dot is related to the vortex shift, s. The

polarization energy can be written equivalently as µ0(∆MHex)/2 where ∆M is to be understood as

the induced moment due to the external field. Finaly, χ can be related to the variation of the energy

minus the Zeeman term

χ =
1

µ0Hex

∂(Etot − EZ)

∂Hex
(11)

3 Interaction energy between magnetic spheres

Now we focus on the determination of the interaction energy between two magnetic nanoparticles in

terms of the interparticle distance, r12. The interaction energy is defined in a usual way

Eint(1, 2) = Etot(1, 2) − Etot(r12 → ∞) (12)

where Etot denotes the total energy of the two particles system, and (1, 2) is a short notation for the

orientation and location variables of the particles when they are brought together. We expect to get

a form dictated by the dipolar interaction between the magnetic moment of the approaching spheres

which reads

Edip =
µ0m1m2

4πr3
12

d112(m̂1, m̂2, r̂12) (13)

d112(m̂1, m̂2, r̂12) = m̂1.m̂2 − 3(m̂1.r̂12)(m̂2.r̂12) (14)
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where mi are the magnitude of the magnetic moments, m̂i and r̂12 the unit vectors in the direction of

both moments and of the vector joigning the two particles and d112 is the angular function characteristic

of the dipolar intercation. In the case of single domain particles mi = Msvs where Ms is the saturation

magnetization of the particles, and the orientations m̂i result from the minimum of d112 given in (14).

For particles without magnetocristalline anisotropy, this gives obviously : m̂1 = m̂2 = r̂12 and d112 =

-2. On the other hand, if the magnetocristalline energy is non zero on both particles with easy axes âi,

the orientations m̂i will result of the interplay between the anisotropy energy tending to align m̂i on

âi and the energy (13) tending to minimize the angular function (14). Furthermore if K1 takes a non

vanishing value only in one particle say i = 1 and if this value is large enough to impose m̂1 = â1, m̂2

must orient in the dipolar field due to particle 1 i.e. in such a way that d112 = m̂2.â1−3(m̂2.r̂12)(â1.r̂12)

is minimum.

Now we consider the case of particles large enough to present a vortex structure. In this case, the

orientations of the effective moments of the particles are the vortex directions, v̂i, and the values of

the moments are no more equal to Msvs but correspond to the vortex cores magnetizations and can

be obtained from the magnetization curves M(Hex). Let us introduce the coefficients αi = mi/(Msvs)

(in the following, we shall only consider the case of identical particles, so we drop the index i). α

depends of course on the location of the second particle, which will be denoted in short by α(r12, d112)

or α(1, 2). The value taken by α is not trivial since on the one hand it must be determined from the

characteristics of the isolated particle and from the polarization of the particle by the dipolar field of

the second one. A simple approximation for the interaction energy can be built in the framework of the

dipolar approximation by considering that each particle is in the dipolar field of the other one. Then,

we have to take into account two contributions. The first one which corresponds to (13), is nothing

but −m1Hdip(r12)(v̂1.ĥdip(2, 1)) where Hdip(r12)ĥdip(2, 1) is the dipolar field created at r1 by particle

at r2 and the second one is twice the polarization energy of each sphere in the field of the second one.

The second contribution has been introduced in (10) for one particle in a constant external field. In

the present case, the role of m(o) is played by Msvsα(∞) while the induced moment in the direction

of the dipolar field is

~p = pĥdip = χHdip(r12)ĥdip (15)

We first consider the case where the vortex v̂i is free to orient in the direction of the dipolar field due

to particle j 6= i. This is the most general case since it corresponds to both the absence of anisotropy

or particle large enough for the vortex to be normal to the easy axis. In this case we have

pĥdip = (α(r12, d112) − α(∞))Msvsĥdip = ∆α(r12, d112)Msvsv̂ (16)

Now adding twice the second term of (10) to the total dipolar energy we get for the interaction energy

Eint(1, 2) =
µ0(Msvs)

2

4πr3
12

α(∞)(α(∞) + ∆α(r12, d112))d112(m̂1, m̂2, r̂12) (17)
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which coincides with the interaction energy between polar polarizable hard spheres [37]. This is the

important result of this section. It relates the interaction energy to the magnetic charateristics of the

isolated spheres, namely, α(∞) and χ through ∆α. Notice that this form for the interaction energy

should hold not only in the case of two particles but also more generaly for an assembly of particles.

