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This paper deals with control of transportation systems. We propose an approach based on dioid theory to compute timetables of a transportation network. We generalize the problem by considering additional constraints for the control objective.

INTRODUCTION

The functioning of Discrete Event Dynamic Systems (DEDS) subject to synchronization and delay phenomena can be described by linear models in a particular algebraic structure called dioid. A linear system theory has been developed over dioids by analogy with conventional theory [START_REF] Baccelli | Synchronization and Linearity[END_REF].

Many transportation systems can be described as a DEDS. As in [START_REF] Goverde | The max-plus algebra approach to transportation problems[END_REF], [START_REF] De Vries | On max-algebraic models for transportation networks[END_REF] and [START_REF] Nait-Sidi-Moh | Contribution à la modélisation, à l'analyse et à la commande des systèmes de transport public par les réseaux de Petri et l'algèbre[END_REF], we consider transportation networks as (max, +)systems where state variables represent departure times of vehicles at some stations ((max, +) algebra is an example of dioid).

We are here interested in the control of these particular systems. In normal conditions, the control of urban transportation systems is realized by the timetables. They are defined at each stop to specify times at which buses should theoretically run. They are used to inform passengers and, at particular stops, to synchronize vehicles. In [START_REF] Houssin | Modelling and control of urban bus networks in dioids algebra[END_REF], a solution has already been proposed in which timetables was subject to two kinds of constraints.

In this paper, we generalize the problem of timetable computation by considering additional constraints for the control objective. More precisely, we can consider any constraint which can be expressed by an implicit inequality over the system state. For example, it is possible to specify for a given stop, with this formalism: a desired number of departures in an interval of given dates, a minimum and/or a maximum time separation between two departures, or a critical time constraint on a path of the system. The problem is formulated as an extremal fixed point computation. An iterative method is proposed to solve it.

PRELIMINARIES

Dioid theory

A dioid (D, ⊕, ⊗) is an idempotent semi-ring with neutral elements denoted ε and e (Baccelli et al., 1992, §4). A dioid is said to be complete if it is closed for infinite sums and if product distributes over infinite sums too. The sum of all its elements is generally denoted ⊤ (for top).

Example 1. The set Z max endowed with the max operator as sum and the classical sum as product is a complete dioid in which ε = -∞, e = 0 and ⊤ = +∞. Set Z min = (Z ∪ {-∞} ∪ {+∞}, min, + ) is also a complete dioid in which ε = +∞, e = 0 and ⊤ = -∞.

Due to the idempotency of the sum, a dioid is endowed with a partial order relation, denoted , defined by the following equivalence: a b ⇔ a = a ⊕ b. The notation a ≺ b defines a b and a = b. A complete dioid has a structure of complete lattice, i.e., two elements in a complete dioid always have a least upper bound, namely a ⊕ b, and a greatest lower bound denoted a ∧ b = {x|x a, x b} x.

Representation of DEDS in dioids

Dioid algebra enables to model DEDS which involve synchronization phenomena. The behavior of such systems can be represented by some discrete functions called dater functions. More precisely, a discrete variable x(•) is associated to an event labeled x. This variable represents the occurring of event x. The numbering conventionally begins at 0: x(0) corresponds to the date of the first occurrence of x. These variables are extended towards negative values by: x(k) = -∞ = ε for k < 0 such that they can be manipulated as mappings from Z to Z max .

The considered DEDS can be modeled by a linear state representation

x(k) = Ax(k -1) ⊕ Bu(k), y(k) = Cx(k), (1) 
where x, u and y are the state vector, the input vector and the output vector respectively.

The initial sate of a system is defined by a vector v(k) added to the dynamic equation as follows:

x(k) = Ax(k -1) ⊕ Bu(k) ⊕ v(k).
More precisely, v i (k) for 0 ≤ k < k di represents the earliest occurring dates of initial events. To be manipulated as a dater, each variable v i is extended such that:

v i (k) = ε for k < 0 and v i (k) = v i (k di -1) for k ≥ k di .
We say that initial conditions are canonical if ∀k ∈ Z, v(k) = ε and the dynamic behavior of the system then obeys to state equation (1). Index k di denotes the first occurrence of event x i induced by inputs (this definition of initial conditions is more detailed in (Baccelli et al., 1992, §5.4.4.1)). The notion of characteristic number introduced in [START_REF] Boimond | Internal Model Control and Max-Algebra: Controller Design[END_REF] enables to calculate this index.

