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NIL-BOHR SETS OF INTEGERS

We study relations between subsets of integers that are large, where large can be interpreted in terms of size (such as a set of positive upper density or a set with bounded gaps) or in terms of additive structure (such as a Bohr set). Bohr sets are fundamentally abelian in nature and are linked to Fourier analysis.

Recently it has become apparent that a higher order, non-abelian, Fourier analysis plays a role in both additive combinatorics and in ergodic theory. Here we introduce a higher order version of Bohr sets and give various properties of these objects, generalizing results of

1. Introduction 1.1. Additive combinatorics and Bohr sets. Additive combinatorics is the study of structured subsets of integers, concerned with questions such as what one can say about sets of integers that are large in terms of size or about sets that are large in terms of additive structure. An interesting problem is finding various relations between classes of large sets.

Sets with positive upper Banach density or syndetic sets 1 are examples of sets that are large in terms of size. A simple result relates these two notions: if A ⊂ Z has positive upper Banach density, then the set of differences ∆(A) = A -A = {ab : a, b ∈ A} is syndetic.

An example of a structured set is a Bohr set. Following a modification of the traditional definition introduced in [START_REF] Bergelson | Piecewise-Bohr sets of integers and combinatorial number theory[END_REF], we say that a subset A ⊆ Z is a Bohr set if there exist m ∈ N, α ∈ T m , and an open set
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1 U ⊂ T m such that {n ∈ Z : nα ∈ U} is contained in A (see Definition 2.1). It is easy to check that the class of Bohr sets is closed under translations. Most of the notions of a large set that are defined solely in terms of size are also closed under translation. However, we have important classes of structure sets that are not closed under translation. One particular example is that of a Bohr 0 -set: a subset A ⊆ Z is a Bohr 0set if it is a Bohr set such that the set U in the previous definition contains 0.

A simple application of the pigeonhole principle gives that if S is an infinite set of integers, then S -S has nontrivial intersection with every Bohr 0 -set. This is another example of largeness: a set is large if it has nontrivial intersection with every member of some class of sets. Such notions of largeness are generally referred to as dual notions and are denoted with a star. For example, a ∆ * -set is a set that has nontrivial intersection with the set of differences ∆(A) from any infinite set A.

Here we study converse results. If a set intersects every set of a given class, then our goal is to show that it has some sort of structure. Such theorems are not, in general, exact converses of the direct structural statements. For example, there exist ∆ * -sets that are not Bohr 0 -sets (see [START_REF] Bergelson | Piecewise-Bohr sets of integers and combinatorial number theory[END_REF]). But, this statement is not far from being true. Strengthening a result of [START_REF] Bergelson | Piecewise-Bohr sets of integers and combinatorial number theory[END_REF], we show (Theorem 2.8) that a ∆ * -set is a piecewise Bohr 0 -set, meaning that it agrees with a Bohr 0 -set on a sequence of intervals whose lengths tend to infinity.

1.2. Nil-Bohr sets. Bohr sets are fundamentally linked to abelian groups and Fourier analysis. In the past few years, it has become apparent in both ergodic theory and additive combinatorics that nilpotent groups and a higher order Fourier analysis play a role (see, for example, [START_REF] Gowers | A new proof of Szemerédi's Theorem[END_REF], [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF], and [START_REF] Green | Linear equations in the primes[END_REF]). As such, we define a d-step nil-Bohr 0 -set, analogous to the definition of a Bohr 0 -set, but with a nilmanifold replacing the role of an abelian group (see Definition 2.3). For d = 1, the abelian case, this is exactly the object studied in [START_REF] Bergelson | Piecewise-Bohr sets of integers and combinatorial number theory[END_REF]. Here we generalize their results for d ≥ 1.

We obtain a generalization of Theorem 2.8 on different sets, introducing the idea of a set of sums with gaps. For an integer d ≥ 0 and an infinite sequence P = (p i ) in N, the set of sums with gaps of length < d of P is defined to be the set SG d (P ) of all integers of the form

ǫ 1 p 1 + ǫ 2 p 2 + • • • + ǫ n p n ,
where n ≥ 1 is an integer, ǫ i ∈ {0, 1} for 1 ≤ i ≤ n, the ǫ i are not all equal to 0, and the blocks of Our main result (Theorem 2.6) is that a set with nontrivial intersection with any SG d -set is a piecewise d-step nilpotent Bohr 0 -set.

1.3. The method. The first ingredient in the proof is a modification and extension of the Furstenberg Correspondence Principle. The classical Correspondence Principle gives a relation between sets of integers and measure preserving systems, relating the size of the sets of integers to the measure of some sets of the system. It does not give relations between structures in the set of integers under consideration and ergodic properties of the corresponding system. Some information of this type is provided by our modification (originally introduced in [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF]).

We then are left with studying certain properties of the systems that arise from this correspondence. As in several related problems, the properties of the system that we need are linked to certain factors of the system, which are nilsystems. This method and these factors were introduced in the study of convergence of some multiple ergodic averages in [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF].

Working within these factor systems, we conclude by making use of techniques for the analysis of nilsystems that have been developed over the last few years. In the abelian setting, a fundamental tool is the Fourier transform, but no analog exists for higher order nilsystems2 . Another classical tool available in the abelian case is the convolution product, but this too is not defined for general nilsystems. Instead, in Section 4 we build some spaces and measures that take on the role of the convolution. As an example, if G is a compact abelian group we can consider the subgroup

{(g 1 , g 2 , g 3 , g 4 ) ∈ G 4 : g 1 + g 2 = g 3 + g 4 }
of G 4 , and we take integrals with respect to its Haar measure. This replaces the role of the convolution product.

These constructions are then used to prove the key convergence result (Proposition 5.4). By studying the limit, Theorem 2.6 is deduced in Section 6. By further iterations, Theorems 2.8 and 2.10 are proved in Section 7.

Precise statements of definitions and results

2.1. Bohr sets and Nil-Bohr sets. We formally define the objects described in the introduction:

Definition 2.1. A subset A ⊆ Z is a Bohr set if there exist m ∈ N, α ∈ T m , and an open set U ⊂ T m such that {n ∈ Z : nα ∈ U} is contained in A; the set A is a Bohr 0 -set if additionally 0 ∈ U.
Note that these sets can also be defined in terms of the topology induced on Z by embedding the integers into the Bohr compactification: a subset of Z is Bohr if it contains an open set in the induced topology and is Bohr 0 if it contains an open neighborhood of 0 in the induced topology.

We can generalize the definition of a Bohr 0 -set for return times in a nilsystem, rather than just in a torus. We first give a short definition of a nilsystem and refer to Section 3.2 for further properties. Definition 2.2. If G is a d-step nilpotent Lie group and Γ ⊂ G is a discrete and cocompact subgroup, the compact manifold X = G/Γ is a d-step nilmanifold. The Haar measure µ of X is the unique probability measure that is invariant under the action x → g • x of G on X by left translations.

If T denotes left translation on X by a fixed element of G, then (X, µ, T ) is a d-step nilsystem.

Using neighborhoods of a point, we define a generalization of a Bohr set:

Definition 2.3. A subset A ⊆ Z is a Nil d Bohr 0 -set if there exist a d-step nilsystem (X, µ, T ), x 0 ∈ X, and an open set U ⊂ X containing x 0 such that {n ∈ Z : T n x 0 ∈ U} is contained in A.
Similar to the Bohr compactification of Z that can be used to define the Bohr sets, there is a d-step nilpotent compactification of Z that can be used to define the Nil d Bohr 0 -sets. This compactification is a non-metric compact space Z, endowed with a homeomorphism T and a particular point x 0 with dense orbit, and is characterized by the following properties: i) Given any d-step nilsystem (Z, T ) and a point x 0 ∈ Z, there is a unique factor map π Z :

Z → Z with π Z ( x 0 ) = x 0 .
ii) The topology of Z is spanned by these factor maps π Z .

Remark. A Bohr 0 -set can be defined in terms of almost periodic sequences. In the same way, a Nil d Bohr 0 -set can be defined in terms of some particular sequences, the d-step nilsequences. Since Nil d Bohr 0sets are defined locally, it seems likely that they can be defined by certain particular types of nilsequences, namely those arising from generalized polynomials without constant terms. We do not address this issue here.

Piecewise versions.