In the latter case, the solvation of the total dipolar field and thus the determination of ∆α(r12, d112)

becomes a difficult task. In the simple case of two particles, introducing u = χ/(4πR3) (= χ∗/3 where

χ∗ = χ/vs is the reduced susceptibility) we get

∆α =
−uα(∞)d112

((r12/R)3 + ud112)
(18)

4 Results

We analyse first the magnetic behavior of the isolated particle with a special attention paid on the

characterization of the vortex structure at low external fields. The magnetization curve is displayed

in figure (2) for K1 = 0 and R = 45 nm and the corresponding magnetic structure, through the

local magnetic moment components (2), is shown in figures 4 and 5 for the remanent state and in the

vicinity of the coercive field, before and after the reversal of the vortex core. Since K1 = 0, the vortex

direction, v̂ coincides with the direction of the external field. These results put in evidence the vortex

structure and in particular the vortex core is reversed as a whole at the coercive field, with a nearly

frozen ~m(~r) structure. Moreover, we find that the reversal of ~m(~r) results from a global rotation since

the component mϕ changes sign. When K1 6= 0 as described at the qualitative level in section (2) v̂ is

parallel to the easy direction â for small values of R, and becomes normal to â beyond a K1 dependent

threshold value Rth(K1). When â ⊥ v̂, the vortex core is free to rotate in the plane normal to â and

therefore will orient parallel to the external field if ĥex ⊥ â. As an example, we show in figure (3) the

magnetization curve for the two directions of the external field ĥex = â and ĥex ⊥ â, in the case R =

45 nm. Moreover, in the former case, the magnetization parallel and normal to the external field, M‖

and M⊥ are displayed. The magnetization behavior in terms of the external field corresponds to the

situation v̂ ⊥ â; indeed, the remanence vanishes when ĥex ‖ â, while M⊥ takes a nearly constant value

when Hex is varied in the central part of the M⊥(Hex) curve. Moreover this value coincides with the

remanence obtained for ĥex ⊥ â or equivalently ĥex ‖ v̂ and therefore corresponds to the vortex core

magnetization. The independence of M⊥ with respect to Hex in the central part of the M⊥(Hex) curve

shows that the variation of the magnetization M‖(Hex), i.e. in the direction normal to v̂, corresponds

to a shift of the vortex core normal to the direction of the field. The vortex core magnetization is

thus nearly constant and given by the value of M⊥ in that part of the curve. This is in agreement

with the magnetization process obtained in the flat nanodot vortex structures. Finally M⊥ sharply

vanishes when the vortex rotates in the direction of the field, where the magnetization curve M‖ whith

ĥex = â presents the hysteretic wings, similar also to what is found in the flat nanodot case where

however this last value of the field corresponds to the vortex anhihilation prior to the saturation of

the dot. The behavior of M(Hex) outlined above is coroborated by the evolution with the value of the

field of the structure of m̂(~r), shown on figure (6), where we see that the linear variation of M‖(Hex)
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in the central part of the curve can be associated to a shift of the vortex in a direction normal to

m̂. From the evolution of M‖ for ĥex = â with the particle size, displayed on figure (7), one can

determine the threshold value Rth(K1) beyond which v̂ is normal to â. Here we find Rth ≃ 28 nm

for K1 = 3.104J/m3 (strictly speaking, 26 nm ≤ Rth ≤ 30 nm). We have calculated numerically

the integral I∗(rsc) defined after equation (4) from which we find that the threshold condition (5)

is satisfied (see table I) in good agreement with the onset of the vortex structure deduced from the

magnetization. Indeed, from this calculation, we get S∗ = 1 for R = 26.5 nm when K1 = 3.104 J/m3

and thus Rth = 26.5 nm in agreement with the value deduced from the behavior of the magnetization

