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On Galilean Isometries

Christian DUVAL*

Centre de Physique Théorique CNRS, Case 907

F–13288 MARSEILLE Cedex 9, FRANCE

(Christian.Duval@cpt.univ-mrs.fr)

We introduce three nested Lie algebras of infinitesimal ‘isometries’ of a Galilei space-

time structure which play the rôle of the algebra of Killing vector fields of a relativistic

Lorentz spacetime. Non trivial extensions of these Lie algebras arise naturally from the

consideration of Newton-Cartan-Bargmann automorphisms.

0. Introduction

Quite recently, Carter and Khalatnikov [CK] have pointed out that a geometric four-

dimensional formulation of the non relativistic Landau theory of perfect superfluid dy-

namics should involve not only Galilei covariance but also, more significantly as far as

gravitational effects are concerned, covariance under a larger symmetry group which they

call the Milne group after Milne’s pioneering work in Newtonian cosmology [Mi].

The purpose of this note is to show that the degeneracy of the Galilei ‘metric’

[Ca,Tra,Kü] allows for a certain flexibility in the definition of spacetime ‘isometries’.

More precisely, three different nested Lie algebras of spacetime vector fields naturally arise

as candidates for Newton-Cartan symmetry algebras, one of them being the newly high-

lighted Milne algebra. This is reviewed in section 1 in a simple algebraic way.

Section 2 is devoted to a detailed study of the various extensions of these isometries

in the framework of Newton-Cartan-Bargmann structures associated with a Newtonian

principle of general covariance that goes back to Cartan. These nested Lie algebras actu-

ally embody the Bargmann algebra which generates the fundamental symmetry group of

massive, either classical or quantum, non relativistic isolated systems.

* CPT-CNRS and Université d’Aix-Marseille II
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1. Coriolis, Galilei and Milne algebras

Let us recall that a Newton-Cartan (NC) structure [Kü] for spacetime, (M, γ, θ,Γ),

consists of a smooth manifold M of dimension n+ 1, a 2-contravariant semi-positive sym-

metric tensor field γ = γab ∂a ⊗ ∂b (a, b = 0, 1, . . . , n) whose kernel is spanned by the time

1-form θ = θa dx
a; also Γ is a torsion-free linear connection compatible with γ and θ. Now

such a connection is far from being uniquely determined by the Galilei structure (M, γ, θ),

therefore Newtonian connections are furthermore subject to the nontrivial symmetry of

the curvature R b d
a c = R d b

c a (where R b d
a c ≡ γbk R d

akc ) which may be thought of as part of

the gravitational field equations [DK].

The standard example of a NC structure is given by M ⊆ R × Rn together with

γ =
∑n

A=1 ∂A ⊗ ∂A and θ = dx0; the nonzero components of the connection ΓA
00 = ∂Aφ

(A = 1, . . . , n) accomodate the Newtonian scalar potential φ.

The flat NC structure corresponds to the trivial case Γ c
ab ≡ 0.

i) Coriolis algebra

The vector fields X = Xa ∂a on M that satisfy

(1) LXγ
ab = 0, LXθa = 0

form an infinite-dimensional Lie algebra called the Coriolis algebra cor(M, γ, θ). Notably

enough, these vector fields do not Lie-transport the Newtonian connection; nevertheless,

a somewhat tedious calculation, using the above mentioned prescribed symmetry of the

curvature, shows that

(1′) LXΓabc = 0

where Γabc ≡ γakγbℓΓ c
kℓ .

In the standard case one finds

(2) XA = ω(t)A
B x

B + ̺(t)A, X0 = τ

where ω (resp. ̺) is some so(n) (resp. Rn) valued function of time t = x0 and τ ∈ R

an infinitesimal time translation. Coriolis vector fields generate the so called ‘accelerated

frames’ transformations.
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ii) Galilei algebra

The affine Coriolis vector fields X , viz

(3) LXγ
ab = 0, LXθa = 0, LXΓ c

ab = 0

form the Galilei Lie algebra gal(M, γ, θ,Γ) of our Newton-Cartan structure. This algebra

has maximal dimension (n+ 1)(n+ 2)/2.

In the flat case we obtain

(4) XA = ωA
B x

B + βA t+ σA, X0 = τ

with (ω, β) ∈ se(n) and (σ, τ) ∈ Rn+1.

This general definition, originally due to Trautman [Tra], provides a clearcut geo-

metrical status for the fundamental symmetries of Galilean classical mechanics and field

theory.

iii) Milne algebra

Interestingly, there exists a less familiar intermediate algebra, namely the infinite-

dimensional Lie algebra of those vector fields X such that

(5) LXγ
ab = 0, LXθa = 0, LXΓ bc

a = 0

where Γ bc
a ≡ γbkΓ c

ak . We will call it the Milne algebra mil(M, γ, θ,Γ).

In the standard case (which encompasses Newton-Milne cosmology [Mi]) we get

(6) XA = ωA
B x

B + ̺(t)A, X0 = τ

with the same notation as before.

These vector fields constitute a Lie algebra corresponding to the infinitesimal Milne

transformations introduced in [CK] which, indeed, admit the intrinsic definition given by

Eqs (5) for a general Newton-Cartan structure (M, γ, θ,Γ).
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2. Extending the Coriolis, Milne and Galilei algebras

It has been established [Kü] that any newtonian connection can be affinely decom-

posed according to Γ c
ab = UΓ c

ab + θ(aFb)kγ
kc where [Trü]

(7) UΓ
c

ab = γck
(
∂(a

Uγb)k − 1
2
∂k

Uγab

)
+ ∂(aθb) U

c

is the unique NC connection for which the unit spacetime vector field U (i.e. θaU
a = 1) is

geodesic and curlfree, F being an otherwise arbitrary closed 2-form, locally

(8) Fab = 2 ∂[aAb].

