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Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations

Introduction

The numerical simulation of physical models, supported by the availability of increasing computational resources, plays today a very signicant role in design processes or in decision making which can have major consequences in economic or human terms.

Uncertainty quantication and propagation in physical systems appear as a critical path for the improvement of the prediction of their response. Obtaining reliable predictions requires a perfect control of the conceptual model. Upstream, this model must be designed in order to accurately reproduce the observations or more specically some observable quantities of interest. Physical models, which are generally quite well mastered within the deterministic framework, must then be supplemented by a relevant modeling of uncertainties. Downstream, a numerical model and ad hoc resolution techniques must be proposed in order to propagate uncertainties and to estimate their impact on the response of the conceptual model.

Two types of uncertainties are generally distinguished: the intrinsic (or aleatoric) uncertainties, associated with a natural variability of the considered physical phenomena, and the epistemic uncertainties, which result from a lack of knowledge. Of course, the latter ones are by nature reducible. However, due to the complexity of physical phenomena, to the lack of observations or even to the necessity of providing simplied mathematical models, addressing epistemic uncertainties appears also essential in order to improve the predictability of the model. The probabilistic framework is indisputably the most well established way to model uncertainties, both from theoretical and practical points of views. In this context, the modeling of uncertainties consists in dening a suitable probability space. For many physical problems, the conceptual model can then be expressed in terms of stochastic partial dierential equations (SPDEs).

Many numerical methods have been proposed for the resolution of SPDEs. The mathematical framework for the analysis of the problem and the choice of a particular numerical solution strategy depend on the nature of uncertainties, on the quantities of interest to predict and on the expected accuracy of this prediction. A particular class of problems concerns the case of stochastic dierential equations or stochastic partial dierential equations driven by white noise [127, [START_REF] Krée | Mathematics of Random Phenomena[END_REF][START_REF] Kloeden | Numerical Solution of Stochastic Dierential Equations[END_REF][START_REF]Stochastic Dierential Equations. An Introduction with Applications[END_REF]107]. Such problems, which are not dealt with in this paper, concern numerous applications in physics (diusion theory...), signal processing (ltering...), optimal control, nancial mathematics... Due to the complexity of the input noise, imposing to work in an innite dimensional probability space, Monte-Carlo simulation technique appears as the most ecient and wide-spread numerical approach for solving such SPDEs. The lack of regularity of the input noise requires the use of specic rules of calculus (e.g. Ito or Stratonovic calculus) and the derivation of specic approximation techniques for solving sample paths (i.e. solving deterministic PDE associated with particular events). Let us also mention methods based the resolution of deterministic PDEs governing the evolution of functionals of the random solution (e.g. Fokker-Planck equation). The use of traditional approximation techniques for solving these PDEs is however limited by the high dimensionality of the problem.

Another class of problems commonly encountered in physical applications concerns the case where the random parameters and the solution of the problem have a nite variance [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF][START_REF] Babuška | Galerkin nite element approximations of stochastic elliptic dierential equations[END_REF][START_REF] Babuška | Solving stochastic partial dierential equations based on the experimental data[END_REF][START_REF] Babuška | Solving elliptic boundary value problems with uncertain coecients by the nite element method: the stochastic formulation[END_REF][START_REF] Frauenfelder | Finite elements for elliptic problems with stochastic coecients[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF]. This class of problems, on which we mainly focus in this paper, occurs when random parameters of the model are represented by variables or random processes (elds) with nice regularity properties. The mathematical description of uncertainties a priori requires dening an innite dimensional probability space. ! However, in numerous physical applications, uncertainty sources can be correctly modeled with a nite set of random variables. This is the case when uncertainties on the model are characterized by a nite set of real-valued random variables or stochastic processes (elds), the latter ones being reduced (or discretized) with ad hoc spectral decomposition techniques (e.g. Karhunen-Loève). Then, in practice, one denes the probabilistic content with a nite set of random variables, dening a new nite dimensional probability space. In this nite-dimensional framework, numerous computational methods have been proposed for the resolution of a stochastic problem, or more specically for estimating the probabilistic characterization of a quantity of interest. The choice of a specic method depends on the desired accuracy of the prediction and on the nature of the expected probabilistic information. In particular, if one is interested in rst statistical moments of the response (mean, variance,...), perturbation or direct integration methods (Monte-Carlo, Quadrature...) can be used. For the estimation of the probability of particular events, direct integration techniques can still be used as long as the probability of the event remains suciently large. For the estimation of small probabilities, specic methodologies, called reliability methods, are generally better adapted. This last decade, a growing interest has been devoted to methods providing a complete characterization of the response (probability law of the quantity of interest), which is represented on a suitable functional expansion basis. These methods, usually named spectral stochastic methods, were initiated by the work of Ghanem and Spanos [START_REF] Ghanem | Stochastic nite elements: a spectral approach[END_REF].

An overview of the above mentioned techniques is given in section 2. The subsequent sections mainly focus on spectral stochastic methods. Section 3 introduces classical construction of functional basis for the representation of random variables. In section 4, Galerkin-type spectral stochastic methods, which constitute a particular approach to compute functional representations, are detailed. Issued from a protable marriage of functional analysis and probability theory, these spectral stochastic methods rely on strong mathematical bases. They lead to highly accurate solutions and allow a better control on numerical simulations: possible construction of a posteriori error estimators, adaptive approximation. These methods seem to constitute one promising way for the numerical simulation of SPDEs. However, several drawbacks slow down the use of these techniques and their application to large scale problems: calculation time, memory requirements, and their intrusive character, which requires a good knowledge of the mathematical structure of the problem and the development of specic solvers for a certain class of problems. In section 5, some recent developments on model reduction techniques are presented, in the context of spectral stochastic methods. Section 6 focuses on the generalized spectral decomposition method, which can be interpreted as an automatic model reduction technique. This method tries to circumvent the above mentioned drawbacks of Galerkin spectral stochastic approaches.

Overview of computational stochastic methods

In this section, we give a brief overview of classical stochastic methods, emphasize on their domain of applications, their advantages and drawbacks. For complementary reviews on computational stochastic approaches, we refer to [START_REF] Matthies | Uncertainties in probabilistic numerical analysis of structures and solids -stochastic nite elements[END_REF]115,[START_REF] Keese | A review of recent developments in the numerical solution of stochastic pdes (stochastic nite elements)[END_REF][START_REF] Gutiérrez | Stochastic nite element methods[END_REF][START_REF] Matthies | Uncertainty quantication with stochastic nite elements[END_REF] and the references therein.

Generic formulation of stochastic problems

For many physical problems, the conceptual model can be translated in terms of stochastic partial dierential equations (SPDEs). The modeling of uncertainties consists in dening a suitable probability space (Θ, B, P ), where Θ denotes the space of elementary events, B a σ-algebra dened on Θ and P a probability measure. The response u of the model is then a random variable, with value in a certain function space, which has to verify almost surely a set of equations formally denoted A(u(θ); θ) = b(θ), [START_REF] Adler | The Geometry of Random Fields[END_REF] where A is a dierential operator and b a right-hand side associated with the source terms. Uncertainty (or randomness) on the model can be formalized as a dependency of the operator and right-hand side on to the elementary event θ ∈ Θ.

In this paper, we consider that the probabilistic content can be correctly modeled with a nite set of random variables ξ : θ ∈ Θ → ξ(θ) ∈ Ξ ⊂ R m , dening a new nite dimensional probability space (Ξ, B Ξ , P ξ ), where Ξ = ξ(Θ), where B Ξ is a σ-algebra on Ξ and where P ξ is the probability measure associated with ξ (image measure of P by ξ). This case is encountered when parameters of operator A or right-hand side b are real-valued random variables or stochastic processes (or elds), the latter being reduced (or discretized) with ad hoc spectral decomposition techniques (e.g. Karhunen-Loève, see appendix A). A random variable is then be considered as a measurable function dened on (Ξ, B Ξ , P ξ ). The solution u of the physical model can then be searched as a function of ξ, satisfying almost surely a set equations formally written

A(u(ξ); ξ) = b(ξ).
(2)

Direct integration techniques

In a probabilistic analysis, quantities of interest can often be written as the expectation of a certain functional of the response u: E(f (u(ξ); ξ)).

The estimation of such a quantity requires the computation of an integral with respect to measure P ξ : where p ξ denotes the probability density function of ξ. Several numerical integration techniques can then be used. In practise, these integration techniques lead to the following estimation:

E(f ) =
E(f ) ≈ Q K (f ) = K k=1 f (u(y k ); y k )ω k ,
where the ω k ∈ R and the y k ∈ Ξ denote the integration weights and points respectively. Direct integration techniques then only ask for the evaluation of the model's response for K outcomes ξ = y k of basic random variables. The computation of these responses {u(y k )} K k=1 requires the resolution of K uncoupled deterministic problems:

A(u(y k ); y k ) = b(y k ), k = 1 . . . K.

The interest of these approaches is that well mastered deterministic numerical methods can be used. Moreover, deterministic problems being uncoupled, it allows the use of a massive parallelization. However, in order to obtain a good accuracy on Q K (f ), the number of points K can be very large and depends on the function to be integrated.

Monte-Carlo

Monte-Carlo integration [START_REF] Caisch | Monte carlo and quasi-monte carlo methods[END_REF]116] consists in choosing for the integration points K independent random samples (in practice pseudo-random samples) of variables ξ. Weights are taken equal to ω k = 1 K . The estimation Q K (f ) is a random variable and the integration error asymptotically tends toward a Gaussian random variable :

E(f ) -Q K (f ) ∼ K -1/2 σ f N (0, 1),
where σ f is the standard deviation of f . The estimation being random, a prediction is then given with a certain condence interval. Standard deviation of the estimator equals K -1/2 σ f . The convergence rate of this estimator, in O(K -1/2 ), is independent of the stochastic dimension m, which makes possible the use of Monte-Carlo technique in very high stochastic dimension. However, convergence is very slow.

Numerous improvements have been proposed for Monte-Carlo techniques [START_REF] Caisch | Monte carlo and quasi-monte carlo methods[END_REF]. They rely on a modication of the generated samples (Antithetic variables, Stratied Sampling, Matching Moment methods, ...) or a modication of the function to be integrated (Importance sampling, Control Variates, ...) in order to reduce its variance and therefore to improve the accuracy.

Quasi Monte-Carlo

Quasi Monte-Carlo methods [START_REF] Caisch | Monte carlo and quasi-monte carlo methods[END_REF]119,[START_REF] Niederreiter | Random Number Generation and quasi-Monte Carlo Methods[END_REF] consist in choosing the points {y k } K k=1 from low discrepency sequences and to choose for the weights ω k = 1 K . We assume that the integration domain is Ξ = [0, 1] m and that the measure P ξ is uniform. This is always possible with a change of basic random variables. From Koksma-Hlawka theorem [START_REF] Caisch | Monte carlo and quasi-monte carlo methods[END_REF],

we have the property

|E(f ) -Q K (f )| V (f )D K ,
where V (f ) is the total variation of f and where D K is the discrepency of the sequence

{y k } K k=1 . A sequence {y k } K k=1 is said quasi-random if D K c log(K) n K -1
, where c and n are constants which possibly depend on the dimension m. Generally, n = m, which leads to the classical error estimate of Quasi Monte-Carlo methods:

|E(f ) -Q K (f )| ∼ O(log(K) m K -1
).

N (0, 1) denotes a zero mean and unit variance Gaussian random variable

The discrepency of a sequence can be interpreted as the maximum error for the approximation of the volume of hyper-rectangles of [0, 1] m from samples of this sequence [START_REF] Caisch | Monte carlo and quasi-monte carlo methods[END_REF].

If the stochastic dimension is not too large, it then gives a better asymptotic convergence rate than the basic Monte-Carlo method (convergence dominated by the term K -1 ). Some choices of quasi-random sequences can be found in [START_REF] Niederreiter | Random Number Generation and quasi-Monte Carlo Methods[END_REF]. Figure 1 shows the points obtained from Sobol sequence. One can observe a very uniform distribution of the sequence. Classical quadrature techniques (Gauss, Clenshaw-Curtis, ...) can also be used [102]. We here suppose that random variables are independent, so that Ξ = × m i=1 Ξ i and

P ξ = ⊗ m i=1 P ξi .
Let us suppose that on each stochastic dimension, a classical quadrature rule Q (i) has been dened:

Q (i) (f ) = Ki k=1 f (y i,k )ω i,k ≈ Ξi f (y)p ξi (y)dy.
A quadrature in dimension m can then be obtained by a full tensorization of unidimensional quadratures:

Q K = Q (1) ⊗ . . . ⊗ Q (m) , with Q K (f ) = K1 k1=1 . . . Km km=1 f (y 1,k1 , . . . , y m,km )ω 1,k1 . . . ω m,km .
For quadratures with K i = n points on each dimension, one obtains a total number of points K = n m , which increases exponentially with the stochastic dimension. Then, for a function of class C r , the integration error veries:

|E(f ) -Q K (f )| ∼ O K -(2r-1)/m .
We observe a strong deterioration of the convergence rate in K when increasing the dimension m.

⋄ Smolyak tensorization

Smolyak tensorization formula can be used in order to drastically decrease the number of integration points when dealing with high stochastic dimension m [118, [START_REF] Gerstner | Numerical integration using sparse grids[END_REF][START_REF] Novak | Simple cubature formulas with high polynomial exactness[END_REF]100,[START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF]. This necessitates the denition of a sequence of quadratures {Q

(i) k } l k=1 on each dimension, where in Q (i)
k , k denotes the level of the quadrature. The idea is to combine one-dimensional quadratures while avoiding the use of high-level quadratures on several dimensions simultaneously. A level l quadrature in dimension m is obtained by the following tensorization formula ! :

Q l K = k∈N m l |k| l+m-1 (-1) l+m-1-|k| l -1 |k| -l Q (1) k1 ⊗ . . . ⊗ Q (m)
km .