M(Hex). Similarly by decreasing K1 at constant R = 45nm, we find that the range of external field

where the vortex is normal to â is reduced and then vanishes for K1 = 2.103J/m3. Therefore we

confirm our prediction that v̂ ⊥ â for K1 > K1th(R) at constant R. Then the value of χ is determined

from the slope of the magnetization curve, M(Hex) in terms of Hex. The results are listed in table II.

We also check that equ. (11) is satisfied (see table II).

4.1 Interaction beween particles

We first consider the case of monodomain particles; for this we chose R = 10 nm. As expected

the interaction energy is exactly given by the dipolar term with mi = Msvs. When K1 = 0 for both

particles, the energy minimization leads to d112(1, 2) = -2 and we thus mainly test the 1/r3
12 dependence

of the interaction. On the other hand, we have also considered the case where only one particle bears

a non vanishing uniaxial anisotropy with a value of K1 large enough to impose the orientation of its

moment, m̂ parralel to the easy axis â. Then the moment of the second particle orient itself in the

field of the fixed particle in order to minimise the angular function d112. This provide an additionnal

test of the behavior of the interaction through its angular dependence. The results are displayed in

table III. Now we consider the vortex regime with particles of radius R = 35nm or R = 45 nm. We

start from particles without anisotropy, K1 = 0. In this case only one value for the susceptibility, χ‖,

is to be considered, since the vortex allign spontaneously in the direction of the dipolar field. The two

parameters involved in the expression of the interaction, χ and α(∞), are determined first from the

magnetization curve of the isolated particle. As a first test, we look at the angular dependence of the

interaction energy. To this aim we start from the two spheres at a large distance and we minimize the

total energy corresponding to non interacting spheres. Then we decrease the distance r12 down to a

not too small value of the ratio r12/R and we perform a rotation of one sphere, say 2, arround the

other one which is kept fixed. In this first calculation, we just calculate the components of the energy

without minimization; we thus obtain the energy at a fixed value of local magnetic structure in the

spheres, disregarding the polarization energy. The result is displayed in figure (8) in the case r12/R

= 4 and different values of the angular function d112 calculated by using m̂i = v̂i. We clearly obtain a

linear dependence of Eint(1, 2) in terms of d112(1, 2), and moreover the proportionality factor is exactly

the result of the dipolar interaction, as deduced from (13). We thus conclude that when the structure
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inside the spheres is frozen, the resulting interaction energy is indeed given by the dipolar interaction

between the vortex cores. Then we consider the interaction energy after relaxation of the structure in

the spheres, namely from the result of the total energy minimization in terms of the distance between

particles. As expected and in agreement with eq. (17) the value we get for d112(1, 2) is very close

to d112 = -2 especially for short distances. The result for the interaction is shown in figure (9). We

also compare the result corresponding to the dipolar interaction including the polarization energy or

without this las term. This later approximation amounts to model the interaction by that between

the dipoles corresponding to the isolated particles vortex cores. The approximation introduced in (17)

is in very good agreement with the calculated result, for distances down to r12/R ∼ 2.75, and the

agreement for r12/R = 2.5 is still fairly good. Moreover we see that the inclusion of the polarization

energy is quite important; indeed, the dipolar interaction calculated with the moments resulting from

the isolated particles vortex cores reproduces the interaction only for distances larger than 3.35R.