Here Uγ is uniquely determined by Uγakγ
kb = δb

a − U bθa and UγakU
k = 0.

As an illustration, standard NC structure corresponds to the gauge choice U = ∂/∂x0

and A = −φ θ.

So, NC strutures (M, γ, θ,Γ) are best represented by what we call Newton-Cartan-

Bargmann (NCB) structures (M, γ, θ, U, A) via the previous formulæ. Now, experience

suggests to think of a NCB structure as the sextuple (M, γ, θ, U, V, φ) where

(9) V a = Ua − γakAk

is an observer in rotation with respect to the ‘ether’ U [CK], while

(10) φ = 1
2
γkℓAkAℓ − AkU

k

is the Newtonian potential relative to V . Conversely, Ab = −UγbkV
k+

(
φ− 1

2
UγkℓV

kV ℓ
)
θb.

It must be emphasized that the ‘principle of general covariance’ has been be consis-

tently adapted from general relativity to the NCB framework [DK], the specific Newtonian

gauge group G = Diff(M) s© (Ω1(M)×C∞(M)) acting upon NCB structures according to

(11)




γ

θ

U

V

φ




7−→ A∗




γ

θ

U + γ(Ψ)

V + γ(dF)

φ+ V (F) + 1
2γ(dF , dF)



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where A∗ is the push-forward by A ∈ Diff(M), also Ψ ∈ Ω1(M) is a Galilei boost 1-form

and F ∈ C∞(M) a special Newtonian gauge. As expected, G does act on NC structures

via Diff(M) only

(12)



γ

θ

Γ


 7−→ A∗



γ

θ

Γ


 .

The infinitesimal action of the gauge group G on a NCB structure thus reads

(13) δ




γ

θ

U

V

φ




=




LXγ

LXθ

LXU + γ(ψ)

LXV + γ(df)

X(φ) + V (f)




where X ∈ Vect(M), ψ ∈ Ω1(M) and f ∈ C∞(M). The associated Lie algebra structure

is explicitly given by

(14)
[
(X,ψ, f), (X ′, ψ′, f ′)

]
=

(
[X,X ′], LXψ

′ − LX′ψ,X(f ′) −X ′(f)
)
.

i) The extended Coriolis algebra

By looking at the infinitesimal NCB gauge transformations such that

(15) δγ = 0, δθ = 0, δU = 0

we readily find a Lie algebra denoted by c̃or(M, γ, θ, U) that clearly consists of couples

(X, f) ∈ cor(M, γ, θ)×C∞(M) —the boosts are already fixed (modulo θ): ψ = Uγ([U,X ]).

The Lie brackets, inherited from Eq. (14), reduce hence to

(16)
[
(X, f), (X ′, f ′)

]
=

(
[X,X ′], X(f ′) −X ′(f)

)

and yield the semidirect product structure

(17) c̃or(M, γ, θ, U) = cor(M, γ, θ) s©C∞(M).
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ii) The extended Milne algebra

Likewise, the Lie algebra m̃il(M, γ, θ, U, V ) of all gauge transformations (13) such that

(18) δγ = 0, δθ = 0, δU = 0, δV = 0

is formed of pairs (X, ξ) with X ∈ mil(M, γ, θ,Γ) and ξ ∈ C∞(T ) where T ≡M/ ker(θ) is

the canonical time axis —the general solution of γ(df) = [V,X ] being of the form f = ξ+fX

with fX uniquely determined by the condition f0 = 0. The Lie brackets

(19)
[
(X, ξ), (X ′, ξ′)

]
=

(
[X,X ′], X(ξ′ + fX′) −X ′(ξ + fX) − f[X,X′]

)

therefore lead to the following non central extension

(20) 0 → C∞(T ) → m̃il(M, γ, θ, U, V ) → mil(M, γ, θ,Γ) → 0.

In the standard case and with the notation of section 1, the Lie brackets (X ′′, ξ′′) =[
(X, ξ), (X ′, ξ′)

]
read

(21)





ω′′ = ω′ω − ωω′

̺′′ = ω′̺− ω̺′ + τ ˙̺′ − τ ′ ˙̺

τ ′′ = 0

ξ′′ = τ ξ̇′ − τ ′ξ̇ + ̺ · ˙̺′ − ̺′ · ˙̺

with ω ∈ so(n), ̺ ∈ C∞(T,Rn), τ ∈ R and ξ ∈ C∞(T ).

iii) The extended Galilei algebra

At last g̃al(M, γ, θ, U, V, φ) defined as the stabilizer of a NCB structure, viz

(22) δγ = 0, δθ = 0, δU = 0, δV = 0, δφ = 0

consists of pairs (X, ξ) with X ∈ gal(M, γ, θ,Γ) and ξ ∈ R (the overall additive constant

in the solution f of df = (−X(φ) + Uγ(LXV, V ))θ− Uγ(LXV )). The Lie brackets given by

Eq. (19) still hold and, this time, we find a non trivial finite dimensional central extension

(23) 0 → R → g̃al(M, γ, θ, U, V, φ) → gal(M, γ, θ,Γ) → 0.
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In the case of flat spacetime we get, with the same notation as before, the centrally

extended Galilei algebra

(24)





ω′′ = ω′ω − ωω′

β′′ = ω′β − ωβ′

σ′′ = ω′σ − ωσ′ + β′τ − βτ ′

τ ′′ = 0

ξ′′ = σ · β′ − σ′ · β

i.e. the Lie algebra of the Bargmann group.
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