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Short time existence and uniqueness in Hölder spaces

for the 2D dynamics of dislocation densities

Introduction 1.Physical motivation and presentation of the model

Real crystals show certain defects in the organization of their crystalline structure, called dislocations. These defects were introduced in the Thirties by Taylor [START_REF] Taylor | The mechanism of plastic deformation of crystals[END_REF], Orowan [START_REF] Orowan | Zur kristallplastizitat i-iii[END_REF] and Polanyi [START_REF] Polanyi | Uber eine art gitterstorung, die einem kristall plastisch machen konnte[END_REF] as the principal explanation of plastic deformation of materials at the microscopic scale. Dislocations can move under the action of exterior stresses applied to the material.

Groma and Balogh in [START_REF] Groma | Investigation of dislocation pattern formation in a twodimensional self-consistent field approximation[END_REF] considered the particular case where these defects are parallel lines in the three-dimensional space, that can be viewed as points in a plane considering 1 Université d'Orléans, Laboratoire MAPMO, Route de Chartres, 45000 Orlans cedex 2, France.

1 their cross-section.

In this model we consider two types of "edge dislocations" in the plane (x 1 , x 2 ). Typically, for a given velocity field, those dislocations of type (+) propagate in the direction + e 1 where e 1 = (1, 0) is the Burgers vector, while those of type (-) propagate in the directione 1 . We refer the reader to the book of Hith and Lothe [START_REF] Hirth | Theory of dislocations, Second Edition[END_REF], for a detailled description of the classical notion in physics of edge dislocations and of the Burgers vector associated to these dislocations.

In [START_REF] Groma | Investigation of dislocation pattern formation in a twodimensional self-consistent field approximation[END_REF] Groma and Balogh have considered the case of densities of dislocations. More precisely, this 2-D system is given by the following coupled non-local and non-linear transport equations (see Cannone et al. [4, Section 2] for more modeling details):

                 ∂ρ + ∂t (x, t) + u ∂ρ + ∂x 1 (x, t) = 0 on R 2 × (0, T ), ∂ρ - ∂t (x, t) -u ∂ρ - ∂x 1 (x, t) = 0 on R 2 × (0, T ), u = R 2 1 R 2 2 (ρ + -ρ -).
(1.1)

The unknowns of this system are the two scalar functions ρ + and ρ -at the time t and the position x = (x 1 , x 2 ), that we denote for simplification by ρ ± . This term correspond to the plastic deformations in a crystal. Its derivative in the x 1 -direction ∂ρ ± ∂x 1 represents the dislocation densities of type (±). Physically, these quantities are non-negative. The function u is the velocity vector field which is equal to the shear stress in the material, solving the equations of elasticity. The operators R 1 (resp. R 2 ) are the 2D Riesz transform associated to x 1 (resp. x 2 ). More precisely, the Fourier transform of these 2D Riesz transforms R 1 and R 2 are given by

R k f (ξ) = ξ k |ξ| f (ξ) for ξ ∈ R 2 , k = 1, 2.
The goal of this work is to establish local existence and uniqueness result of the solution of (1.1) when the initial datum

ρ ± (x 1 , x 2 , t = 0) = ρ ± 0 (x 1 , x 2 ) = ρ± 0 (x 1 , x 2 ) + Lx 1 , L ∈ R (1.2) with ρ± 0 ∈ C r (R 2 ) ∩ L p (R 2 ), for r > 1, p ∈ (1, +∞), where C r (R 2
) is the Hlder-Zygmund space defined in Section 2. The choice L > 0 guarantee the possibility to choose ρ± 0 ∈ L p (R 2 ) such that the assumption is compatible with the non-negativity of ∂ρ ± 0 ∂x 1

. In a particular case where the initial datum is increasing, the global existence of a solution was proved by Cannone et al. [START_REF] Cannone | Global existence for a system of non-linear and non-local transport equations describing the dynamics of dislocation densities[END_REF], using especially an entropy inequality satisfies by the dislocation densities. The fundamental issue of uniqueness for global solutions remains open.

In a particular sub-case of model (1.1) where the dislocation densities depend on a single variable x 1 + x 2 , the existence and uniqueness of a Lipschitz solution was proved by El Hajj et al. in [START_REF] Hajj | A convergent scheme for a non-local coupled system modelling dislocations densities dynamics[END_REF] in the framework of viscosity solutions. Also the existence and uniqueness of a strong solution in W 1,2 loc (R × [0, +∞)) was proved by El Hajj [START_REF] Hajj | Well-posedness theory for a nonconservative Burgers-type system arising in dislocation dynamics[END_REF] in the framework of Sobolev spaces. For a similar model describing moreover boundary layer effects (see Groma, Csikor, Zaiser [START_REF] Groma | Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics[END_REF]), we refer the reader to Ibrahim [START_REF] Ibrahim | Existence and uniqueness for a non-linear parabolic/Hamilton-Jacobi system describing the dynamics of dislocation densities, to appear[END_REF] where a result of existence and uniqueness is established, using the framework of viscosity solutions and also entropy solution for nonlinear hyperbolic equations.