If the

Q (i)
k denote k-points quadratures, one obtains a total number of integration points K ∼ O( 2 l l! m l ). The integration error depends on the smoothness of function f . For a r-times dierentiable function f , the integration error behaves as:

|E(f ) -Q l K (f )| ∼ O K -r log(K) (m-1)(r+1) .
We observe a better convergence rate than with the full tensorization. Figures 2 and3 show integration points obtained with a Smolyak tensorization of Gauss-Hermite and Gauss-Legendre quadratures. These Gaussian quadratures have the property to integrate exactly multidimensional polynomials with total degree less than or equal to (2l -1) while a full tensorization integrates exactly multidimensional polynomials with partial degree less than or equal to (2l -1). These Smolyak tensorizations are particularly interesting when nested quadratures are used on each dimension (the set of integration points of a quadrature Q

(i) k is in- cluded in that of Q (i) k+1 
). That leads to a signicant reduction in the number of in- tegration points. In this case, the obtained integration grids are called sparse grids.

Another major interest of these nested formulas is to reduce the cost of an adaptive integration procedure. Indeed, when increasing the quadrature level, calculations already performed on lower-level grids can be re-used. Several nested quadrature rules are available: Newton-Cotes, Clenshaw-Curtis, Gauss-Patterson... ! Let us note that anisotropic Smolyak tensorization can also be used [START_REF] Gerstner | Dimension-adaptive tensor-product quadrature[END_REF][START_REF] Bungartz | Sparse grids[END_REF]. 

Perturbation method, Neumann expansions

When one is interested in the rst statistical moments of the solution, perturbation or Neumann expansion method are alternative techniques. These methods are based on a series representation of the solution of (2).

Perturbation method

The basic perturbation method [START_REF] Kleiber | The Stochastic Finite Element Method. Basic Perturbation Technique and Computer Implementation[END_REF] consists in seeking an expansion of the solution around the mean µ ξ = E(ξ) of random variables:

u(ξ) :=u 0 + m i=1 (ξ i -µ ξi )u ,i + m i,j=1 1 2 (ξ i -µ ξi )(ξ j -µ ξj )u ,ij + ... (3) 
where u 0 := u(µ ξ ), u ,i := ∂u ∂ξi (µ ξ ), u ,ij := ∂ 2 u ∂ξiξj (µ ξ ),... By operating similar expansions for operator A(•; ξ) and right-hand side b(ξ) and by injecting these expansions in equation A(u(ξ); ξ) = b(ξ), one obtains that the coecients of the expansion of u are solutions of the following sequence of problems:

A 0 (u 0 ) = b 0 (4) A 0 (u ,i ) = b ,i -A ,i (u 0 ), (5) 
A 0 (u ,ij ) = b ,ij -A ,i (u ,j ) -A ,j (u ,i ) -A ,ij (u 0 ), (6) 
. . .

All of these problems are deterministic problems with the same deterministic operator

A 0 = A(•; µ ξ ).
The calculation of the right-hand sides requires to compute the derivatives with respect to variables ξ i of the operator and the right-hand side of the stochastic problem. These quantities, relatively classical in sensitivity analysis, are provided by some computer codes. They generally use numerical dierentiation and are often limited to rst or second derivatives. Although a priori allowing for a complete representation of the solution, the perturbation method is then often limited to a small order of decomposition (order 2), which limitates its application to the case of basic random variables with of a small coecient of variation. This method is often used for evaluating the rst two moments of the solution (mean, covariance), simply expressed in terms of the expansion coecients:

E(u) = u 0 + 1 2 m i,j=1 C ξiξj u ,ij + ... (7) 
E(u ⊗ u) = m i,j=1 C ξiξj (u ,i ⊗ u ,j ) + ... (8) 
where C ξiξj denotes the covariance of variables ξ i and ξ j .

Neumann decomposition

Neumann decomposition method [START_REF] Ghanem | Stochastic nite elements: a spectral approach[END_REF][START_REF] Babuška | On solving elliptic stochastic partial dierential equations[END_REF] starts with the following decomposition:

A(•; ξ) = A 0 + A(•; ξ) = A 0 (I + A -1 0 A(•; ξ)),
where A 0 is a deterministic operator, A -1 0 its inverse, and where I denotes the identity operator. The inverse of random operator A, under some assumptions [START_REF] Babuška | On solving elliptic stochastic partial dierential equations[END_REF], can then be written under the form:

A -1 (•; ξ) = ∞ i=0 (-1) i (A -1 0 A(•; ξ)) i A -1 0 , (9) 
so that the solution of problem (2) can be written as:

u(ξ) = ∞ i=0 (-1) i u i (ξ), (10) 
where the series terms are solutions of the following problems:

A 0 (u 0 (ξ)) = b(ξ), (11) 
A 0 (u i (ξ)) = A(u i-1 (ξ); ξ), pour i 1. (12) 
Computing the expansion terms requires the resolution of deterministic problems with random right-hand sides, all these problems being associated with a unique deterministic operator A 0 . However, these calculations are very expansive [START_REF] Babuška | On solving elliptic stochastic partial dierential equations[END_REF]. This approach should then preferably be used to estimate the rst moments of the solution.

Remark 1 -Connection with the perturbation method.

One can easily show that for a deterministic right-hand side and for an operator A(•; ξ) which depends linearly in the variables ξ i , Neumann expansion method coincides with the perturbation method mentioned in section 2.3.1.

Reliability-oriented techniques

In a reliability analysis, the aim is to compute the probability P ξ (D) of a particular event D, associated with the failure of a system. In general, the event can be characterized from a quantity of interest J(u(ξ); ξ), the event the system fails corresponding to negative values of this quantity (by convention). The event D ⊂ Ξ, called failure domain, is dened by D = {y ∈ Ξ; J(u(y); y) < 0} (see Figure 4). The probability of this event is dened by:

P ξ (D) = D dP ξ (y).
Various methods have been proposed for the estimation of this probability (see [START_REF] Ditlevsen | Strutural Reliability Methods[END_REF][START_REF] Melchers | Structural reliability analysis and prediction[END_REF] for a detailed description) and are already implemented in many commercial codes. We here briey recall some basic methods.

y 1 y 2 D Fig. 4 Failure domain D in Ξ ⊂ R 2 .

First or Second Order Reliability Method (FORM/SORM)

In the case where the probability P ξ (D) is low (i.e. D is a rare event), methods FORM and SORM consist in approximating the failure domain D by a simpler domain C, whose probability P ξ (C) can be estimated analytically. Let us briey explain the principles of these techniques. We consider that ξ is a vector of independent centered normalized Gaussian random variables (possibly after a suitable change of random variables). We then try to nd the most likely failure point y * ∈ D ⊂ Ξ = R m , called the conception point. Due to the form of standard Gaussian probability density function p ξ , this is the point in the failure domain which is the nearest from the origin. It is dened with the following optimization problem:

y * = argmin y∈D y 2 = argmin y∈R m J(u(y);y)<0 y 2 . ( 13 
)
Dedicated optimization algorithms have been proposed for the resolution of this problem. For simple failure domains D, these algorithms converge rapidly. They ask for the evaluation of functional J(u(y); y) in a few points y, associated with particular outcomes of ξ.

The conception point being computed, the FORM method consists in dening the hyper-plane that passes through this point and which is orthogonal to vector y * . This hyper-plane denes a semi-space C approximating the domain D (see Figure 5(a)). The probability of C is simply obtained by P ξ (C) = Φ(-β), where Φ is the standard Gaussian cumulative distribution function and where β is the reliability index, dened by β = ± y * (signed distance between the origin and the conception point). In the standard SORM method, a better approximation is provided by introducing a semispace C dened from the paraboloid tangent to D at y * (Figure 5(b)). The probability of failure can then be estimated by

P ξ (C) = Φ(-β) m i=1 (1 -κ i β) -1/2
, where the κ i denote the principal curvatures of the paraboloid. In the case of a relatively small stochastic dimension, FORM and SORM methods allow obtaining relatively accurate predictions with acceptable computational times (reduced number of calls to deterministic codes). However, they have some limitations. In particular, they do not allow to quantify the error on the estimation of the probability of failure. Moreover, in their simplest forms, they are not adapted to complex geometries (or topologies) of failure domains (optimization problem [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF] may have several local minima) and can lead to a bad estimation of the probability of failure (especially in high stochastic dimension where FORM and SORM approximations deteriorate).

Monte-Carlo, Importance Sampling

A direct integration technique can also be used (see Section 2.2) by interpreting the computation of P ξ (D) by the computation of an expectation:

P ξ (D) = Ξ 1 D (y)dP ξ (y) = E(1 D (ξ)),
where 1 D if the indicator function of domain D. These techniques have the advantage to give a controlled estimation of the probability.

The use of a standard Monte-Carlo method appears to be prohibitive. One can understand it by observing Figure 6(a), which illustrates that a large number of Monte-Carlo samplings are necessary in order to obtain enough samples in D. The coecient of variation of the Monte-Carlo estimator Q K (1 D ) is of the order (KP ξ (D)) -1/2 for low probability P ξ (D). In order to obtain a desired coecient of variation ǫ of the estimator, a very large number of samples K ≈ ǫ -2 P ξ (D) -1 must be computed (e.g. K ≈ 10 6 for ǫ = 10 -1 and P ξ (D) = 10 -4 ).

A possible improvement consists in using the Importance Sampling method. This method consists in rewriting the expectation E(1 D (ξ)) as follows:

E(1 D (ξ)) = Ξ 1 D (y) p ξ (y) pη(y) pη(y)dy = E 1 D (η) p ξ (η) p ξ (η) := E(g(η)),
where pη is a well-chosen probability density function allowing to obtain a variance of g(η) lower than the variance of 1 D (ξ). The classical Monte-Carlo method is then applied to estimate E(g(η)), by using pseudo-random samples of random variables η with probability density function pη. In the case of a reliability analysis, a possible choice consists in nding the conception point y * dened by [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF] and to dene the density pη(y) = p ξ (yy * ). In other words, this can be interpreted as a Monte-Carlo method where random samples are centered around the conception point (Figure 6(b)).

Various improvements of this Importance Sampling method have been proposed: Axis-Orthogonal Importance Sampling, Adaptive Importance Sampling, Radial Importance Sampling... 

Spectral stochastic methods

The methods presented above are classically used for evaluating predictions such that moments of a quantity of interest, or the probability of particular events. The application of these methods are limited by more or less restrictive assumptions (variability of input variables, linearity of the problem...) but mainly by computational costs induced by the evaluation of the model response for a large number of outcomes of input variables.

An alternative approach consists in searching a functional representation of solution u, or more specically of a quantity of interest J(u(ξ); ξ), under the form of a development

J(u(ξ); ξ) ≈ α∈IP JαHα(ξ), (14) 
! where {Hα(ξ)} α∈IP is a given basis of functions and where the Jα are the coecients to be determined. This approach can be interpreted as the construction of a response surface of the model. The functional representation [START_REF] Berveiller | Stochastic nite elements: intrusive and non-intrusive methods for reliability analysis[END_REF] being known, a fast post-treatment of the solution can be performed (evaluation of random samples, gradients...). Classical and generic approaches can then be used in order to obtain statistical moments, sensitivity to input variables or even a complete and accurate description of the probability law of J.

Since the works of Ghanem and Spanos [START_REF] Ghanem | Stochastic nite elements: a spectral approach[END_REF], a growing interest has been devoted to this type of approach, commonly called spectral stochastic methods. These methods only dier by the choice of basis functions and by the denition (and therefore the computation) of the coecients of the decomposition. The following sections are devoted to these approaches. Possible choices for basis functions will be presented in section 3. For the denition of the approximation, two classes of approaches may be distinguished: direct approaches (L 2 projection, regression, interpolation) and Galerkin-type stochastic approaches.

Galerkin spectral stochastic methods

Galerkin-type spectral stochastic approaches [START_REF] Ghanem | Stochastic nite elements: a spectral approach[END_REF][START_REF] Babuška | Eects of uncertainties in the domain on the solution of neumann boundary value problems in two spatial dimensions[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF] rely on the same mathematical basis as deterministic Galerkin-type approaches. They generally allow for a good control of the approximation (a priori error estimation [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF][START_REF] Frauenfelder | Finite elements for elliptic problems with stochastic coecients[END_REF], a posteriori error estimation and adaptivity [START_REF] Keese | Adaptivity and sensitivity for stochastic problems[END_REF][START_REF] Ladevèze | Verication of stochastic models in uncertain environments using the constitutive relation error method[END_REF][START_REF] Mathelin | Dual-based a posteriori error estimate for stochastic nite element methods[END_REF]) and are often more robust and denitely more ecient than direct approaches. However, they often require a good knowledge of the mathematical structure of the physical model and the elaboration of specic solvers for a given class of problems.

Many works have been devoted to the elaboration of ecient solvers (see section (4.4)) and more recently to alternative model reduction techniques (see sections 5 and 6). These developments allow drastic reduction of computational costs and make of Galerkin stochastic approaches very ecient and predictive tools. These methods have been applied to various domain of applications in physics (mechanics, chemistry, electromagnetism, ...). Their transfer toward industrial applications, currently under way for some kinds of problems, will need further improvements in methodologies for allowing an ecient treatment of a large class of problems of interest.

Principles of Galerkin stochastic approaches and classical solution techniques will be detailed in section 4.

