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We study numerically the influence of contact angle on slow evaporation in 2D model porous 

media. For sufficiently low contact angles, the drying pattern is fractal and can be predicted 

by a simple model combining the invasion percolation model with the computation of the 

diffusive transport in the gas phase. The overall drying time is minimum in this regime and is 

independent of contact angle over a large range of contact angles up to the beginning of a 

transition zone. As the contact angle increases in the transition region, cooperative smoothing 

mechanisms of the interface become important and the width of the liquid gas interface 

fingers that form during the evaporation process increases. The mean overall drying time 

increases in the transition region up to an upper bound which is reached at a critical contact 

angle θc.  The increase in the drying time in the transition region is explained in relation with 

the diffusional screening phenomenon associated with the Laplace equation governing the 

vapor transport in the gas phase. Above θc the drying pattern is characterized by a flat 

traveling front and the mean overall drying time becomes independent of the contact angle. 

Drying time fluctuations are studied and are found to be important below θc, i.e. when the 

pattern is fractal.  The fluctuations are of the same order of magnitude regardless of the value 

of contact angle in this range. The fluctuations are found to die out abruptly at θc as the liquid 

gas interface becomes a flat front.  

                                                 
∗ Author for correspondence : prat@imft.fr 
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PACS number(s): 47.56+r. 

 

I. INTRODUCTION  

Prediction of evaporation from porous media is of interest for many environmental and 

industrial applications, such as the water exchange  between  soil and atmosphere,  drying of 

many products or the recovery of volatile hydrocarbons from underground oil reservoirs, to 

name only a few. In these applications, the liquid is generally wetting and drying can then be 

regarded as a drainage process, where the evaporating wetting liquid is replaced by a 

nonwetting gas.  This case has been the subject of many studies in recent years within the 

framework of pore–network models and invasion percolation theory, e.g. [1], [2] and 

references therein.  However, there are also important applications in which evaporation 

occurs in a hydrophobic porous medium. For example, buildings stones can be rendered 

hydrophobic in order to limit the salt weathering hazards due to the salt crystal formations 

resulting from evaporation, [3]. More generally, rendering the porous medium hydrophobic is 

often considered for reducing the evaporation from porous surfaces or soils. PEFCs (polymer 

electrolyte fuel cells) is another example in which evaporation, as well as other two-phase 

flow processes, takes place in partially hydrophobic (teflonized) porous (fibrous) layers. A 

proper understanding and modeling of two phase flows, including evaporation, in teflonized 

systems is needed in relation with the problem of water management of PEFCs, [4]. Yet, it is 

often considered that the wettability condition may change in time and this may be the cause 

of performance degradation.  Hence it is important to study the impact of wettability change 

on evaporation. Here we explore the case where the wettability condition, i.e. the contact 

angle, is uniform throughout the porous medium. The study of situations implying spatial 

variations of contact angle is left for future works.  As shown in [5] for the simpler process of 

mechanical quasi-static displacement, the invasion pattern changes from a fractal pattern to a 
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compact one as the contact angle rises. The compact pattern is obtained for contact angles 

greater than a critical angle θc. We are especially interested in the transition region right 

below θc where the invasion pattern changes significantly. We expect a similar pattern 

transition for the slow evaporation process considered in this paper.  

Experimentally, it is not obvious to study in details the effect of contact angle on drying 

pattern in the transition zone since it is no easy to impose at will a given value of θ. As shown 

in Figure 1, a partial illustration on the effect of contact angle can, however, be obtained from 

a simple drying experiment of a model porous made of a monolayer of 1mm glass beads 

randomly distributed and sandwiched between two glass plates. Without additional treatment, 

this leads to a contact angle θ ∼ 30-40° (measured in the liquid phase).   To obtain a much 

higher contact angle, the glass beads and the glass plates are rendered hydrophobic by 

silanization, a process which leads to a contact angle of the order of 105°-107°, [6]. The 

model is initially fully saturated by pure water. Vapor escapes through the four open lateral 

edges of model. The 8.8 cm long and 7.5 cm wide model is placed horizontally in a small 

transparent Plexiglas chamber of controlled temperature (22 ± 1oC ). The relative humidity in 

the chamber is stabilized using a LiCl saturated solution (RH =12 %) and the evolution of 

phase distribution within the porous medium is recorded using a CCD camera set above the 

chamber.  More details on this experiment can be found in [7].   For θ ∼ 30-40°,   one can 

observe in Figure 1 the highly ramified capillary fingerings and trapped liquid clusters typical 

of invasion percolation patterns as expected.  In contrast, the invasion pattern is much more 

compact with no trapping for θ ∼105°-107° and resembles the faceted pattern that will be 

shown bellow for θ=99°  (see Figure 7). In [8], we analyzed and compared the two regimes 

flanking the transition region. In the present effort, we concentrate on the transition region. 