If F denotes a class of subsets of integers, various authors, for example Furstenberg in [START_REF] Furstenberg | Recurrence in ergodic theory and combinatorial number theory[END_REF] and Bergelson, Furstenberg, and Weiss in [START_REF] Bergelson | Piecewise-Bohr sets of integers and combinatorial number theory[END_REF], define a subset A of integers to be a piecewise-F set if A contains the intersection of a sequence of arbitrarily long intervals and a member of F . For example, the notions of piecewise-Bohr set, a piecewise-Bohr 0 -set, and a piecewise-Nil d Bohr 0 -set, can be defined in this way. However, the notion of a piecewise set is rather weak: for example, a piecewise-Bohr set defined in this manner is not necessarily syndetic. The properties that we can prove are stronger than the traditional piecewise statements, and in particular imply the traditional piecewise versions. For this, we introduce a stronger definition of piecewise: Definition 2.4. Given a class F of subsets of integers, the set A ⊂ Z is said to be strongly piecewise-F , written PW-F , if for every sequence (J k : k ≥ 1) of intervals whose lengths |J k | tend to ∞, there exists a sequence (I j : j ≥ 1) of intervals satisfying: i) For each j ≥ 1, there exists some k = k(j) such that the interval I j is contained in J k ; ii) The lengths |I j | tend to infinity; iii) There exists a set Λ ∈ F such that Λ ∩ I j ⊂ A for every j ≥ 1.

Note that Λ depends on the sequence (J k ). With this definition of strongly piecewise, if the class F consists of syndetic sets then every PW-F -set is syndetic. In particular, a strongly piecewise-Bohr set, denoted PW-Bohr, is syndetic. Similarly, we denote a strongly piecewise-Bohr 0 -set by PW-Bohr 0 and a strongly piecewise-Nil d Bohr 0 -set by PW-Nil d Bohr 0 and these sets are also syndetic.

Sumsets and Difference Sets.

Definition 2.5. Let E ⊂ N be a set of integers. The sumset of E is the set S(E) consisting of all nontrivial finite sums of distinct elements of E.

A subset A of N is a S * r -set if A ∩ S(E) = ∅ for every set E ⊂ N with |E| = r.
We have: Theorem 2.6. Every S * d+1 -set is a PW-Nil d Bohr 0 -set. We can iterate this result, leading to the following definitions from [START_REF] Bergelson | Piecewise-Bohr sets of integers and combinatorial number theory[END_REF] and [START_REF] Furstenberg | Recurrence in ergodic theory and combinatorial number theory[END_REF]:

Definition 2.7. If S is a nonempty subset of N, define the difference set ∆(S) by ∆(S) = (S -S) ∩ N = {b -a : a ∈ S, b ∈ S, b > a} . If A is a subset of N, A is a ∆ * r -set if A ∩ ∆(S) = ∅ for every subset S of N with |S| = r; A is a ∆ * -set if A ∩ ∆(S) = ∅ for every infinite subset S of N. Theorem 2.8. Every ∆ * -set is a PW-Bohr 0 -set. Every ∆ *
r set is obviously a ∆ * -set and Theorem 2.8 generalizes a result of [START_REF] Bergelson | Piecewise-Bohr sets of integers and combinatorial number theory[END_REF]. The class of sets of the form ∆(S) with |S| = 3 coincides with the class of sets of the form S(E) with |E| = 2 and thus the classes ∆ * 3 and S * 2 are the same. Theorem 2.8 generalizes the case d = 1 of Theorem 2.6.

The converse statement of Theorem 2.8 does not hold. However, it is easy to check that every Bohr 0 -set is a ∆ * -set (see [START_REF] Bergelson | Piecewise-Bohr sets of integers and combinatorial number theory[END_REF]). Definition 2.9. Let d ≥ 0 be an integer and let P = (p i ) be a (finite or infinite) sequence in N. The set of sums with gaps of length < d of P is the set SG d (P ) of all integers of the form

ǫ 1 p 1 + ǫ 2 p 2 + • • • + ǫ n p n ,
where n ≥ 1 is an integer, ǫ i ∈ {0, 1} for 1 ≤ i ≤ n, the ǫ i are not all equal to 0, and the blocks of consecutive 0's between two 1's have length < d.

A subset

A ⊆ N is an SG * d -set if A ∩ SG d (P ) = ∅ for every infinite sequence P in N.
Note that in this definition, P is a sequence and not a subset of N. For example, if P = {p 1 , p 2 , . . . }, then SG 1 (P ) is the set of all sums p m + • • • + p n of consecutive elements of P , and thus it coincides with the set ∆(S) where S = {s, s + p 1 , s + p 1 + p 2 , . . . }. Therefore SG * 1 -sets are the same as ∆ * -sets.

For a sequence P , SG 2 (P ) consists of all sums of the form

m 1 i=m 0 p i + m 2 i=m 1 +2 p i + • • • + m k i=m k-1 +2 p i + m k+1 i=m k +2 p i ,
where k ∈ N and m 0 , m 1 , . . . , m k+1 are positive integers satisfying m i+1 ≥ m i + 2 for i = 0, . . . , k. In general, a Nil d Bohr 0 -set is not a ∆ * -set. To construct an example, take an irrational α and let Ω be the set of n ∈ Z such that n 2 α is close to 0 mod 1. Then Ω is a Nil 2 Bohr 0 -set, as can be checked by considering the transformation on T 2 defined by (x, y) → (x+ α, y + x). On the other hand, by induction we can build an increasing sequence n j of integers such that n 2 j α is close to 1/3 mod 1, while n i n j α mod 1 is close to 0 for i < j. Taking S to be the set of such n j , we have that ∆(S) does not intersect Ω.

This leads to the following question: 

Preliminaries

3.1. Notation. We introduce notation that we use throughout the remainder of the article. If X is a set and d ≥ 1 is an integer, we write X [d] = X 2 d and we index the 2 d copies of X by {0, 1} d . Elements of X [d] are written as

x = (x ǫ : ǫ ∈ {0, 1} d ) .
We write elements of {0, 1} d without commas or parentheses.

We also often identify {0, 1} d with the family P([d]) of subsets of [d] = {1, 2, . . . , d}. In this identification, ǫ i = 1 is the same as i ∈ ǫ and ∅ = 00 . . . 0.

For ǫ ∈ {0, 1} d and n ∈ Z d , we write |ǫ| = ǫ 1 + . . . + ǫ d and ǫ

• n = ǫ 1 n 1 + . . . + ǫ d n d .
If p : X → Y is a map, then we write p [d] : X [d] → Y [d] for the map (p, p, . . . , p) taken 2 d times. In particular, if T is a transformation on the space X, we define T [d] : X [d] → X [d] as T × T × . . . × T taken 2 d times. We define the face transformations T

[d] i for 1 ≤ i ≤ d by: (T [d] i x) ǫ = T (x ǫ ) if ǫ i = 1 x ǫ otherwise .
In a slight abuse of notation, we denote all transformations, even in different systems, by the letter T (unless the system is naturally a Cartesian product).

For convenience, we assume that all functions are real valued.

3.2. Review of nilsystems.

Definition 3.1. If G is a d-step nilpotent Lie group and Γ ⊂ G is a discrete and cocompact subgroup, the compact manifold X = G/Γ is a d-step nilmanifold.
The Haar measure µ of X is the unique probability measure that is invariant under the action x → g • x of G on X by left translations.

If T denotes left translation on X by a fixed element of G, then (X, µ, T ) is a d-step nilsystem.

(We generally omit the σ-algebra from the notation, writing (X, µ, T ) for a measure preserving system rather than (X, B, µ, T ), where B denotes the Borel σ-algebra.)

A d-step nilsystem is an example of a topological distal dynamical system. For a d-step nilsystem, the following properties are equivalent: transitivity, minimality, unique ergodicity, and ergodicity. (Note that the first three of these properties refer to the topological system, while the last refers to the measure preserving system.) Also, the closed orbit of a point in a d-step nilsystem is a d-step nilsystem, and it follows that this closed orbit is minimal and uniquely ergodic. See [START_REF] Auslander | Flows on homogeneous spaces[END_REF] for proofs and general references on nilsystems.

We also speak of a nilsystem (X = G/Γ, T 1 , . . . , T d ), where T 1 , . . . , T d are translations by commuting elements of G. All the above properties hold for such systems.

We also make use of inverse limits of systems, both in the topological and measure theoretic senses. All inverse limits are implicitly assumed to be taken along sequences. Inverse limits for a sequence of nilsystems are the same in both the topological and measure theoretic senses: this follows because a measure theoretic factor map between two nilsystems is necessarily continuous.

Many properties of the nilsystems also pass to the inverse limit. In particular, in an inverse limit of d-step nilsystems, every closed orbit is minimal and uniquely ergodic.

3.3. Structure Theorem. Assume now that (X, µ, T ) is an ergodic system.

We recall a construction and definitions from [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF], but for consistency we make some small changes in the notation. For an integer d ≥ 0, a measure µ [d] on X [d] was built in [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF]. Here we denote this measure by µ (d) .

