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ABSTRACT. We describe the Koszul dual of two quadratic operads on planar forests in-
troduced to study the infinitesimal Hopf algebra of planar rooted trees and prove that these
operads are Koszul.
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The Hopf algebra of planar rooted trees, described in @, E}, is a non-commutative version of the
Hopf algebra of rooted tree introduced in [ll, ], §, {] in the context of Quantum Field Theories
and Renormalisation. An infinitesimal version of this object is introduced in [}, and is related to
two operads on planar forests in [[J]. These two operads, denoted by P, and P -, are presented
in the following way:

1. P\ is generated by m and \ & P\ (2), with relations:

mo (\,, 1)

mo (m,I)

N\ o(m, 1)

Noo(I,m),

mo (I,m),

oo, N).



2. P, is generated by m and € P (2), with relations:

mo(/7l) = /O(Ivm)7

mo(m,I) = mo(I,m),

/O(/vl) = /O(Iv/)'

The algebra of planar rooted trees is both the free P »- and P\ -algebra generated by ., with
products " and \, given by certain graftings.

The operads P » and P\ are quadratic. Our aim in this note is to prove that they are both
Koszul, in the sense of [F]. We describe their Koszul dual (it turns out that they are quotient of
P\, and P ) and the associated homology of P ~- or P\ -algebras. We compute these homologies
for free objects and prove that they are concentrated in degree 0. This proves that these operads
are Koszul.

1 Operads of planar forests

1.1 Presentation

We work in this text with operads, whereas we worked in [ with non-X-operads. In other
terms, we replace the non-X-operads of [[f] by their symmetrization [[L{].

Definition 1

1. P\ is generated, as an operad, by m and \, with the relations:

Noo(m,I) = N o(I,N\),
\O(Ivm) = mo(\,l),

mo (m,I) = mo(I,m).

2. IP » is generated, as an operad, by m and ', with the relations:

Jo( /) = ol /),
Jo(I,m) = mo (/1
I

mo (m,I) = mo(l,m).

Remarks.

1. Graphically, the relations defining P\ can be written in the following way:

1 2 2 3 1 2 2 3 1 2 2 3
3 1 3 1 3 1
m N m m N m
\g( ) % \g/ ) % \g/ ) %
2. We denote by ]f”\ the sub-non-X-operad of P generated by m and .. Then P\  is the
symmetrization of P .

3. Graphically, the relations of IP’!/ can be written in the following way:

AT

4. We denote by P  the sub-non-Y-operad of P’ » generated by m and . Then P - is the
symmetrization of P’ .



Both of these non-X-operads admits a description in terms of planar forests [Bl. In particular,
the dimension of P\ (n) and P »(n) is given by the n-th Catalan number [[1, [3]. Multiplying
by a factorial, for all n > 1:

(2n)!

dimP\ (n) = dimP ~(n) = CFEIk

In particular, dimP\ (2) = dimP »(2) = 4 and dim P\ (3) = dim P ~(3) = 30.

1.2 Free algebras on these operads

We described in [f] the free P\ - and P _r-algebras on one generators, using planar rooted trees.
We here generalise (without proof) these results. Let D be any set. We denote by TP the set
of planar trees decorated by D and by FP the set of non-empty planar forests decorated by D.

1. The free P\ -algebra generated by D has the set FP as a basis. The product m is given by
concatenation of forests. For all F, G € FP, the product F \, G is obtained by grafting
F on the root of G, on the left.

2. The free P s-algebra generated by D has the set FP as a basis. The product m is given by
concatenation of forests. For all F, G € FP, the product F' / G is obtained by grafting
F on the left leaf of G.

In both cases, we identified d € D with ., € FP. Moreover, for all F ¢ FP, F N\, .. =F / .4
is the tree obtained by grafting the trees of ' on a common root decorated by d: this tree will
be denoted by By(F).

2 The operad P is Koszul

2.1 Koszul dual of P\

See B, for the notion of Koszul duality for quadratic operads). We denote by P{_ the Koszul
N
dual of P_.