Definition 1. (characteristic number). Let [A] i be the i-th row of matrix A, the characteristic number associated with the state variable x i of a model described by (1), if it exists, is the least integer, noted

k di , such that [A k d i ] i B = ε.
The characteristic number k di corresponds to the event shift between inputs and a state x i . Let us define now the event shift between a state x i and an output y j . We define it, if it exists, as the least integer k fji , such that

C j [A k f ji ] i = ε (notation [A] i indicates the i-th column of A).
The γ, δ-transform enables to manipulate formal power series, with two commutative variables γ and δ, representing daters trajectories. The set of these formal series is a complete dioid denoted M ax in γ, δ . In the following, we denote x the corresponding element of {x(k)} k∈Z in M ax in γ, δ . The support of a series x is defined as Supp(x) = {k ∈ Z|x(k) = ε}.

In M ax in γ, δ , state representation (1) becomes

x = Ax ⊕ Bu, y = Cx, (2) 
in which entries of matrices are elements of M ax in γ, δ . In accordance with the earliest functioning rule (an event occurs as soon as possible), we select the least solution of the first equation in (2) which is given by x = A * Bu with A * = i∈N A i . Consequently we have y = Hu, in which H = CA * B is called the transfer matrix.

Residuation theory

Let us consider mappings defined over complete dioids. Such a mapping f :

D → C is said to be isotone if a, b ∈ D, a b ⇒ f (a) f (b). Moreover f is lower-semicontinous (l.s.c.) if ∀a, b ∈ D, f (a ⊕ b) = f (a) ⊕ f (b).
Residuation theory [START_REF] Blyth | Residuation Theory[END_REF] defines "pseudoinverses" for some isotone mappings defined over ordered sets such as complete dioids [START_REF] Baccelli | Synchronization and Linearity[END_REF]. More precisely, if the greatest element of set {x ∈ D|f (x) b} exists for all b ∈ C, then it is denoted f ♯ (b) and f ♯ is called residual of f . Theorem 1. (Baccelli et al., 1992, th. 4.50) Let f : D → C be an isotone mapping, the following statements are equivalent:

(i) f is residuated, (ii) f is l.s.c. and f (ε D ) = ε C , (iii) there exists a unique mapping f ♯ such that f • f ♯ Id C and f ♯ • f Id D .
Theorem 2. (Baccelli et al., 1992, th. 4.56) Let

f : D → C and g : C → B. If f and g are residuated then g • f is residuated and (g • f ) ♯ = f ♯ • g ♯ .
Example 2. The valuation val(x) of a series x ∈ M ax in γ, δ is defined by (Baccelli et al., 1992, definition 5.19):

val : M ax in γ, δ -→ Z min x -→ val(x) = M in(Supp(x)).
As an example, we have val(γ 3 δ 1 ⊕ γ 5 δ 2 ) = 3.

Proposition 1. Mapping val is residuated and its residual is val ♯ (x) = γ x δ * .

Proof : Mapping val is l.s.c. and val(ε) = ε (see (Baccelli et al., 1992, lemma 4.93)). According to item (ii) of theorem 1, it is then residuated.

We check that the proposed residual satisfies item (iii) of theorem 1:

val • val ♯ (x) = val(γ x δ * ) = x val ♯ • val(x) = γ val(x) δ * x.
Example 3. Let P r a : M ax in γ, δ → M ax in γ, δ defined by: P r a : x -→ P r a (x) = P r a (

(n,t)∈Z 2 x(n, t)γ n δ t ) (n,t)∈Z 2 x a (n, t)γ n δ t , in which x a (n, t) = x(n, t) if t ≥ a, ε otherwise.
Given a series x ∈ M ax in γ, δ , the mapping P r a (x) consists in preserving the monomials of x whose exponents in δ are greater than or equal to a. As an example, we have P r 3 (γ

1 δ 2 ⊕ γ 3 δ 3 ⊕ γ 4 δ 5 ) = γ 3 δ 3 ⊕ γ 4 δ 5 .
Proposition 2. The mapping P r a is residuated and its residual is P r ♯ a (y) = y ⊕ (γ -1 ) * δ a-1 .