The measure µ (d) is invariant under T [d] and under all the face transformations

T [d] i , 1 ≤ i ≤ d. Each of the projections of the measure µ (d) on X is equal to the measure µ.
If f is a bounded measurable function on X, then

ǫ⊂[d] f (x ǫ ) dµ (d) (x) ≥ 0
and we define |||f ||| d to be this expression raised to the power 1/2 d . Then ||| • ||| d is a seminorm on L ∞ (µ). A main result from [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF] is that this is a norm if and only if the system is an inverse limit of (d -1)-step nilsystems. More precisely, a summary of the Structure Theorem of [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF] is:

Theorem 3.2. Assume that (X, µ, T ) is an ergodic system. Then for each d ≥ 2, there exist a system (Z d , µ d , T ) and a factor map

π d : X → Z d satisfying: i) (Z d , µ d , T ) is the inverse limit of a sequence of (d -1)-step nil- systems. ii) For each f ∈ L ∞ (µ), |||f -E(f | Z d ) • π d ||| d = 0.
For each d ≥ 1, we call (Z d , µ d , T ) the HK-factor of order d of (X, µ, T ). The factor map π d : X → Z d is measurable, and a priori has no reason to be continuous. For ℓ ≤ d, Z ℓ is a factor of Z d , with a continuous factor map.

If (X, µ, T ) is an ergodic inverse limit of (d -1)-step nilsystems, we define3 X (d) to the closed orbit in X [d] of a point x 0 = (x 0 , . . . , x 0 ) (for some arbitrary x 0 ∈ X) under the transformations T [d] and d) , endowed with these transformations, is minimal and uniquely ergodic. Its unique invariant measure is exactly the measure µ (d) described above. When (X, µ, T ) is a (d -1)-step nilsystem, then X (d) is a nilmanifold and µ (d) is its Haar measure.

T [d] i for 1 ≤ i ≤ d. The system X (
3.4. Furstenberg correspondence principle revisited. By ℓ ∞ (Z), we mean the algebra of bounded real valued sequences indexed by Z.

Let A be a subalgebra of ℓ ∞ (Z), containing the constants, invariant under the shift, closed and separable with respect to the norm • ∞ of uniform convergence. We refer to this simple as "an algebra." In applications, finitely many subsets of Z are given and A is the shift invariant algebra spanned by indicator functions of these subsets.

Given an algebra, we associate various objects to it: a dynamical system, an ergodic measure on this system, a sequence of intervals, etc. We give a summary of these objects without proof, referring to [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF] for more information.

A system associated to

A. There exist a topological dynamical system (X, T ) and a point x 0 ∈ X such that the map

φ ∈ C(X) → φ(T n x 0 ) : n ∈ Z ∈ ℓ ∞ (Z)
is an isometric isomorphism of algebras from C(X) onto A. (We use C(X) to denote the collection of continuous functions on X.)

In particular, if S is a subset of Z with 1 S ∈ A, then there exists a subset S of X that is open and closed in X such that [START_REF] Auslander | Flows on homogeneous spaces[END_REF] for every n ∈ Z, T n x 0 ∈ S if and only if n ∈ S .

Some averages and some measures associated to A.

There also exist a sequence I = (I j : j ≥ 1) of intervals of Z, whose lengths tend to infinity, and an invariant ergodic probability measure µ on X such that

(2) for every φ ∈ C(X),

1 |I j | n∈I j φ(T n x 0 ) → φ dµ as j → +∞ .
Given a subset S of Z, we can chose the intervals I j such that

|S ∩ I j | |I j | → d * (S) as j → +∞ ,
where d * (S) denotes the upper Banach density of S.

In particular, we can assume that the intervals I j are contained in N. We omit the subscripts n and/or I if they are clear from the context.

3.4.4.

Averages and factors of order k. Recall that Z k denotes the HKfactor of order k of (X, µ, T ) and that π k : X → Z k denotes the factor map.

The sequence of intervals I = (I j : j ≥ 1) can be chosen such that:

Proposition 3.3. For every k ≥ 1, there exists a point e k ∈ Z k such that π ℓ,k (e k ) = e ℓ for ℓ < k and such that for every φ ∈ C(X) and every

f ∈ C(Z k ), lim Av I φ(T n x 0 )f (T n e k ) = φ • f • π k dµ = E(φ | Z k ) f dµ k .
This formula extends (2). The next corollary is an example of the relation between integrals on the factors Z k and PW-Nil Bohr-sets. More precise results are proved and used in the sequel. Corollary 3.4. Let S be a subset of Z such that 1 S belongs to the algebra A and let S be the corresponding subset of X. Let f be a nonnegative continuous function on Z k with f (e k ) > 0, where e k is as in Proposition 3.3. If

1 e S (x) • f • π k (x) dµ(x) = 0 then Z \ S is a PW-Nil k Bohr 0 -set. Proof. Let Λ = {n ∈ Z : f (T n e k ) > f (e k )/2}.
Then Λ is a Nil k Bohr 0set. By Proposition 3.3 and definition (1) of S, the averages on

I j of 1 S (n)f (T n e k ) converge to zero. Thus lim j→+∞ |I j ∩ S ∩ Λ| |I j | = 0 .
Therefore, the subset E = j I j \ (S ∩ Λ) contains arbitrarily long intervals J ℓ , ℓ ≥ 1. For every ℓ, J ℓ ∩ (Z \ S) ⊃ J ℓ ∩ Λ.

3.4.5. It is easy to check that given a sequence of intervals (J k : k ≥ 1) whose lengths tend to infinity, we can choose the intervals (I j : j ≥ 1) satisfying all of the above properties, and such that each interval I j is a subinterval of some J k . To see this, we first reduce to the case that the intervals J k are disjoint and separated by sufficiently large gaps.

We set S to be the union of these intervals. We have d * (S) = 1 and we can choose intervals

I ′ j with |S ∩ I ′ j |/|I ′ j | → 1. For every j ∈ N, there exists k j such that |I ′ j ∩ J k j |/|I ′ j | → 1 as j → +∞.
We set I j = I ′ j ∩ J k j and the sequence (I j : j ≥ 1) satisfies all the requested properties.

3.5. Definition of the uniformity seminorms. We recall definitions and results of [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF] adapted to the present context. We keep notation as in the previous sections; in particular, Z k and e k are as in Proposition 3.3.

Let I be as in Section 3.4 and let B be the algebra spanned by A and sequences of the form (f (T n e k ) : n ∈ Z), where f is a continuous function on Z k for some k. By Proposition 3.3, for every sequence a = (a n : n ∈ Z) belonging to the algebra B, the limit lim Av I,n a n exists.

Given a sequence a ∈ B,

for h = (h 1 , . . . , h d ) ∈ Z d , let c h = lim Av I,n ǫ⊂[d] a n+ǫ•h . Then lim H→∞ 1 H d H-1 h 1 ,...,h d =0 c h
exists and is nonnegative. We define a I,d to be this limit raised to the power 1/2 d . Proposition 3.5. Let (Z, T ) be an inverse limit of k-step nilsystems and f be a continuous function on Z. Then for every δ > 0 there exists C = C(δ) > 0 such that for every sequence a = (a n : n ∈ Z) belonging to the algebra B and for every z ∈ Z,

limsup Av I a n f (T n z) ≤ δ a ∞ + C a I,k+1 .
Proof. By density, we can reduce to the case that (Z, T ) is a k-step nilsystem and that the function f is smooth. In this case, the result is contained in [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF] under the hypothesis that the system is ergodic. Indeed, by Proposition 5.6 of this paper, f is a "dual function" on X. By the "Modified Direct Theorem" of Section 5.4 in [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF], there exists a constant

|||f ||| * k ≥ 0 with limsup Av I a n f (T n z) ≤ |||f ||| * k • a I,k+1 .
In the proofs of [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF] we can check that the hypothesis of ergodicity is not used.

The next proposition was proved in [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF] and follows from the Structure Theorem.

Proposition 3.6. Let φ be a continuous function on X with |φ| ≤ 1, k ≥ 1 an integer, and f a continuous function on

Z k with |f | ≤ 1. Then φ(T n x 0 ) -f (T n e k ) : n ∈ Z I,k+1 ≤ 2 f -E(φ | Z k ) 1/2 k+1 L 1 (µ k ) .
4. Some measures associated to inverse limits of nilsystems 4.1. Standing assumptions. We assume that every topological system (Z, T ) is implicitly endowed with a particular point, called the base point. Every topological factor map is implicitly assumed to map = base point to base point. For every k ≥ 1, we take the base point of Z k to be the point e k introduced in Section 3.4.4.