In the case of particles with non zero uniaxial anisotropy, we focus on a situation where the vortex

direction, v̂, is normal to the easy axis at zero external field. As an example we choose K1 = 3.104J/m3

and either R = 45 nm or R = 35 nm. One can impose the plane in which the vortex is free to rotate

via the direction chosen for the easy axis. Here we consider two situations where the two particles

have the same easy axis, say â = ẑ and the unit vector joigning the particles r̂12 is either normal or

parallel to â. Thus the equilibrium configuration of the particles corresponds to v̂1 = v̂2 = r̂12 and

d112(1, 2) = -2 in the former case and v̂1 = - v̂2 ⊥ r̂12 and d112(1, 2) = -1 in the latter case. The

results are summarized in figure (10) where we plot the interaction energy normalized by the value at

the shortest distance considered, r12 = 2.25R. The interaction energy is still very close to the dipolar

plus polarization energy, eq (17) when d112 = −1, while in the case where the vortices are in line, the

agreement for short distances is more qualitative. This is mainly due to an underestimation of the

induced polarization by the dipolar field. We are lead to this conclusion by fitting the values of the

parameters α and u in order to reproduce the calculated interaction energy by equ. (17). Doing this

we can reproduce the calculated interaction energy only by using a non negligible enhancement of u

while the fitted value of α remains very close to that calculated on the isolated sphere. The fitted

results are also displayed in figure (10). To get a similar agreement with what is obtained in the case

K1 = 0 with d112 = −2, the fitted value of u and α are 1.25ucalc, 1.03αcalc and 1.45ucalc, 1.05αcalc for

R = 35 nm and 45 nm respectively.

The results of this work are twofold. First we have precised the local magnetic structure in the

sphere, and shown that beyond the well documented single domain to vortex transition in the case

of a uniaxial anisotropy the vortex direction is normal to the easy axis once the particle radius is

larger than a threshold value, Rth(K1) for which a simple estimation is given. Then the interaction

between particles is shown to present a dipolar character depending on two parameters character-

ising the isolated particle, namely the vortex core magnetization and the suceptibility. The vortex

core magnetization is strongly reduced when compared to the saturation magnetization Ms which is

quantified by the parameter α ∼ 0.2 and this makes the interaction rather small but nevertheless

non negligible. The order of magnitude of the interaction energy at distance r12 = 2.25R is slighltly
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smaller than the barrier necessary to reverse the vortex core. However due to both its long range and

its anisotropy the dipolar interaction is likely to lead to measurable effects in experimental assemblies

of such particles. On a qualitative point of view, we do think that some of the finding of [24] are

in agreement with the manifestation of dipolar effects, namely the tendency to form chains and to

allign the vortex cores. In ref ( [24]) a micromagnetic simulation was already performed and was in

agreement with the experiments; however, here we go a step forward by clearly pointing the dipolar

character of the interaction between spherical nanoparticles. This allows us to predict that in a general

way the behavior of dipolar and polarizable hard spheres will be transferable to assemblies of such

particles even in the vortex regime. In this field, a very rich panel of structures is expected for both

2D systems [27] (and reference therein), [28,29] and 3D systems [30].
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Table I: Value of S∗ =
√

9I∗(rsc/(2π) involved in the stability condition (5). K1 = 3. 104J/m3. I∗

is defined by equ. (4) with rsc = R.

R (nm) 26 30 37 45

S∗ 1.042 0.685 0.596 0.533

Table II: Reduced magnetic susceptibility calculated from (a) : equation (6); (b) equation (11).

K1 R χ∗
‖

(a) χ∗
‖

(b) χ∗
⊥

(a) χ∗
⊥

(b)

0 45 3.229 3.21

0 40 3.288 3.28

0 37 3.336 3.33

0 35 3.352 3.37

3.104 45 2.887 2.94 4.589 4.58

3.104 35 2.990 6.510 6.676

Table III: Angular dependence of the interaction between modomain particles. R = 10 nm; K1(1) =

7.105 J/m3 K1(2) = 0. Θ(â1), Θ1 and Θ2 denote the angles (â1, ẑ), (m̂1, ẑ) and (m̂2, ẑ) respectively.

r12 = 4R. d
(min)
112 is the minimum value of the angular function d112 corresponding to Θ1 fixed and

d
(calc)
112 is the result of the numeriacal calculation. Eint is the interaction energy per unit volume.