Proof : According to item (iii) of theorem 1, we check that P r a •P r ♯ a (y) y and P r ♯ a •P r a (y) y: P r a • P r ♯ a (y) = P r a (y ⊕ (γ -1 ) * δ a-1 ) = P r a (y) y P r ♯ a • P r a (y) = P r ♯ a (P r a (y)) = P r a (y) ⊕ (γ -1 ) * δ a-1 y

Greatest fixed point of mappings defined over dioids

We denote

F f = {x|f (x) = x} (resp. P f = {x|f (x)
x}) the set of fixed points (resp. the set of post-fixed points) of an isotone mapping f defined over a complete dioid D. We recall that P f has a complete lattice structure (Baccelli et al., 1992, th 4.72). Tarski's theorem [START_REF] Tarski | A lattice theorical fixed point theorem and its applications[END_REF] states that an isotone mapping defined over a complete lattice admits at least one fixed point. Moreover, it can be shown that the greatest fixed point coincides with the greatest element of P f :

Sup P f = Sup F f and Sup F f ∈ F f . (3)
In the following proposition, we specify to dioids a well known method to compute greatest fixed point of isotone mappings defined over lattices.

Proposition 3. If the following iterative computation

y 0 = ⊤ y k+1 = f (y k ) ∧ y k (4)
converges in a finite number k e of iterations, then y ke is the greatest fixed point of f .

OPTIMAL CONTROL

The principle of the proposed control can be summarized in three items:

⊲ The process verifies some initial conditions and some given final conditions. ⊲ State variables are subject to some constraints. ⊲ The control is "optimal" in the sense that it optimizes a chosen criterion.

Terminal conditions

We consider here canonical initial conditions. For each state variable x i , we defined its characteristic number (definition 1), i.e. the index k di of the first occurrence of x i generated by the inputs of the system.

In our framework, the given final state corresponds to the last occurrences of outputs that we want to control. From that goal, we can deduce the last occurrences of the state variables which have to be controlled. We denote k fy j (resp. k fi ) the last occurrence of event y j (resp. x i ) that we aim at controlling. The computation of this index is function of the shift event k fji between a state variable x i and an output y j of the system (cf. §2.2). The last occurrence of x i generating the last occurrence k fy j of output y j is given by k ′ fji = k fy jk fji . We then deduce that the last occurrence of x i to control is the one which generates the last desired occurrence for all outputs, so k fi = max(k ′ f1i , k ′ f2i , . . . , k ′ fpi ) for a p-outputs system.

Constraints

We consider constraints which can be formulated as an implicit inequality in x. These constraints are applied to an interval of occurrences for each concerned state variable. More precisely, for an event labeled x i , constraints are applied only for indices of occurrences included in interval [k di , k fi ]. Indeed, x i should not be constrained for indices less than k di since these are not induced by the inputs of the system (cf. §2.2). Furthermore, k fi corresponds to the index of the last occurrence of x i that we aim at controlling. In order to express these constraints in dioid M ax in γ, δ , in which we manipulate the whole trajectory of a dater {x i (k)} k∈Z as a formal power series x i , we use two vectors ω and ν:

x (g l (x) ∧ ω) ⊕ ν, for l ∈ {1, . . . , q}

in which ω (resp. ν) is a n-vector (n is the dimension of the state vector) with entries

ω i = γ k d i δ * (resp. ν i = γ k f i +1 δ * )
, and each g l , l = 1, 2, . . . , q, is a mapping from M ax in γ, δ n to M ax in γ, δ n modeling a constraint. Vectors ω and ν enable to relax constraints for the occurrences of events x i , i = 1, 2, . . . , n, whose indices are not included in [k di , k fi ].

Criterion

A relevant goal for the control of DEDS is to delay as much as possible the input events occurrences (i.e. to compute the greatest control vector u) while ensuring performances imposed by a specification (the specification corresponds here to terminal conditions and constraints). It corresponds to the just in time control problem which commonly aims at supplying the "right quantity" (the demand) at the "desired time" (date of the demand). Therefore, the considered criterion J is J = u. The optimal control is the one which maximizes J.

Synthesis

Considering the earliest functioning rule of the system, we obtain from (2) x = A * Bu and using the following notation g ′ l = A * B • \((g l (A * Bu) ∧ ω) ⊕ ν), the optimal control u is the greatest solution of inequalities :

u g ′ l (u), for l ∈ {1, . . . , q} (6) 
which is equivalent to find the greatest u satisfying

u g ′ 1 (u) ∧ . . . ∧ g ′ q (u) = f (u). ( 7 
)
Proposition 4. If the following iterative computation converges in a finite number k e of iterations

u 0 = ⊤ u k+1 = f (u k ) ∧ u k ,
then u ke is the control which both respects terminal conditions and constraints traduced by f (equation ( 7)) and optimizes the criterion J.

Proof : The set of controls u which satisfy the constraints is the set P f of post fixed points of f . The iterative computation defined in proposition 3, if it terminates, gives its greatest element Sup P f .