This is made possible by taking into account in the simulations all the local mechanisms 

involved in the growth of the liquid-gas interface.    
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Throughout the text the wettability of the system is characterized by the contact angle 

θ measured in the dense phase, i.e. liquid water in the present context.  This contact angle can 

be interpreted as the receding contact angle since menisci recedes during invasion of pores as 

a result of evaporation.   As shown in a previous study, [8],  the change in wettability from a 

hydrophilic materials (θ << 90°) to a hydrophobic one (θ >>90°)  leads to a major change in 

terms of invasion pattern and therefore also in terms of evaporation rate. As in [8], we study 

this change and its impact on drying rates in the quasi-static limit, i.e. when the pressure 

evolution in the liquid phase is only due to capillary effects. The study is conducted for  a 

simple two dimensional (2D) model porous medium constructed by placing disks of random 

radii on a square lattice under the assumption of dilute concentration of water vapor in the gas 

phase (which is acceptable for evaporation at temperatures close to the ambient temperature). 

For convenience, the liquid is referred to as “water” throughout the text. It is obvious that the 

results are general and apply to other volatile liquids (under the condition of slow 

evaporation).  

As shown in previous works, e.g. [8], [9], [10] and references therein, liquid films can 

be a major transport mechanism in the drying of porous materials.  Liquid films in drying 

refer to “thick” films trapped by capillary effects in corners, grain contacts or surface 

roughness in the pores (as opposed to the thin films adsorbed by solid surface forces). For the 

not too small contact angles of interest in this study, it is, however, reasonable to neglect the 

effect of films, see [8] for more details. 

The paper is organized as follows. In Sec.II the model of drying developed to simulate 

the evaporation process in the two dimensional (2D) model porous medium is presented. The 

influence of contact angle on drying is discussed in Sec. III through the analysis of evolution 

of mean overall drying time and drying time statistical fluctuations with the contact angle.  

We close in Sec. IV by offering some concluding remarks.  
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II MODEL  

A. Model porous medium, transport mechanisms and external boundary condition 

For simplicity, we consider a situation where heat transfer can be neglected. This corresponds 

typically to evaporation of a not too volatile liquid, e.g. water, at the ambient temperature.  As 

in [5], we use a 2D array of disks with random radii (Figure 2). As shown in [5], a 

distinguishing advantage of this model is to allow for a full solution of the interface shape. In 

particular, it is possible to study in detail the influence of contact angle on the invasion pattern 

resulting from the evaporation process. In this model, the liquid-gas interface consists of 

circular arcs connecting disks. One can refer to [5] for more details on the advantage of this 

model compared to the  more traditional pore network models made of interconnected 

channels. In our case, the disks are placed on a square lattice with lattice constant a.  There 

are L disks per row and L rows on the lattice. Disk radii are distributed randomly according to 

an uniform distribution law in the range [ ]maxmin r,r , see details in Table I  regarding the 

particular systems considered in this paper. The porosity ε  in Table I is the fraction of area 

not covered by disks.  

Initially, the pores of the model porous medium are saturated with liquid, which is then 

allowed to evaporate isothermally. As depicted in Figure 2, the three upper sides of the square 

domain are sealed, i.e. they represent the impervious surfaces. The fourth lowermost side of 

the domain is open to air for drying. On this side, we use a standard mass-flux boundary 

condition of the form 

 

)PP(hj ,vo,v ∞−=        (1) 
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where  j is the evaporation flux density, h is the mass transfer coefficient, ovP , is the vapor 

partial pressure at the porous medium surface, and ∞,vP  is the vapor partial pressure in the 

surrounding air. The mass transfer coefficient h is expressed as 

 

( ) δTMR

D
h

v

=        (2) 

 

where D  is the diffusion coefficient of water vapor, R  is the universal gas constant, Mv is the 

vapor molecular weight, T is temperature, and δ is the external  transfer length-scale (we took 

δ = a throughout this paper). Referring to the classical convective drying situation, δ can be 

seen as the average thickness of the mass boundary layer developing at the porous medium 

surface.   

At the surface of the menisci, the vapor partial pressure is the saturation vapor partial pressure 

Pvs and the difference in partial pressure )PP( ,vvs ∞−  can be regarded as the mass transfer 

potential driving the evaporation process.  

 

B Fluid interface geometry and interface growth mechanisms 

As in [5], the interface between the gas phase and the liquid phase consists of sequence of 

arcs between pairs of disks. As sketched in Figure 3, each arc intersects both disks at the 

proper contact angle θ.   At the beginning of the process, we assume that the medium is 

saturated with liquid and the interface is formed by L stable arcs attached all along the first 

row of disks, see Figure 2. Then as a result of evaporation, the curvature of the arcs increases 

until one arc becomes instable. This leads to the invasion of adjacent pore as depicted in 

Figure 3 and new arcs are positioned at the entrance of the new interfacial pores. Then this 

process is repeated until full invasion of the system. Hence, in this quasi-static limit, it is 
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assumed that the invasion is characterized by a succession of stable configurations, with very 

rapid motion of the interface between two successive stable configurations.   