Direct spectral methods

Direct spectral stochastic methods (projection, regression or interpolation) use a different denition of the coecients of the decomposition. The computation of the coecients only requires the resolution of uncoupled deterministic problems. Therefore, they do not require any specic implementations as long as deterministic codes are available.

These approaches can be seen as alternatives to direct methods such as Monte-Carlo techniques. However, as Monte-Carlo techniques, they can require the resolution of a large number of deterministic problems and lead to high computational costs. Below, we briey introduce the principles, advantages and drawbacks of these approaches.

⋄ L 2 Projection

The L 2 projection method [START_REF] Ghiocel | Stochastic nite-element analysis of seismic soil-structure interaction[END_REF][START_REF] Le Maître | A stochastic projection method for uid ow. i. basic formulation[END_REF][START_REF] Le Maître | A stochastic projection method for uid ow. ii. random process[END_REF]104,[START_REF] Blatman | Quasi random numbers in stochastic nite element analysis[END_REF] consists in dening the approximation [START_REF] Berveiller | Stochastic nite elements: intrusive and non-intrusive methods for reliability analysis[END_REF] as the projection of J on the sub-space of L 2 (Ξ, dP ξ ) spanned by functions {Hα} α∈IP , the projection being dened with respect to the natural inner product in L 2 (Ξ, dP ξ ) " :

< v, w > L 2 (Ξ,dP ξ ) = E(v(ξ)w(ξ)) = Ξ v(y)w(y)dP ξ (y).
Denoting by v L 2 (Ξ,dP ξ ) = E(v(ξ) 2 ) 1/2 the associated norm, the coecients are dened by {Jα} α∈IP = argmin

{Jα} α∈I P J - α∈IP JαHα 2 L 2 (Ξ,dP ξ ) . (15) 
The use of orthonormal basis functions {Hα} leads to the following denition of the coecients:

Jα =< J, Hα > L 2 (Ξ,dP ξ ) = E(J(u(ξ); ξ)Hα(ξ)). ( 16 
)
The computation of the coecients then require the evaluation of an integral on Ξ with respect to measure dP ξ . For that purpose, one of the integration techniques introduced in section 2.2 can be used, thus leading to the following estimation of the coecients:

Jα ≈ K k=1 ω k J(u(y k ); y k )Hα(y k ). (17) 
As for direct integration techniques, this approach requires the resolution of K deterministic problems for estimating quantities J(u(y k ); y k ) associated with particular outcomes ξ = y k . This approach is then usually called a non-intrusive projection method in the sense that classical numerical codes can be used to solve these K uncoupled deterministic problems.

This approach, certainly very generic, requires a particular care in the choice of the integration technique. The use of a precise integration is often necessary for obtaining an accurate projection, which requires to solve a very large number of deterministic problems. Of course, a Monte-Carlo integration can be used. However, for an accurate computation of the coecients, it may require a large number of samples due to the high variance of function (J(u(ξ); ξ)Hα(ξ)). Therefore, we generally opt for standard high order quadrature techniques (sparse quadrature for high stochastic dimensions [START_REF] Keese | Numerical methods and Smolyak quadrature for nonlinear stochastic partial dierential equations[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF]) in order to reduce the number of integration points. The regularity of function (JHα) being unknown a priori, it is often necessary to use adaptive quadrature techniques (nested quadrature should preferably be used in order to re-use already performed computations). The development of adaptive integration strategies and the denition of rigorous error estimators on the obtained functional representation are still challenges in the context of direct projection techniques. More generally, the lack of rigorous error estimators is a drawback which is common to non-intrusive spectral stochastic techniques (projection, regression, interpolation).

" See section 3.1.1 for the denition of Hilbert space L 2 (Ξ, dP ξ ).

# ⋄ Regression

Regression methods [START_REF] Choi | Polynomial chaos expansion with latin hypercube sampling for estimating response variability[END_REF][START_REF] Choi | Structural reliability under non-gaussian stochastic behavior[END_REF][START_REF] Berveiller | Stochastic nite element: a non intrusive approach by regression[END_REF]124] rely on the same principles as classical response surface methods [START_REF] Khuri | Response Surfaces: Designs and Analyses[END_REF]. They consist in dening the coecient of the decomposition with the following optimization problem:

min {Jα} α∈I P K k=1 ω k J(u(y k ); y k ) - α∈IP JαHα(y k ) 2 , (18) 
where the ω k and y k are the regression weights and points respectively. Denoting H = (. . . Jα . . .) ∈ R P the set of coecients to be determined, the optimization problem leads to the following linear system of equations:

HJ = Z, (19) 
(H) αβ = K k=1 ω k Hα(y k )H β (y k ), (20) 
(Z)α = K k=1 ω k Hα(y k )J(u(y k ); y k ). (21) 
Regression methods, as the L 2 projection, then only require the resolution of uncoupled deterministic problems (associated with dierent outcomes ξ = y k ) in order to build the right-hand side of system [START_REF] Brézis | Analyse fonctionnelle : théorie et applications[END_REF]. The choice of regression weights and points is however a diucult point, especially since the regularity of function J is not known a priori. Several choices have been proposed: Monte-Carlo or Quasi Monte-Carlo samplings for the y k and ω k = 1 K , Gaussian quadrature points and weights for the y k and ω k (or a subset of these points), ... The reader can refer to [START_REF] Berveiller | Stochastic nite elements: intrusive and non-intrusive methods for reliability analysis[END_REF] for a detailed study of these dierent choices (accuracy of the solution, impact on the condition number of the linear system, ...). A methodology for the adaptive construction of functional basis have been proposed in [START_REF] Blatman | Sparse polynomial chaos expansions and adaptive stochastic nite elements using a regression approach[END_REF].

Remark 2 -Connection with the projection method.

Most of the proposed choices for the y k and ω k correspond to points and weights of classical integration techniques. By introducing the numerical inner product

< v, w > K := K k=1 ω k v(y k )w(y k ),
and the associated norm v K =< v, v > 1/2 K , one can interpret the regression problem [START_REF] Blatman | Quasi random numbers in stochastic nite element analysis[END_REF] as the projection of J on span{Hα} α∈IP ⊂ L 2 (Ξ, dP ξ ) with respect to inner product < •, • > K . In fact, coecients (H) αβ of matrix H are approximations of inner products of basis functions: (H) αβ =< Hα, H β > K . If the quadrature integrates exactly these quantities, we then have a complete equivalence with a classical L 2 projection method.

$ ⋄ Interpolation/Collocation

Interpolation techniques [START_REF] Babuška | A stochastic collocation method for elliptic partial dierential equations with random input data[END_REF] consist in choosing for {Hα} α∈IP an interpolation basis on a set of points {yα} α∈I P . Coecient uα of the decomposition of u is then obtained by solving a deterministic problem associated with the outcome ξ = yα. The resulting methodology is also called a stochastic collocation approach. For dealing with high stochastic dimension, Smolyak tensorization of unidimensional interpolation basis have been proposed in [START_REF] Webster | A sparse grid stochastic collocation method for partial dierential equations with random input data[END_REF]. The interpolation property of the resulting multidimensional polynomial basis is preserved if nested interpolation grids are used in the Smolyak tensorization. Let us note that when using for the interpolation basis the Lagrange polynomials associated with the points of the classical Gaussian quadrature, the obtained decomposition coincides with the one obtained with a L 2 projection method associated with this quadrature.

Functional representation of random variables

For a given physical model, when uncertainties are modeled with a nite set of random variables ξ = (ξ 1 , ..., ξm), one has to work on the associated nite dimensional probability space (Ξ, B Ξ , dP ξ ), where Ξ ⊂ R m . A random quantity of interest is then interpreted as a random variable dened on (Ξ, B Ξ , dP ξ ) or in other terms as a measurable function dened on this measured space. For many physical problems, quantities of interest are second order random variables (i.e. with nite second order moments), which leads to introduce the space of square integrable functions L 2 (Ξ, dP ξ ). This functional point of view of quantities of interest allows proposing functional representation techniques inspired from classical results in functional analysis and approximation theory. Letting {Hα} α∈IP be an approximation basis of L 2 (Ξ, dP ξ ), one can approximate a quantity of interest v(ξ) under the form:

v(ξ) = α∈IP vαHα(ξ). (22) 
Several choices have been proposed for the construction of approximation basis in L 2 (Ξ, dP ξ ). Classical choices rely on classical construction of polynomial basis (polynomial chaos [130, [START_REF] Cameron | The orthogonal development of non-linear functionals in series of fourier-hermite functionals[END_REF][START_REF] Ghanem | Stochastic nite elements: a spectral approach[END_REF], generalized polynomial chaos [132], Lagrange interpolation [START_REF] Babuška | A stochastic collocation method for elliptic partial dierential equations with random input data[END_REF]) or piecewise polynomial functions (nite elements [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF]128], wavelets [START_REF] Le Maître | Uncertainty propagation using Wiener-Haar expansions[END_REF][START_REF] Le Maître | Multi-resolution analysis of wiener-type uncertainty propagation schemes[END_REF]). A generic vision of this construction and the extension to arbitrary measures is introduced in [121]. The choice of a specic representation depends on regularity properties of functions to be represented. Some choices (nite elements, wavelets) are suitable for developing adaptive approximation techniques.

General principles

Hilbert space of square integrable functions

The space of real-valued square integrable functions dened on probability space (Ξ, B Ξ , P ξ ) (or equivalently the space of real-valued second order random variables) is dened by:

L 2 (Ξ, dP ξ ) = {v : ξ ∈ Ξ → v(ξ) ∈ R; E(v 2 ) := Ξ v(y) 2 dP ξ (y) < ∞}.

%

If endowed with the following natural inner product, it is a Hilbert space:

< v, w > L 2 (Ξ,dP ξ ) = E(vw) = Ξ v(y)w(y)dP ξ (

y).

A Hilbertian basis {Hα} α∈I of L 2 (Ξ, dP ξ ) is a complete set of orthonormal functions:

< Hα, H β > L 2 (Ξ,dP ξ ) = δ αβ (23) ∀v ∈ L 2 (Ξ, dP ξ ), < Hα, v >= 0, ∀α ∈ I ⇒ v = 0. ( 24 
)
Each function v ∈ L 2 (Ξ, dP ξ ) admits a unique decomposition on such a basis:

v = α∈I vαHα, ( 25 
) vα =< v, Hα > L 2 (Ξ,dP ξ ) = E(v(ξ)Hα(ξ)) = Ξ v(y)Hα(y)dP ξ (y). (26) 

Case of independent basic random variables: tensorization of basis

In the case where random variables ξ i are mutually independent, the construction of approximation basis can be reduced to a one-dimensional construction. Indeed, denoting (Ξ i , B Ξi , P ξi ) the one-dimensional probability space associated with random variable ξ i (where P ξi is the marginal probability measure associated with ξ i ), we have

Ξ = Ξ 1 × ... × Ξm, (27) 
P ξ = ⊗ m i=1 P ξi , (28) 
L 2 (Ξ, dP ξ ) = ⊗ m i=1 L 2 (Ξ i , dP ξi ). ( 29 
)
Basis of L 2 (Ξ, dP ξ ) can then be obtained by tensorization of basis of spaces L 2 (Ξ i , dP ξi ).

Denoting {h

(i) n } n∈I (i) a basis of L 2 (Ξ i , dP ξi ), we let Hα(y) = h (1) α1 (y 1 ) . . . h (m) αm (ym), with α = (α 1 , . . . , αm) ∈ I = I (1) × ... × I (m) . If basis functions {h (i)
n } n∈I (i) are orthonormal with respect to the natural inner product in L 2 (Ξ i , dP ξi ), basis functions {Hα} α∈I are orthonormal:

< Hα, H β > L 2 (Ξ,dP ξ ) = m i=1 < h (i) αi , h (i) βi > L 2 (Ξi,dP ξ i ) = m i=1 δ αiβi := δ αβ . & 3.1.

Case of dependent basic random variables

In the case where random variables ξ i are dependent, the above construction of orthonormal basis by tensorization of unidimensional basis is no longer possible since the space L 2 (Ξ, dP ξ ) has no more a tensor product structure. In [121], the following construction is proposed. Let us dene basis {h

(i) n } n∈I (i) of L 2 (Ξ i , dP ξi ) as previously.
A basis {Hα} α∈I of L 2 (Ξ, dP ξ ) can then be dened as follows:

Hα(y) = h (1) α1 (y 1 ) . . . h (m) αm (ym) p ξ1 (y 1 ) . . . p ξm (ym) p ξ (y 1 , . . . , ym) ,
where p ξ is the probability density function of ξ and where p ξi if the marginal proba- bility density function of ξ i . If basis functions {h

(i)
n } n∈I (i) are orthonormal, the orthonormality of basis {Hα} α∈I is preserved. However, even if unidimensional basis functions are polynomials, functions {Hα} are no more polynomials in general. Let us note that in the case of independent basic random variables, the proposed construction coincides with the classical construction by tensorization.