APPLICATION TO URBAN TRANSPORTATION NETWORKS

In this section, we first present a (max, +)-linear model for urban bus networks. The timetable synthesis problem [START_REF] Nait-Sidi-Moh | Contribution à la modélisation, à l'analyse et à la commande des systèmes de transport public par les réseaux de Petri et l'algèbre[END_REF]) is then decomposed as constraints on state vector. We solve it by applying the method introduced in section 3.

Modeling of a bus network

A transportation system can be modeled as a state representation in Z max by:

x(k) = Ax(k -1) ⊕ Bu(k), y(k) = Cx(k), (8) 
in which x(k) is a vector such as x i (k) denotes the departure time of the (k + 1)-th bus at stop i. Matrix A is defined such as A ij = a ij where a ij corresponds to the traveling time from stop j to stop i, A ij = ε otherwise. Travelling time a ij may correspond either to the time spent by a bus to run from stop j preceding stop i on the same line, or to the walking time between stops j and i belonging to different lines (a connexion between buses departing from j and arriving at i is then specified).

Vector y(k) corresponds to the vector of daters associated with stops considered as "strategic" (at which the level of service must be respected more particularly). The timetable is represented by input vector u(k), and variable u i (k) denotes the scheduled departure time of the (k+1)-th bus at stop i. In practice, synchronizations of buses with timetable occur only at particular stops of the network such as the beginning or the end of a line. Concerning the other stops, the timetable has only an indicative value. So, entries of matrix B are such as B ii = e if timetable must be respected at stop i, B ij = ε otherwise.

Timetable synthesis problem

We present here the timetable synthesis problem by decomposing it into several constraints on the state vector of the proposed model.

• In a first place, we define an expected level of service at strategic stops of the network. This quality is specified by a target vector denoted z(k) which contains the latest departure dates for buses at strategic stops. This constraint leads to :

C ⊗ x(k) z(k) for k di ≤ k ≤ k fi . (9)
• For each line, we define a maximum headway (i.e. the expected maximum time separation between two buses departures at a stop). Maximum headways enable to define a minimum departure frequency for each line. For stop i, this constraint can be written:

x i (k) = x i (k di ) for k = k di , x i (k) △ max i ⊗ x i (k -1) for k di < k ≤ k fi , ⇔ x i (k) △ max i ⊗ x i (k -1) ⊕ x i (k di ) (10) for k di ≤ k ≤ k fi ,
where k di and k fi are the bounds of the interval of indices that we want to control for event x i (cf. §3.1).

• Furthermore, minimum headways enable to avoid the natural tendency of transit vehicles to bunch up as soon as a bus is in late. For stop i, this constraint can be written

x i (k) △ min i ⊗x i (k-1) for k di ≤ k ≤ k fi . (11) 
Generally, a specific minimum headway is defined for each line.

• In the daytime, some rush hours appear. Origins of these peaks of charge can be different: intermodal connections or urban activities (school at home-time, factories closing time) but they are generally planned. In this case, it is wanted that one or several departure(s) occur(s) in an interval of given dates in order to quickly absorb peaks of charge. For stop i, we model this constraint by: ∃k ∈ [k di , k fi ], s.t.

x i (k) t j and

x i (k + s) ≺ t j + r, (12) 
in which s is the expected number of departure(s) at stop i during interval [t j , t j + r] in order to absorb the peak.

• At some stops of the network, we want to limit waiting times to achieve a quality of service or because of physical constraint (case of a stop located on a road shared with cars). We note φ max ji the sum of the traveling time from i to j with the maximum waiting time expected at stop i. This constraint can be formulated as:

x j (k) φ max ji ⊗ x i (k -1) for k dj ≤ k ≤ k fj .
(13)

Resolution

In order to apply results of section 3 to these systems, constraints have to be expressed as formal power series in dioid M ax in γ, δ such as (5). • Constraint ( 9) is traduced in M ax in γ, δ by : 10) can be formulated by inequality:

x (C • \z ∧ ω) ⊕ ν. • Constraint (
x

((γ△ max x ⊕ x d ) ∧ ω) ⊕ ν, in which △ max =   δ △ max 1 ε ε ε δ △ max 2 ε ε ε . . .   and x d is defined by x di = γ k d i δ xi(k d i
) . • In the same way, we model constraint (11) by

x (γ△ min • \x ∧ ω) ⊕ ν, in which △ min has an analogous structure to △ max .