As discussed in [5], three basic types of local instability may be distinguished: 

1) “burst” when the capillary pressure between the two fluids is such that it becomes 

impossible to find a stable arc between two disks intercepting them with the right 

angle θ. 

2) “touch” the arc connecting two disks intersects during its growth another disk at the 

wrong θ. 

3) “overlap” = menisci coalescence, two neighboring arcs on the interface intersect.  

 

Figure 4 shows the relative importance of various growth mechanisms as a function of contact 

angle θ in our system to reach breakthrough, i.e. when the invading gas phase reaches the top 

edge. As can be seen from Figure 4, the interface growth is dominated by bursts for 

sufficiently small contact angles whereas the overlap mechanism is dominant for sufficiently 

high contact angles. As discussed in details in [5], this change in the probabilities of each 

local growth mechanism is responsible for major changes in the invasion pattern, from 

invasion percolation patterns to a compact pattern with no trapping.  

To construct the evaporation algorithm, we begin by considering the simpler case of the 

quasi-static mechanical displacement of the fluid in place by the invading fluid.  Contrary to 

[5] where the interface growth was driven by small changes in the pressure applied to the 

system, the procedure is slightly different in our case and can be considered equivalent to 

imposing a very small flow rate. In particular, only one pore is invaded between two 

successive stable configurations of the interface. Figure 5 shows the various cases of pore 

invasion considered in our model. A pore occupied by the liquid phase and adjacent to a pore 

occupied by the invading gas phase is defined as an interfacial pore. We determine for each 
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interfacial pore the local instability mechanism (burst, touch or overlap) that is encountered 

first during the growth of the interfacial arcs and denote by R(i) the corresponding curvature 

radius of the arc(s) associated with the considered interfacial pore, i.e. the curvature radius at 

the onset of  the local instability. The instability radii R(i) are obtained by computing the 

evolution of the curvature radius of each interfacial arc, as it moves between the two disks it 

connects. The computation is analogous to that presented in [5]. For this reason, the details, 

which are presented in [11], are omitted here. We can then define as pore invasion potential   

  
a

)i(R
)i(P =              (3) 

which is inversely proportional to the pressure difference between  the two fluids needed  for 

the invasion of the pore (= 
)i(R

γ
 where γ is the surface tension). Under these circumstances, 

the invasion algorithm becomes analogous to the invasion percolation algorithm, [12],  i.e. the 

interfacial pore of greatest potential is invaded at each step of the invasion. The fundamental 

difference lies in the computation of invasion potential (3), which takes into account all 

possible local instability mechanisms and not only the burst mechanism as in the invasion 

percolation algorithm. If one adds the rule that the trapped pores, i.e. the liquid pores that 

become completely surrounded by the invading phase, cannot be invaded, one obtains an 

algorithm describing the quasi-static displacement of one phase by the other under the 

condition of a very small flow rate of injected fluid, i.e. when the capillary forces dominate 

the displacement.  

As first proposed in [13], the algorithm describing slow evaporation can be constructed by 

combining the mechanical quasi-static displacement algorithm described above and the 

computation of diffusive transport of the water vapor in the gas phase.  This will make the 

process time dependent through the computation of evaporation rate, the (variable) time step 

being of the order of  ρlVp/F, where ρl,Vp and F are the liquid density, average volume of one 
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pore and evaporation mass flux at the boundary of liquid cluster to which belongs the 

considered pore, respectively.  More precisely the (quasi-)steady diffusion equation .0=∆ vP  

is solved in the part of the pore space occupied by the gas phase with the boundary conditions:  

Pv= Pvs on the interfacial arcs, and Eq.(1) at the entrance of pore located along the first row of 

model porous medium, see [13] for more details regarding the computation of Pv thanks to a 

finite volume type discretization technique, which has been straightforwardly adapted here to 

the particular case of disks array.   