Theorem 2 The operad ]P’!\ is generated by m and € ]P’!\‘(2), with the relations:

Noo(m, I) = N o(l,\),
mo(m,I) = mo(I,m),
mo(N\,I) = \,o(l,m),
No(N\,I) = 0,
mo(I,N) = 0

Proof. Let P(F) be the operad freely generated by the Sy-module freely generated by m
and \,. Then P\ can be written P\ = P(E)/(R), where R is a sub-Sz-module of P(E)(3).
As dim(P(F)) = 48 and dim(P\_(3)) = 30, dim(R) = 18. So dim(Rt) = 48 — 18 = 30. We
then verify that the given relations for IP’!\ are indeed in R, that each of them generates a free
Ss-module, which are in direct sum. So these relations generate entirely P(F)(3). O

Remarks.

1. So IP’!\ is a quotient of P\ .



2. Moreover, IP’!\ is the symmetrisation of the non-X-operad I@"\ generated by m and \, and
the relations:

Noo(m, I) = No(l,\),
mo(m,I) = mo(I,m),
mo(N\,I) = \,o(I,m),
No(\,I) = 0,
mo(I,\) = 0.

This is a general fact: the Koszul dual of the symmetrisation of a quadratic non-Y operad
is itself the symmetrisation of a certain quadratic non-Y-operad.

3. Graphically, the relations defining ]P’!\ can be written in the following way:
1 2 2 3 1 2 2 3 1 2 2 3
3 1 3 1 3 1

m N m m N m
\\g/_\%{/ \X%/_\%{/ \X%/_\RZ

1 2 2 3

\ﬂ/‘k’) 1\?/

N \

M=o, "=

Let V be finite-dimensional vector space. We put:

2.2  Free P!\-algebras

n

T~ (V)(n) = EBV®" for all n > 1,
k=1
(V) = @),
n=1

In order to distinguish the different copies of V", we put:

n

T(V)(n):@<A®...®A®A®A®...®A>.
k=1

the k-th copy of A is pointed.

The elements of A®... 9 AQARA®...®A will be denoted by v1 . . QU1 RV QU1 ®. . . QUp.
We define m and Y\, over T\ (V) in the following way: for v = 11 ® ... ® U} ® ... ® vy, and
W=wW R... U R ... R Wy,

T 0if I #1,
- MNR.. QU R...QU, QWL @ ... wy if l =1;
0if k # 1,
VN = {Ul®...®vm®w1®...®wl®...®wnifk:zl.

Lemma 3 T\ (V) is a ]P’!\‘—algebm generated by V.

Proof. Let us first show that the relations of the P!\—algebras are satisfied. Let u =
UR...QUR...QUn, V=01Q.. 004 Q.. 0 v, andw=w; ®... W X ... R wp.

(w)Nw = 0ifj#1lork#1,
UR...QURRVIR...0U, QW R...0 W ®...0wyif j=k=1,

uN\, (N w) = 0ifj#1ork#1,



= UO..0UR,RUV®.. U, QW X...0UW ... 0w,if j=k=1,

(ww)w = 0ifk#1orl#1,
U R...QU ... UL RV ®...0V, QW1 ®...Qwyif k=1=1,
Oif k#1orl#1,
= UR...Q0U .. UL, PV R...0V, QW1 ®...Q0wy if k=1=1,

u(vw)

(uNyv)w = 0ifj#1lorl#1,

= UR..0UL,RUV®.. V... 0V, QW1 ®...Q0wy,if j=1=1,
uN\, (vw) = 0ifj#Tlorl#1,

= UR..0UL,RUV®.. V... 0V, QW1 ®... 0wy, if j=1=1,

(u\v)\Nw = 0,

u(v \yw) = 0.
So (I\(V),m, ) is a P!\‘—algebra. Moreover, for all vy,...,v, € V:
VB @U@ ... @V = (1. Tp-1) N\ (O ... D).
Hence, T\ (V') is generated by V. O

The P!\-algebra T (V) is also graded by putting V' in degree 1. It is then a quotient of the
free P!\—algebra generated by V', which is:

EB ]?"\(n) Q Ve,
n=0

So, for all n € N, dim(]f”!\(n) ®@V®™) > dim(Tx (V) (n)), so dlm(]f"'\(n)) > n and dim(]P’!\(n)) >

nnl. -
Lemma 4 For alln € N, dzm(IP"\(n)) < nnl.