Our study of the dynamics of dislocation densities in a special geometry is related to the more general dynamics of dislocation lines. We refer the interested reader to the work of Alvarez et al. [START_REF] Alvarez | Dislocation dynamics: short-time existence and uniqueness of the solution[END_REF], for a local existence and uniqueness of some non-local Hamilton-Jacobi equation. We also refer to Barles et al. [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] for some long-time existence results.

Main results

We shall show that the system (1.1) possesses a unique local-in-time solution for any initial datum satisfy (1.2) such that ρ±

0 ∈ C r (R 2 ) ∩ L p (R 2
), for r > 1 and for p ∈ (1, +∞). This functional setting allows us to control the velocity field u in terms of ρ +ρ -(see the third line of (1.1)). As we wrote it before, the velocity u is related to ρ

+ -ρ -through the two-dimensional Riesz transforms R 1 , R 2 . Riesz transforms do not map C r (R 2 ) into C r (R 2
), but they are bounded on C r (R 2 ) ∩ L p (R 2 ), for r ∈ [0, +∞) and for p ∈ (1, +∞), as we will see later.

For notational convenience, we define the space Y r,p , for r ∈ [0, +∞) and p ≥ 1 as follows

Y r,p = {f = (f 1 , f 2 ) such that f k ∈ C r (R 2 ) ∩ L p (R 2 ), for k = 1, 2 } ,
where C r (R 2 ) is the inhomogeneous Hlder-Zygmund space (see Section 2, for more precise definition). This space is a Banach space endowed with the following norm: for

f = (f 1 , f 2 ) f r,p = max k=1,2 ( f k C r ) + max k=1,2 ( f k L p ) .
In order to avoid technical difficulties, we first consider (see Theorem 1.1) the case L = 0. Then (see Theorem 1.2) we treat the general case L ∈ R. 

ρ 0 = (ρ + 0 , ρ - 0 ) ∈ Y r,p . (1.3) If r > 1 and p ∈ (1, +∞), then (1.1) has a unique solution ρ = (ρ + , ρ -) ∈ L ∞ ([0, T ]; Y r,p )
, where the time T > 0 depends only on ρ 0 r,p . Moreover, the solution ρ satisfies

ρ ∈ Lip([0, T ]; Y r-1,p ).
In order to prove this theorem, we strongly use the fact that the Riesz transforms are continuous on C r (R 2 ) ∩ L p (R 2 ) for r ∈ [0, +∞), p ∈ (1, +∞). This result ensures that the velocity vector field remains bounded on C r (R 2 ) ∩ L p (R 2 ). Using this property and some commutator estimates, we can prove that there exists some T > 0 such that the solution ρ n of an approached system of ( 

= (ρ + , ρ -) ∈ L ∞ ([0, T ]; Y r,p )
, where the time T > 0 depends only on L and ρ0 r,p . Moreover, 

ρ ± (x 1 , x 2 , t) = ρ± (x 1 , x 2 , t) + Lx 1 , where ρ = (ρ + , ρ-) ∈ Lip([0, T ]; Y r-1,p
≥ 0 for all (x, t) ∈ R × [0, T ].
Related to our analysis in the present paper, we get the following theorem as a byproduct.

Theorem 1.4 (Global existence and uniqueness for linear transport equations)

Take g 0 ∈ C r (R 2 ) ∩ L p (R 2 ) and v = (v 1 , v 2 ) ∈ L ∞ ([0, T ); Y r,p
) for all T > 0, r > 1 and 1 < p < +∞. Then, there exists a unique solution

g ∈ L ∞ ([0, T ); C r (R 2 ) ∩ L p (R 2 )) ∩ Lip([0, T ); C r-1 (R 2 ) ∩ L p (R 2 ))
of the linear transport equation

     ∂g ∂t + v • ∇g = 0 on R 2 × (0, T ) g(x, 0) = g 0 (x) on R 2 .
(1.4)

Organization of the paper

This paper is organized as follows. In Section 2, we recall the characterization of Hlder spaces and gather several important estimates. In particular, the boundedness of Riesz transforms on 2 Some results on Hlder-Zygmund spaces This is a preparatory section in which we recall some results on Hlder-Zygmund spaces, and gather several estimates that will be used in the subsequent sections. A major part of the following results can be found in Meyer [START_REF] Meyer | Ondelettes et opérateurs. I, II, Actualités Mathématiques[END_REF] and Meyer, Coifman [START_REF] Meyer | Ondelettes et opérateurs. III, Actualités Mathématiques[END_REF].

C r (R 2 ) ∩ L p (R
We start with a dyadic decomposition of R d , where d > 0 is an integer. To this end, we take an arbitrary radial function

χ ∈ C ∞ 0 (R d ), such that supp χ ⊂ ξ : |ξ| ≤ 4 3 , χ ≡ 1 for |ξ| ≤ 3 4 , χ L 1 = 1. It is a classical result that, for φ(ξ) = χ( ξ 2 ) -χ(ξ), we have φ ∈ C ∞ 0 (R d ) and supp φ ⊂ ξ : 3 4 ≤ |ξ| ≤ 8 3 , χ(ξ) + j≥0 φ(2 -j ξ) = 1, for all ξ ∈ R d .
For the purpose of isolating different Fourier frequencies, define the operators ∆ i for i ∈ Z as follows:

∆ i f =                  0 if i ≤ -2, χ(D)f = χ(y)f (x -y)dy if i = -1, φ(2 -i D)f = 2 id φ(2 i y)f (x -y)dy if i ≥ 0, (2.5) 
where χ and φ are the inverse Fourier transforms of χ and φ, respectively.