If (Z, T ) is a nilsystem with Z = G/Γ, then by changing the group Γ if needed, we can assume that the base point of Z is the image in Z of the unit element of G.

The measures µ (m)

e . Proposition 4.1. Let (X, µ, T ) be an ergodic inverse limit of ergodic k-step nilsystems, endowed with the base point e ∈ X, and let m ≥ 1 be an integer. a) The closed orbit of the point e [m] = (e, e, . . . , e) of X (m) under the transformations T

[m] i , 1 ≤ i ≤ m, is X (m) e = {x ∈ X (m) : x ∅ = e} . b) Let µ (m) e
be the unique measure on this set invariant under these transformations. Then the image of µ 

(m) e under each of the natural projections x → x ǫ : X [m] → X, ∅ = ǫ ⊂ [d], is equal to µ. c) Let (Y,
ǫ , ∅ = ǫ ⊂ [d], are 2 m -1 bounded measurable functions on X, ∅ =ǫ⊂[d] f ǫ (x ǫ ) dµ (m) e (x) = ∅ =ǫ⊂[d] E(f ǫ | Y )(y ǫ ) dν (m) e (y)
.

(The existence of these integrals follows from b).)

Following our convention, we assume in c) and d) that Y is endowed with a base point and that p maps the base point to the base point.

Proof. We first prove a) and d) assuming that X is a nilsystem. (While the proof is contained in [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF], we sketch it here in order to introduce some objects and some notation.)

For g ∈ G and F ⊂ P([m]), we write g F for the element of G [m] given by

for every ǫ ⊂ [m], g F ) ǫ = g if ǫ ∈ F ; 1 otherwise.
We write X = G/Γ and let τ be the element of G defining the transformation T of X. We can assume that the base point e of X is the image in X of the unit element of G. Since (X, µ, T ) is ergodic, we can also assume that G is spanned by the connected component of the identity and τ . We recall a convenient presentation of G (m) (see [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF] and [START_REF] Green | Linear equations in the primes[END_REF]).

Let α 1 , . . . , α 2 m be an enumeration of all subsets of [d] such that |α i | is increasing. In particular, α 1 = ∅. For 1 ≤ i ≤ 2 m , let F i = {ǫ : α i ⊂ ǫ ⊂ [m]}. For every i, F i is an upper face of the cube P([m]), meaning a face containing the vertex [d]; its codimension is |α i |. Then F 1 , . . . , F 2 m is an enumeration of all the upper faces, in decreasing order of codimension. In particular, F 1 is the whole cube P([m]).

Each element of G (m) can be written in a unique way as

(3) h = g F 1 1 g F 2 2 . . . g F 2 d 2 d , where g i ∈ G |α i | for every i . (By convention, G 0 = G.)
We define

G (m) e = g ∈ G (m) : g ∅ = 1 .
This group is closed and normal in G (m) and every element of G (m) can be written in a unique way as

h [m] g with h ∈ G and g ∈ G (m) e . Moreover, G (m) e
is the set of elements of G (m) that are written as in (3) with g 1 = 1. From this, it is easy to deduce that the commutator subgroup of this group is equal to

G (m) e ∩ (G 2 ) [m] . Clearly, the subset X (m) e of X (m) is invariant under G (m) e
and it follows from the preceding description that the action of this group on this set is transitive. Therefore, the subgroup

Γ (m) e := Γ (m) ∩ G (m) e of G (m) e is cocompact in G (m) e
and we can identify X is invariant under translation by this element. The result follows.

We now turn to the proof of the proposition in the general case. For a), the generalization to inverse limits is immediate.

b) Let ǫ ∈ [d] with ǫ = ∅. Let i ∈ ǫ. Then for every x ∈ X (m) we have T x ǫ = (T [m] i x) ǫ . Since the measure µ (m) e is invariant under T (m) i
, its image under the projection x → x ǫ is invariant under T and thus is equal to µ.

Property c) is immediate. d) Let the functions f ǫ be as in the statement; without loss we can assume that |f ǫ | ≤ 1 for every ǫ.

Let (X i , µ i , T i ), i ≥ 1, be an increasing sequence of k-step nilsystems with inverse limit (X, µ, T ) and let π i : X → X i , i ≥ 1, be the (pointed) factor maps.

For every ǫ, ∅ = ǫ ⊂ [d], we have that

f ǫ -E(f ǫ • X i ) • π i L 1 (µ) → 0 as i → +∞
and thus (4)

∅ =ǫ⊂[d] E(f ǫ | X i ) • π i (x ǫ ) dµ (m) e (x) → ∅ =ǫ⊂[d] f ǫ (x ǫ ) dµ (m) e (x)
as i → +∞. For every i, let (W i , σ i , T ) be the (m -1)-step factor of X i , q i : X i → W i the factor map and r i = q i • π i .

We have showed above that, for every i, the measure µ i (m) e is relatively independent with respect to σ i (m) e . By using c) twice, we get that the second integral in ( 4) is equal to

∅ =ǫ⊂[d] E(f ǫ | W i ) • r i (x ǫ ) dµ (m) e (x) .
As the systems X i form an increasing sequence, the systems W i also form an increasing sequence. Let (W, σ, T ) be the inverse limit if this sequence. This system is a factor of X, and writing r : X → W for the factor map, we have that

E(f ǫ | W i ) • r i → E(f ǫ | W ) • r in L 1 (µ) for every ǫ. We get (5) ∅ =ǫ⊂[d] f ǫ (x ǫ ) dµ (m) e (x) = ∅ =ǫ⊂[d] E(f ǫ | W ) • r(x ǫ ) dµ (m) e (x) .
This means that the measure µ (m) e is relatively independent with respect to σ (m) e . As W is an inverse limit of (m -1)-step nilsystems and is a factor of X, it is a factor of the (m -1)-step factor Y if X. If for some ǫ we have E(f ǫ | Y ) = 0, then we have E(f ǫ | W ) = 0 and the second integral in ( 5) is equal to zero. The result follows.

Passing to inverse limits adds technical issues to each proof. These issues are not difficult and the passage to inverse limits uses only routine techniques, as in the preceding proof. However, it does greatly increase the length of the arguments, and so in general we omit this portion of the argument.

The measures µ

(m) e,x . In this section, again (X, µ, T ) is an ergodic inverse limit of k-step nilsystems, with base point e ∈ X.

For x ∈ X we write

X (m) e,x = {x ∈ X (m) : x ∅ = e and x {m} = x} . The set X (m)
e,e is the image of the set X (m,1) e introduced below by a permutation of coordinates. 

x → x ǫ : X [m] → X, ǫ = ∅, ǫ = {m}, is equal to µ. ii) If f ǫ , ǫ ⊂ [m], ǫ ⊂ [1]
, are 2 m -2 bounded measurable functions on X, then the function F on X given by

F (x) = ǫ⊂[d] ǫ =∅, ǫ ={m} f ǫ (x ǫ ) dµ (m) e,x (x) 
is continuous. iii) Moreover, for every bounded measurable function f on X,

f (x)F (x) dµ(x) = f (x {m} ) ǫ⊂[d] ǫ =∅,[m] f ǫ (x ǫ ) dµ (m)
e (x) .

Proof. It suffices to prove this Proposition in the case that (X, µ, T ) is k-step nilsystem, as the general case follows by standard methods.

We write X = G/Γ as usual. We can assume that e is the image in X of the unit element 1 of G. We define

G (m)
e,e = g ∈ G (m) : g ∅ = g {m} = 1 . This group is closed and normal in G. It is the set of elements of G (m) that can be written as in (3) with g ∅ = 1 and g i = 1 for the value of i such that α i = {m}. Recall that e [m] = (e, e, . . . , e).

It is easy to check that G e,e under g F and h F are the same.

Therefore, for every x ∈ X we can define a measure µ

(m) e,x on X (m)
e,x by ( 6)

µ (m) e,x = g F • µ (m)
e,e for every g ∈ G such that g • e = x .

In particular, for every h ∈ G and every x ∈ X,

(7) µ (m) e,h•x = h F • µ (m) e,x .
If T is the translation by τ ∈ G, then T

[m] m is the translation by τ F and and so for every integer n, [START_REF] Leibman | Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold[END_REF] µ

(m) e,T n x = T [m] m n • µ (m) e,x .
For

1 ≤ i < m, τ [m] i ∈ G (m)
e,e and thus, for every x ∈ X, µ

(m)
e,x is invariant under T

[m] i . As above, it follows that this measure satisfies the first property of the proposition.