Proof. P'\(n) is linearly generated by the binary trees with n indexed leaves, whose internal

vertices are decorated by m and \,. By the four first relations of IP’!\, we obtain that IP’!\‘ (n) is
generated by the trees of the following form:
o(n —1) o(n)

o(n —2) a1
n—

Vo an—2

a(2) .
o(1)
az
ay
)

with o € Sy, a1,...an—1 € {m,\,}. With the last relation, we deduce that ]P"\(n) is generated
by the trees of the following form:

o(n —1) o(n)

o(n 72\)>/m
m
o (i)
ot *@/m
YN

o(2)

o(1)
N
N
)



where 0 € S, 1 <1i <n. Hence, dz'm(IP’!\(n)) < nnl. O

As a consequence:

Theorem 5 Letn > 1.
1. dzm(IP"\‘(n)) = nnl.

2. ]P"\(n) is freely generated, as a S,-module, by the following trees:

where 1 < ¢ <mn.

3. T\ (V) is the free P!\—algebm generated by V.

2.3 Homology of a P\ -algebra

Let us now describe the cofree P\ -algebra cogenerated by V. By duality, it is equal to T\ (V)
as a vector space, with coproducts given in the following way: forv =11 ® ... QU ® ... Q U,

A(’U) = (vl®...®?}k®...®v,~)®(1’),~+1®...®vm),

—_

3

ESJ
Il
-

A\(U) = (M ®...00)R V41 ®... UL Q... Up).
1

<.
I

Let A be a P\ -algebra. The homology complex of A is given by the shifted cofree coalgebra
T (V)[-1], with differential d : T\ (V)(n) — T\ (V)(n — 1), uniquely determined by the
following conditions:

1. for all a,b € A, d(a ® b) = ab.

2. forall a,be A, d(a®b) =a \,b.

3. Let §: T\ (A) — T\ _(A) be the following application:

p. ] INA) — T\(4)
' x — (=1)%gec@)g for all homogeneous z.

Then d is a §-coderivation: for all x € T\ (A),

Ald(z)) = (d@Id+60®Id)oAx),
A\ (d(z)) = (d®Id+60®Id)o A\ (x).



So, d is the application which sends the element 11 ® ... R U ® ... ® vy, to:

k—2 '

()" ®... QUi ® ... QU Q... Up
i=1

k—2 :

(D" ® ... QU1 NV Q... Uy
+(=1)* 1 ® ... @ Tt ® ... @ U

n—1
+ ()" ®... QU0 Q... QU4 ® ... Q Upy.

i=k+1

The homology of this complex will be denoted by H. }‘(A) More clearly, for all n € N:

H

n

(4) =
Examples. Let vi,v9,v3 € A.
( d(v;

(’Ul X Vo
d(v1 ® v

d(vh ® vy ® v3

d(vl ® U2 @ v3

)
)
)
)
)
)

d(vl ® v2 @ U3

So:
d? (v ® vy ® v3)
d2(1)1 ® Uy ® v3)
d?(v1 ® vy ® v3)

So the nullity of d on T\ (A)(3) is equivalent to the three relations defining P« -algebras (this

is a general fact [{]). In particular:

Ker (d\T\(A><n+1>)

Im (d|T\<A>(n+2>> |

0,
V102,

U1 \U27

N :
V1V2 QU3 — V1 @ Vavs,

—— =
vy O\ V2 @3 — U1 ® Vav3,

. ,—/H
V1V ® U3 — V1 ® v "\, V3 .

(viv2)vg — v1(v2v3),
(v1 \, v2)ug — v1 Y\, (v23),
(viv2) \, vz — v "\, (v2 \, v3).

2.4 Homology of free P\ -algebras

The aim of this paragraph is to prove the

Theorem 6 let N > 1 and let A be

following result:

the free P\ -algebra generated by D elements.

HO\(A) is D-dimensional; if n > 1, Hn\(A) = (0).

Proof. Preliminaries. We put, for all k,n € N*:
Cn = T\ (A)(n),
Ch = A®..A®...@ ACC,ifk <n,
A in position k
ng = @igk,n Cviz C Ch.

7



For all £ € N*, CsF is a subcomplex of C. In particular, C=lis isomorphic to the complex
defined by C/, = A®" with a differential defined by:

A®n A®(n—1)
n—1 '
M. B — > (D)7 ®... @ v ®Uivis @ Vi ® ... @ Up.
=1

d -

The homology of C. is then the shifted Hochschild homology of A. As A is a free (non unitary)
associative algebra, this homology is concentrated in degree 1. So, Ker (d > C Im(ad) if

n > 2.