Polynomial approximation

Spaces of polynomial functions

The space of multidimensional polynomials with partial degree

p dened on Ξ ⊂ R m is denoted Qp(Ξ) = span{ m i=1 y αi i , α ∈ N m ; |α|∞ := max i∈{1...m} α i p}
with dim(Qp(Ξ)) = (p + 1) m . The space of multidimensional polynomials of total degree p dened on Ξ ⊂ R m is dened by:

Pp(Ξ) = span{ m i=1 y αi i , α ∈ N m ; |α| := m i=1 α i p}, with dim(Pp(Ξ)) = (m+p)! m!p! . In the case m = 1, Pp(Ξ) = Qp(Ξ). In the case m > 1, Pp(Ξ) ⊂ Qp(Ξ) If Ξ = Ξ 1 × . . . × Ξm, Qp(Ξ)
is a full tensorization of unidimensional polynomial spaces of degree p:

Qp(Ξ) = Qp(Ξ 1 ) ⊗ . . . ⊗ Qp(Ξm).
The space Pp(Ξ) can be interpreted as a partial (or sparse) tensorization of polynomial spaces Qp(Ξ i ) :

Pp(Ξ) = α∈N m ,|α|=p Qα 1 (Ξ 1 ) ⊗ . . . ⊗ Qα m (Ξm).

Polynomial Chaos

Polynomial Chaos representation consists in using classical orthonormal polynomial basis of L 2 (Ξ, dP ξ ). In the case where random variables are independent, basis are obtained by a sparse tensorization of polynomial basis of L 2 (Ξ i , dP ξi ) (see section 3.1.2). The polynomial chaos of degree p in dimension m is no more than the space Pp(Ξ). The homogeneous chaos of degree p in dimension m, denoted Hp, is the orthogonal complement of P p-1 (Ξ) in Pp(Ξ). The space L 2 (Ξ, dP ξ ) admits the following orthogonal decomposition:

L 2 (Ξ, dP ξ ) = ⊕ p∈N Hp.
Let us see how to construct basis functions. On each dimension, associated with a random variable ξ i , we introduce an orthonormal polynomial basis {h (i) n } n∈N of L 2 (Ξ i , dP ξi ), where h (i) n ∈ Pn(Ξ i ) is a polynomial of degree n. These polynomials, for a given probability measure P ξi , are uniquely dened and verify:

< h (i) n , h (i) l > L 2 (Ξi,dP ξ i ) = Ξi h (i) n (y)h (i) l (y)dP ξi (y) = δ nl .
In table 1, some classical probability measures and associated orthogonal polynomials are indicated (see e.g. [132] for a more general introduction to orthogonal polynomials).

Law Ξ p ξ (y) Polynomials Uniform [-1, 1] 1 2 Legendre Gausian R 1 √ 2π exp(-y 2 2 ) Hermite Gamma [0, +∞] 1 Γ (a) y a exp(-y) Laguerre Beta [-1, 1] (1+y) a-1 (1-y) b-1 2 a+b-1 B(a,b)
Jacobi Table 1 Classical probability measures and associated orthogonal polynomials (Γ and B are the Euler Gamma and Beta functions respectively).

An orthonormal basis of Hp is then obtained by tensorization of unidimensional polynomials: Another approach consists in introducing a basis of Qp(Ξ) (or Pp(Ξ)) composed with interpolation polynomials [START_REF] Babuška | A stochastic collocation method for elliptic partial dierential equations with random input data[END_REF][START_REF] Webster | A sparse grid stochastic collocation method for partial dierential equations with random input data[END_REF]. The use of such approximation basis is associated with collocation-type approaches for solving SPDEs.

Hp = span{Hα(y) = m i=1 h (i) αi (y i ), α ∈ N m ; |α| = p}.
Here, we suppose that random variables are independent. On each stochastic dimension, we introduce a set of points Υ i = {y i,n } p n=0 ⊂ Ξ i and dene the associated interpolation basis {h (i) n } p n=0 :

h (i) n ∈ Qp(Ξ i ), h (i) n (y i,l ) = δ nl .
Interpolation points are usually selected as the roots of the classical orthogonal polynomial of degree (p + 1), i.e. the (p + 1) Gauss points associated with measure dP ξi (other choices are discussed in [START_REF] Webster | A sparse grid stochastic collocation method for partial dierential equations with random input data[END_REF]). Let us note that this choice leads to orthogonal interpolation functions:

< h (i) n , h (i) l > L 2 (Ξi,dP ξ i ) = E(h (i) n (ξ i )h (i) l (ξ i )) = Ξi h (i) n (y)h (i) l (y)dP ξi (y) = δ nl ωn,
where the {ω k } p k=0 denote Gauss quadrature weights. Indeed, we have

Ξi h (i) n (y)h (i) l (y)dP ξi (y) = p k=0 ω k h (i) n (y i,k )h (i) l (y i,k ) = p k=0 ω k δ nk δ lk = ωnδ nl . (30) 
⋄ Full tensorization.

Basis of Qp(Ξ) can be obtained by a full tensorization of interpolation basis of Qp(Ξ i ).

They are interpolation basis on a multidimensional grid obtained by full tensorization of unidimensional grids Υ i . Figures 8 and9 show interpolation basis functions in dimension m = 2 obtained with Gaussian and uniform measures respectively. Remark 4 -Since Gaussian quadrature with (p + 1) points exactly integrates polynomials with degree (2p + 1), the following orthogonality property also holds:

E(ξ i h (i) n (ξ i )h (i) l (ξ i )) = p k=0 ω k y i,k δ nk δ lk = ωny i,n δ nl . (31) 
This property can be useful in the context of Galerkin-type spectral methods. Indeed, for some kinds of linear problems, one shows that the computation of the decomposition on the interpolation basis can be reduced to a simple stochastic collocation method, which only asks for the resolution of uncoupled deterministic problems (see remark 10 in section 4.3).

⋄ Sparse tensorization.

Basis of Pp(Ξ) can also be obtained by a sparse tensorization of unidimensional interpolation basis, using a Smolyak construction [START_REF] Webster | A sparse grid stochastic collocation method for partial dierential equations with random input data[END_REF]. This construction requires the denition of several interpolation formulas on each stochastic dimension. The obtained multidimensional basis remains interpolatory when nested points are used for unidimensional interpolation formulas (e.g. with Clenshaw-Curtis or Gauss-Patterson points).

Piecewise polynomial approximations

The techniques introduced in [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF]128,[START_REF] Le Maître | Uncertainty propagation using Wiener-Haar expansions[END_REF][START_REF] Le Maître | Multi-resolution analysis of wiener-type uncertainty propagation schemes[END_REF] consist in choosing piecewise polynomial approximation basis, dened on a partition of Ξ. These approximation techniques allow representing non-smooth functions, possibly with adaptive approximation procedures [129,[START_REF] Mathelin | Dual-based a posteriori error estimate for stochastic nite element methods[END_REF] (by rening the partition or by increasing the approximation degree).

Let us here suppose that domain Ξ is bounded in R m (which can always be obtained by a suitable change of random variables). We introduce a non-overlapping partition

{Ξ k } K k=1 of Ξ, i.e. such that # : ∪ K k=1 Ξ k = Ξ, Ξ k ∩ Ξ k ′ = ∅ if k = k ′ .
An approximation space S P ⊂ L 2 (Ξ, dP ξ ) is dened as the space of functions whose restriction to Ξ k is polynomial of degree p k :

S P = {v : Ξ → R; v |Ξ k ∈ Pp k (Ξ k )} or S P = {v : Ξ → R; v |Ξ k ∈ Qp k (Ξ k )}.
The dimension of this approximation space is P = K k=1 P k , with P k = dim(Pp k ) or dim(Qp k ). Now, let us see how to construct orthogonal (or orthonormal) basis of S P .

Classical nite element basis

S P can be written as the orthogonal sum of spaces S k P k , where S k P k if a space of polynomial functions with support Ξ k :

S P = ⊕ K k=1 S k P k , S k P k = {v ∈ S P ; support(v) = Ξ k }. (32) 
An orthonormal basis of S P can simply be obtained from orthonormal basis

{H k α } α∈IP k of spaces S k P k ⊂ L 2 (Ξ k , dP ξ ). Orthonormality property of the {H k α } α∈IP k writes: < H k α , H k β >= Ξ k H k α (y)H k β (y)dP ξ (y) = δ αβ .
An orthonormal basis of S k P k can be constructed in a classical way. In the case of independent random variables, an element Ξ k of the partition will be classically dened as an hyper-rectangle

Ξ k = Ξ k 1 ×. . .×Ξ k m .
Then, one obtains an orthonormal polynomial basis of S k P k by a full or a sparse tensorization of orthonormal basis of Qp k (Ξ k i ). However, in the general case, the restriction to Ξ k of measure dP ξ is not proportional to a classical probability measure, such that it will not exist a classical orthogonal polynomial basis associated with this restricted measure. Although it is always possible to numerically construct orthogonal basis, it will be easier in practice to use Ξ = (0, 1) m with a uniform measure P ξ (by a suitable change of variables). Indeed, in this case, the restriction of the measure to Ξ k is still a uniform measure and the H k α are simply obtained by tensorization of orthogonal Legendre polynomials.

A simple way to build a partition consists in tensorizing one-dimensional partitions.

Denoting {Ξ k i } Ki k=1 a partition of Ξ i , one obtains a regular partition {Ξ k } K k=1 of Ξ, with Ξ k = Ξ k1 1 × . . . × Ξ km m .
However, the number of elements K = m i=1 K i grows exponentially with the stochastic dimension, which can lead to very high-dimensional approximation spaces S P (for

p k = p, P = K × dim(Qp) or P = K × dim(Pp)). In # In probabilistic terms, if Ξ k ∩ Ξ k ′ = ∅, events Ξ k and Ξ k ′ are said incompatible.
! an adaptative approximation strategy, this tensorization of one-dimensional partitions does not allow operating local renements and leads to a rapid increase in the number of elements K. An alternative consists in using octree-type algorithms for partitioning Ξ. This approach clearly requires an error estimation criterium and makes sense within an adaptive approximation strategy. The use of anisotropic octree partitions may drastically reduce the number of elements in high stochastic dimension.

Multi-wavelets

Another way to dene orthonormal basis of S P , proposed in [START_REF] Le Maître | Uncertainty propagation using Wiener-Haar expansions[END_REF][START_REF] Le Maître | Multi-resolution analysis of wiener-type uncertainty propagation schemes[END_REF], consists in using polynomial multi-wavelets basis. This construction has been proposed in the case where Ξ = (0, 1) m and P ξ is a uniform measure. A binary partition of (0, 1) m is used. Let us briey explain the construction in the one-dimensional case, i.e. Ξ = (0, 1). The obtention of multidimensional basis in L 2 ((0, 1) m ) can be obtained by sparse or full tensorizations of unidimensional basis. Let us note V k p the space of piecewise polynomial functions of degree p associated with a binary partition of (0, 1) with 2 k intervals:

V k p = {v : (0, 1) → R; ∀l ∈ {0, . . . , 2 k -1}, v |(2 -k l,2 -k (l+1)) ∈ Qp((2 -k l, 2 -k (l + 1)))}. Let us note W k p the orthogonal complement of V k p in V k+1 p : V k+1 p = V k p ⊕ W k p .
We then obtain the following decomposition:

L 2 ((0, 1)) = V 0 p ⊕ k 0 W k p . The space W k p
is the space of multi-wavelets with resolution k. This multi-wavelet vision allows for a multi-scale representation of functions in L 2 ((0, 1)), spaces W k p being associated with more and more local details as the resolution k increases. For the construction of an orthonormal basis associated with this decomposition, we rst introduce an orthonormal basis {φn} p n=0 of V 0 p (composed by Legendre polynomials) and an orthonormal basis {ψn} p n=0 of W 0 p . An orthonormal basis of W k p is then composed with multi-wavelets ψ k n,l , dened by:

ψ k n,l (y) = 2 k/2 ψn(2 k y -l), l = 0 . . . 2 k -1, n = 0 . . . p.
4 Galerkin-type spectral stochastic methods Galerkin-type spectral stochastic methods, briey discussed in section 2.5.1, rely on a generic procedure for the prediction of the response of a large class of models governed by stochastic partial dierential equations (SPDEs). These methods are based on the same principles as deterministic Galerkin methods. They dene an approximation of the solution, represented on a certain approximation basis (see Section 3), based on a weak formulation of the stochastic problem (2). After a brief introduction of some aspects of the analysis of SPDEs, we recall in this section the principles of Galerkin stochastic approaches and the associated resolution techniques.

Stochastic partial dierential equations 4.1.1 Strong formulation of the problem

Stochastic partial dierential equations can generally be reduced to the research of a random variable u, dened on a probability space (Ξ, B Ξ , dP ξ ), and verifying almost surely a set of equations, formally denoted by:

A(u(ξ); ξ) = b(ξ), (33) 
where A is a dierential operator, possibly non-linear, and where b denotes a given right-hand side.

Weak formulation at the deterministic level

The mathematical analysis of problem [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF] and the development of deterministic approximation methods (nite elements, spectral approaches,...) generally start with a weak formulation at the deterministic level of problem [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF]: nd a random variable u with value in a function space V verifying almost surely:

a(u(ξ), v; ξ) = b(v; ξ) ∀v ∈ V, (34) 
where a(•, •; ξ) is a semilinear form (eventually bilinear form) on V × V and where b(•; ξ) is a bilinear form on V. The random solution u(ξ) of problem ( 34) is a strong solution at the stochastic level. A classical mathematical analysis [START_REF] Brézis | Analyse fonctionnelle : théorie et applications[END_REF]105] (analysis of properties of a and b) allows determining well-posedness of the problem: existence and uniqueness of solution, continuous dependence on the data.