For i ∈ Z, S i is the sum of ∆ j with j ≤ i -1, i.e.

S i f = ∆ -1 f + ∆ 0 f + ∆ 1 f + • • • + ∆ i-1 f = 2 id χ(2 i y)f (x -y)dy.
It can be shown for any tempered distribution f that S i f → f in the distributional sense, as i → ∞.

For any r ∈ R and p, q ∈ [1, ∞], the inhomogeneous Besov space B r p,q (R d ) consists of all tempered distributions f such that the sequence {2 jr ∆ j f L p } j∈Z belongs to l q (Z). When both p and q are equal to ∞, the Besov space B r p,q (R d ) reduces to the inhomogeneous Hlder-Zygmund space

C r (R d ), i.e. B r ∞,∞ (R d ) = C r (R d ). More explicitly, C r (R d ) with r ∈ R contains any function f satisfying f C r = sup j∈Z 2 jr ∆ j f L ∞ < ∞. (2.6)
It is easy to check that C r (R d ) endowed with the norm defined in (2.6) is a Banach space.

For r ≥ 0, C r (R d ) is closely related to the classical Hlder space Cr (R d ) equipped with the norm

f Cr = |β|≤[r] ∂ β f L ∞ + sup x =y ∂ [r] f (x) -∂ [r] f (y) |x -y| r-[r] . (2.7) 
In fact, if r is not an integer, then the norm (2.6) and (2.7) are equivalent, and C r (R d ) = Cr (R d ). The proof for this equivalence is classical and can be found in Chemin [START_REF] Chemin | Oxford Lecture Series in Mathematics and its Applications[END_REF]. When r is an integer, say r = k, Ck (R d ) is the space of bounded functions with bounded j-th derivatives for any j ≤ k. In particular, C1 (R d ) contains the usual Lipschitz functions and is sometimes denoted by Lip(R d ). As a consequence of Bernstein's Lemma (stated below), Cr (R d ) is a subspace of C r (R d ). Explicit examples can be constructed to show that such an inclusion is genuine. In addition, according to Proposition 2.2, Cr (R d ) includes C r+ε (R d ) for any ε > 0. In summary, for any integer k ≥ 0 and ε > 0,

C k+ε (R d ) ⊂ Ck (R d ) ⊂ C k (R d ).
Proposition 2.1 (Bernstein's Lemma, Meyer [START_REF] Meyer | Ondelettes et opérateurs. I, II, Actualités Mathématiques[END_REF] ) Let d > 0 be an integer and

α 1 > α 2 > 0 be two real numbers. 1) If 1 ≤ p ≤ q ≤ ∞ and supp f ⊂ ξ ∈ R d : |ξ| ≤ α 1 2 j , then max |α|=k ∂ α f L q ≤ C2 jk+d( 1 p -1 q ) f L p ,
where C > 0 is a constant depending only on k and α 1 .

2

) If 1 ≤ p ≤ ∞ and supp f ⊂ ξ ∈ R d : α 1 2 j ≤ |ξ| ≤ α 2 2 j , then C -1 2 jk f L p ≤ max |α|=k ∂ α f L p ≤ C2 jk f L p ,
where C > 0 is a constant depending only on k, α 1 and α 2 . 

∈ C ε (R d ), we have f L ∞ ≤ C ε f C 0 log e + f C ε f C 0 ≤ C ε f C ε .
(2.8)

In the system (1.1), the velocity field u is determined by ρ +ρ -through the 2D Riesz transforms. These Riesz transforms do not map a C r (R d ) Hlder-Zygmund space to itself, but their action on

C r (R d ) is indeed bounded in C r (R d ) ∩ L p (R d ) for p ∈ (1, +∞) (see Proposition 2.4
). We first recall a general result concerning the boudedness of Fourier multiplier operators on Hlder spaces.

Proposition 2.3 (Fourier multiplier operators on Hlder spaces, Meyer [START_REF] Meyer | Ondelettes et opérateurs. I, II, Actualités Mathématiques[END_REF]) Let d > 0 be an integer and F be an infinitely differentiable function on R d . Assume that for some R > 0 and m ∈ R, we have

F (λξ) = λ m F (ξ)
for any ξ ∈ R d with |ξ| > R and λ ≤ 1. Then the Fourier multiplier operator F (D) 

maps continuously C r (R d ) into C r-m (R d ) for any r ∈ R.
R k f C r ≤ C f C r ∩L p
where k = 1, 2.