[

First step. Let us fix n > 2 and let us show that Ker <d‘cgk> CIm(d)foralll1 <k<n-1
by induction on k. For k£ = 1, this is already done. Let us assume that 2 < k < n and

Ker (dlcgk—1> C Im(d). Let z = Z$Z € Ker( ‘C§k>, with z; € Cfl. If z, = 0, then
x € Ker <d‘cgk—1) by the induction hypothe51s. Otherwise, we put:

xk—ZUl LRUE R ... Q.

We project d(x) over C*¥_,. we obtain:

0 = Zm (i) +ZZ H(01® . @01 @V BV ® . U ® .. D vy)

—_—
+) (D) P01 @ @ v @ V1 N\ U V1 ® - B Uy

_ PPN
D (D (01 ® . @ vk @ Dlp 1 B2 ® - © )
YD ()T @ R U @ ® Vim1 ® ViV @ Vi @ ... @ Up)
i=k+1

= 0+0+0+Z 1) ® ... @ Quk_1 @ TRUs1 OVks2 D ... ® vy

+ZZ LR ® .. B V-1 ® VU B V2 ® ... ® Uy
1=k+1

= (—1)k_12v1 Q... QU1 Qd (V@ ... vy).

Hence, we can suppose that d'(vx ®...®v,) =0. Asn—k+ 1> 2 and the complex C., is exact
in degree n — k + 1 > 2, there exists > w; ®@ ... ® wp41 € A®(=k+2) "guch that:

d’<2wk®...®wn+1) =0 ®...Q0 vy

Weputw =3 01®...00,_ 103w ® ... @ wpy1). Then d(w) = 2, +CF 1 so x—d(w) € CEL.
As Im(d) C Ker(d), x — d(w) € Ker <d‘cgk—1) C Im(d) by the induction hypothesis. So,
x € Im(d).

Second step. Let us show that Ker (d > C Im(d) if n > 3. Let x € Ker <d|cgn). As

(=4

n
before, we put z = Z$i, with z; € C% and:
i=1

Ta= ) Vi®... 00 ®... ®.
7



We can assume that the vé—’s are homogeneous. Let us fix an integer IV, greater than the degree
of z,, and an integer M, smaller than max{weight(v’,)}. Let us show by decreasing induction the
7

following property: For allz € Ker (d‘cgn) of weight < N and such that max{weight(v’)} > M,

then z € I'm(d). If M > N, such an x is zero and the result is trivial. Let us assume the property
at rank M + 1 and let us prove it at rank M. Let Ays be the homogeqeous component (for the
weight of forests) of degree M of A. We project d(x) over A® ... ® Ap;. Then:

0=wy(d)) = > dW®...0v_)®uv.
1, weight(vi,)=M

Hence, we can suppose that, for all i such that weight(vy) = M, d'(v} @ ... ®@v,_;) = 0. As
n >3 and O, is exact at n — 1 > 2, there exists Z w?! ®...® whl € A®™ such that:

/ i, i | i
d E w' ... QW | =v1®...®v,_4.
J

As d' is homogeneous for the weight, the weight of this element can be supposed smallest than

the weight of v! ® ... ® v!_;. We then put w = Z Zwi’j ®...0wy | ® vﬁl So
i, poids(vi)=M \ J

x —d(w) isin z € Ker <d|07§n>, with weight < N, and satisfies the property on the v’’s for

M + 1. By induction hypothesis, z — d(w) € Im(d), so z € Im(d).

Hence, ifn > 3, Ker (d|C§n> C Im(d). AsC5"™ = Cy, foralln > 3, d(Cry1) C Ker (dic,) C
d(Cp+1). Consequently, if n > 2, Hn\(A) = (0).

Third step. We now compute 1\ (A). We take an element x € Cy and show that it belongs
to Im(d). This z can be written under the form:

z= Y  apeF®G- ) bpeFeG.
F,GeFP—-{1} F,GeFP—-{1}
So:
diz)= > apgF\G— Y bpcFG.
F,GeFP—{1} F,GeF—{1}

Hence, the following assertions are equivalent:
1. d(z) =0.