Weak formulation at the stochastic level

For a wide class of physical models, the solution is a second order random variable. A solution of (34) can then classically be searched in a subspace of L 2 (Ξ, dP ξ ; V), the space of second order random variables with values in function space V:

L 2 (Ξ, dP ξ ; V) = {v : Ξ → V; E( v 2 V ) < ∞}.
Here, we suppose that V is independent of the elementary event $ . The working function space can then be assimilated to a tensor product space:

L 2 (Ξ, dP ξ ; V) ≃ V ⊗ L 2 (Ξ, dP ξ ) := V ⊗ S.
A weak formulation of problem [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF] can then be written: nd u ∈ V ⊗ S such that

A(u, v) = B(v) ∀v ∈ V ⊗ S, (35) 
with

A(u, v) := E(a(u(ξ), v(ξ); ξ)) (36) 
= Ξ a(u(y), v(y); y)dP ξ (y), (37) 
$ This hypothesis is not veried for classical formulations of PDE dened on random domains [START_REF] Nouy | X-SFEM, a computational technique based on X-FEM to deal with random shapes[END_REF][START_REF] Canuto | A ctitious domain approach to the numerical solution of pdes in stochastic domains[END_REF][START_REF] Nouy | An extended stochastic nite element method for solving stochastic partial dierential equations on random domains[END_REF]122]. and

B(v) := E(b(v(ξ); ξ)) = Ξ b(v(y); y)dP ξ (y). (38) 
Well-posedness of problem [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF] still results from a similar analysis of forms A and B [START_REF] Besold | Solutions to Stochastic Partial Dierential Equations as Elements of Tensor Product Spaces[END_REF][START_REF] Babuška | On solving elliptic stochastic partial dierential equations[END_REF][START_REF] Babuška | Solving elliptic boundary value problems with uncertain coecients by the nite element method: the stochastic formulation[END_REF][START_REF] Frauenfelder | Finite elements for elliptic problems with stochastic coecients[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF]120]. One can nd a more general framework in [START_REF] Benth | Convergence rates for nite element approximations of stochastic partial dierential equations[END_REF][START_REF] Holden | Stochastic Partial Dierential Equations[END_REF][START_REF] Besold | Solutions to Stochastic Partial Dierential Equations as Elements of Tensor Product Spaces[END_REF], introducing spaces of generalized random variables (distributions spaces).

Remark 5 -Let us notice that some problems may require the introduction of Lebesgue spaces S = L p (Ξ, dP ξ ), p 2 (see e.g. [START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF] for the formulation of nonlinear elliptic problems). From a numerical point of view (see below), classical construction of approximation spaces presented in section 3 may be used (classical results about density of polynomial spaces in L p spaces).

Model example: stationary diusion equation

In order to illustrate the issues outlined above, we consider a classical stationary diffusion problem whose weak formulation writes as in [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF], with V = H 1 0 (Ω) and

a(u, v; ξ) = Ω κ(x, ξ)∇u(x, ξ) • ∇v(x, ξ) dx, (39) b 
(v; ξ) = Ω v(x, ξ)b(x, ξ) dx, (40) 
where κ(•, ξ) is a stochastic eld. The following condition gives a necessary condition for the well-posedness of the problem in the sense of Hadamard (existence, uniqueness and continuous dependence on the data): if there exist some constants κ 0 and κ 1 such that we have almost surely and almost everywhere on

Ω 0 < κ 0 κ(x, θ) κ 1 < ∞, (41) 
we classically show that a is almost surely continuous and coercive, i.e. there exist strictly positive constants ca and αa such that ∀u, v ∈ V,

|a(u, v; ξ)| ca u V v V , (42) 
a(v, v; ξ) αa v 2 V . (43) 
Supposing that the right-hand side of (33) satises classical regularity properties ensuring continuity of bilinear form b(•; ξ), we ensure the existence and uniqueness of a strong solution at the stochastic level [START_REF] Babuška | Solving elliptic boundary value problems with uncertain coecients by the nite element method: the stochastic formulation[END_REF].

The existence and uniqueness of a weak solution to problem [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF] is ensured if the following properties are satised:

∀u, v ∈ V ⊗ S, |A(u, v)| c A u V⊗S v V⊗S , (44) 
A(v, v) α A v 2 V⊗S , (45) 
|B(v)| c B v V⊗S . (46) 
In particular, if the stochastic eld κ veries property [START_REF] Gel | Generalized Functions -Volume 4: Applications of harmonic analysis[END_REF], and if there exist constants κ 0 and κ 1 independent of the elementary event ξ, we show that coercivity and continuity properties of A follow with the same constants as for a, i.e. c A = ca and α A = αa.

Condition [START_REF] Gel | Generalized Functions -Volume 4: Applications of harmonic analysis[END_REF], with κ 0 and κ 1 independent of the elementary event, is necessary and sucient to obtain a well posed problem in the sense of Hadamard.

Remark 6 -Typical violation of existence conditions.

When parameters of SPDE are stochastic elds, one generally starts with a discretization of these elds (see appendix A) in order to work in a nite dimensional probability space. A particular care must be taken to this discretization step in order to keep a well-posed problem [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF]. As an example, let us consider again the stationary diusion problem. Let κex(x, θ) denote the initial stochastic eld, dened on a probability space (Θ, B, P ). A good probabilistic modeling step consists in choosing a stochastic eld κex satisfying conditions [START_REF] Gel | Generalized Functions -Volume 4: Applications of harmonic analysis[END_REF], thus ensuring the almost-sure existence of a solution dened on (Θ, B, P ). The discretization step consists in approximating κex(x, θ) by a stochastic eld κ(x, ξ(θ)), by using classical spectral decomposition techniques (e.g.

Karhunen-Loève) or a Polynomial Chaos decomposition. However, for commonly used stochastic elds, these decompositions may only converge in L 2 (Ω × Θ) and not uniformly. Therefore, after truncation, stochastic eld κ(x, ξ(θ)) may not verify conditions [START_REF] Gel | Generalized Functions -Volume 4: Applications of harmonic analysis[END_REF] anymore [START_REF] Babuška | On solving elliptic stochastic partial dierential equations[END_REF]. A way to circumvent this problem consists in using, if possible, a stochastic eld κex(x, θ) = f (γex(x, θ); x) writing as a nonlinear functional of a Gaussian stochastic eld γex [START_REF] Grigoriu | Applied non-Gaussian Processes[END_REF][START_REF] Ghanem | Stochastic nite elements for heterogeneous media with multiple random non-gaussian properties[END_REF]103,[START_REF] Keese | A review of recent developments in the numerical solution of stochastic pdes (stochastic nite elements)[END_REF][START_REF] Keese | Numerical Solution of Systems with Stochastic Uncertainties -A General Purpose Framework for Stochastic Finite Elements[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF], with f allowing to ensure property [START_REF] Gel | Generalized Functions -Volume 4: Applications of harmonic analysis[END_REF].

After discretization and renormalization of the stochastic eld γex(x, θ) ≈ γ(x, ξ(θ)), we dene an approximate stochastic eld κ(x, ξ) = f (γ(x, ξ); x) dened on probability space (Ξ, B Ξ , P ξ ) and verifying conditions [START_REF] Gel | Generalized Functions -Volume 4: Applications of harmonic analysis[END_REF].

Remark 7 -Other existence results.

In [120], one can nd a construction of stochastic elds (in the context of linear elasticity) verifying continuity and ellipticity conditions weaker than κ 0 < κ(x, θ) < κ 1 almost surely and still ensuring the uniqueness and existence of solution in V ⊗ L 2 (Ξ, dP ξ ). These conditions do not require that κ is bounded uniformly from above and below (the marginal probability law of κ(x, •) may have R + as support). The continuity of bilinear A requires a stronger regularity assumption on the right-hand side, while the ellipticity of A requires some assumptions on the stochastic eld κ. % The reader can refer to [START_REF] Besold | Solutions to Stochastic Partial Dierential Equations as Elements of Tensor Product Spaces[END_REF] for more general existence results, requiring the introduction of new spaces of random variables in order to take into account a larger class of stochastic elds.

4.2 Approximation at the deterministic level 

A(u(ξ); ξ) = b(ξ), (47) 
where A(•; ξ) is a random operator from R n into R n and where b(ξ) is a random vector.

% The weaker ellipticity condition used in [120], writing [START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF][START_REF] Frauenfelder | Finite elements for elliptic problems with stochastic coecients[END_REF], seems not sucient to obtain a well-posed problem in the classical sense of Hadamard (i.e. in order to guarantee the continuous dependence on the data). This result has to be conrmed.

κ -1 ∈ L 2 (Ξ, dP ξ ; L ∞ (Ω)) instead of the classical condition L ∞ (Ξ, dP ξ ; L ∞ (Ω)) introduced in [9,
Example 1 (Galerkin approaches at the deterministic level) Classical Galerkin approaches (nite element [123,[START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF], spectral methods [START_REF] Canuto | Spectral methods in uid dynamics[END_REF], ...) start from a weak formulation at the deterministic level (equation ( 34)) and introduce an approximation space Vn ⊂ V of dimension n. The Galerkin approximation of problem [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF], which is a random variable un(ξ) with values in Vn, must verify almost surely a(un(ξ), vn; ξ) = b(vn; ξ) ∀vn ∈ Vn. [START_REF] Ghanem | Stochastic nite elements: a spectral approach[END_REF] Denoting by {ϕ i } n i=1 a basis of Vn and by u = (u i ) n i=1 the vector of components of un on this basis, the discretized operator and right-hand side of (47) are naturally dened as:

(A(u; ξ)) i = a(un, ϕ i ; ξ), (b(ξ)) i = b(ϕ i ; ξ).
In the case of a linear problem, A is a random matrix whose components writes:

(A(ξ)) ij = a(ϕ j , ϕ i ; ξ).

Weak formulation of the semi-discretized problem

A weak formulation at the stochastic level reads: nd u ∈ R n ⊗ S such that

A(u, v) = B(v) ∀v ∈ R n ⊗ S, (49) 
with

A(u, v) := E(v(ξ) T A(u(ξ); ξ)), (50) 
B(v) = E(v(ξ) T b(ξ)).

Galerkin approximation

Denition of the approximation

Galerkin-type spectral stochastic methods start from the weak formulation [START_REF] Ghiocel | Stochastic nite-element analysis of seismic soil-structure interaction[END_REF]. They introduce an approximation space S P ⊂ S (see section 3) and dene the Galerkin approximation u ∈ R n ⊗ S P as follows:

A(u, v) = B(v) ∀v ∈ R n ⊗ S P , (51) 
or equivalently, coming back to the denitions (50) of A and B,

E v T R(u) = 0 ∀v ∈ R n ⊗ S P , (52) 
with R(u(ξ); ξ) = b(ξ) -A(u(ξ); ξ). Equation ( 52) is equivalent to cancelling the orthogonal projection on R n ⊗ S P of the residual R(u). It is equivalent to verify equation ( 47) in a weak sense. Classical mathematical arguments allow to precise the properties of the Galerkin approximation: convergence, stability, a priori error estimation [START_REF] Benth | Convergence rates for nite element approximations of stochastic partial dierential equations[END_REF][START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF][START_REF] Babuška | Eects of uncertainties in the domain on the solution of neumann boundary value problems in two spatial dimensions[END_REF][START_REF] Frauenfelder | Finite elements for elliptic problems with stochastic coecients[END_REF]. In particular, the Galerkin approximation appears to have good stability properties with respect to perturbations and integration error, properties which are very interesting from a numerical point of view.

Property 1 (Linear symmetric elliptic In the case of a linear symmetric elliptic problem, bilinear form A denes an inner product < •, • > A on R n ⊗ S. The Galerkin approximation is then the projection on R n ⊗ S P of the solution of problem [START_REF] Ghiocel | Stochastic nite-element analysis of seismic soil-structure interaction[END_REF] with respect to inner product < •, • > A . The approximation then minimizes the distance to the solution of (49), the distance being dened with the norm induced by A.

System of equations

Denoting {Hα} α∈IP a basis of S P , the solution u ∈ R n ⊗ S P is searched under the form of a decomposition

u(ξ) = α∈IP uαHα(ξ), uα ∈ R n .
Problem ( 51) is then equivalent to the following system of equations: ∀α ∈ I P ,

E Hα(ξ)A β∈IP u β H β (ξ); ξ = E b(ξ)Hα(ξ) . ( 53 
)
This is a system of n × P equations, possibly non-linear. Denoting u ∈ R nP the block vector gathering components uα := (u)α, system (53) can be recasted as a block system of equations:

A(u) = b, (54) with 
(A(u))α = E HαA β∈IP u β H β , ( 55 
) (b)α = E (bHα) . ( 56 
)
Remark 8 -Use of piecewise polynomial approximations. When using nite element-type piecewise polynomial approximations (see section 3.3), the space S P can be written S P = ⊕ K k=1 S k P k , where S k P k denotes a subspace of polynomial functions having for support an element Ξ k of a partition of Ξ. The solution u can then be written u = K k=1 u k , where the u k ∈ S k P k are dened by K uncoupled problems:

∀k ∈ {1, ..., K}, A(u k , v k ) = B(v k ) ∀v k ∈ R n ⊗ S k P k . (57) 
One then have to solve K uncoupled systems of equations of type (53), each system involving the basis functions {H k α } α∈I P k of S k P k .

The case of linear problems

In the case of linear problems, system (53) writes:

β∈IP E(AHαH β )u β = E(bHα), ∀α ∈ I P . (58) 
System (54) becomes a system of n × P linear equations

Au = b, (59) 
where A is a matrix whose block components write

(A) αβ = E(AHαH β ).
In practice, random matrix A is decomposed on the basis of functions {Hα} α∈I :

A(ξ) = α∈IP A AαHα(ξ), (60) 
where I PA ⊂ I denotes a nite set of indices. Blocks of matrix A can then be written

(A) αβ = γ∈IP A Aγ E(Hγ HαH β ). (61) 
For some classical stochastic basis functions, the terms E(Hγ HαH β ) are often known analytically. They can also be pre-computed numerically.

