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A dioid (D, @, ®) is a set endowed with two inner operations.

@ : commutative, associative, idempotent and admits a
neutral element ¢

® : associative, distributive with respect to the sum and
admits a neutral element e.

Order relation

The equivalence : a = b < a = a® b defines a partial order
relation.

(D, @, ®) is complete if it is closed for infinite sums and if
BCD

co(@x)=DB(cex) and (Bx)@c=BKx®c)

xEB xEB XEA XEA
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Lattice structure

The order relation induces a lattice structure where a@® b is
the least upper bound of a and b.

A complete dioid is a complete lattice.

We denote T the greatest element of the complete dioid.

Zimax = (Z U {+00, —00}, max, +)

Dioid
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Residuation

Residuation theory?

Dual residuation

f is dually residuated < the least element of
set {x € D|f(x) = b} exists
and is denoted °(b)

" is called dual residual of f.

T, : x— a® x is dually residuated. The dual residual is
denoted T2(b) = b e a.

2
T. S. Blyth and M. F. Janowitz, Residuation theory,1972, Pergamon press
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Fixed points of mappings defined over dioids

for f : D—C

fixed points Fr = {x|f(x) = x}
post-fixed points Pr = {x|f(x) = x}
pre-fixed points Qr = {x|f(x) = x}

for f : D—C

f isotone a,beD, a<xb= f(a) = f(b)
f antitone a,beD, a=b= f(a) = f(b)
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A. Tarski, 1955, A lattice theorical fixed point theorem and its applications.
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case of f isotone3

Pr, Fr and Qf are complete lattices.

Sup Pr = Sup Fr

A. Tarski, 1955, A lattice theorical fixed point theorem and its applications.
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case of f isotone3

Pr, Fr and Qf are complete lattices.

T e Theorem

Sup Pr = Sup Fr

Inf Qf = Inf ]:f

A. Tarski, 1955, A lattice theorical fixed point theorem and its applications.
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Fixed points of mappings defined over dioids

Proposition : greatest fixed point of an isotone mapping

If the following iterative computation
yo = T
Yer1r = f(y)

converges in a finite number k. of iterations, then yj_ is the
greatest fixed point of f.
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Proposition

Pr is a complete lower semi-lattice. Qf is a complete upper
semi-lattice. No indication on the structure of Fr.

Fixed points

Proposition

Denoting u = Inf F¢ and v = Sup Fy2, we have u € Pr and
v € Qf.
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Remark

f antitone = f o f = f2 isotone.

Proposition

Pr is a complete lower semi-lattice. Qf is a complete upper
semi-lattice. No indication on the structure of Fr.

Fixed points

Proposition

Denoting u = Inf F¢ and v = Sup Fy2, we have u € Pr and
v € Qf.

Remark

Since Vx = v, we have x € Qr and any x’ € Fr is such that
u = x' < v, we can consider v as an approximation of a
minimal element of Q.




Control of
(max, +)-linear

systems
minimizing delays

Fixed points

Fixed points of mappings defined over dioids



Control of
(max, +)-linear

systems
minimizing delays

Fixed points

Fixed points of mappings defined over dioids



Control of
(max, +)-linear

systems
minimizing delays

Fixed points

Fixed points of mappings defined over dioids



Control of
(max, +)-linear

systems
minimizing delays

Fixed points

Fixed points of mappings defined over dioids



Control of
(max, +)-linear

systems
minimizing delays

Fixed points

Fixed points of mappings defined over dioids



Representation of TEG using dioids

Control of
(max, +)-linear
systems
minimizing delays

Representation of TEG using dioids

Representation




Representation of TEG using dioids

Control of
(max, +)-linear
systems
minimizing delays

Representation of TEG using dioids

» dater x(k) : date of the k + 1-st occurrence

Representation




Representation of TEG using dioids

Control of
(max, +)-linear

systems
minimizing delays

Representation of TEG using dioids

» dater x(k) : date of the k + 1-st occurrence
x(k) = Ax(k—1)® Bu(k)

tation > i
Represen state representation {y(k) — (k)