According to the dipolar interaction the theoretical value for Eint/d112 is 2072 J/m3.

Θ(â1) Θ1 Θ2 d
(calc)
112 d

(min)
112 Eint/d112 (J/m3)

π/8 π/7.948 π/4.442 -1.2019 -1.202 2012

π/4 π/3.987 π/2.888 -1.5828 -1.584 2007

π/2 π/2 π/2 -2.0 -2.0 2004
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Figure captions

Figure 1 Local magnetization structure in the vortex regime. (R = 45 nm; K1 = 0; remanent state.).
Top : projection of the local magnetic moment in the equatorial plane of the sphere, normal to
vortex axis, v̂ = ~M/‖ ~M‖. The length of the arrows is proportional to the norm of the projection
of ~m(~r), ~mp(~r). The central part of the vortex is clearly identified as the region where ~mp(~r) =
0; the direction of magnetization in this region coincides with the vortex direction, v̂. Bottom
: Local magnetization in the direction normal the equatorial plane of the vortex shown on top,
along a diagonal of this last one. The vortex direction is shown as the large bold arrow.

Figure 2 Magnetization curve in the direction of the field. R = 45 nm; K1 = 0.

Figure 3 Magnetization curve parallel and normal to the field . ĥex = â (solid line) or v̂ (dashed line).
R = 45nm, K1 = 3.104J/m.

Figure 4 Cylindrical components of the local magnetization profile at remanence. across the equatorial
plane of the sphere (z = 0). mv, solid line; mϕ dashed line; mρ dotted line. R = 45 nm, K1 = 0.

Figure 5 Components mv (triangles), mϕ (squares) and mρ (circles) of the local magnetization profile in
the vicinity of the coercive field before (solid symbols) and after (open symbols) reversal of the
vortex core. R = 45 nm, K1 = 0. d = ρ sign(y) where ρ is radius in the equatorial plane (z =0).

Figure 6 Components mv (solid line), mϕ (dashed line) and mρ (dotted line) of the local magnetization
profile relative to the vortex core across the (x = 0) plane. R = 45 nm, K1 = 3 104 J/m3, Hex =
68 kA/m, â = ĥex = ẑ and v̂ = x̂ . The vortex is shifted along the ŷ axis in the y > 0 direction,
by an amount yc = 15.75 nm, leading to a non symmetric range of variation for d. The location
of the vortex core is indicated by the arrow.

Figure 7 Magnetization curve parallel and normal to the field for K1 = 3104J/m3 and different sizes.
Magnetization in the direction of the field and : R = 26 nm (solid); 30 nm (short dash); 37 nm
(long dash). Magnetization normal to the field : R = 30 nm (dot short dash); 37 nm (dot long
dash). For R = 26 nm, the magnetization normal to the field vanishes and the magnetization
reversal occurs at a positive field since R = 26 nm enters in the range of particle sizes where the
vortex direction is parallel to the easy axis, chosen as the direction for the field.

Figure 8 Variation of the interaction energy for 2 spheres at r12 = 4R with the angular function d112

characterizing the relative orientations, normalized by its maximum value, E(d112 = 2) − E(0).
R = 35 nm; K1 = 0.

Figure 9 Interaction energy per unit volume between two approaching spheres. R = 35nm; K1 = 0;
d112 = −2. Open triangles: full calculation, from (12) (the thin line is a guide to the eye); solid
line: equ.(17); dashed line: simple dipolar approximation, u = 0.

Figure 10 Same as figure (9) for the interaction normalized by the value at r12 = 2.25R. dotted lines: result
of equ.(17) with the values of α and u fitted in order to improve the agreement with simulated
results. Open triangles : K1 = 0, d112 = -2, R = 35 nm; open squares : K1 = 3 104 J/m3, d112

= -2, R = 35 nm; solid triangles : K1 = 3 104 J/m3, d112 = -1, R = 45 nm; solid squares : K1 =
3 104 J/m3, d112 = -2, R = 45 nm. The different curves are shifted along the r12 axis for clarity.
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