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Introduction

Linear system theory over dioids 1

Discrete Event Dynamic Systems (DEDS) involving
synchronization phenomena

developed by analogy with conventional theory

Applications

1 manufacturing systems

2 communication networks

3 transportation systems

1
F. Baccelli, G. Cohen, G. J. Olsder and J. P. Quadrat, Synchronization and Linearity, 1992, Wiley.
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Dioid theory

Dioid

A dioid (D,⊕,⊗) is a set endowed with two inner operations.

⊕ : commutative, associative, idempotent and admits a
neutral element ε

⊗ : associative, distributive with respect to the sum and
admits a neutral element e.

Order relation

The equivalence : a � b ⇔ a = a⊕ b defines a partial order
relation.
(D,⊕,⊗) is complete if it is closed for infinite sums and if
B ⊆ D

c ⊗ (
⊕
x∈B

x) =
⊕
x∈B

(c ⊗ x) and (
⊕
x∈A

x)⊗ c =
⊕
x∈A

(x ⊗ c).
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Dioid theory

Lattice structure

The order relation induces a lattice structure where a⊕ b is
the least upper bound of a and b.

A complete dioid is a complete lattice.
We denote > the greatest element of the complete dioid.

Example

Zmax = (Z ∪ {+∞,−∞},max ,+)
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Residuation theory2

Residuation

f is residuated ⇔ the greatest element of
set {x ∈ D|f (x) � b} exists
and is denoted f ](b)

f ] is called residual of f .

2
T. S. Blyth and M. F. Janowitz, Residuation theory,1972, Pergamon press
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Residuation theory2

Dual residuation

f is dually residuated ⇔ the least element of
set {x ∈ D|f (x) � b} exists

and is denoted f [(b)

f [ is called dual residual of f .

Example

Ta : x 7→ a⊕ x is dually residuated. The dual residual is
denoted T [

a(b) = b ◦− a.

2
T. S. Blyth and M. F. Janowitz, Residuation theory,1972, Pergamon press
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Fixed points of mappings defined over dioids

Notations

for f : D → C

fixed points Ff = {x |f (x) = x}
post-fixed points Pf = {x |f (x) � x}
pre-fixed points Qf = {x |f (x) � x}

Definitions

for f : D → C

f isotone a, b ∈ D, a � b ⇒ f (a) � f (b)
f antitone a, b ∈ D, a � b ⇒ f (a) � f (b)
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Fixed points of mappings defined over dioids

case of f isotone3

Theorem

Pf , Ff and Qf are complete lattices.

Theorem

Sup Pf = Sup Ff

Inf Qf = Inf Ff

3
A. Tarski, 1955, A lattice theorical fixed point theorem and its applications.
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Fixed points of mappings defined over dioids
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Fixed points of mappings defined over dioids

Proposition : greatest fixed point of an isotone mapping

If the following iterative computation

y0 = >
yk+1 = f (yk)

converges in a finite number ke of iterations, then yke is the
greatest fixed point of f .



Control of
(max, +)-linear

systems
minimizing delays

L. Houssin, S.
Lahaye, J.L.
Boimond

Introduction

Tools

Dioid

Residuation

Fixed points

Modelling DEDS

Representation

Causality

Controller
synthesis

Control problem
statement

Criterion and control
objective

Formalization

Feedback
computation

Example

Conclusion

11/23

Fixed points of mappings defined over dioids

case of f antitone

Remark

f antitone =⇒ f ◦ f = f 2 isotone.

Proposition

Pf is a complete lower semi-lattice. Qf is a complete upper
semi-lattice. No indication on the structure of Ff .

Proposition

Denoting u = Inf Ff 2 and v = Sup Ff 2 , we have u ∈ Pf and
v ∈ Qf .