For the sake of completeness, the drying algorithm is summarized here: (1) every liquid 

cluster present in the network is identified, (2) the interfacial pore of greatest invasion 

potential  is identified for each cluster, the volume of liquid contained at time t in this pore is 

scV , (3) the evaporation flux Fc at the boundary of each cluster is computed from the finite 

volume computation of the liquid vapor partial pressure in the gas phase (obtained from the 

numerical solution of equation .0=∆ vP ), (4) for each cluster, the time tc required to 

evaporate the amount of liquid contained in the interfacial pore identified in step (2) is 

computed: 
c

sc
c F

V
t l

ρ
= , (5) the element among the elements selected in step (2) eventually 

invaded is that corresponding to tcmin = min (tc), (6) the phase distribution within the network 

is updated, which includes the partial evaporation of liquid contained in the interfacial pores 

selected in step (2) with minmin )()( ccc tFtVttV −=+
llll

ρρ  (where 
l

ρ  is the liquid density and 

l
V  the volume of liquid contained in the interfacial pore) except for the interfacial pore 

selected in step (5) which becomes completely saturated by the gas phase. The procedure can 

be repeated up to full drying or stopped at some intermediate stage. 
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III RESULTS 

As mentioned in the introduction the two regimes limiting the transition zone were studied in 

[8], where it was shown that the dimensionless average overall drying time of a hydrophilic 

system was system size dependent approaching exponentially a limit for large size system. 

However, the dependence with the size is relatively weak. Furthermore, the statistical 

fluctuations of the drying time were found to be of the same order of magnitude for all system 

sizes investigated. Therefore, we can concentrate here on small systems without loss of 

generality and do not explore again the (weak) influence of system size. In passing, it can be 

noted that the computational time of drying for one realization is significantly greater here 

due to the consideration of all local instability mechanisms of the interface. This makes more 

difficult the numerical study since fewer realizations can be computed for a similar 

computational effort.       

 

A. Influence of contact angle on overall average drying time and drying pattern 

The overall drying time to is the time needed to fully evaporate the liquid contained in the 

model porous medium. Figure 6 displays the evolution of overall drying time as a function of 

contact angle for the four systems considered. To obtain the results shown in Figure 6, we 

have considered water at a temperature of 20°C as working fluid and taken a = 1mm. Unless 

otherwise mentioned, the results presented in this paper were obtained considering 100 

realizations of a 25x25 disk array.   

Interestingly, the average overall drying time is independent of contact angle for sufficiently 

low or high contact angles (as shown by the plateaus on the left hand side and the right hand 

side of the curves in Figure 6). These plateaus correspond to the regimes studied in [8], i.e. the 

invasion percolation regime for sufficiently low contact angle when the growth of the 

interface takes place in the largest local constriction available along the interface of a liquid 
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cluster (this regime corresponds to bursts as dominant local instability mechanisms) or, for 

sufficiently high contact angle, when the pattern is characterized by a flat traveling front 

(menisci overlaps are then the dominant local instability mechanism). These two regimes are 

termed IP (invasion percolation) regime and FF (flat invasion front) regime in the following.  

The results shown in Figure 6 for the IP and FF regimes are consistent with the ones obtained 

in [8] for a pore network model of interconnected channels of rectangular cross-section, i.e. 

drying in the hydrophilic model (IP regime) is faster than in the hydrophobic one (FF regime). 

The ratio between the lowest and largest average drying times is slightly greater than 0.6 as 

shown in the inset of Figure 6 for the disk array whereas a ratio slightly higher of 0.7 was 

obtained with the pore network model in ref. [8] for a network of comparable size. 

Interestingly, Figure 6 shows that the transition between the IP and FF drying times occurs 

over a relatively narrow range of contact angles. As shown in Figures 4 and 6, the greater the 

porosity, the wider the transition zone.  

In the analysis of the pressure driven quasi-static invasion process considered in [5], a critical 

contact angle θc was introduced to characterize the transition between uniform flooding and 

fractal invasion patterns. Noting that the contact angle is defined in the invading phase in [5] 

and not in the invaded phase as in our case, see Figure 2, the results reported in [5] indicates 

that uniform flooding occurs above θc (using our definition for the contact angle). As it will 

be made clear from the consideration of drying patterns and drying time fluctuations, θc 

corresponds to the contact angle marking the end of transition region on the right hand side in 

Figure 6, i.e. the contact angle marking the beginning of the FF regime. Approximate values 

of θc deduced from Figure 6 are reported in Table I for four porosities. Consistently with the 

results of [5], θc appears to increase monotically with porosity. Whereas θc increases with 

porosity, the contact angle marking the beginning of the transition region is found to be 

independent of porosity and close to 90°, as can be seen from Figure 6.    
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It is interesting to observe that the simple drying model proposed in [13], which is based on a 

the IP algorithm for modeling the capillary effects, is sufficient to predict the average overall 

drying time over the full range of contact angle [0, 90°] , provided that liquid film effects can 

be neglected, see [9] and references therein for more details on the effect of films. Referring 

to both Figures 4 and 6, it can be seen that the average overall drying time begins to be 

affected only when the probability of overlap mechanism becomes greater than the burst 

mechanism probability.  