To prove the other properties, the first statement of the proposition implies that we can reduce to the case that the functions f ǫ are continuous. By ( 6), the map x → µ (m) e,x is weakly continuous and the function F is continuous. We are left with showing that

µ (m) e = µ (m)
e,x dµ(x) .

For 1 ≤ i < m, since for every x the measure µ

(m) e,x is invariant under T [m]
i , the measure defined by this integral is invariant under this transformation. By [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF], µ

(m) e,T x = T [m] m • µ (m)
e,x for every x and it follows that the measure defined by the above integral is invariant under T 

4.4.

A positivity result. In this section, again (X, µ, T ) is an ergodic inverse limit of k-step nilsystems, with base point e ∈ X.

In the next proposition, the notation ǫ = ǫ 1 . . . ǫ m ∈ {0, 1} m is more convenient that ǫ ⊂ [m]. We recall that 00 . . . 0 ∈ {0, 1} m corresponds to ∅ ⊂ [m] and that 00 . . .

01 ∈ {0, 1} m corresponds to {m} ⊂ [m]. For ǫ ∈ {0, 1} m+1 , ǫ 1 . . . ǫ m corresponds to ǫ ∩ [m]. Proposition 4.3. Let f ǫ , ∅ = ǫ ∈ {0, 1} m , be 2 m -1 bounded measur- able real functions on X. Then ǫ∈{0,1} m+1 ǫ =00...0 ǫ =00...01 f ǫ 1 ...ǫm (x ǫ ) dµ (m+1) e,e (x) 
≥ ǫ∈{0,1} m ǫ =00...0 f ǫ (x ǫ ) dµ (m) e (x) 2 .
Proof. We first reduce the general case to that of an ergodic k-step nilsystem. If (X, µ, T ) is an inverse limit of an increasing sequence of k-step ergodic nilsystems, then the spaces X , are the inverse limits of the corresponding objects associated to each of the nilsystems in the sequence of nilsystems converging to X. Thus it suffices to prove the proposition when (X, T, µ) is an ergodic k-step nilsystem. We write X = G/Γ as usual.

The groups

G (m) e , Γ (m) 
e , G is the Haar measure of this nilmanifold. It is convenient to identify X [m+1] with X [m] × X [m] , writing a point x ∈ X [m+1] as x = (x ′ , x ′′ ), where

x ′ = (x ǫ 1 ...ǫm0 : ǫ ∈ {0, 1} m ) and x ′′ = (x ǫ 1 ...ǫm1 : ǫ ∈ {0, 1} m ) . The diagonal map ∆ (m) X : X [m] → X [m+1] is defined by ∆ (m) X (x) = (x, x), that is, for x ∈ X [m] and ǫ ∈ {0, 1} m+1 , ∆ (m) X (x) ǫ = x ǫ 1 ,...,ǫm . We remark that ∆ (m) X (X (m) e ) ⊂ X (m+1) e,e
. We use similar notation for elements of G [m+1] and define the diagonal map ∆ (m)

G : G [m] → G [m+1] . We have ∆ (m) (G (m) e ) ⊂ G (m+1)
e,e and, for every g = (g ′ , g ′′ ) ∈ G e,e = (g, hg)

: g ∈ G (m) e , h ∈ G (m) * .
It follows that

X (m+1) e,e = (x, h • x) : x ∈ X (m) e , h ∈ G (m+1) * .
For every x ′ ∈ X (m) , set

V x ′ = {x ′′ ∈ X (m) : (x ′ , x ′′ ) ∈ X (m+1)
e,e } .

For x ∈ X (m) and g ∈ G Indeed, this image is supported on ν g•x and is invariant under

G (m) * , since G (m) * is normal in G (m) e .
We claim that (10)

µ (m+1)
e,e = δ x × ν x dµ (m) e (x) .

The measure on X

(m+1) e,e
defined by this integral is invariant under translation by elements of the form (1 [m] , h) with h ∈ G (m) *

(note that each δ x × ν x is invariant under such translations). By (9), the measure defined by this integral is also invariant under translation by (g, g) for g ∈ G By (9) again,

ν h•x = ν x for h ∈ G (m) * . Let F denote the σ-algebra of G (m) * -invariant functions. For every bounded Borel function F on X (m) e , (11) 
F dν x = E(F | F )(x) µ (m) e -a.e.
To see this, we note that the function defined by this integral is invariant under translation by G (m) * and thus is F -measurable. Conversely, if F is F -measurable, then for µ (m) e almost every x, it coincides ν xalmost everywhere with a constant and so the integral is equal almost everywhere to F (x).

Thus for a bounded Borel function F on X (m) e , using (10) and (11), we have that

F (x ′ )F (x ′′ ) dµ (m+1) e,e (x) = F (x ′ ) F (x ′′ ) dν x ′ (x ′′ ) dµ (m) e (x ′ ) = F • E(F | F ) dµ (m) e = E(F | F ) 2 dµ (m) e ≥ F dµ (m) e 2 .

The measures µ

(m,r) e

. In this section again, (X, µ, T ) is an ergodic inverse limit of k-step nilsystems, with base point e ∈ X. Let m and r be integers with 0 ≤ r < m.

Let ∆ m,r : X [m-r] → X [m] be the map given by for x ∈ X [m-r] and ǫ = ǫ 1 , . . . , ǫ m ∈ {0, 1} m , (∆ m,r x) ǫ = x ǫ r+1 ...ǫm .

We define: is the unique probability measure of this set invariant under these transformations. We have ∆ m,r e [m-r] = e [m] , and, for 1

X (m,r) e = ∆ m,r X (m-r)
≤ i ≤ m -r, ∆ m,r • T [m-r] i = T [m] r+i • ∆ m,r . Therefore: X (m,r) e is the closed orbit of the point e [m] ∈ X (m) under the transfor- mations T [m] i for r + 1 ≤ i ≤ m and µ (m,r) e
is the unique probability measure on this set invariant under these transformations.

For example, X r+1) , where ∆ [r] denotes the diagonal of X [r] . µ (r+1,r) e is the product of the Dirac mass at e [r] by the diagonal measure of X [r] .

= {e [r] } × ∆ [r] ⊂ X ( (m,0) e = X (m) e ⊂ X (m) and µ (m,0) e = µ (m) e . X (r+1,r) e 
Since the image of µ (m-r) e

under the projections x → x ǫ with ǫ = ∅, are equal to µ, we have that:

The images of µ (m,r) e under the projections

x → x ǫ for ǫ ⊂ [m], ǫ ⊂ [r], are equal to µ. Therefore, if h ǫ , ǫ ⊂ [m], ǫ ⊂ [r], are 2 m -2 r measurable functions on X with |h ǫ | ≤ 1, we have that (14) ǫ⊂[m] ǫ ⊂[r] h ǫ (x ǫ ) dµ (m,r) e (x) ≤ min ǫ⊂[m] ǫ ⊂[r] h ǫ L 1 (µ) .

A convergence result

In this section, we prove the key convergence result (Proposition 5.4). 5.1. Context. We recall our context, as introduced in Sections 3.4 and 3.5.

The system (X, T ) is associated to the subalgebra A of ℓ ∞ (Z), µ is an ergodic invariant probability measure on X, associated to the averages on the sequence I = (I j : j ≥ 1) of intervals.

For every k ≥ 1, let (Z k , µ k , T ) be the factor of order k of (X, µ, T ). We recall that this system is an inverse limit of (k -1)-step nilsystems, both in the topological and the ergodic theoretical senses. The system (Z k , T ) is distal, minimal and uniquely ergodic, and Z k is given with a base point e k . In a futile attempt to keep the notation only mildly disagreeable, when the base point e k is used as a subindex, we omit the subscript k.

We write π k : X → Z k for the factor map. We recall that this map is measurable, and has no reason for being continuous. For ℓ ≤ k, Z ℓ is a factor of Z k , with a factor map π ℓ,k :

Z k → Z ℓ which is continuous and π ℓ,k (e k ) = e ℓ .
We use various different methods of taking limits of averages of sequences indexed by Z r . For example, in Proposition 5.1, we average over any Følner sequence in Z r . In the sequel, we use iterated limits: if a n : n = (n 1 , . . . , n r ) ∈ Z r is a bounded sequence, we define the iterated limsup of a as

Iter limsup | Av I,n 1 ,...,nr a n 1 ,...,nr | = limsup j 1 →∞ . . . limsup jr→∞ 1 |I j 1 | . . . |I jr | n 1 ∈I j 1 ... nr∈I jr a n 1 ,...,nr .
We define the Iter lim Av a n analogously, assuming that all of the limits exist.