Representation of TEG using dioids

Control of
(max, +)-linear
systems
minimizing delays

Representation of TEG using dioids

» dater x(k) : date of the k + 1-st occurrence

.| x(k) = Ax(k-1)® Bu(k)
. —— > state representation : { VK) = Cx(k)
> ~,d-transform x of a dater x(k) : x = @7"5)((”)
neZ

MZ[v, 8] : dioid of power series in 7,0
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Representation of TEG using dioids

» dater x(k) : date of the k + 1-st occurrence

.| x(k) = Ax(k-1)® Bu(k)
. —— > state representation : { VK) = Cx(k)
> ~,d-transform x of a dater x(k) : x = @7"5)((”)
neZ
MZ[v, 8] : dioid of power series in 7,0
> state representation in M&¥[v, d] : { y i ?;@ Bu
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Representation of TEG using dioids

» dater x(k) : date of the k + 1-st occurrence

> state representation : { ;Eig B éﬁg:)_ 1) @ Bu(k)
> ~,d-transform x of a dater x(k) : x = @7"5)((”)
neZ

MZ[v, 8] : dioid of power series in 7,0

= Ax® Bu

= Cx.

> input/output representation : y = CA*\B@u=H®u
H : transfer matrix

> state representation in M&¥[v, d] : { y
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for x € M2, 4]

n

x causal : all exponents of x are in N

Causality m no negative delay (no anticipation)

® no negative event shift
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x has no negative < there exists a least causal
exponent in vy approximation of x

Causality
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Control problem
statement

Control problem statement

Control structure

x=Ax® Fx ® Bu

earliest functioning :x = (A® F)*Bu
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Criterion and control objective

Control criterion

delaying as less as possible the system
<~

finding the least feedback F

m new criterion : Just-In-Time criterion exclusively
considered in previous (max, +) works.

Control objective

Constraints on state of the system :
e minimum time separations : x;(k + 1) = Apnin xi(k)

e sojourn time bounds : xj(k + a) — x;(k) = T
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delaying as less as possible the system
<~

finding the least feedback F

m new criterion : Just-In-Time criterion exclusively
considered in previous (max, +) works.

Control objective

Criterion and control
objective

Constraints on state of the system :
e minimum time separations : x;(k + 1) = Apnin xi(k)

e sojourn time bounds : xj(k + a) — x;(k) = T

e limit number of tokens : k = x;(t) — xj(t) + a



Formalization

Control of
(max, +)-linear
systems
minimizing delays

We seek the least controlled state x which satisfies

X = ¢px D Ax ® Bu

Formalization




Formalization

Control of
(max, +)-linear

systems . .
minimizing delays Control Ob_]ecthe

X = ¢x Yu

We seek the least controlled state x which satisfies
X = ¢px D Ax ® Bu

we seek the least controlled state x, that is the least x
greater than the least solution :  x = (A® ¢)"Bu

(A© FY*Bu >
Formalization <—>
(A F)*B =

(A® ¢)*Bu Yu

(Ao ¢)B
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each entry of (A® ¢)*B hasno <& there exists a causal
negative exponent in y feedback F

G : causal approximation of (A& ¢)*B.
We then seek for the least F s.t.

(ADF)'B =G (1)

Formalization
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Feedback
computation

Feedback computation

Solutions of (1) are elements of Qf with
f:F—Ge (A®F)*".

Sketch of proof
(A@ F)*B =
& Ge (ADF) < using dual residuation
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Feedback
computation

Feedback computation

Computation

mapping f is antitone = Oy is an upper semi-lattice.

Qr may have no least element nevertheless we can compute
vV = Sup .7:,(2.

v can be used to approximate a minimal feedback satisfying

(1).
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Conclusion

Original control problem in (max, +)-linear system theory :

B new criterion : delaying as less as possible the system
m new control objective : constraints on the state of the
system
Use of results concerning isotone and antitone mappings.
Feedback not necessarily minimal.

® a minimal solution.

m other feedback structures.

Conclusion
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