Figure 7 shows examples of drying patterns for system D (ε = 0.7). The same realization of 

the 25x25 disk array is considered for four different values of the contact angle, namely 

θ=80° (invasion percolation (IP) regime), θ=94° (transition region), θ=99°(transition region) 

and θ=120° (flat traveling front = FF regime). The IP regime (θ=80°)  is characterized by 

ramified fractal patterns and  the occurrence of many disconnected liquid clusters whereas the 

FF regime (θ=120°in Figure 7)  is characterized by an almost flat traveling invasion front 

with no trapping. As shown in [5] for the case of the quasi-static fluid invasion and illustrated 

in Figure 7 for the case of the evaporation problem considered here, the trapping phenomenon 

progressively disappears as the contact angle increases in the transition region.  The growth of 

the interface is increasingly smoother as the contact angle is increased in the transition region 

and this is due to the increasingly cooperative nature of invasion as the overlap mechanism 

becomes the dominant local instability mechanism. As explored in detail in [5],  larger and 

larger segments of the interface move forward coherently as the contact angle increases in the 

transition region and this leads to the “faceted” interface shown in Figure 7 for θ=99°. For a 

sufficiently high contact angle (above θc with the convention for the contact angle used here) , 

the entire interface advances coherently  and this leads to the FF regime.  

The fact that the average drying time increases with the contact angle in the transition region 

can be understood, at least qualitatively, from the evolution of the drying patterns shown in 
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Figure 7 and the results reported in [5]. If one ignores the external mass transfer resistance (~ 

h-1 from Eq.(1)), which is independent of the contact angle, the evaporation flux roughly 

varies as  d -1 where d  is the average distance between the evaporation front inside the porous 

medium and the exposed surface (bottom side in Figure 7) of  the porous medium. Hence the 

deeper the evaporation front inside the porous medium, the lower the evaporation rate. When 

the invasion pattern is flat and compact (θ=120° in Figure 7), the evaporation front coincides 

with the flat invasion interface. For a given number of invaded pores (or equivalently a given 

overall liquid saturation), this corresponds to the deepest evaporation front position that is 

possible to obtain since there is no “holes” in the domain occupied by the remaining liquid. 

Hence this type of invasion pattern leads to the largest drying time. In the other cases 

(transition region and IP regime), the evaporation front does not coincide anymore with the 

interface between the two fluids and this leads to faster drying time. Note that the equation 

governing the transport of water vapor in the gas phase is the Laplace equation  .0=∆ vP  It is 

well known that the transport governed by the Laplace equation is characterized by the 

phenomenon of diffusional screening when it takes place from an irregular interface,   e.g. 

[14] and references therein. Here this means that the local evaporation flux density is not 

uniform along the interface but strongly varies from one place to another. For example in the 

case of the IP patterns shown in Figure 7 (θ=80°), the evaporation flux density is quasi-null at 

the boundary of the fjords located deep inside the porous medium due to diffusional screening 

and the evaporation flux density is in fact only significant at the menisci located along the 

outermost boundary of the liquid / gas region shown in Figure 7.  

A simple manner of illustrating the diffusional screening effect is to shown the invasion 

pattern together with the vapor partial pressure field  vP . This is shown in Figure 7.  As 

expected the most marked screening effect is obtained for the IP regime where the interface is 

the most ramified and the numerous liquid clusters, close to each other, contribute to the 
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screening phenomenon. From the vapor isoconcentration lines shown in Figure 7, it is obvious 

that the “effective” evaporation front is much less deep inside the porous model for the IP 

regime than for the FF regime (for the same overall saturation in both systems). Hence the 

faster drying observed in the IP regime is a consequence of the diffusional screening effect 

together with the fact that bursts are the local dominant instability mechanisms in this regime 

(which lead to the IP highly ramified structure). When the growth of the interface becomes 

more coherent, the screening effect is less effective as the ramified fjords of the IP regime 

transform into large gulfs.  This is illustrated in Figure 7 (θ = 99°).  As a result, the effective 

evaporation front is located deeper in the porous medium on the average and this leads to 

greater average overall drying time compared to the IP regime. This can be expressed in terms 

of the average finger width w  studied in [5]. The finger width can be interpreted here as the 

mean distance between two menisci. In the IP regime, w  is on the order of pore size and the 

screening effect is very effective. In the transition region, w   (the size of gulfs) increases (up 

to divergence at θc) with θ and the screening effect becomes less and less effective.   