Proof of Proposition 2.4:

Using the operator ∆ -1 defined in (2.5), we divide R k f into two parts,

R k f = ∆ -1 R k f + (1 -∆ -1 )R k f. (2.9) Since supp χ(ξ) ∩ supp φ(2 -j ξ) = ∅ for j ≥ 1, the operator ∆ j ∆ -1 = 0 when j ≥ 1.
Thus, according to (2.6),

∆ -1 R k f C r = sup j∈Z 2 jr ∆ j ∆ -1 R k f L ∞ = max [2 -r ∆ -1 ∆ -1 R k f L ∞ , ∆ 0 ∆ -1 R k f L ∞ ] ≤ max [1, 2 -r ] ∆ -1 R k f L ∞ .
Let q be the conjugate of p, namely 1 p + 1 q = 1. It then follow, since Riesz transforms are bounded on L p (R d ), that for all p ∈ (1, +∞):

∆ -1 R k f C r ≤ max [1, 2 -r ] χ * R k f L ∞ ≤ max [1, 2 -r ] χ L q R k f L p = C f L p
where C is a constant depending only on r and p. To estimate the second part in (2.9), we apply Proposition 2.3 with

F (ξ) = (1 -χ(ξ))
ξ k |ξ| and m = 0, and hence we conclude

that it maps C r (R d ) into C r (R d ).
This gives the proof of Proposition 2.4. 2

Finally, we recall the notion of Bony's paraproduct (see Bony [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]). The usual product uv of two functions u and v can be decomposed into three parts. More precisely, using

v = j∈Z ∆ j v, u = j∈Z ∆ j u and ∆ j ∆ k v = 0 if |j -k| ≥ 1, ∆ j (S k-1 v∆ k v) = 0 if |j -k| ≥ 5,
we can write

uv = T u v + T v u + R(u, v),
where

T u v = j≥1 S j-1 (u)∆ j v, R(u, v) = |i-j|≤1 ∆ i u∆ j v.
We remark that the previous decomposition allows one to distinguish different types of terms in the product of uv. The Fourier frequencies of u and v in T u v and T v u are separated from each other while those of the terms in R(u, v) are close to each other.

Using this decomposition, one can show that

uv C s ≤ u C s v L ∞ + u L ∞ v C s for s > 0. (2.10)
For the prove of (2.10) see Chen [8, Prop. 5.1].

Two commutator estimates

Two major commutator estimates are stated and proved in this section. We remark that this commutator estimates was often used to resolve the Navier-Stokes equations (see for instance Cannone et al. [START_REF] Cannone | Littlewood-Paley decomposition and Navier-Stokes equations[END_REF], [START_REF] Cannone | On the regularity of the bilinear term for solutions to the incompressible Navier-Stokes equations[END_REF]). Here, we apply these techniques on our system (1.1).

Lemma 3.1 (L ∞ commutator estimates) Let j ≥ -1 be an integer and r > 0. Then, for some absolute constant C, we have 1)

u ∂ ∂x α , ∆ j f L ∞ ≤ C2 -jr ∂f ∂x α L ∞ u C r + ∇u L ∞ f C r , for α = 1, 2, 2) u ∂ ∂x α , ∆ j f L ∞ ≤ C2 -jr ( f L ∞ u C r+1 + ∇u L ∞ f C r ) , for α = 1, 2,
where the bracket [ , ] represents the commutator, namely

u ∂ ∂x α , ∆ j f = u ∂ ∂x α (∆ j f ) -∆ j u ∂f ∂x α , for α = 1, 2. (3.11)
Proof of Lemma 3.1:

Proof of 1): Using the paraproduct notations T and R, we decompose u ∂ ∂x α , ∆ j f,

for α = 1, 2, into five parts, u ∂ ∂x α , ∆ j ρ = I 1 + I 2 + I 3 + I 4 + I 5 ,
where

I 1 = T u ∂ ∂x α , ∆ j f = T u ∂ ∂x α (∆ j f ) -∆ j T u ∂f ∂x α , I 2 = -∆ j T ∂f ∂xα u, I 3 = T∂(∆ j f ) ∂xα u, I 4 = R u, ∂(∆ j f ) ∂x α , I 5 = -∆ j R u, ∂f ∂x α .
Back to the definition of T , we can write

I 1 = k≥1 S k-1 (u)∆ j ∂(∆ k f ) ∂x α -∆ j k≥1 S k-1 (u)∆ k ∂f ∂x α = k≥1 S k-1 (u)∆ j ∂(∆ k f ) ∂x α -∆ j S k-1 (u) ∂(∆ k f ) ∂x α .
(3.12)

Since ∆ j ∆ k = 0 for |j -k| > 1 and

supp S k-1 (u) ∂(∆ k f ) ∂x α ⊂ ξ : 1 3 2 k-2 ≤ |ξ| ≤ 5 3 2 k+1 ,
the sum in (3.12) only involves those terms with k satisfying |j -k| ≤ 4. We only take j ≥ 0 since the case j = -1 can be handled similarly. Applying the definition of ∆ j in (2.5), we obtain

I 1 = |j-k|≤4 2 jd φ(2 j (x -y)) [S k-1 (u(x)) -S k-1 (u(y))] ∂(∆ k f ) ∂x α (y)dy = |j-k|≤4 φ(y) S k-1 (u(x)) -S k-1 (u(x -2 -j y)) ∂(∆ k f ) ∂x α (x -2 -j y)dy.
Using the fact that φ ∈ S(R d ) and S j are continuous from L ∞ onto itself, we get for r ∈ R and an absolute constant C:

I 1 L ∞ ≤ C2 -j ∇u L ∞ ∂(∆ j f ) ∂x α L ∞ ≤ C ∇u L ∞ ∆ j f L ∞ ≤ C2 -jr ∇u L ∞ f C r , (3.13) 
where we have used Proposition 2.1 in the second inequality. To estimate I 2 and I 3 , we first write them as

I 2 = - |j-k|≤4 ∆ j S k-1 ∂f ∂x α ∆ k u , I 3 = |j-k|≤4 S k-1 ∂(∆ j f ) ∂x α ∆ k u.
Similarly, only terms with k satisfying |j -k| ≤ 4 are considered in the above sums. Thus, since ∆ j and S j are continuous from L ∞ onto itself, we have for r ∈ R:

I 2 L ∞ ≤ C ∆ j u L ∞ S j ∂f ∂x α L ∞ ≤ C2 -jr u C r ∂f ∂x α L ∞ , (3.14) 
I 3 L ∞ ≤ C ∆ j u L ∞ S j ∆ j ∂f ∂x α L ∞ ≤ C2 -jr u C r ∂f ∂x α L ∞ , (3.15) 
where the C ′ s in the above inequalities are absolute constants. From the definition of R, we have

I 4 = |k 1 -k 2 |≤1 ∆ k 1 (u)∆ k 2 ∂(∆ j f ) ∂x α .
Obviously, only a finite number of terms involved in the above sums are non-zeros. Then,

I 4 L ∞ ≤ C ∆ j u L ∞ ∆ j ∂f ∂x α L ∞ ≤ C2 -jr u C r ∂f ∂x α L ∞ . (3.16)
Note that from the definition of R and ∆ j , j ≥ -1, we can write I 5 as

I 5 = - k≥j-3 k+1 k 1 =k-1 ∆ j ∆ k (u)∆ k 1 ∂f ∂x α .
Therefore, for an absolute constant C, we have:

I 5 L ∞ ≤ C k≥j-3 k+1 k 1 =k-1 ∆ k u L ∞ ∆ k 1 ∂f ∂x α L ∞ ≤ C ∂f ∂x α L ∞ u C r k≥j-3 2 -kr ≤ C2 -jr ∂f ∂x α L ∞ u C r .
(3.17)

Gathering the estimates in (3.13)-(3.17), we establish the desired inequality in 1).

Proof of 2): As in the proof of 1), we decompose u ∂ ∂x α , ∆ j f as the sum of I 1 , I 2 , I 3 , I 4 and I 5 . The estimate on I 1 remains untouched, while different bounds are needed for I 2 , I 3 , I 4 and I 5 . Indeed, for j ≥ 1:

I 2 L ∞ ≤ C ∆ j u L ∞ ∂S j-1 f ∂x α L ∞ ≤ C2 j ∆ j u L ∞ S j-1 f L ∞ ≤ C2 -jr u C r+1 f L ∞ , (3.18) 
where we have used Proposition 2.1 in the second inequality. I 3 and I 4 can be similarly estimated as I 2 :

I 3 L ∞ ≤ C ∂∆ j f ∂x α L ∞ ∆ j u L ∞ ≤ C2 j ∆ j u L ∞ ∆ j f L ∞ ≤ C2 -jr u C r+1 f L ∞ , (3.19) 
I 4 L ∞ ≤ C ∆ j u L ∞ ∂∆ j f ∂x α L ∞ ≤ C2 j ∆ j u L ∞ ∆ j f L ∞ ≤ C2 -jr u C r+1 f L ∞ . (3.20)
Finally, we have 

I 5 L ∞ ≤ C k≥j-3 k+1 k 1 =k-1 ∆ k u L ∞ ∂∆ k 1 f ∂x α L ∞ ≤ C k≥j-3 k+1 k 1 =k-1 2 k 1 ∆ k u L ∞ ∆ k 1 f L ∞ ≤ C f L ∞ k≥j-3 2 k ∆ k u L ∞ ≤ C f L ∞ u C r+1 k≥j-3 2 -kr ≤ C2 -jr f L ∞ u C r+1 . ( 3 

Local existence and uniqueness results

This section is devoted to the proofs of Theorems 1.1 and 1.2. For the sake of a clear presentation, we divide it into three subsections. In the first subsection, we show a basic a priori estimate and we prove Theorem 1.4. With the aid of this estimate, we prove Theorems 1.1 and 1.2 in the next subsections.

An a priori estimate

Proposition 4.1 (A priori estimate) Let r > 1 and p > 1. For all T > 0,

ρ 0 = (ρ + 0 , ρ - 0 ) ∈ Y r,q and u ∈ L ∞ ([0, T ); C r (R 2 ) ∩ L p (R 2 ))
, there exists a unique solution ρ = (ρ + , ρ -) ∈ L ∞ ([0, T ); Y r,p ) of the following system of linear transport equations

∂ρ ± ∂t ± u ∂ρ ± ∂x 1 = 0 (4.22)
Moreover, for all t ∈ [0, T ], we have

ρ(•, t) r,p ≤ ρ 0 r,p exp C t 0 u(•, τ ) C r ∩L p dτ
where C > 0 is a constant depending only on r and p.