An upper bound.

The next proposition is proved in Section 13 of [START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF]: Proposition 5.1. Let (X, µ, T ) be an ergodic system and (Z d , T, ν) be its factor of order d.

Let f ǫ , ǫ ⊂ [d], be 2 d bounded measurable functions on X. For n = (n 1 , . . . , n d ) ∈ Z d , let a n = ǫ⊂[d] f ǫ (T n•ǫ x) dµ(x) and b n = ǫ⊂[d] E(f ǫ | Z d )(T n•ǫ z) dµ d (z) . Then a n -b n converges to zero in density, meaning that the averages of [a n -b n | on any Følner sequence in Z d converge to zero. Lemma 5.2. Let k ≥ 1, 0 ≤ r ≤ d and h ǫ , ǫ ⊂ [d + 1], ǫ ⊂ [r]
, be 2 d+1 -2 r continuous functions on Z k . Then for every δ > 0, there exists C = C(δ) > 0 with the following property:

Let ψ ǫ , ǫ ⊂ [r], be 2 r sequences belonging to B with absolute value ≤ 1. Then the iterated limsup in n 1 , . . . , n r of the absolute value of the averages on I of

A(n) := ǫ⊂[r] ψ ǫ (n • ǫ) ǫ⊂[d+1] ǫ ⊂[r] h ǫ (T n•ǫ x ǫ ) dµ (d+1,r) k e (x)
is bounded by δ + C r∈ǫ⊂[r]
ψ ǫ I,k+r .

Proof. We write n = (m 1 , . . . , m r-1 , p) and m = (m 1 , . . . , m r-1 ). The expression to be averaged can be rewritten as

A ′ (m, p) = ǫ⊂[r-1] ψ ǫ (m•ǫ)• r∈ǫ⊂[r] ψ ǫ (m•ǫ+p)• ǫ⊂[d+1] ǫ ⊂[r] f ǫ (T m•ǫ+pǫr x ǫ ) dµ (d+1,r) k e (x) .
For m ∈ Z r-1 , we write

Φ m (p) = r∈ǫ⊂[r] ψ ǫ (m • ǫ + p) = r∈ǫ⊂[r] σ m•ǫ ψ ǫ (p)
where σ is the shift on ℓ ∞ (Z). For x ∈ Z (d+1,r) k

, we also write

H(x) = ǫ⊂[d+1] ǫ ⊂[r] h ǫ (x ǫ )
and for every δ > 0, we let C = C(δ) be associated to this continuous function on X (d+1,r) k as in Proposition 3.5. We have

r∈ǫ⊂[r] ψ ǫ (m • ǫ + p) • ǫ⊂[d+1] ǫ ⊂[r] h ǫ (T m•ǫ+pǫr x ǫ ) = Φ m (p)H T [d+1]p r (T [d+1]m 1 1 . . . T [d+1]m r-1 r-1 x)
and thus

limsup j Av p∈I j r∈ǫ⊂[r] ψ ǫ (m • ǫ + p) • ǫ⊂[d+1] ǫ ⊂[r] h ǫ (T m•ǫ+pǫr x ǫ ) ≤ δ + C Φ m I,k+1
for every m and every x ∈ Z .

By a result in [START_REF] Host | Uniformity norms on ℓ ∞ and applications[END_REF], the last limsup is actually a limit and is bounded by

r∈ǫ⊂[r]
ψ ǫ I,k+r .

5.3. Iteration. Proposition 5.3. Let k ≥ 1, 0 ≤ r ≤ d and h ǫ , ǫ ⊂ [d + 1], ǫ ⊂ [r],
be 2 d+1 -2 r bounded measurable functions on Z k . Let φ ǫ , ǫ ⊂ [r], be 2 r continuous functions on X. For n ∈ Z r , define

A(n) = ǫ⊂[r] ψ ǫ (n • ǫ) ǫ⊂[d+1] ǫ ⊂[r] h ǫ (T n•ǫ x ǫ ) dµ (d+1,r) k e (x)
and

B(n) = ǫ⊂[r-1] φ ǫ (T n•ǫ x 0 )• r∈ǫ⊂[r] E(φ ǫ | Z k+r-1 )(x ǫ ) • ǫ⊂[d+1] ǫ ⊂[r] h • p k+r-1,k (x ǫ ) dµ (d+1,r-1)
k+r-1 e (x) .

Then the iterated limit of the averages of A(n) -B(n) is zero.

Proof. We remark that B(n) depends only on n 1 , . . . , n r-1 . By ( 14), it suffices to prove the result in the case that the functions f ǫ are continuous. We can also assume that |φ ǫ | ≤ 1 for every ǫ ⊂ [r].

Let δ > 0 be given and let C be as in Lemma 5.2. For each ǫ with r ∈ ǫ ⊂ [d + 1], let φ ǫ be a continuous function on Z k+r-1 with | φ ǫ | ≤ 1, such that E(φ ǫ | Z k+r-1 )φ ǫ is sufficiently small. We have that ( φ ǫ (T n e k+r-1 ) : n ∈ Z) -(φ ǫ (T n x 0 ) : n ∈ Z) I,k+r ≤ δ/2 r-1 C for every ǫ. This follows from Proposition 3.6. By Lemma 5.2 the iterated limsup of the absolute value of the averages on I of

A(n)- ǫ⊂[r-1] φ ǫ (T n•ǫ x 0 )• r∈ǫ⊂[r] φ ǫ (T n•ǫ e k+r-1 )• ǫ⊂[d+1] ǫ ⊂[r] h ǫ (T n•ǫ x ǫ ) dµ (d+1,r) k e (x)
is bounded by 2δ. We rewrite the second term in this difference as

ǫ⊂[r-1] φ ǫ (T n•ǫ x 0 ) • r∈ǫ⊂[r] φ ǫ (T n•ǫ e k+r-1 )• ǫ⊂[d+1] ǫ ⊂[r] h ǫ • p k+r-1,r (T n•ǫ x ǫ ) dµ (d+1,r) k+r-1 e (x)
and remark that the first product in this last expression depends only on n 1 , . . . , n r-1 . By definition of the measures, the averages in n r on I of the above expression converges to

ǫ⊂[r-1] φ ǫ (T n•ǫ x 0 ) • r∈ǫ⊂[r] φ ǫ (x ǫ ) • ǫ⊂[d+1] ǫ ⊂[r] h ǫ • p k+r-1,k (x ǫ ) dµ (d+1,r-1) k+r-1 (x) 
.

By (14) again, for every n 1 , . . . , n r-1 the difference between this expression and B(n) is bounded by δ.

The announced result follows.

Proposition 5.4. Let k ≥ 1 and let f ǫ , ǫ ⊂ [d + 1], ǫ = ∅, be 2 d+1 -1 continuous functions on X. Then the iterated averages for n = (n 1 , . . . , n d , n d+1 ) ∈ Z d+1 on I of (15)

∅ =ǫ⊂[d+1] f ǫ (T n•ǫ x 0 ) converge to (16) ∅ =ǫ⊂[d+1] E(f ǫ | Z d )(x ǫ ) dµ (d+1) d e (x) .
Proof. For notational convenience we define f ∅ to be the constant function 1.

By [START_REF] Bergelson | Piecewise-Bohr sets of integers and combinatorial number theory[END_REF], the averages in n d+1 of (15) converge to (17)

∅ =ǫ⊂[d] f ǫ (T n•ǫ x 0 ) • ǫ⊂[d+1] ǫ ⊂[d] f ǫ (T n•ǫ x) dµ(x)
and it remains to show that the iterated averages in (n 1 , . . . , n d ) of this expression converge to (16). By Proposition 5.1, the difference between the quantity (17) and

A(n) := ǫ⊂[d] f ǫ (T n•ǫ x 0 ) • ǫ⊂[d+1] ǫ ⊂[d] E(f ǫ | Z d )(T n•ǫ x) dµ d (x)
converges to zero in density and we are reduced to study the iterated convergence of the averages of A(n).