This can be characterized quantitatively through the consideration of the equivalent flat 

evaporation front, which can be defined as follows. Suppose that jθc (t) is the evaporation flux 

density at time t  for the FF regime, i.e. for θ ≥ θc.  jθc (t) can be expressed as 

 

jθc (t) )PP(
D

)t(d

DRT

M
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        (4) 

 

where dθc, Dext and Dpm are the position of the flat front (= distance between the front and the 

porous medium surface), the effective diffusion coefficient in the external boundary layer and 

the porous medium effective diffusion coefficient respectively. Defining the external mass 
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transfer resistance as Ge = 
extD

δ
, it can  be seen from Eq. (4) that jθc(t) scales as 

1−

θ
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G . Hence from the numerical data for θ ≥ θc, we can plot jθc

-1 as a function of 

)t(d cθ  and determine the values of Ge and Dpm. Then, according to Eq.(4), the equivalent flat 

front position for any flux density jθ  can be defined as  
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Figure 8 shows the evolution of deq(θ) /dθc (averaged over 100 realizations) as a function of  

the  overall mean saturation (the overall saturation is the volume fraction of the pore space 

occupied by the liquid).  As can be seen from Figure 8, the diffusional screening is very 

effective for θ < θc, which explains the faster drying as discussed above 

To conclude this section, it can be observed that the influence of contact angle on average 

drying time can be still more marked when an intermediate low overall saturation is sought. 

This is shown in Figure 9 where 
θSt  is the average drying time needed to reach the mean 

overall saturation >< S  when the contact angle is θ. As can be seen from Figure 9, the 

evolution of the relative difference in drying time as a function of mean overall saturation is 

not monotonic. The maximum difference is reached at a low saturation close to 0.5 for our 

computations. The decrease in the drying difference for lower saturations is associated with 

the drying of the last row of pores, see [8] for some details on this very last period of drying.     

 

B. Influence of contact angle on statistical fluctuations 

As shown in [8], the drying time is subject to significant statistical fluctuations in the IP 

regime whereas the drying time variability was nearly null for the FF regime, which is 

obvious from the invasion pattern. More precisely, it was found that the distribution of overall 
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drying time was nearly Gaussian   with σ / 
IP

t0  ≈ 0.1 for a 25 x 25 network, where σ is the 

standard deviation of overall drying time over many realizations.  Hence it is interesting to 

study how the magnitude of statistical fluctuations varies in the transition zone.  Figure 10 

shows the evolutions of σ / 0t   in the transition zone.  As can be seen the ratio σ / 0t   

increases in the transition zone up to the sudden decrease when the invasion pattern 

corresponds to the FF regime, i.e. when there is no more spatial fluctuations in the growth of 

the interface. Hence it is remarkable to observe that the statistical fluctuations of the drying 

time are important up to θc, which is consistent with the existence of random invasion patterns 

below θc.  The behavior of σ / 0t   near θc is shown in Figure 11 and is consistent with a 

linear variation of the form σ/ 0t )/.( cθθ−∝ 1 . Figure 12 shows the evolution of PDF 

(probability density function) of overall drying time in the transition region. As mentioned 

earlier, the computational time of one realization is significantly greater than for the simpler 

drying models used in [5]. As a result, the PDFs shown in Figure 12 were obtained 

considering 10000 realizations of  a 15x15 model porous medium and not 100000 as in [8] 

(recalling that  only the IP regime  was considered in [8]). Despite the more limited number of 

realization considered here, a clear evolution of the overall drying time PDF is observed 

through the transition region.  For θ ≥ θc, the drying time fluctuations die out and the PDF is a 

dirac delta function (not shown in Figure 12). For the IP regime (θ = 80° in Figure 12), the 

PDF is consistent with the nearly Gaussian distribution obtained in [8] for a 2D square 

network of interconnect channels. As noted in [8], the drying time distribution is in fact 

slightly dissymmetric and skewed to the left for the IP regime. As can be seen from Figure 12, 

this dissymmetry of the PDF significantly increases with the contact angle in the transition 

region. This can be also shown from the values of the skewness reported in Table II.  Note the 

tail on the left hand side for θ = 99° and the complete dissymmetry for  θ = 102°, i.e. as θc is 
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approached from below. Although probably difficult to obtain experimentally, the 

dissymmetry of the drying time PDF is a clear signature of the transition zone, i.e. of the 

changes in the local interface growth mechanisms.   

These results are for the overall drying time and it can be surmised that the effect of statistical 

fluctuations can be still greater for intermediate average drying time. This is illustrated in 

Figure 13 which shows, for several values of contact angle,  the evolution of the standard 

deviation σs of the overall liquid saturation  over  100 realisations of a 25 x 25 disks array as a 

function of the average saturation S over the 100 realizations, whereas the insert in Figure 

13 shows how S  varies with time t . As can be seen from Figure 13, the maximum 

magnitude of σs is similar for all values of contact angle below θc and close to 0.08. However, 

the average saturation at which this maximum is observed increases with the contact angle.  

 It can be concluded that the drying time fluctuations are significant below θc and die out at 

θc. However, one should recall here that the liquid films have been ignored in the analysis. As 

stated in the introduction, it is reasonable to neglect the effect of films for the relatively high 

contact angles of interest in this study, see [8] for more details. Interestingly, the results 

presented in [8] about the influence of liquid film in the IP regime indicates that the statistical 

fluctuations are strongly dampen when the films can develop over a significant distance 

toward the surface of porous medium ahead of  the liquid cluster region.  Although the details 

remain to be elucidated, this effect is due to an enhanced screening effect of the heterogeneity 

of liquid phase distribution in the liquid cluster region.  