2. For all H € FP — {1}, Z apG = Z bra.
F\G=H FG=H

First case. For all F,G € FP — {1}, apg = 0, that is to say 2 € A® A. So d(z) = d'(z'). As
C! is exact in degree 2, there exists v1 ® v ®v3 € A®3 such that d' (vi @ V2 @v3) = Z braF ®G.
F.G
Consequently, d(v; ® vy ® v3) = Z ngF RG=1z.
F.G
Second case. x = Fy @ Fy — Gq @ Ga, F1, Fy,G1,Go € FP such that F; \, Fy = G1Gy =
H. Weput H = ty...t, and t; = By(s1...5m), t1,-.-,tn,51,...,5m € TP. There exists



i €{l,...,n— 1} such that Gy = t1...t; and Gg = t;41...tp; there exists j € {1,...

such that 'y = s1...sj and F» = By(sj41...Sm)ta...t,. Then:

d(Sl - S5 & Bd(Sj_H v Sm)tg R ®ti+1 v tn)

= (81...8j) \ Bd(8j+1...8m)t2...ti Qtit1...tn
—81...8;® Bd(8j+1 e Sm)tg o titipr L Ty
= G1®Gy—F ® F.

So, z € Im(d).

Third case. We suppose now the following condition:
(apc #0) = (G ¢ TP).
So, x can be written:

/-\ .
r= Y ameF®tG - ) bpeFed.
F.GEFD teT? F,GEFD

,m—1}

A~
By the second case, F'®@ tG —F \,t®G € Im(d) C Ker(d). So the following element belongs

to Ker(d):

A~
T — Z arc(F® tG —F \(t®G)
F,GeFD tcTP

. —_——
= — Z braF @ G + Z arpic F\ t®G.
F,GeFP F,GeFD, tcT?

By the first case, this element belongs to Im(d), so x € Im(d).

Fourth case. We suppose now the following condition:
(apg #0) = (G¢ TP ou G = .4, d€D).
Let H = B (t1...t,) € TP, different from a single root. Then:

n

0= Z arG — Z brc = Zatl-..ti,Bd(ti+1...tn) —0=ay 4,0 T0=0ar.,.

F\G=H FG=H i=1

Consequently, for all F € FP, d € D, ar,., = 0. By the third case, x € Im(d).

General case. The following element belongs to Ker(d):

¥ = x4+ Z aF,Bd(G)d(F®G®'.d)

F,GEFP, deD
= x+ Z aF,Bd(G)FG(X)’d_ Z aF’Bd(G)F@)G\.d
F,GEFP deD F,GeFP, deD
= x+ Z aF,Bd(G)FG®'.d — Z aF,Bd(G)F®Bd(G)
F,GEFP, deD F.GEFD, deD
= > apcF®G+ Y apcF®.
FeFDP GeFP-TPD FeFD deD
- Z bF,GF®G+ Z aF,Bd(G)FG®-.d'
F,GEFD F,GEFP, deD

10



So ' satisfies the condition of the fourth case, so ' € Im(d). Hence, € Im(d). This proves
finally that Ker(dc,) = d(Cs), so H;>(A) = (0)

It remains to compute HO\(A). This is equal to A/(A.A+ A\, A), so a basis of H}‘(A) is
given by the trees of weight 1, so dz’m(HO\(A)) =D. O

As an immediate corollary:
Corollary 7 The operad P\ is Koszul.

3 The operad P~ is Koszul

3.1 Koszul dual of P -

We denote by IP’!/ the Koszul dual of PP .

Theorem 8 The operad ]P’!/ is generated by m and /'€ ]P’!/(2), with the relations:

o) = e, ),
mo (m,I) = mo(l,m),
mo (/1) =/ o(l,m),
/! O(m’l) = 0,
mo (I, /) 0.
Proof. Similar as the proof of theorem f. O

Remarks.

1. So ]P’!/ is a quotient of P ».

2. The operad IP’!/ is the symmetrization of the non-Y-operad If"!/, generated by m and 7,
with relations:

o) = el ),
mo (m,I) = mo(l,m),
mo (/1) =/ o(l,m),
/O(m71) = 0,
mo (I, /) 0.