Proof of Proposition 4.1:

From the fact that u(•, t) ∈ C r (R 2 ) ∩ L p (R 2 ), for t ∈ [0, T ], we can define the flow map

X ± (•, t) satisfying      ∂X ± (x, t) ∂t = ±ū(X(x, t), t)
, where ū = (u, 0),

X ± (x, 0) = x. (4.23) 
By the characteristics method, we know that, if (X ± ) -1 is the inverse function of X ± with respect to x, then ρ ± (x, t) = ρ ± 0 ((X ± ) -1 (x, t)) is the unique solution of system (4.22) (see Serre [START_REF] Serre | Systems of conservation laws. I[END_REF] for more details).

Let j ≥ -1. Applying the operator ∆ j to both sides of the system (1.1) yields

∂∆ j ρ ± ∂t ±u ∂∆ j ρ ± ∂x 1 = ± u ∂ ∂x 1 , ∆ j ρ ± ,
where u ∂ ∂x 1 , ∆ j ρ ± is defined in (3.11). This equation can be rewritten in the following form

∆ j ρ ± (x, t) = ∆ j ρ ± 0 ((X ± ) -1 (x, t))± t 0 u ∂ ∂x 1 , ∆ j ρ ± (X ± ((X ± ) -1 (x, t), s), s)ds. 
Taking the L ∞ -norm of both sides of this equality, we get:

∆ j ρ ± (•, t) L ∞ ≤ ∆ j ρ ± 0 L ∞ + t 0 u ∂ ∂x 1 , ∆ j ρ ± (•, s) L ∞ ds.
Applying Lemma 3.1 (1), we obtain

ρ ± (•, t) C r ≤ ρ ± 0 C r +C t 0 ∂ρ ± ∂x 1 (•, s) L ∞ u(•, s) C r + ∇u(•, s) L ∞ ρ ± (•, s) C r ds.
According to (2.8), we know that for r > 1 and a constant C = C(r) > 0, we have:

∂ρ ± ∂x 1 L ∞ ≤ C ρ ± C 1 log e + ρ ± C r ρ ± C 1 ≤ C ρ ± C r .
In a similar way, we can obtain ∇u

L ∞ ≤ C u C r . Therefore, for C = C(r) > 0, ρ ± (•, t) C r ≤ ρ ± 0 C r + C t 0 u(•, s) C r ρ ± (•, s) C r ds ≤ max ± ρ ± 0 C r + C t 0 u(•, s) C r ρ(•, s) r,p ds.
Moreover, integrating in time the system (1.1), we get the following L p estimate:

ρ ± (•, t) L p ≤ ρ ± 0 L p + t 0 u(•, s) L p ∂ρ ± ∂x 1 (•, s) L ∞ ds ≤ ρ ± 0 L p + C t 0 u(•, s) L p ρ(•, s) r,p ds,
where we have used Hlder inequality in the first line and (2.8) in the second line. Now, adding the two previous inequalities, we obtain

ρ(•, t) r,p ≤ ρ 0 r,p + C t 0 u(•, s) C r ∩L p ρ(•, s) r,p ds,
where The proof of Theorem 1.4 is a consequence of the proof of Proposition 4.1. Indeed, just consider the characteristic equation

• C r ∩L p = • C r + • L p .
     ∂X(x, t) ∂t = v(X(x, t), t), X(x, 0) = x. (4.25) 
Then, as in the proof of Proposition 4.1, we use the commutator estimates proved in Lemma 3.1 (1), to show the following estimate:

g(•, t) C r ∩L p ≤ g 0 C r ∩L p exp C t 0 v(•, s) r,p ds , (4.26) 
which proves the result. 2

Proof of Theorem 1.1

The proof starts with the construction of a successive approximation sequence

{ρ n = (ρ +,n , ρ -,n )} n≥1 satisfying                        ρ 1 = (ρ + 0 , ρ - 0 ) = ρ 0 , ∂ρ ±,n+1 ∂t ± u n ∂ρ ±,n+1 ∂x 1 = 0, on R 2 × (0, T ) u n = R 2 1 R 2 2 (ρ +,n -ρ -,n ) , ρ ±,n+1 (x, 0) = ρ ± 0 . (4.27)
First of all, according to Proposition 2.4,

ρ 1 ∈ Y r,p implies that u 1 ∈ C r (R 2 ) ∩ L p (R 2 ).
Thus, applying Proposition 4.1, we can prove that, for all T > 0, there exists a unique solution ρ 2 ∈ L ∞ ([0, T ); Y r,p ) for (4.27) with n = 2. Arguing in a similar manner we can show that this approached problem (4.27) has a unique solution ρ n for all n ≥ 1.