Remark 9 -Truncation of the decomposition of the operator. Random matrix A a priori admits a convergent decomposition on the complete basis {Hα} α∈I of L 2 (Ξ, dP ξ ). By truncating this decomposition to the subset I PA , one a priori introduces an approximation of the operator (variational crime), which could lead to a solution dierent from the solution of the initial problem [START_REF] Gosselet | On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity[END_REF]. In fact, one can easily show that if {Hα} α∈I is an orthogonal (piecewise) polynomial basis and if S P corresponds to polynomials with degree p, a decomposition of A on a polynomial basis of degree 2p is sucient to obtain the solution of the initial problem. Indeed, from orthogonality of basis functions,

E(AHαH β ) = γ∈I Aγ E(Hγ HαH β ) = γ∈IP A Aγ E(Hγ HαH β ).
Property 2 (Taking into account exactly stochastic elds) When a stochastic eld intervenes in the denition of the operator of the initial probabilistic model, one generally has to perform a discretization of the eld in order to work in a nite-dimensional probability space. In fact, one can show that the Galerkin approach allows to take into account exactly the initial stochastic eld. Let us illustrate this property on the example of section 4.1.4. Let us rst consider the problem with the initial stochastic ! eld κex(x, θ) (possibly discretized space) dened on the probability space (Θ, B, P ).

The solution uex ∈ R n ⊗ L 2 (Θ, dP ) of the semi-discretized problem is then dened by

Aex(uex, v) = E(v T b) ∀v ∈ R n ⊗ L 2 (Θ, dP ), (62) 
with Aex(u, v) = E(v T Aexu).

(

) 63 
Let us now introduce a polynomial chaos representation of κex (see appendix A) and let us consider that the discretized eld κ is obtained by truncating this representation to the polynomial chaos of degree 2p in dimension m:

κex(x, θ) = α∈Iex κα(x)Hα({ξ i } i∈N ) ≈ α∈IP A κα(x)Hα(ξ(θ)) := κ(x, ξ(θ)),
where {Hα} α∈Iex denotes the basis of L 2 (Θ, dP ) constituted by Hermite polynomial in independent standard Gaussian random variables {ξ i } i∈N [130, 23] (Iex is the set of multi-indices α ∈ N N with nite length |α|). Then, one considers for S P a polynomial chaos of degree p in dimension m. From orthogonality of Hermite polynomials, one can show that the restriction to R n ⊗ S P of bilinear form Aex(•, •) coincides with bilinear form A(•, •), dened from κ. In other words, the Galerkin approximation u ∈ R n ⊗ S P , dened by [START_REF] Gosselet | On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity[END_REF], is the projection of uex on R n ⊗ S P with respect to the inner product induced by Aex. Therefore, the Galerkin procedure allows to take implicitly into account the initial non discretized stochastic eld. When using discretized versions of stochastic elds, the Galerkin method allows to avoid the classical problem of violation of existence conditions (see remark 6). We can notice that this good property may still be veried for some nonlinear problems.

Remark 10 -The particular case of stochastic interpolation/collocation.

In the case of a linear problem with a linear dependency of A in ξ, i.e. In this case, system (58) is equivalent to the following P uncoupled systems:

A(ξ) =

γ∈N m |γ| 1 y γ α Aγ uαωα = E(bHα), α ∈ I P .
For the example of section 4.1.4, this (very) particular case occurs if the stochastic eld writes κ(x, θ) = κ 0 (x) + m i=1 ξ i (θ)κ i (x).

Classical solution techniques 4.4.1 Linear problems

In the linear case, iterative solvers are generally used for solving system [START_REF] Keese | Numerical Solution of Systems with Stochastic Uncertainties -A General Purpose Framework for Stochastic Finite Elements[END_REF]. Krylovtype solvers (Conjugate Gradient, Conjugate Gradient Square,...) do not require the assembling of matrix A. An ecient preconditioning of the system is however necessary. Krylov-type algorithms are then applied to the following preconditioned system:

PAu = Pb. (64) 
In the case when an orthonormal basis {Hα} is used, a classical choice of preconditioner [START_REF] Ghanem | Ingredients for a general purpose stochastic nite elements implementation[END_REF][START_REF] Pellissetti | Iterative solution of systems of linear equations arising in the context of stochastic nite elements[END_REF][START_REF] Keese | Hierarchical parallelisation for the solution of stochastic nite element equations[END_REF] consists in taking a block diagonal matrix P, the diagonal blocks being dened by

(P) αβ = δ αβ E(A) -1 .
This preconditioner is computationally very cheap and is relatively ecient in the case where the variability of operator A is small. Indeed, if matrix A is decomposed into its mean part E(A) and its centered part, matrix A of system (64) writes:

(A) αβ = δα β E(A) + E(HαH β (A -E(A))).
and tends to P -1 when the variance of A tends to zero. For large variabilities of the operator, the convergence of Krylov-type algorithms may drastically deteriorate. One can nd in [101] a similar construction of the preconditioner in the case of mixed formulations.

Nonlinear problems

In the nonlinear context, classical nonlinear solvers may be used for solving system [START_REF] Grigoriu | Stochastic Calculus -Applications in Science and Engineering[END_REF].

Let us here simply illustrate the use of classical Newton or Quasi-Newton methods [START_REF] Dennis | Numerical Methods for Unconstrained Optimization and Nonlinear Equations[END_REF]. Knowing the iterate u (k) ∈ R n ⊗ S P , an increment w ∈ R n ⊗ S P is searched by solving the following linear problem:

A (k) (w, v) = B(v) -A(u (k) , v) ∀v ∈ R n ⊗ S P , (65) 
where A (k) (•, •) is an approximation of the bilinear form tangent to A at u k , which can be written under a discrete form:

A (k) (w, v) = E(v T A (k) u),
where A k is a matrix (possibly random) approximating the tangent matrix at u (k) . From an algebraic point of view, this is equivalent to solving system (54) iteratively, by solving at each iteration a linear system of size n × P of the form

A (k) w = r (k) , (66) 
where

r (k) := b -A(u (k) )
is the residual at iteration k. Systems (66) can then be solved with the Krylov-type iterative solvers mentioned in section 4.4.1.

In general, the selection of a nonlinear solver for a given application is inspired from classical solvers which are used in the deterministic context. Let us note that a non negligible part of the computational comes from the evaluation of residuals and therefore from the computation of right-hand sides of systems [START_REF] Kloeden | Numerical Solution of Stochastic Dierential Equations[END_REF]. These evaluations may be easy for certain types of nonlinearities (simple form of the nonlinear operator) [START_REF] Le Maître | A stochastic projection method for uid ow. i. basic formulation[END_REF][START_REF] Le Maître | A stochastic projection method for uid ow. ii. random process[END_REF][START_REF] Debusschere | Gaussian Hilbert[END_REF]. In a more general context, projection techniques using adapted stochastic quadratures may be used to perform these evaluations [START_REF] Keese | Numerical methods and Smolyak quadrature for nonlinear stochastic partial dierential equations[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF].

Let us mention some examples of nonlinear solvers. In [START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF], one can nd the application of a BFGS solver in the case of an elliptic diusion problem with cubic nonlinearity. The advantage is to build A (k) by simple low rank modication of an initial matrix A (0) (based for example on the linear part of operator A). Krylov-type preconditioned iterative solvers are then used to solve systems [START_REF] Kloeden | Numerical Solution of Stochastic Dierential Equations[END_REF]. In [START_REF] Nouy | Méthode de construction de bases spectrales généralisées pour l'approximation de problèmes stochastiques[END_REF], a classical Newton-type solver is used to solve the same problem. Still for the same problem, it is proposed in [START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF] to use for A (k) an approximation of the Gateaux derivative of A at u (k) . This approximation consists in replacing random parameters of operator A by their mean values and to replace u (k) by its mean value. This construction, relatively ecient for moderate variabilities, has the advantage to yield to a deterministic matrix A (k) and then to a block-diagonal system (66) (resolution of uncoupled deterministic problems).

Sparse (or not sparse) structure of linear systems

Krylov-type iterative techniques for the resolution of system (59) (or ( 66)) only ask for computing matrix-vector products of type Au. This allows to take part of the (possibly) sparse structure of the matrix. The matrix has often a sparse structure at two levels, coming from the possible sparsity of random matrix A (classical in nite elements, nite dierence,...) but also from properties of basis functions {Hα}. Indeed, the term E(Hγ HαH β ) generally has a sparse structure for classical approximation basis. Figure 10 illustrates the sparsity pattern of matrix γ∈I P A E(Hγ HαH β ), reecting the blocksparsity pattern of system [START_REF] Keese | Numerical Solution of Systems with Stochastic Uncertainties -A General Purpose Framework for Stochastic Finite Elements[END_REF]. We can note that the sparse structure strongly depends on the dependence of A with respect to ξ. If a high order is used for the expansion of A on the basis {Hα}, we clearly loose the block-sparsity of the system.

Model reduction techniques

Limitations of classical Galerkin spectral stochastic methods

Galerkin-type spectral stochastic methods have the capability to provide highly accurate numerical predictions. As shown in section 4, they ask for the resolution of a problem which can be formally written: nd an approximate solution u such that

u ∈ Vn ⊗ S P , A(u, v) = B(v) ∀v ∈ Vn ⊗ S P , (67) 
where Vn (resp. S P ) is a deterministic (resp. stochastic) approximation space of dimension n (resp. P ) & . For complex applications, if one tries to obtain accurate numerical predictions, these approaches may require a ne discretization at the deterministic level (large n) or at the stochastic level (large P ). That leads to the resolution of very & Let us mention that the discretized problem (67) can be interpreted as [START_REF] Gosselet | On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity[END_REF], by assimilating Vn to R n . Then, the discrete formulation ( 67) is quite general and is also valid for non Galerkin approaches at the deterministic level. nomial chaos in dimension m, with a degree p for I P and a degree p A for I P A large system of n × P equations, leading to computational times and memory requirements which are not compatible with available computational resources. Moreover, they require a good knowledge of the mathematical structure of the problem in order to choose a well-adapted discretized formulation (67) (e.g. stabilized formulation when needed), to derive ad hoc ecient solvers or to extend classical deterministic solvers to the stochastic context (nonlinear algorithms, dedicated preconditioners, ...). They often require specic theoretical and software developments for a particular class of problems.

In order to limit computational costs, a rst approach consists in judiciously choosing the approximation space S P , leading to an accurate expansion of the solution while minimizing the dimension P . In particular, a judicious choice of random variables dening the basic probability space (Ξ, B Ξ , P ξ ) may allow constructing orthogonal polynomial basis exhibiting good convergence rates [132]. In the case of non-smooth solutions, these convergence rates may deteriorate. They can be improved by using adapted basis such that nite elements, multi-elements or multi-wavelets [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF]128,[START_REF] Le Maître | Uncertainty propagation using Wiener-Haar expansions[END_REF][START_REF] Le Maître | Multi-resolution analysis of wiener-type uncertainty propagation schemes[END_REF][START_REF] Babuška | Solving elliptic boundary value problems with uncertain coecients by the nite element method: the stochastic formulation[END_REF] (see section 3.3). However, a good approximation space can not be chosen without error estimation criteria. This kind of approach then makes sense in the context of adaptive approximation procedures [START_REF] Keese | Adaptivity and sensitivity for stochastic problems[END_REF]128,[START_REF] Le Maître | Multi-resolution analysis of wiener-type uncertainty propagation schemes[END_REF]129,[START_REF] Mathelin | Dual-based a posteriori error estimate for stochastic nite element methods[END_REF].

Model reduction for Galerkin spectral stochastic methods

In order to drastically reduce computational costs of Galerkin-type stochastic methods, another approach consists in building reduced approximation basis intelligently. That consists in searching a set of M deterministic functions w i ∈ V (or stochastic functions λ i ∈ S), with M ≪ n (or M ≪ P ) and then to compute the associated stochastic functions λ i (or deterministic functions w i ). An approximation u M of problem ( 67) is and B). Optimal reduced basis functions span the dominant eigenspace of the following eigenproblem:

Tu(w) = σw, [START_REF] Le Maître | A stochastic projection method for uid ow. ii. random process[END_REF] where Tu : V → V is the correlation operator dened by: ∀w, w * ∈ V,

< w * , Tu(w) > V = E(< w * , u > V < u, w > V ) (75) :=< w * , < E(u ⊗ u), w > V > V , (76) 
where

E(u ⊗ u) ∈ V ⊗ V is the correlation function of u. If we choose the {w i } M i=1 such that span{w i } M
i=1 is the M -dimensional dominant eigenspace of Tu, and if we dene the associated stochastic functions

{λ i } M i=1 such that u - M i=1 w i λ i 2 = min {λi} M i=1 ∈(S) M u - M i=1 w i λ i 2 , ( 77 
)
we classically show that the obtained decomposition u M veries:

u -u M 2 = u 2 - M i=1 σ i , (78) 
where the σ i are the M dominant eigenvalues of Tu.

Therefore, if one could compute the spectral decomposition of the solution, one could consider the stochastic (resp. deterministic) functions of this decomposition as good candidates for the denition of reduced basis of stochastic (resp. deterministic) functions. The problem is that the solution and a fortiori its correlation structure, is not known a priori.