This suggests that the drying time statistical fluctuations and related fluctuations are 

significant only over a limited range of contact angles. The upper bound of this range is well 

defined and is given by θc. The lower bound is less well defined since the results presented in 

[8] (noting in passing that the “critical” angle θc  used in [8] should not confused with the 
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angle θc considered in the present study) suggests that the damping of fluctuations due to 

films is not abrupt but takes place over a (albeit narrow) range of contact angle.  

 

  

IV CONCLUSIONS 

In this paper, we have studied the influence of contact angle on slow evaporation in 2D model 

porous media. For sufficiently low contact angles, the drying pattern is fractal and can be 

predicted by a simple model combining the invasion percolation model with the computation 

of the diffusive transport in the gas phase. The overall drying time is minimum in this regime 

and is independent of contact angle over a large range up to the beginning of a transition zone. 

For the cases considered in this study, the transition zone spans over about 10° in contact 

angle variation.  As the contact angle increases in the transition region, cooperative smoothing 

mechanisms of the interface become important and the width of the liquid gas interface gulfs 

that form during the evaporation process increases. As a result, the diffusional screening 

phenomenon becomes less effective and the mean overall drying time increases up to an 

upper bound which is reached at a critical contact angle θc.  Above θc the drying pattern is 

characterized by a flat traveling front and the mean overall drying time becomes independent 

of the contact angle. Drying is found to be almost 65% slower for contact angles above θc 

compared to the minimum drying time observed for contact angles below the contact angle 

marking the beginning of the transition region (~ 90° in our case).  

Below θc  the drying time fluctuations induced by the spatial fluctuations in the liquid phase 

distribution associated with each realization are significant.  The drying time distribution 

standard deviation is of the same order of magnitude regardless of the value of contact angle 

in this range. However, there is a significant change in the drying time PDF. The PDF is 

nearly Gaussian at the beginning of the transition zone and becomes more and more skewed 
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to the left as the contact angle increases in the transition zone. The fluctuations die out 

abruptly at θc as the liquid gas interface becomes a flat front.  

 Liquid films were neglected in the analysis. From previous studies, e.g. [8],[9] it is expected 

that films do not affect significantly the invasion patterns but do affect the mean drying time 

and drying time fluctuations. However, this should no affect the analysis of the transition 

region presented in this study since film effects are expected to be non negligible only for 

sufficiently low contact angles, i.e. for contact angles expected to be significantly lower than 

θc. 

Our study was restricted to a square lattice of discs with random radii. Disks on a triangular 

lattice were also considered in [5] and the variations of invasion pattern with  θc exhibited the 

same behavior as the square lattice. Thus, evaporation in triangular lattices as well as in other 

similar random systems is expected to exhibit the same trends as the system considered in the 

present study. This is illustrated in part by the experimental results shown in Figure 1 as well 

as those reported in [15] for a 2D network of channels of rectangular cross section.   

As pointed out in [5], a transition region is expected to be observed also in 3D. According to 

[5], the critical contact angle θc  is, however, expected to be lower in 3D. The main difficulty 

with a 3D model is that an accurate description of the evolution of the liquid-gas interface 

shape becomes much more involved. Despite this difficulty, it is certainly desirable to 

consider the 3D case, which is obviously more representative of real porous media, since it is 

well known that there are significant differences in the structure of the phase distribution 

during drying (for contact angle below  θc)  compared to the 2D case owing to the fact that 

each phase can form a percolating cluster in 3D, e.g. [16] .  To develop a 3D pore network 

model a evaporation for any value of contact angle, one option is to use the approximate 

parametric models of pore capillary entry pressure developed in previous works on two-phase 

flows , e.g. [17].  Work in this direction is in progress.      
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Also, only capillary forces were considered in the study and the increase in the drying time in 

the transition region and for θ ≥ θc  is entirely associated with the change in the drying pattern 

due to the change in the local instability mechanisms controlling the growth of the interface. 

Under other circumstances, in particular when the drying pattern is not only controlled by the 

capillary forces but by the competition between capillary forces and gravity or viscous forces, 

the increase in drying time with the contact angle can be due to a completely different 

mechanism, i.e. a change in the invasion pattern due to the reduction in capillary forces 

compared to gravity or viscous forces (and therefore not to a change in the interface local 

growth mechanisms).  As discussed for instance in [18],  it is well know that gravity forces as 

well as viscous forces can contribute to stabilize the drying patterns, i.e. to the formation of a 

drying front. This should be kept in mind when analyzing experimental data, especially when 