3. Graphically, the relations of ]P’!/ can be written in the following way:

e Ve m m Ve m
e _ e m _ m m _ e
T =o, "=

11



3.2 Free P’/—algebras

Let V be finite-dimensional vector space. We put:

T,V)(n) = @V®" for all n > 1,
k=1

T,V) = T, (V)
n=1

In order to distinguish the different copies of V", we put:

n

TV)n) =P |AF .. FAFAA®...0A
=l (k—1) signs &

The elements of AZ ... ¥ AR ... ® A will be denoted by v1 & ... S ® ... ® v,. We
define m and " over T »(V) in the following way: for v = »1 & ... F v, ® ... ® v, and
w=w K ... ... R wy,

o — 0if [ #1,
M .. . FUpR...OU, QUL R... dwy, if [l =1;

v S w = 0if Kk £#m —1,
- ng ..., Fgun g ... Fw... 0w, if k=1.

As for P\, we can prove the following result:

Theorem 9 Letn > 1.

1. dzm(IP)'/(n)) = nnl.

2. P'/(n) is freely gemerated, as a S,-module, by the following trees:

o(n —1) o(n)

o(n 7<)>/m
~m

o (i)

0(i7<>4l
VS

a(2) -
o(1)
e
e
3

3. T (V) is the free P!/—algebm generated by V.

where 1 < ¢ <mn.

3.3 Homology of a P --algebra
Let us now describe the cofree P »-algebra cogenerated by V. By duality, it is equal to T (V)

as a vector space, with coproducts given in the following way: forv =11 & ... F U R ... VU,
m—1
A(v) = (... Fp®...00)Q (Vit1 ® ... R V),
i=k
k-1
A (v) = (g ... 8v)Wng ... Fup®...Qvy).

=1

-
Il

12



Let A be a P s-algebra. The homology complex of A is given by the shifted cofree coalgebra
T »(V)[-1], with differential d : T (V)(n) — T »(V)(n — 1), uniquely determined by the
following conditions:

1. for all a,b € A, d(a ®b) = ab.

2. foralla,be A, d(a g b)=a /b

3. Let 0:T -(A) — T (A) be the following application:

g. [ T/(A4) — T,A)
' z — (—1)%g7ee@)y for all homogeneous .
Then d is a f-coderivation: for all z € T ~(A),
A(d(z)) = ([@d@Id+0®Id)oA(z),
A (dz) = (dId+0®Id)oA ().

So, d is the application which sends the element 11 ® ... R U ® ... ® vy, to:
(m@” LR R uy)
k—
= Z D7l @ B o o S i B o & G @ Qv

i=1
n

.
—_

Y (D)7 G T ® .. QUi @ Ui @ Vg @ ... @ .
i=k

This homology will be denoted by H{ (A). More clearly, for all n € N:

Ker (d\T/(A><n+1>)

H/(A) = .
Im (d|T/(A>(n+2>>

n

Examples. Let vi,v9,v3 € A.

( (Ul) = 07
d(vi ®v2) = vy,
divy Fva) = wvi /v,
d(?)l R v ® 1)3) = V12 ® v3 — V1 Q V03,
dlvi Fvo®u3) = v1 /vy ®v3— v & vous,
divi Fvo Fvg) = v v vz —v G/ vs.
So:
d*(vi ® vy ®@v3) = (vive)vg — vi(vav3),

P Fra®uvs) = (v1,/ va)vs—v1 / (vav3),
P o) = (v S v)  vs—v/ (va / v3).

So the nullity of d* on T ~(A)(3) is equivalent to the three relations defining P --algebras, as for

P\ . In particular:

A

H (A)= —"
6 (4) AA+A A

13



3.4 Homology of free P --algebras

The aim of this paragraph is to prove the following result:

Theorem 10 let N > 1 and let A be the free P »-algebra generated by D elements. Then
HO/(A) is D-dimensional; if n > 1, Hf (A) = (0).

Proof. Preliminaries. We put, for k,n € N*:
C'n = T,(A)(n),
CF = A ... FA®..ACC, ifk<n,
k — 1 signs &
Clgk = @i<kn0/; C .