Several techniques have been proposed in order to obtain an approximation of the spectral decomposition. In [START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF], the authors propose to compute an approximation of the correlation function E(u ⊗ u) based on a truncated Neumann expansion of the solution of [START_REF] Krée | Mathematics of Random Phenomena[END_REF]. Dominant eigenfunctions of the corresponding approximation of Tu are then computed and can be considered as approximations of functions appearing in the ideal spectral decomposition. Then, they can be used for solving the initial problem in the reduced approximation space V M ⊗ S P (problem (69)). In its actual form, this procedure is limited to the linear case. In [START_REF] Ghanem | Ecient solution of stochastic systems: application to the embankment dam problem[END_REF][START_REF] Doostan | Stochastic model reductions for chaos representations[END_REF], the authors propose to rst solve the initial problem on a coarse deterministic approximation space V n ′ (e.g. by using a nite element approximation on a coarse mesh). A spectral (Hilbert Karhunen-Loève) decomposition of the coarse solution in V n ′ ⊗ S P is then performed. After a truncation of the decomposition at order M , the obtained random variables λ i ∈ S P can be considered as an approximation of random variables appearing in the ideal spectral decomposition of the solution in Vn ⊗ S P . They can then be used as new stochastic basis functions for the resolution of the initial problem in the reduced approximation space Vn ⊗ S M (problem ( 71)).

Remark 11 -Equivalent eigenvalue problem.

The spectral decomposition can be equivalently obtained by solving an eigenproblem on λ:

T ⋄ u (λ) = σλ, (79) 
where T ⋄ u : → S is dened by: ∀λ, λ * ∈ S,

E(λ * T ⋄ u (λ)) =< E(λ * u), E(uλ) > V . (80) 

Generalized spectral decomposition method

The methods presented in section 5.2.1 can be considered as a posteriori model reduction techniques since they ask for a rst evaluation of the solution in order to build the reduced basis. The Generalized Spectral Decomposition (GSD) method [8991, 94] can be considered as an a priori model reduction technique in the context of Galerkin spectral stochastic methods. The GSD method allows the construction of the decomposition (68) without a priori knowing the solution nor an approximation of it. The basic principle of the GSD method consists in dening optimal reduced basis from a double Galerkin orthogonality criterium. More precisely, it consists in dening reduced approximation spaces V M and S M such that they verify simultaneously equations ( 69) and ( 71). One then shows that reduced basis are solution of an invariant subspace problem. This problem can be assimilated to an eigenproblem whose dominant eigenspace leads to the researched reduced basis functions. The GSD method has been initially introduced for solving a particular class of linear elliptic stochastic partial dierential equations [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF]. In this context, the method appears as a natural extension of Hilbert Karhunen-Loève decomposition (see appendix B). Dedicated algorithms, inspired from classical algorithms for solving eigenproblems, have been proposed for the construction of reduced basis functions. The main advantage of these algorithms is that they only require the resolution of a few deterministic problems, with a well mastered mathematical structure, and of a few stochastic algebraic equations. Computational costs are then drastically reduced. Moreover, stochastic equations and deterministic problems being uncoupled, the GSD method allows for recovering a part of non intrusivity for Galerkin spectral approaches.

In [START_REF] Nouy | Méthode de construction de bases spectrales généralisées pour l'approximation de problèmes stochastiques[END_REF], the method has been used for solving a nonlinear stochastic elliptic problem for which a classical global nonlinear solver led to the resolution of successive linear stochastic problems. Each linear stochastic problem were solved by GSD algorithms proposed in [START_REF] Nouy | Méthode de construction de bases spectrales généralisées pour l'approximation de problèmes stochastiques[END_REF], with a re-use and an enrichment of the reduced basis of deterministic functions at each iteration of the nonlinear solver. The GSD method has been extended to a wider class of linear problems in [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF], where it has been also proposed some new ecient algorithms for building the generalized decomposition. More recently, a natural extension to the non-linear context has been proposed in [START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF]. The basics of the method are detailed in section 6.

Remark 12 -In fact, the GSD method can be seen as a model reduction technique for solving problems dened in tensor product spaces. The GSD method for stochastic problems is inspired from a separated representation technique, called the radial approximation technique, proposed in the context of deterministic space-time problems [START_REF] Ladevèze | Nonlinear Computational Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF][START_REF] Ladevèze | On a multiscale computational strategy with time and space homogenization for structural mechanics[END_REF][START_REF] Nouy | Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving micro problems[END_REF][START_REF] Ammar | A new family of solvers for some classes of multidimensional partial dierential equations encountered in kinetic theory modelling of complex uids part II: Transient simulation using space-time separated representations[END_REF].

Other model reduction techniques

Non intrusive stochastic approaches and model reduction

Here, we briey come back to so-called non intrusive stochastic approaches (e.g. Monte Carlo or direct spectral stochastic approaches, ...). These approaches are based on the strong formulation [START_REF] Deb | Solution of stochastic partial dierential equations using galerkin nite element techniques[END_REF] at the stochastic level and require the resolution of a huge number of deterministic problems of type: u(ξ k ) ∈ Vn,

a(u(ξ k ), v; ξ k ) = b(v; ξ k ), ∀v ∈ Vn. (81) 
Their eciency could be signicantly improved by model reduction techniques classically used in parametric or multi-resolution analysis, i.e. by using in (81) a low dimensional approximation space V M ⊂ Vn, with M ≪ n. Approximate solutions of problems [START_REF] Mathelin | Dual-based a posteriori error estimate for stochastic nite element methods[END_REF] can then be dened by: u

M (ξ k ) ∈ V M , a(u M (ξ k ), v M ; ξ k ) = b(v M ; ξ k ), ∀v M ∈ V M . (82) 
Model reduction techniques based on the Proper Orthogonal Decomposition (POD)

[131] may be used for constructing a reduced approximation space V M . It consists in solving several ne deterministic problems [START_REF] Mathelin | Dual-based a posteriori error estimate for stochastic nite element methods[END_REF], leading to a collection of functions u(ξ k ) ∈ Vn. Then, a proper orthogonal decomposition (or singular value decomposition, or discrete Karhunen-Loève decomposition) of this collection of functions allows to capture the M most signicant modes {w i } M i=1 , thus dening

V M = span{w i } M i=1 .
Error criteria must clearly be provided in order to estimate the error associated with u M and to eventually enrich the approximation space V M .

An alternative model reduction technique has been proposed in the context of multiresolution analysis and Krylov-type iterative solvers [111]. When a problem ( 81) is solved with a Krylov iterative algorithm, the generated Krylov subspace denes a lowdimensional approximation space V M leading to an accurate solution for this particular problem. This subspace may be eciently re-used for subsequent deterministic problems (81) [110, 106, 51]. First, it can be used for computing an initial approximation by solving the reduced problem [START_REF] Matthies | Uncertainty quantication with stochastic nite elements[END_REF]. Then, starting from an updated residual, Krylov algorithms can be used (with eventual projections in order to avoid exploring again the initial subspace V M ). The reduced approximation space V M can be updated after each resolution. A dicult question concerns the selection of pertinent subspaces of V M for the subsequent resolutions, in order to avoid a dramatic increase in the dimension of

V M .
Let us nally mention another model reduction technique, called the Reduced Basis method [START_REF] Machiels | Output bounds for reduced-order approximations of elliptic partial dierential equations[END_REF][START_REF] Maday | Global a priori convergence theory for reducedbasis approximation of single-parameter symmetric coercive elliptic partial dierential equations[END_REF][START_REF] Barrault | An empirical interpolation method: application to ecient reduced-basis discretization of partial dierential equations[END_REF], which has been initially introduced for parametric analysis. This method, based on rigorous error estimation criteria, proposes a construction of approximation space V M leading to a desired accuracy for u M (ξ k ) for all k. The advantage is that it never requires the resolution of ne problems [START_REF] Mathelin | Dual-based a posteriori error estimate for stochastic nite element methods[END_REF]. However, the method requires theoretical developments which are specic to the considered problem. The Reduced Basis method has been recently applied to the resolution of linear stochastic elliptic symmetric problems with the Monte-Carlo method [108].

Stochastic Reduced Basis Method

Let us mention and give some comments on the Stochastic Reduced Basis Method [START_REF] Nair | On the theoretical foundations of stochastic reduced basis methods[END_REF][START_REF] Nair | Stochastic reduced basis methods[END_REF]113,112], proposed for solving a class of linear stochastic problems. The rst point of the method consists in computing a basis of functions w i ∈ Vn ⊗ S by successive applications of the operator to the right-hand side of problem [START_REF] Krée | Mathematics of Random Phenomena[END_REF], thus generating a so-called stochastic Krylov subspace. This approach is dierent from the model reduction techniques mentioned in section 5.2 since functions w i are not deterministic but belong to Vn ⊗ Then, this does not circumvent the problem of memory requirements. In fact, if a classical spectral representation is used at the stochastic level (i.e. successive projections of the w i on Vn ⊗ S P ), as proposed in [112,113], the dened stochastic Krylov subspace span{w i } M i=1 is no more than a classical M -dimensional Krylov subspace associated with problem [START_REF] Krée | Mathematics of Random Phenomena[END_REF]. To be more precise, the dened Krylov subspace is exactly the Krylov subspace of the preconditioned system [START_REF] Khuri | Response Surfaces: Designs and Analyses[END_REF], with the classical preconditioner used in [START_REF] Ghanem | Numerical solution of spectral stochastic nite element systems[END_REF][START_REF] Ghanem | Ingredients for a general purpose stochastic nite elements implementation[END_REF][START_REF] Keese | Hierarchical parallelisation for the solution of stochastic nite element equations[END_REF]. Indeed, if we rewrite problem [START_REF] Krée | Mathematics of Random Phenomena[END_REF] under the form of the linear system of equations ( 59), the denition of functions w i ∼ w i ∈ R nP given in [112,113] is as follows:

w i = (PA) i-1 b, i = 1...M .
In [113], the authors then propose to dene the approximation u M = M i=1 w i λ i , with λ i ∈ R, where the λ i are solutions of the following system of M equations:

A( M i=1 w i λ i , w j ) = B(w j ), ∀j ∈ {1...M }. (83) 
The obtained solution u M is the Galerkin approximation of the initial problem in the approximation space span{w i } M i=1 ⊂ Vn ⊗ S P . In fact, system ( 83) is equivalent to the following system, written in a matrix form:

w T j A M i=1 w i λ i = w T j b, ∀j ∈ {1...M }. (84) 
The method proposed in [113] then exactly coincides with a classical Krylov-type algorithm, namely the Arnoldi algorithm, for solving (59) (equivalently ( 67)). Therefore, this method does not really constitute a new methodology and can not really be assimilated with a model reduction technique, although Krylov-type iterative solvers are sometimes seen as a posteriori model reduction techniques. In [113], the authors conclude that a low order approximation (M = 2 or 3) is sucient for obtaining an accurate solution. It is equivalent to say that a Krylov-type algorithm (e.g. Preconditioned Conjugate Gradient for symmetric problems) gives an accurate solution of (59) in 2 or 3 iterations. That is clearly problem-dependent and it is known that for complex problems and moderate variabilities, Krylov-type algorithms may require a much larger number of iterations in order to provide an accurate approximation.

However, a modication is proposed in another paper [112]. Starting from the above dened reduced basis of functions {w i } M i=1 ∈ (Vn⊗S P ) M , the authors propose to search an approximation u M = M i=1 w i λ i , with random functions λ i ∈ S P dened by the following problem:

A( M i=1 w i λ i , M i=1 w i λ * i ) = B( M i=1 w i λ * i ) ∀λ * i ∈ S P . (85) 
In this case, the method can not be interpreted as a usual Krylov-type algorithm. This modication slightly improves the accuracy of the obtained decomposition. Let us note that u M is a nonconforming Galerkin approximation since u M / ∈ Vn ⊗ S P . The construction and the resolution of problem [START_REF] Melchers | Structural reliability analysis and prediction[END_REF] for nding functions λ i are dicult and computationally expansive (more expansive than classical Galerkin approaches since the w i are random), which leads to limit the number of computed functions w i .

In this section, we recall the basics of the GSD method [8991,94], mentioned in section 5.2.2, and give some additional and clarifying comments on the method.

Denition of the generalized spectral decomposition

A natural way to dene optimal reduced basis is to use a double orthogonality criterium, i.e. to verify both equations ( 71) and ( 69 71) and ( 69) can be equivalently rewritten:

) simultaneously. Let us note Λ = (λ i ) M i=1 ∈ (S) M , W = (w i ) M i=1 ∈ (V) M and u M := W • Λ. Equations (
A(W • Λ, W * • Λ) = B(W * • Λ) ∀W * ∈ (V) M , (86) 
A(W • Λ, W • Λ * ) = B(W • Λ * ) ∀Λ * ∈ (S) M . ( 87 
)
Let us introduce the mapping F : (S) M → (V) M where W = F (Λ) is the solution of equation ( 86) for a given Λ. Let us also introduce the mapping f : (V) M → (S) M where Λ = f (W ) is the solution of equation ( 87) for a given W . The simultaneous verication of ( 87) and ( 86) imposes the following relations:

W = F (Λ) and Λ = f (W ). (88) 
Equations ( 88) can be interpreted as a problem on W :

T (W ) = W, with T (W ) = F • f (W ), (89) 
or equivalently as a problem on Λ:

T ⋄ (Λ) = Λ, with T ⋄ (Λ) = f • F (Λ). (90) 
From homogeneity properties of T and T ⋄ , problems ( 89) and ( 90) can be interpreted as invariant subspace problem, i.e. they can be equivalently written as xed point problems on V M and S M (see [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]). In fact, these problems can be interpreted as eigenlike problems, where an invariant subspace is assimilated with a generalized eigenspace. The dominant eigenspace of T (resp. T ⋄ ) is associated with the researched reduced basis W (resp. Λ), which leads to a so-called generalized spectral decomposition

u M = W • f (W ) (resp. u M = F (Λ)•Λ).
The method can be interpreted as a natural generalization of Hilbert Karhunen-Loève decomposition (see appendix B for a comprehensive analysis in the case of linear symmetric elliptic problems).