The rest of the proof can be divided into two major steps. The first step establishes the existence of T 1 > 0 such that {ρ n = (ρ +,n , ρ -,n )} n≥1 is uniformly bounded in Y r,p for any t ∈ [0, T 1 ]. The second step shows that for some T 2 ∈ [0, T 1 ], we have

{ρ n = (ρ +,n , ρ -,n )} n≥1 is a Cauchy sequence in C([0, T 2 ], Y r-1,p ).
Step 1 (A uniform bound): Using similar arguments as in the proof of Proposition 4.1, estimate (4.24) yields, by Proposition 2.4, the following bound on {ρ n = (ρ +,n , ρ -,n )} n≥1 : Then ρ n (•, t) r,p ≤ M for all n ≥ 1 and t ∈ [0, T 1 ]. Since, ρ 1 r,p ≤ ρ 0 r,p < M and ρ k (•, t) r,p < M, we obtain

ρ n+1 (•, t) r,p ≤ ρ 0 r,p exp(C 0 T 1 M) ≤ M.
(4.28) Furthermore, since r > 1, we use (2.10) and Proposition 2.4 to get:

∂ρ ±,n ∂t C r-1 ≤ u n ∂ρ ±,n+1 ∂x 1 C r-1 ≤ u n C r-1 ∂ρ ±,n+1 ∂x 1 L ∞ + u n L ∞ ∂ρ ±,n+1 ∂x 1 C r-1 ≤ C u n C r-1 ρ ±,n+1 C r ≤ CM 2 ,
where C = C(r). We can also check that the following L p estimate on ρ ±,n is valid:

∂ρ ±,n ∂t L p ≤ u n ∂ρ ±,n+1 ∂x 1 L p ≤ u n L p ∂ρ ±,n+1 ∂x 1 L ∞ ≤ C u n L p ρ ±,n+1 C r ≤ CM 2
, where we have used Hlder inequality in the first line, then (2.8) and Proposition 2.4 in the second line. Adding the two previous inequalities, we deduce that

∂ρ ±,n ∂t C r-1 + ∂ρ ±,n ∂t L p ≤ CM 2 , (4.29) 
where C = C(r). Thus, by (4.28)-(4.29), we obtain that

ρ n ∈ L ∞ ([0, T 1 ]; Y r,p ) ∩ Lip([0, T 1 ]; Y r-1,p )
is uniformly bounded.

Step 2 (Cauchy sequence): To show that {ρ n = (ρ +,n , ρ -,n )} n≥1 is a Cauchy sequence in Y r-1,q , we consider the difference η ±,n = ρ ±,nρ ±,n-1 . Rigorously speaking, we should consider the more general difference η ±,m,n = ρ ±,mρ ±,n , but the analysis for η m,n = (η +,m,n , η -,m,n ) is parallel to what we shall present for η n = (η +,n , η -,n ) and thus we consider η n for the sake of a concise presentation. It follows from (4.27) that

{η n = (η +,n , η -,n )} n≥1 satisfies                        η ±,1 = ρ ± 0 , ∂η ±,n+1 ∂t ± u n ∂η ±,n+1 ∂x 1 = ∓w n ∂ρ ±,n ∂x 1 , w n = R 2 1 R 2 2 (η +,n -η -,n ), η ±,n+1 (x, 0) = η ±,n+1 0 (x) = 0. (4.30)
Proceeding as in the proof of Proposition 4.1, we obtain for any integer j ≥ -1,

∆ j η ±,n+1 (•, t) L ∞ ≤ t 0 u n ∂ ∂x 1 , ∆ j η ±,n+1 (•, s) L ∞ ds K 1 + t 0 ∆ j w n ∂ρ ±,n ∂x 1 (•, s) L ∞ ds. K 2
Estimating K 1 by Lemma 3.1 (2), and K 2 by (2.10), we get:

η ±,n+1 (•, t) C r-1 ≤ C t 0 ∇u n (•, s) L ∞ η ±,n+1 (•, s) C r-1 + u n (•, s) C r η ±,n+1 (•, s) L ∞ ds +C t 0 w n (•, s) L ∞ ∂ρ ±,n ∂x 1 (•, s) C r-1 + w n (•, s) C r-1 ∂ρ ±,n ∂x 1 (•, s) L ∞ ds. Since r > 1, Proposition 2.2 implies, ∇u n L ∞ ≤ C u n C r , η ±,n+1 L ∞ ≤ C η ±,n+1 C r-1 , ∂ρ ±,n ∂x 1 L ∞ ≤ C ρ ±,n C r and w n L ∞ ≤ C w n C r-1 .
Therefore, for a constant C depending only on r,

η ±,n+1 (•, t) C r-1 ≤ C t 0 u n (•, s) C r η ±,n+1 (•, s) C r-1 ds +C t 0 w n (•, s) C r-1 ρ ±,n (•, s) C r ds.
However, it follows from a basic L p estimate that

η ±,n+1 (•, t) L p ≤ C t 0 ∇u n (•, s) L ∞ η ±,n+1 (•, s) L p ds +C t 0 w n (•, s) L p ∂ρ ±,n ∂x 1 (•, s) L ∞ ds ≤ C t 0 u n (•, s) C r η ±,n+1 (•, s) L p ds +C t 0 w n (•, s) L p ρ ±,n (•, s) C r ds.
Adding the last two inequalities, yields