For all k € N*, C'S* is a subcomplex of C’,,. In particular, C’=' is isomorphic to the complex
defined by C’,, = A®", with differential given by:
A®n A®(n—1)
d/ . n—1 )
Nl ®...®a, — Z(—l)’_lal ®...Qa0—1® e+ Q42 D ... R ap.
=1

Hence, the homology of C’, is the (shifted) Hochschild homology of A. As A is a free (non
unitary) associative algebra, this homology is concentrated in degree 1. So:

Ker (dw,gl) C Im(d) if n > 2. (1)
Moreover, C?, admits a subcomplex defined by C7(n) = A& ... & A, with differential given
by:
Ci(n) — Cln-1)

n—1
n@ . Fon — Y (DTG L B o @ v D i D D o,

i=1

Hence, the homology of this subcomplex is the shifted Hochschild homology of the associative
algebra (A, /).

Lemma 11 FEvery forest F € FP — {1} can be uniquely written as Fy /... /' F,, where
the F;’s are elements of FP of the form F; = «d,Gi.

Proof. Ezistence. By induction on the weight of . If weight(F') = 1, F' = . 4 and the result
is obvious. If weight(F) > 2, we put F' = B (H1)H», with weight(Hy) < weight(F). If Hy = 1,
the result is obvious. If Hy # 1, we apply the induction hypothesis on Hy, so it can be written
as Hy=F, /... / Fy, with F; = .4,G;. Weput Fyy1 =.qHo, 50 F=F /... / Fyy1.

Unicity. By induction on the weight of F. If weight(F) = 1, then F' = .; and this
is obvious. If weight(F) > 2, we put F = Bg(Hp)H2, with weight(H;) < weight(F). If
F=Fr /... /F,then F, = .jHy and Fy /... /' F,_1 = Hy. Hence, F,, is unique. We
conclude with the induction hypothesis. O

This lemma implies that (A, /) is freely generated by forests of the form .,G. So:

14



First step. Let us fix n > 2. We show by induction on k the following property:

Ker <d|c,§k> CIm(d) foralll1<k<n-—1.

k
For k = 1, this is (fl). Let us suppose 2 < k < n and Ker (d‘c,gk—l) C Im(d). Let z = Zaz, €

Ker <d|c,<k>, with x; € C” If z;, = 0, then = € Ker (d‘c,gk—l) and the induction hypothesis

holds. We then suppose zj # 0, and we put:
xk:ZUlg B R Q.

Let us project d(z) over C'*_,. We get:

k—1
Zﬂ'k a:, —I-Z 1)i_1Zﬂk(v1®...®v,~/vi+1,®...;X?fuk@...@vn)

i=1
+Z(—1)i_127rk(v1®“ BV R RV B ... @ Uy)

= 040+ ()" n @ .. G Fdwp ... Dv,)
= 0.

Hence, we can suppose d' (vy ® ... ®v,) = 0. Asn —k+ 1> 2, by (fl]), there exists an element
Sw, @ ... @ wygy € AP(F+2) such that:

d'(Zwk@)...@wnH) =0 ®...R v,

Weputw=> & ... Sop1 & QO wp ® ... @ wp41). Then, d(w) = xk—l—C’ﬁ_l, sox—d(w) €
C'" 1 As Im(d) € Ker(d), = — d(w) € Ker <d‘c,§k—1) C Im(d) by the induction hypothesis.
Hence, x € Im(d).

Second step. Let us show that, if n > 3, Ker <d‘c,§n) C Im(d). Take z € Ker <d‘cgn>,

n

written as z = Zwi, with z; € C and z, = Zvi@? . & vi We can suppose the vi ’s
i=1

homogeneous. Let us fix an integer N, greater than the degree of z,,, and an integer M, smaller

than min{weight(v’,)}. Let us show by a decreasing induction on M the following property: for
all x € Ker (d|c,§n>, of weight < N, and such that min{weight(v’)} > M, then = € Im(d). If

M > N, such an x is zero, and the result is obvious. Suppose the result at rank M + 1 and let
us show it at rank M. Let Ap; be the homogeneous (for the weight) component of degree M of
A and let us project d(z) over A& ... & ALK Ap. We get:

O=wn(d@)= Y  dojg .. Lo, L,

1, weight(vi)=M

Hence, we can suppose that, for all i such that weight(vl) = M, d(vi & ... F vl ;) =0. As
n >3, by (B), there exists Zwi’j & ... Fw € ', such that:
J

Zwi’yg L Bw | =0 Sl
J

15



As d is homogeneous for the weight, we can suppose that the weight of this element is smaller
than the weight of v} ® ... ® v;,_;. We then put:

w = wi’jﬁ...ﬁwi’j;ﬁvi.
Z Z 1 n n

i, weight(vi)=M J

So x—d(w) € Ker <d‘c,5n) , with a weight < N, and satisfies the property on the v?’s for M+ 1.
By the induction hypothesis, x — d(w) € Im(d), so x € Im(d).