θc is close to 90°. For example, the change in the saturation profiles observed in the drying 

experiments analyzed in [19] between a random packing of 250µm beads with receding 

contact angles of 0° and a similar packing but with a receding contact angle of  84° (referred 

to as “hydrophobic” beads in [19]) could be interpreted at first glance as consistent with the 

transition from IP pattern to flat traveling front analyzed in the present study. However, as 

pointed out in [19],  the influence of gravity effects is important,  compared to capillary 

forces,  with the “hydrophobic” beads.  We note that the front is not sharp in this experiment 

with the “hydrophobic” beads and the saturation profiles are in fact quite consistent with a 3D 

version of the gravity stabilized front discussed in [18].   Hence, it can be surmised that θc  > 

84° for the system studied in [19].  Naturally, both effects, i.e. the change in the local growth 

mechanisms and the change in the competition between capillary forces and gravity or 

viscous forces can be responsible for the increase of drying time with the contact angle in real 

systems. 
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List of Tables and Figures 
 

Table I Parameters of the system studied (the lattice spacing a is used as reference length 
scale) 

System Range of radii Porosity θ
A 0.32-0.349 0.63 98 
B 0.29-0.349 0.65 99 
C 0.27-0.349 0.67 100 
D 0.23-0.35 0.70 101 

 
Table II Standard deviation (σ), skewness  (sk) and kurtosis (β) for the drying time 

distributions shown in Figure 12. 
Contact angle θ (°) σ/ )(t θ0  sk β

80 0.145 -0.243 2.515 
94 0.166 -0.339 2.556 
99 0.179 -0.705 2.947 
102 0.100 -2.487 10.31 

 
 
Figure 1 Example of phase distribution during drying in a model porous medium made of a 
monolayer of 1 mm glass beads randomly distributed between two glass plates. Vapor escapes 
from the four sides of model porous medium:  a) θ ∼ 30-40° b)  θ ∼ 105°-107°.   The black 
areas correspond to liquid saturated regions. Glass beads forming the porous medium are 
visible in the regions (in grey) invaded by the gas phase. 
 
 
Figure 2  Model porous medium formed by a regular array of disks of random diameter. 
Distribution of fluids at t = 0 (invading fluid in grey, displaced fluid in white). The interface 
is visible as a series of arcs joining the bottom row of disks. Vapor escapes from bottom edge 
of system  
 
Figure 3 Schematic example of arcs location before and after invasion of one pore and 
definition of contact angle. 
 
 
Figure 4 Probability (in %) of interface local growth mechanisms as a function of contact 
angle in the displaced fluid. 
 
Figure 5 Growth of interfacial arcs during the invasion. The arrows indicate the meniscus 
displacement direction. Local invasion events: a) burst, b) touch,  c) and d) arc coalescence 
(overlap) 
 
Figure 6 Mean overall drying time 0t  as a function of contact angle; tref = )(t coD θ , i.e. the 

overall drying for system D for cθ≥θ . The inset shows the evolution of 0t / )(t co θ , where 

)(t co θ  is the overall drying for the considered system for cθ≥θ .   

 
Figure 7 Example of drying patterns (liquid phase in dark gray, gas phase in light gray) in the 
transition region for one realization of a 50x50 disks array  (system D). Value of contact angle 
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is indicated at top of each vertical series of patterns; the numbers of invaded pores from top 
row to bottom row are 1250, 1500,  1750 and 2000, respectively . The 5 vapor 
isoconcentration lines shown together with each pattern correspond to Pv/Pvs =0.2 (the closest 
to the porous medium surface) , 0.4, 0.6, 0.8 and 0.9995 (the farthest from the porous medium 
surface), respectively.  
 
 
Figure 8 Equivalent flat front position as a function of mean overall saturation for various 
values of contact angle.  
 

Figure 9 Evolution of 
)(t

t)(t

co

ScS

θ
−θ

θ as a function of average overall saturation. )(t cθ0 is the 

overall drying time for θ = θc. θSt and )(t cS θ are the  mean drying time needed to reach a 

given average saturation S for θ=θc  and the drying time to reach S when θ = θc, respectively. 
 
Figure 10 Standard deviation σ of overall drying time as a function of contact angle in the 
transition region for different porosity  
 
Figure 11 Evolution of overall drying time standard deviation near θc (~101°). The inset 
shows the variation of σ over the transition zone 
 
Figure 12 PDF (probability density function) of overall drying time for four values of contact 
angle (corresponding to symbols on the curve in the inset, which shows the evolution of mean 
overall drying time as a function of contact angle in the transition region for 15x15 disk 
systems). 
 
Figure 13 Evolution of standard deviation of overall liquid saturation σS as a function of 
average saturation S . The inset shows the evolution of S  as a function of time.  
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a)     θ = 80°                     b)            θ = 94°  c)     θ = 99°              d)          θ = 120° 
 
Figure 7   
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Figure 8  
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Figure 11. 
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Figure 12.  
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Figure 13  