We apply Proposition 5.3 with k = d and r = d and left with studying the iterated limit of the averages in n 1 , . . . , n d-1 of

ǫ⊂[d-1] f ǫ (T n•ǫ x 0 )• d∈ǫ⊂[d] E(f ǫ | Z 2d-1 )(x ǫ )• ǫ⊂[d+1] ǫ ⊂[d] E(f ǫ | Z d )•p 2d-1,d (x ǫ ) dµ (d+1,d-1) 2d-1 e (x) .
After dr steps, we are left with the iterated limit of the averages in n 1 , . . . , n r of an expression of the form

ǫ⊂[r] f ǫ (T n•ǫ x 0 ) • ǫ⊂[d+1] ǫ ⊂[r] E(f ǫ | Z ℓ(ǫ) ) • p k,ℓ(ǫ) (x ǫ ) dµ (d+1,r) k e (x) ,
where k = k(r) ≥ d is an integer and where for every ǫ, d ≤ ℓ(ǫ) ≤ k. Finally, after d steps, we have that the iterated limit of the expression (17) exists and is equal to

∅ =ǫ⊂[d+1] E(f ǫ | Z ℓ(ǫ) ) • p k,ℓ(ǫ) (x ǫ ) dµ (d+1) k e (x) ,
where k is an integer and d ≤ ℓ(ǫ) ≤ k for every ǫ.

By Proposition 4.1, the measure µ

(d+1) k e
is relatively independent with respect to its projection µ . For every ǫ,

E E(f ǫ | Z ℓ(ǫ) ) • p k,ℓ(ǫ) | Z d = E(f ǫ | Z d )
and we have that the above limit is equal to (16).

Positivity

In this Section, A, X, µ, I = (I j : j ≥ 1), . . . are as in Sections 3.4 and 3.5. Given a sequence of intervals (J k : k ≥ 1) in Z whose lengths tend to infinity, we assume that for each j ≥ 1, there exists some k = k(j) such that the interval I j is included in J k .

We simplify the notation: we write Z instead of Z d , ν instead of µ d , e instead of e d . If f is a function on X, f = E(f | Z).

6.1. Positivity. Lemma 6.1. Let B ⊂ Z be such that 1 B ∈ A and let f be the continuous function on X associated to this set:

f (T n x 0 ) = 1 B (n) .

Let m ≥ 1 be an integer and let h

ǫ , ∅ = ǫ ⊂ [m], be 2 m -1 nonnegative bounded measurable functions on Z. Assume that ∅ =ǫ⊂[m] h ǫ (x ǫ ) dν (m) e (x) > 0 and that Z \ B is not a PW-Nil d Bohr 0 . Then f (x {m+1} ) • ǫ⊂[m+1] ǫ =∅,{m+1} h ǫ∩[m] (x ǫ ) dν (m+1) e (x) > 0 . Proof. By Proposition 4.3, ǫ⊂[m+1] ǫ =∅,{m+1} h ǫ∩[m] (x ǫ ) dν (m+1) e,e (x) > 0 . For z ∈ Z, define H(z) = ǫ⊂[m+1] ǫ =∅, ǫ ={m+1} h ǫ∩[m] (x ǫ ) dν (m+1) e,z ( 

x) .

We have that δ := H(e) > 0 and, by Proposition 4.2, H is continuous on Z d . Therefore, the subset

Λ = {n ∈ Z : H(T n e) > δ/2} is a Nil d Bohr-set.
By the same proposition,

f(x {m+1} ) • ǫ⊂[m+1] ǫ =∅,{m+1} h ǫ∩[m] (x ǫ ) dν (m+1) e = f (z)H(z) dν(z) . By Proposition 3.3, this last integral is equal to lim Av I f (T n x 0 )H(T n e) ≥ δ 2 limsup j 1 |I j | |Λ ∩ B ∩ I j | .
If this limsup is equal to zero, then there exist arbitrarily long intervals J ℓ such that Λ ∩ B ∩ J ℓ = ∅ and thus the set Z \ B contains Λ ∩ J ℓ for all ℓ. Therefore Z \ B is a PW-Nil g Bohr-set, hence a contradiction. 

∅ =ǫ⊂[m] f (x ǫ ) dν (m) e (x) > 0 . (18) 
Proof. We remark first that f dµ > 0. Indeed, if this integral is zero, then the density of the set B in the intervals I j converges to 0 and Z \ B contains arbitrarily long intervals, a contradiction. We show (18) by induction. We have that ν

e = δ e × ν and thus f (x 1 ) dν

d e (x) = f dν = f dµ > 0 .

Assume that (18) holds for some m ≥ 1. Then Lemma 6.1 applied to h = f shows that it holds for m + 1.

6.2. And now we gather all the pieces of the puzzle. Recall that if E is a finite subset of N, S(E) is the set consisting in all sums of distinct elements of E (the empty sum is not considered). A subset

A of Z is a S * m -set if A ∩ S(E) = ∅ for every subset E of N with m elements.
We prove Theorem 2.6:

Theorem. Let A be a S * d+1 set. Then A is a PW-Nil d Bohr-set. Proof. Let B = Z \ A, A a subalgebra of ℓ ∞ (Z) containing 1 B
and X, µ, I, . . . are as above. The continuous function f on X is associated to 1 B and we use the same notation as above.

Assume that A is not a PW-Nil d Bohr-set. By Corollary 6.2,

∅ =ǫ⊂[d+1] f(x ǫ ) dν (d+1) e (x) > 0
and by Proposition 5.4, this integral is equal to the iterated limit of the averages in n = (n 1 , . . . , n d+1 ) of

∅ =ǫ⊂[d+1] f (T n•ǫ x 0 ) .
This product is nonzero if and only if S({n 1 , . . . , n d+1 }) ⊂ B. But the complement A of B in Z is a S * d+1 -set (recall that the n i belong to some of the intervals I j ), and so this can not happen.

Proof of Theorem 2.10

We now prove Theorem 2.10 (recall that Theorem 2.8 is a particular case of this theorem):

Theorem. Every SG * d -set is a PW-Nil d Bohr 0 -set. 7.
1. The method. The proof is by contradiction. In this section, d ≥ 1 is an integer and A is a subset of the integers. We assume that A is not a PW-Nil d Bohr 0 -set and by induction, we build an infinite sequence P = (p j : j ≥ 1) such that A ∩ SG d (P ) = ∅.

Let A be a subalgebra of ℓ ∞ (Z) containing 1 A and let X, µ, . . . and the sequence of intervals I = (I j : j ≥ 1) be as in Sections 3.4 and 3.5. We have the same conventions as in the preceding section for the intervals I j .

We write B = Z \ A and let f be the continuous function on X associated to 1 B (see Section 3.4):

f (T n x 0 ) = 1 if n ∈ B ; 0 otherwise.
As in Section 6, we simplify the notation: we write Z instead of Z d , ν instead of µ d , and e instead of e d . If f is a function on X, f = E(f | Z).

In this section, it is more convenient to index points of X [d] by {0, 1} d instead of by P([d]). Thus a point x ∈ X [d] is written x = (x ǫ : ǫ ∈ {0, 1} d ).

For every j ≥ 1, by induction we build 2 d -1 continuous nonnegative functions h We start by setting all of the functions h (0) ǫ , 00 . . . 0 = ǫ ∈ {0, 1} d , to be equal to f . By Corollary 6.2 applied with m = d and rewritten in the current notation, we have that property (19) is satisfied for i = 0. 7.2. Iteration. Assume j ≥ 1 and that property (19) is satisfied for j -1.

By Proposition 4.3, ǫ∈{0,1} d+1 ǫ =00...0,ǫ =00...01 h (j-1) ǫ 1 ...ǫ d (x ǫ ) dν (d+1)

e,e (x) > 0 .

By Lemma 6.1, rewritten in our current notation, we have that f (x 00...01 ) • ǫ∈{0,1} d+1 ǫ =00...0,ǫ =00...01 h (j-1) ǫ 1 ...ǫ d (x ǫ ) dν (d+1) e (x) > 0 .

For convenience, we write h The averages in p over the intervals I of this expression converge to the limit (20), which is positive. Thus there exists some p (belonging to some I i ) such that this expression is positive. Choosing p j to be this p, for 00 . . . 0 = ǫ ∈ {0, 1} d , we define h (j) ǫ = g p j ,ǫ = h (recall that h We have the inductive relations φ 0,k = f for 1 ≤ k ≤ d ; φ j-1,1 (T p j x 0 ) > 0 ; for 1 ≤ k < d, φ j,k = φ j-1,k+1 • T p j φ j-1,1 ; φ j,d = f • T p j φ j-1,1 .

By induction, φ j,1 ≤ φ j,2 ≤ • • • ≤ φ j,d ≤ f . Moreover, we deduce the following relations between the functions φ j,1 :

for 1 ≤ j < d, φ j,1 = f • j k=1 T p j-k+1 φ j-k,1

for j ≥ d, φ j,1 = f • d k=1 T p j-k+1 φ j-k,1 .