So, if n > 2, as C'=" = C!,, Hy (A) = (0).

Third step. We now compute H 1/ (A). We take an element x € C) and show that it belongs
to Im(d). This element can be written as:

Tr = Z apcF & G — Z bral ® G.
F,GEFP—{1} F,GEFP—{1}

SO:

diz)= > apcF /G- > bpeFG.

F,GEFP—{1} F,GEFP—{1}

As a consequence, the following assertions are equivalent:
1. d(z)=0.

2. for all H € FP — {1}, Z arG = Z bra-
F/G=H FG=H

First case. For all F,G € FP — {1}, arg = 0, that is to say * € A ® A: then the result
comes directly from ([[).

Second case. x = F) & Fy — G1® G, Fi, Fy,G1,Go € FP such that F} /' Fy = G1Gy = H.
Weput H=1t,...thetty=Hy /... / Hp, t1,...,tn € TP, the H;’s of the form . 4, H, (lemma
[[1). Then there exists i € {1,...,n — 1}, such that G; = t1...t; and Go = t;41...t,; there
exists 7 € {1,...,m—1}, such that Fy = Hy /... /H] and Fy = (Hj+1 S /Hm)tg...tn.
So:

dHy /.. ) Hy 3 (Hjs1 /. / Hy)la o i @ i .. 1)
= (H /. JH) J (Hper /e J Hyts o i @ i . 1)
“H . SH B (Hips /. Hyty . bt 1)
= G1®G—F & F.

Hence, x € Im(d).
Third case. We suppose that the following condition holds:
(apc#0) = (G ¢ TP).

So, x can be written as:

T = Y apeFFtG— > bpeF ®G.
F.GEFD teT? F,GeF?P
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By the second case, FF &' tG— F /' t® G € Im(d) C Ker(d). So, the following element belongs
to Ker(d):

T — Z apq(FFtG—-F /t® Q)

F,GEFD tcTP

= — Z bF7gF®G—|— Z aRtgF/‘t@G.
F,GeFP F.GEFD teT?

By the first case, this element belongs to Im(d), so x € I'm(d).

Fourth case. We suppose that the following condition holds:
(apg#0) = (G¢ TP or G = .4, d € D).

Let H € FP — {1}. Let us write B (H) = Hy / ... /' H,, withH; = .4, H/ for all i (lemma
). As B (H) e TP, H, = .4, and Hy /... /' H,_1 = H. So:

0 = Z arG — Z bra

F /G=B,(H) FG=By(H)
n
= Z gy, /.. /H; Hii1 /. /Hy — 0
i—1
= ag, /.. /Hy 1,04 T0

= CLH7,d.

(We used the condition on z for the third equality). So, for all F € FP, d € D, we obtain
ar,., = 0. As a consequence, by the third case, x € Im(d).

General case. The following element belongs to Ker(d):

o= 2+ > appedF FGF )

F,GEFP,deD
= z+ Z appya) /S GE va — Z app,) 'S G/ a
F,GeFP deD F,GeFP deD
= z+ Z appy )t /G ea — Z arByc)F & Ba(G)
F,GeFP deD F,GeFP deD
= Z (LF’GF@ G+ Z aF,GFﬁgT od
FeFP GeFP-TP FeFD, deD
— Z braF @ G+ Z aF7Bd(G)FG®‘.d.
F,GeFD F,GeFP deD

So, o’ satisfies the condition of the fourth cas, so 2’ € Im(d). Hence, x € Im(d).

It remains to compute HO/(A). This is equal to A/(A.A+ A / A), so a basis of HO/(A) is
given by the trees of weight 1, so dz’m(HO/(A)) =D. O

As an immediate corollary:

Corollary 12 The operad P » is Koszul.
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