Remark

Since ∀x � v , we have x ∈ Qf and any x ′ ∈ Ff is such that
u � x ′ � v , we can consider v as an approximation of a
minimal element of Qf .
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Fixed points of mappings defined over dioids

Back
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Fixed points of mappings defined over dioids
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Representation of TEG using dioids

Representation of TEG using dioids

I dater x(k) : date of the k + 1-st occurrence

I state representation :

{
x(k) = Ax(k − 1)⊕ Bu(k)
y(k) = Cx(k)

I γ, δ-transform x of a dater x(k) : x =
⊕
n∈Z

γnδx(n)

Max
in Jγ, δK : dioid of power series in γ, δ

I state representation in Max
in Jγ, δK :

{
x = Ax ⊕ Bu
y = Cx .

I input/output representation : y = CA∗B ⊗ u = H ⊗ u
H : transfer matrix
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Causality

Definitions

for x ∈Max
in Jγ, δK

x causal : all exponents of x are in N

no negative delay (no anticipation)

no negative event shift
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Causality

Proposition

x has no negative ⇔ there exists a least causal
exponent in γ approximation of x
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Control problem statement

Control structure

x = Ax ⊕ Fx ⊕ Bu

earliest functioning :x = (A⊕ F )∗Bu
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Criterion and control objective

Control criterion

delaying as less as possible the system

⇐⇒

finding the least feedback F

new criterion : Just-In-Time criterion exclusively
considered in previous (max ,+) works.

Control objective

Constraints on state of the system :

• minimum time separations : xi (k + 1) � ∆min xi (k)

• sojourn time bounds : xj(k + α)− xi (k) � τ

• limit number of tokens : κ � xi (t)− xj(t) + α
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Formalization

Control objective

x � φx ∀u

We seek the least controlled state x which satisfies

x � φx ⊕ Ax ⊕ Bu

we seek the least controlled state x , that is the least x
greater than the least solution : x � (A⊕ φ)∗Bu

(A⊕ F )∗Bu � (A⊕ φ)∗Bu ∀u
⇐⇒

(A⊕ F )∗B � (A⊕ φ)∗B
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Formalization

Proposition

each entry of (A⊕ φ)∗B has no ⇔ there exists a causal
negative exponent in γ feedback F

G : causal approximation of (A⊕ φ)∗B.

We then seek for the least F s.t.

(A⊕ F )∗B � G (1)



Control of
(max, +)-linear

systems
minimizing delays

L. Houssin, S.
Lahaye, J.L.
Boimond

Introduction

Tools

Dioid

Residuation

Fixed points

Modelling DEDS

Representation

Causality

Controller
synthesis

Control problem
statement

Criterion and control
objective

Formalization

Feedback
computation

Example

Conclusion

19/23

Formalization

Proposition

each entry of (A⊕ φ)∗B has no ⇔ there exists a causal
negative exponent in γ feedback F

G : causal approximation of (A⊕ φ)∗B.
We then seek for the least F s.t.

(A⊕ F )∗B � G (1)



Control of
(max, +)-linear

systems
minimizing delays

L. Houssin, S.
Lahaye, J.L.
Boimond

Introduction

Tools

Dioid

Residuation

Fixed points

Modelling DEDS

Representation

Causality

Controller
synthesis

Control problem
statement

Criterion and control
objective

Formalization

Feedback
computation

Example

Conclusion

20/23

Feedback computation

Proposition

Solutions of (1) are elements of Qf with
f : F 7→ G ◦− (A⊕ F )∗.

Sketch of proof

(A⊕ F )∗B � G
⇔ G ◦− (A⊕ F )∗ � F using dual residuation

of T(A⊕F )∗
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Feedback computation

Computation

mapping f is antitone ⇒ Qf is an upper semi-lattice.

Qf may have no least element nevertheless we can compute
v = Sup Ff 2 .
v can be used to approximate a minimal feedback satisfying
(1).
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Conclusion

Conclusion

Original control problem in (max ,+)-linear system theory :

new criterion : delaying as less as possible the system

new control objective : constraints on the state of the
system

Use of results concerning isotone and antitone mappings.
Feedback not necessarily minimal.

Future works

a minimal solution.

other feedback structures.
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