For every j, there is a finite set E j of integers with φ j,1 = q∈E j T q f . We have that E 0 = {0} and the E j satisfy that relations for 1 ≤ j < d, E j = {0} ∪ (E j-1 + p j ) ∪ (E j-2 + p j-1 ) ∪ . . . ∪ (E 0 + p 1 ) , for j ≥ d, E j = {0} ∪ (E j-1 + p j ) ∪ (E j-2 + p j-1 ) ∪ . . . ∪ (E j-d + p j-d+1 ) .

By induction, E j consists in all sums of the form ǫ 1 p 1 + • • • + ǫ j p j where ǫ i ∈ {0, 1} for all i, and, after the first occurrence of 1, there can be no block of d consecutive 0's. By induction, each function φ j,1 only takes on the values of 0 and 1 and corresponds to a subset B j of the integers and we have

B j = q∈E j (B -q) .
For every j, since φ j-1,1 (T p j x 0 ) > 0, we have that p j ∈ B j-1 and thus that E j-1 + p j ⊂ B.

We conclude that all sums of the form ǫ 1 p 1 +• • •+ǫ k p k with ǫ i ∈ {0, 1} for all i belong to B, provided the ǫ i are not all equal to 0 and that the blocks of consecutive 0's between two 1's have length < d. In other words, B ⊃ SG d ({p j : j ≥ 1}) and we have a contradiction.

We note that at each step in the iteration, we have infinitely many choices for the next p. In particular, we can take the p j tending to infinity as fast as we want. More interesting, in the construction we can choose a different permutation of coordinates at each step. This gives rise to different, but related, structures, which do not seem to have any simple description.
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  If A ⊂ Z, the upper Banach density d * (A) is defined to be limsup bn-an→∞ |A ∩ [a n , b n ]| b na n .

Theorem 2 .

 2 10. Every SG * d -set is a PW-Nil d Bohr 0 -set. If |P | = d + 1, then SG d (P ) = S(P ) and thus Theorem 2.10 generalizes Theorem 2.6.

Question 2 .

 2 11. Is every Nil d Bohr 0 -set an SG * d -set? As our characterizations of the sets SG d and the class SG * d are complicated, we ask the following: Question 2.12. Find an alternate description of the sets SG d and of the class SG * d .

3. 4 . 3 .

 43 Notation. In the sequel, when a = (a n : n ∈ Z) is a bounded sequence, we write lim Av n,I a n = lim j→+∞ 1 |I j | n∈I j a n if this limit exists, and set limsup Av n,I a n = limsup j→+∞ 1 |I j | n∈I j a n .

  ν, T ) be an inverse limit of k-step nilsystems and let p : X → Y be a factor map. Then ν(m) e is the image of µ (m) e under p [m] : X [m] → Y [m] . d) Let (Y,ν, T ) be the (m -1)-step factor of X and p : X → Y be the factor map. Then the measure µ (m) e is relatively independent with respect to ν (m) e , meaning that when f

  is easy to check that G (m) e is spanned by the connected component of its identity and the elements τ [m] i , 1 ≤ i ≤ m. Moreover, by using the above description of G (m) e , it is not difficult to check that the action induced by T [m] i , 1 ≤ i ≤ m on the compact abelian group G e is ergodic. By a classical criteria [8], the action of the transformations T [m] i on X (m) e is ergodic and thus minimal. In particular, X (m) eis the closed orbit of the point e[m] under these transformations. This proves a).We now prove d). The (m -1)-step nilfactor (Y, ν, T ) of (X = G/Γ, µ, T ) is Y = G/ΓG m endowed with its Haar measure.For every ǫ ⊂ [m] with ǫ = ∅ and every w ∈ G m , we have w {ǫ} ∈ G (m) e and thus the Haar measure µ

Proposition 4 . 2 .

 42 For each x ∈ X, there exists a measure µ (m) e,x , concentrated on X (m) e,x , such that i) The image of µ (m) e,x under each projection

  • e [m] = X (m)e,e . It follows that Γ(m) e,e := Γ[m] ∩ G (m) for the Haar measure of this nilmanifold. Let F = {ǫ ⊂ [m] : m ∈ ǫ}. We recall that for g ∈ G, g F ∈ G (m) is defined by(g F ) ǫ = g if m ∈ ǫ 1 otherwise.By definition of the sets X is normal in G (m) , the image of the measure µ (m) e,e under g F is invariant under G (m) e,e . Moreover, if g, h ∈ G satisfy g • e = h • e, then we have that g = hγ for some γ ∈ Γ. Since γ F • e [m] = e [m] and by normality of G (m) e,e again, the measure µ (m) e,e is invariant under γ F and thus the images of µ (m)

  we have that g ′ and g ′′ belong toG (m) e ; in other words, G define G (m) * = {g ∈ G (m) e : (1 [m] , g) ∈ G (m+1)

  the image of ν x under translation by g is equal to ν g•x .

  this measure is invariant under G (m+1) e,e . Since it is supported on X (m+1) e,e , it is equal to the Haar measure µ (m+1) e,e of this nilmanifold. The claim is proven.

  of µ (m-r) e under ∆ m,r . (13) Recall that X (m-r) e is the closed orbit of e [m-r] under the transformations T [m-r] i for 1 ≤ i ≤ m-r and that µ (m-r) e

j≤

  Av p∈I j A ′ (m, p) ≤ δ + C Φ m I,k+1 for every m. Therefore Iter limsup Av I,n 1 ,...,nr A(n) Iter limsup Av I,n 1 ,...,n r-1 lim j Av p∈I j A ′ (m, p) ≤ δ + C Iter limsup Av I,m 1 ,...,m r-1 Φ m I,k+1 ≤ δ + C Iter limsup Av I,m 1 ,...,m r-1 Φ m

ǫ

  , 00 . . . 0 = ǫ ∈ {0, 1} d , on X satisfying (19)

  ǫ∈{0,1} d ǫ =00...0 h (j) ǫ (x ǫ ) dν (d) e (x) > 0 .

(j- 1 )

 1 00...0 = f and rewrite this equation as (20) ǫ∈{0,1} d+1 ǫ =00...0 h (j-1) ǫ 1 ...ǫ d (x ǫ ) dν (d+1) e (x) > 0 .By Proposition 5.4, this last integral is the iterated limit of the averages for n = (n 1 , . . . , n d+1 ) of ǫ∈{0,1} d+1 ǫ =00...0h (j-1) ǫ 1 ...ǫ d (T n•ǫ x 0 ) .We make a change of indices, writing elements of Z d+1 as (p, n 1 , . . . , n d ) and setting n = (n 1 , . . . , n d ). Elements of {0, 1} d+1 are written as ηǫ 1 . . . ǫ d with η ∈ {0, 1} and we set ǫ = ǫ 1 . . . ǫ d . The last product becomes:h (j-1) 100...0 (T p x 0 ) ǫ∈{0,1} d ǫ =00...0 h (j-1) 0ǫ 1 ...ǫ d-1 • T p h (j-1) 1ǫ 1 ...ǫ d-1 (T n•ǫ x 0 ) .For ǫ ∈ {0, 1} d , ǫ = 00 . . . 0, and for p ∈ Z, setg p,ǫ = h (j-1) 0ǫ 1 ...ǫ d-1 • T p h (j-1) 1ǫ 1 ...ǫ d-1and rewrite the last expression ash (j-1) 100...0 (T p x 0 ) ǫ∈{0,1} d ǫ =00...0 g p,ǫ (T n•ǫ x 0 ) .By Proposition 5.4 again, the iterated limit of the averages in n 1 , . . . , n d converges toh (j-1) 100...0 (T p x 0 ) ǫ∈{0,1} d ǫ =00...0 E g p,ǫ | Z d-1 (x ǫ ) dµ .0 (T p x 0 ) ǫ∈{0,1} d ǫ =00...0 g p,ǫ (x ǫ ) dµ (d) e (x)because the measure µ (d) e is relatively independent with respect to µ (m) d-1 e (see Proposition 4.1, part (d)).

1

 1 ...ǫ d-1 • T p j h (j-1) 1ǫ 1 ...ǫ d-1

(j- 1 )

 1 00...0 = f ). Since (19) is valid with h .0 (T p j x 0 ) > 0 . 7.2.1. Interpreting the iteration. By induction, it follows that for every j ≥ 0, the functions h j,ǫ , 00 . . . 0 = ǫ ∈ {0, 1} d , only depend on the first nonzero digit of ǫ:h j,ǫ = φ j,k if ǫ 1 = • • • = ǫ k=1 = 0 and ǫ k = 1 .

The theory of representations does not help us, as the interesting representations of a nilpotent Lie group are infinite dimensional.

We are forced to use different notation from that in[START_REF] Host | Nonconventional ergodic averages and nilmanifolds[END_REF], as otherwise the proliferation of indices would be uncontrollable.
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