η n+1 (•, t) r-1,p ≤ C t 0 u n (•, s) C r ∩L p η n+1 (•, s) r-1,p ds +C t 0 w n (•, s) C r-1 ∩L p ρ n (•, s) r,p ds.
The components of w n are the Riesz transforms of η n and thus, according to Proposition 2.4:

w n C r-1 ∩L p ≤ C η n r-1,p .
We thus have reached an iterative relationship between η n r-1,p and η n+1 r-1,p : We conclude from Steps 1 and 2 that there exists ρ = (ρ + , ρ -) satisfying First of all, we note that for all L ∈ R, if ρ ± are solutions of (1.1) then ρ± (x 1 , x 2 , t) = ρ ± (x 1 , x 2 , t) -Lx 1 solves the following system:

η n+1 (•, t) r-1,p ≤ C 1 t 0 ρ n (•, s) r,p η n+1 (•, s) r-1,p ds +C 1 t 0 η n (•, s) r-1,p ρ n (•, s)
       ∂ ρ± ∂t (x, t) ± u ∂ ρ± ∂x 1 (x, t) = ∓Lu on R 2 × (0, T ), u = R 2 1 R 2 2 (ρ + -ρ-), (4.32) 
and respects the following initial data: ρ± 0 (x 1 , x 2 , t) = ρ ± 0 (x 1 , x 2 ) -Lx 1 . Now, to prove Theorem 1.2, it suffices to show that, for all initial data ρ± 0 ∈ Y r,p , the system (4.32) has a unique local solution ρ± ∈ L ∞ ([0, T ); Y r,p ) for r > 1 and p ∈ (1, +∞).

In order to do this, we proceed as in the proof of Theorem 1.1. We consider the following 

u n = R 2 1 R 2 2 (ρ +,n -ρ-,n ) ,
ρ±,n+1 (x, 0) = ρ0 ± .

(4.33)

We remark that, the only change that appears here, compared to the approached system (4.27) is the right-hand side Lu n of the second equation of (4.33). However, by Proposition 2.4, we know that this term remains bounded in L ∞ ([0, T ); C r (R 2 ) ∩ L p (R 2 )) for r > 1 and p ∈ (1, +∞). Which permits us to easily follow the same steps of the proof of Theorem 1.1. This finally proves that, for some small T > 0, we have on the one hand: the sequence ρn = (ρ +,n , ρ-,n ) is uniformly bounded in L ∞ ([0, T ); Y r,p ), and on the other hand, this sequence is a Cauchy sequence in L ∞ ([0, T ); Y r-1,p ). This terminate the proof. 2
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  n+1 (•, t) r,p ≤ ρ 0 r,p exp C 0 t 0 u(•, s) C r ∩L p ds , ρ 0 r,p exp C 0 t 0 ρ n (•, s) r,p ds , where r > 1, p ∈ (1, +∞) and C 0 = C 0 (r, p). Choose T 1 and M satisfying M = 2 ρ 0 r,p and exp(C 0 T 1 M) ≤ 2 or T 1 = ln(2) 2C 0 ρ 0 r,p .
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 23 ∈ L ∞ ([0, T 2 ]; Y r,p ) ∩ Lip([0, T 2 ]; Y r-1,p ) such that ρ n converges to ρ in C([0, T 2 ]; Y r-1,p ).The proof of uniqueness follows directly from Step 2. This completes the proof of Theorem 1.1. Proof of Theorem 1.2It is worth mentioning that the ideas of the proof of Theorem 1.2 are already contained in the proof of Theorem 1.1.

± u n ∂ ρ±,n+1 ∂x 1 =

 1 ∓Lu n , on R 2 × (0, T )

  ).

	Remark 1.3 If at the initial time we have ∂ρ ± ∂ρ ± ∂x 1 then this remains true for 0 ≤ t ≤ T , i.e., ∂x 1	(•, •, t = 0) ≥ 0 two positive quantities,

  2 ) is established. Section 3 presents two key commutator estimates (Lemma 3.1). Finally in Section 4, we prove Theorem 1.4 and a basic a priori estimate. Then, thanks to this a priori estimate, we give in Subsections 4.2 and 4.3 the proofs of Theorems 1.1 and 1.2 respectively.

  By Gronwall's Lemma and Proposition 2.4, ρ(•, t) r,p ≤ ρ 0 r,p exp C

	t		
	0	u(•, s) C r ∩L p ds .	(4.24)
	Which completes the proof of Proposition 4.1.		
			2
	Proof of Theorem 1.4:		

  r,p ds,(4.31) where the constants are labeled as C 1 for the purpose of defining T 2 . It has been shown in Step 1 that for t ≤ T 1 ,ρ n r,p ≤ M. Now, choose T 2 > 0 satisfying T 2 ≤ T 1 , C 1 MT 2 ≤ 1 4 ,we can show that {ρ n (•, t)} n≥1 is a Cauchy sequence in Y r-1,p for t ≤ T 2 . Indeed, for any given ε > 0, if η n r-1,p ≤ ε for t ≤ T 2 , then (4.31) implies that:η n+1 r-1,p ≤ C 1 εMT 2 + C 1 Mis valid for any t ≤ T 2 . It then follows from Gronwall's inequality that η n+1 r-1,p ≤ ε, for any t ≤ T 2 which completes Step 2.

t 0 η n+1 (•, s) r-1,p ds,
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