• To formulate constraint (12) in M ax in γ, δ we use mappings P r a and val previously defined in §2.3. In order to point out at least one occurrence of event x i between dates t j and t j + r, we specify that the index of the first occurrence later than t j + r (i.e. for t ≥ t j + r + 1) must be strictly greater than the index of the first occurrence later than t j -1 (i.e. for t ≥ t j ).

val(P r tj +r+1 (x i )) ≺ val(P r tj (x i )) ⇐⇒ val(P r tj +r+1 (x i ))

1 ⊗ val(P r tj (x i )).

In order to require the occurring of at least s events, we use inequality: val(P r tj +r+1 (x i )) s ⊗ val(P r tj (x i )).

We recall that mappings val and P r a are both residuated. By using theorem 2, previous inequality can be rewritten:

x i P r ♯ tj +r+1 (val ♯ (s ⊗ val(P r tj (x i )))). • The γ, δ-transform of (13) leads to x ((φ max x) ∧ ω) ⊕ ν, in which φ max is defined as    φ max ll = e for l = j φ max ji = δ φ max ji φ max αβ = ε otherwise.
Constraints have then been modeled with respect to (5). With notations of §3.4, these inequalities are equivalent to the following inequality:

u g ′ 1 (u) ∧ g ′ 2 (u) ∧ . . . ∧ g ′ 5 (u) = f (u).
Finally, the problem comes down to finding the greatest u such that u f (u). If the iterative computation presented in proposition 4 converges in a finite number k e of iterations then u ke is the optimal timetables for stops at which synchronizations with timetables is respected. For the other stops (where timetables have only an indicative value), we deduce the scheduled departures times from a simulation of the system based on model (8) and u ke .

Example

We consider the urban transportation network represented on figure 1 and composed of two lines. It is assumed that stops x 2 and x 6 are respectively in connection with x 8 and x 10 .
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The dynamic behavior of the system is described by ( 8) with

A =            ε ε ε ε ε γ 6 δ 5 ε ε ε ε δ 5 ε ε ε ε ε ε δ 0 ε ε ε δ 3 ε ε ε ε ε ε ε ε ε ε δ 2 ε ε ε ε ε ε ε ε ε ε δ 2 ε ε ε ε ε ε ε ε ε ε δ 3 ε ε ε ε δ 0 ε ε ε ε ε ε ε ε ε γ 4 δ 2 ε ε ε ε ε ε δ 2 ε ε ε ε ε ε ε ε ε ε δ 4 ε ε ε ε ε ε ε ε ε ε δ 4 ε            , B = 
Id (timetable must be respected at each stop) and we define C in such a way that strategic stops are x 4 and x 8 :

C = ε ε ε e ε ε ε ε ε ε ε ε ε ε ε ε ε e ε ε .
Initial conditions of the system lead to vector ω such that ∀i, ω i = γ 0 δ * . We want 10 departures at stop y 1 = x 4 and 10 departures at stop y 2 = x 8 , then we obtain a vector ν s.t. ν i = γ 10 δ * .

The following constraints are specified: ✄ The sixth bus at stop x 4 , resp. the 10-th, must depart before 80, resp. 130 and the eighth bus at stop x 8 , resp. the 10-th, must depart before 60, resp. 100, then we have z 1 = γ 0 δ 80 ⊕ γ 6 δ 130 and z 2 = γ 0 δ 60 ⊕ γ 8 δ 100 , ✄ minimum headways correspond to △ min ii = δ 6 for 1 ≤ i ≤ 6 and △ min ii = δ 5 for 7 ≤ i ≤ 10, ✄ maximum time separation between buses is △ max ii = γ 0 δ 9 for 1 ≤ i ≤ 6 and △ max ii = γ 0 δ 7 for 7 ≤ i ≤ 10, ✄ a departure at stop x 2 must occur between dates 105 and 107 and a departure at stop x 6 must occur between dates 60 and 62, ✄ buses are not allowed to stop more than 2 time units at stop x 9 . Considering the travel time between x 8 and x 9 , we have φ 98 = δ 6 .

The iterative computation defined in prop. 4 converges in 10 iterations providing the following timetable.

k u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 

CONCLUSION

We have introduced a new method to compute just in time control for DEDS. Originality of this control is the possibility to take into account any constraint which can be expressed as an implicit inequality involving state vector. We apply this method to transportation systems, more particularly to the problem of timetable synthesis. The convergence of the iterative computation has ever since been proved and a real-life example has also been proposed in [START_REF] Houssin | Just-in-time control of constrained (max, +)linear systems[END_REF].