Algorithms for building the decomposition

Algorithms for building the generalized spectral decomposition are inspired from classical methods for solving eigenproblems [109, 50] (for capturing the upper spectrum of operators).

Subspace iterations

Problems (88) (90) being equivalent, let us focus on the problem on T . The aim is to capture the dominant eigenspace of T , leading to the desired reduced basis of functions W = (w i ) M i=1 . A natural algorithm, proposed in [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF], is the subspace iteration technique. Starting from an initial guess W (0) , it consists in building the sequence W (k+1) = T (W (k) ). This sequence generally converges toward the dominant eigenspace of T . At each iteration, it requires the application of operator T = F • f , and therefore, the application of operators f and F successively . The computation of Λ = f (W ) requires the resolution of problem [START_REF] Nair | Stochastic reduced basis methods[END_REF], which is a stochastic problem on a reduced deterministic basis (system of M stochastic algebraic equations, eventually nonlinear). An approximation Λ ∈ (S P ) M can be obtained by using a Galerkin stochastic approximation, thus requiring the resolution of a system of M × P equations. Then, the computation of W = f (Λ) requires the resolution of problem [START_REF] Nair | On the theoretical foundations of stochastic reduced basis methods[END_REF], which is a deterministic problem on a reduced stochastic basis (system of M coupled deterministic problems, eventually nonlinear). An approximation W ∈ (Vn) M can be obtained by using a deterministic approximation technique, thus requiring the resolution of a system of n × P equations. At convergence, we obtained the desired generalized spectral decomposition u M = W • f (W ).

Power method with deation

In order to avoid the resolution of coupled systems of deterministic equations, an alternative consists in building the couples (λ i , w i ) one by one. Let ur = Wr • Λr be an already computed decomposition of order r. The following optimal couple (λ, w) ∈ S can be dened by:

A(ur + wλ, w * λ) = B(w * λ) ∀w * ∈ V, (91) 
A(ur + wλ, wλ * ) = B(wλ * ) ∀λ * ∈ S. [START_REF] Nouy | An extended stochastic nite element method for solving stochastic partial dierential equations on random domains[END_REF] The problem can still be interpreted as an eigen-like problem T (w; ur) = w, with T (•; ur) = F (f (•; ur); ur), [START_REF] Nouy | Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving micro problems[END_REF] where λ = f (w; ur) is the solution of problem [START_REF] Nouy | An extended stochastic nite element method for solving stochastic partial dierential equations on random domains[END_REF] for a xed w and where w = F (λ; ur) is the solution of problem (91) for a xed λ.

A natural power method, rst introduced in [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF], can then be applied in order to nd the dominant eigenfunction w of T (•; ur). From an initial guess w (0) , it consists in building the sequence w (k+1) = T (w (k) ; ur). At each iteration, it requires the resolution of a simple stochastic algebraic equation ( 92) (application of operator f for a xed w) and of a simple deterministic problem (91) (application of mapping F for a given λ). In fact, operator T (•; ur) can be interpreted as a deated version of the initial operator T ≡ T (•; 0) (see [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]).

Remark 13 -Let us note that this algorithm, which is here interpreted as a power method with deation, have been proposed in other contexts in order to nd separated representations of solutions in tensor product spaces (see e.g. [START_REF] Ladevèze | Nonlinear Computational Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF][START_REF] Ladevèze | On a multiscale computational strategy with time and space homogenization for structural mechanics[END_REF][START_REF] Nouy | Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving micro problems[END_REF][START_REF] Ammar | A new family of solvers for some classes of multidimensional partial dierential equations encountered in kinetic theory modelling of complex uids part II: Transient simulation using space-time separated representations[END_REF] for spacetime separation, [START_REF] Chinesta | Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization[END_REF] for space-space separation, [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial dierential equations encountered in kinetic theory modelling of complex uids[END_REF] for multi-dimensional separation).

In practise, an orthogonalization step is introduced at each iteration in order to avoid a degeneration of the subspace V M := span(W ).

In fact, for the case of elliptic symmetric problems (see appendix B), this algorithm appears as a particular case of a Greedy algorithm [START_REF] Bris | Results and questions on a nonlinear approximation approach for solving high-dimensional partial dierential equations[END_REF].

The overall construction can then be interpreted as a power method with deation for classical eigenproblems. However, eigen-like problem [START_REF] Nouy | Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving micro problems[END_REF] does not have classical properties of eigenproblems. In particular, the M -dimensional subspace which is spanned by the dominant eigenfunctions of successive deated operators T (•; ur), r = 0...M -1, does not generally coincide with the M -dimensional dominant eigenspace of the initial operator T (•; 0). In other words, the spectral decomposition u M = W •f (W ), where W is the dominant eigenspace of T (•; 0), does not coincide with the spectral decomposition u M = M i=1 w i f (w i ; u i-1 ), where the w i are the dominant eigenfunctions of T (•; u i-1 ) (see related comments in appendix B). In practise, a better accuracy is obtained by updating the random variables, i.e. by computing a new Λ = f (W ; 0) after the construction of W by the power method with deation (see illustrations [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF] for linear or nonlinear model problems).

Arnoldi algorithm

A more ecient algorithm has been proposed in [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF]. It is inspired from the Arnoldi algorithm for solving classical eigenproblems. Starting from an initial function w 1 = f (λ 1 ), the idea is to build the generalized Krylov subspace K M (T, w 1 ), dened by:

K M (T, w 1 ) = span{w i } M i=1 (94) w i+1 = Π ⊥ Ki T (w i ), (95) 
where Π ⊥ Ki denotes an orthogonal projection on the complementary space of K i ⊂ V. The construction of the Krylov subspace asks for M -1 applications of operator T = F • f to single functions in V. It then asks for the resolution of M -1 classical deterministic problems (application of F ) and M -1 stochastic algebraic equation (application of f ). Then, associated random variables Λ = f (W ) can be computed by solving a stochastic problem [START_REF] Nair | Stochastic reduced basis methods[END_REF] for the given reduced approximation basis W = (w i ) M i=1 . We observe that this construction allows to obtain at a very low cost a good approximation of the dominant eigenspace, thus leading to a good approximation of the ideal generalized spectral decomposition. In practise, restarts of the above Arnoldi algorithm are often required. When the Arnoldi procedure has stopped, and an order r decomposition ur has been obtained, an Arnoldi procedure can be performed again on the deated eigenproblem [START_REF] Nouy | Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving micro problems[END_REF] (see [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]). Remark 14 -Choice of the orthogonal projection.

For classical eigenproblems, this algorithm exactly coincides with a classical Arnoldi algorithm. In this case, the Krylov subspace does not depend on the orthogonal projector.

In the case of the GSD, which corresponds to a non classical eigenproblem, the obtained subspace slightly depends on the projection which is used. However, in practise, classical metrics are used for the projections and lead to satisfactory results.

Illustrations of computational aspects

Here we detail the computational aspects on two model examples in order to illustrate the application of the GSD method. The method is illustrated in a continuous framework, the discretization being introduced needed. It allows to underline an interesting aspect of the GSD method, which provides a exibility in the choice of deterministic approximation techniques (in a non intrusive fashion). The construction of the generalized spectral decomposition asks for the resolution of problems of dierent types which depend on the chosen algorithms (power method, Arnoldi,...). Power-type algorithm and Arnoldi algorithm, when applied to eige-like problem T (W ) = W , asks for the resolution of problems λ = f (w) for a given w ∈ V, w = F (λ) for a given λ ∈ S and Λ = f (W ) for a given W ∈ (V) M . For simplicity, only these three types of problems will be detailed for the two model examples.

Model example 1: a linear problem

We here consider a linear time-dependent stochastic partial dierential equation, dened on a space-time domain Ω × (0, T ). This class of problem has been investigated in [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]. Computational aspects of the GSD method are here presented in a continuous framework. The discrete formulation and numerical illustrations (convergence of generalized decomposition, eciency of the method,...) can be found in [START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]. We consider the following problem: nd u such that it veries almost surely

∂ t u -α 1 ∆u + α 2 c • ∇u = g on Ω × (0, T ), (96) 
u = 0 on ∂Ω × (0, T ), [START_REF]Stochastic Dierential Equations. An Introduction with Applications[END_REF] u = 0 on Ω × {0}, [START_REF] Papoulis | Probability, Random Variables, and Stochastic Processes[END_REF] where the α i (ξ) are random variables dened on probability space (Ξ, B Ξ , P ξ ) and g(ξ) is a random process (time or space dependent). Here, we introduce for V a suitable space of functions dened on the space-time domain Ω × (0, T ). A weak formulation can be obtained by introducing bilinear form A(u, v) = E(a(u, v; ξ)) and linear form B(v) = E(b(v; ξ)), where a and b are dened by: b(v; ξ) = Ω×(0,T ) v g(ξ), [START_REF] Pellissetti | Iterative solution of systems of linear equations arising in the context of stochastic nite elements[END_REF] 

a(u, v; ξ) = a 0 (u, v) + α 1 (ξ)a 1 (u, v) + α 2 (ξ)a 2 (u, v), (100) 
where the a i are deterministic bilinear forms on V dened by :

a 0 (u, v) = Ω×(0,T ) ∂ t u v + Ω×{0 + } u v, (101) 
a 1 (u, v) = Ω ∇u • ∇v, (102) 
a 2 (u, v) = Ω c • ∇u v. ( 103 
)
The values of functions on Ω × {0 + } must be interpreted as their right limits at time 0.

The formulation is classical and corresponds to a weak imposition of the initial condition.

⋄ Problem of type w = F (λ) Computing w = F (λ) for a given λ asks for the resolution of a deterministic problem: nd w ∈ V such that ∀w * ∈ V, a 0 (w, w * ) + α 1 a 1 (w, w * ) + α 2 a 2 (w, w * ) = Ω×(0,T ) g w * , (104) with deterministic parameters α i = E(α i λ 2 ) and deterministic source term g = E(gλ). Classical deterministic approximation techniques can be used for obtaining an approximate solution w ∈ Vn (time integration scheme, nite elements, ...). Let us note that suitable time integration schemes (eventually adaptive) can be used for each deterministic independently. This constitutes a great advantage of the generalized spectral decomposition, which authorizes the use of well-mastered deterministic solution techniques.

Remark 15 -In the current version of the GSD method, problems on reduced basis are dened with classical Galerkin projections. For advection-dominated problems, if the deterministic approximation requires a stabilization (e.g. nite elements), the GSD method can still be applied on a stabilized formulation of the initial stochastic problem.

⋄ Problem of type λ = f (w) Computing λ = f (w) for a given w requires the resolution of:

λ ∈ S, E(λ * aλ) = E(λ * b) ∀λ * ∈ S, (105) with b(ξ) = b(w; ξ) = Ω×(0,T ) g(ξ) w, (106) 
a(ξ) = a 0 (w, w) + α 1 (ξ)a 1 (w, w) + α 2 (ξ)a 2 (w, w).
(107) This is a classical stochastic algebraic equation. Computing random variables a and b requires computing classical space-time integrals. A classical stochastic Galerkin approach can be used in order to nd an approximate solution λ ∈ S P ⊂ S. That leads to a small system of P equations.

Remark 16 -When using a deation (e.g. with a power method or a restarted Arnoldi algorithm), one has to solve problems of type λ = f (w; ur) or w = F (λ; ur). These problems simply write as the above problems, with updated right-hand sides b(v; ξ) ← b(v; ξ)a(ur, v; ξ).

⋄ Problem of type Λ = f (W ) Computing Λ = f (W ) ∈ (S) M for a given W = (w i ) M i=1 ∈ (V)
M requires the resolution of the following system of stochastic algebraic equations:

M i=1 E(λ * j a ji λ i ) = E(λ * j b j ) ∀λ * j ∈ S, ∀j ∈ {1, ..., M }, with b j (ξ) = b(w j ; ξ) = Ω×(0,T ) g(ξ) w j , (108) 
a ji (ξ) = a 0 (w i , w j ) + α 1 (ξ)a 1 (w i , w j ) + α 2 (ξ)a 2 (w i , w j ).

(109)

By introducing an approximation space P ⊂ S, we obtain a Galerkin approximate solution Λ ∈ (S P ) M by solving a classical system of M × P equations.

Remark 17 -A straightforward extension of the above computational aspects allows dealing with a large class of linear problems such that a(u, v; ξ) = m i=1 α i (ξ)a i (u, v), where the a i are deterministic bilinear forms. We here consider a classical nonlinear stochastic stationary partial dierential equation, with quadratic nonlinearity, dened on a spatial domain Ω (e.g. stationary Burgers or incompressible Navier-Stokes equations). The application to a one-dimensional stochastic Burgers equation and numerical illustrations can be found in [START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF].

We introduce a semi-linear form A(u, v) = E(a(u, v; ξ)) and a linear form B(v) = E(b(v; ξ)), where a and b are dened by:

b(v; ξ) = Ω v g(ξ), (110) a(u, v; ξ) = α 1 (ξ)a 1 (u, v) + a 2 (u, u, v), (111) 
where α 1 and g are respectively a random variable and a random eld dened on probability space (Ξ, B Ξ , P ξ ). a 1 and a 2 are bilinear and trilinear forms dened by:

a 1 (u, v) = Ω ∇u • ∇v, (112) 
a 2 (u, u, v) = Ω u • ∇u v. (113) ⋄ Problem of type w = F (λ)
Computing w = F (λ) for a given λ asks for the resolution of a classical nonlinear deterministic problem: nd w ∈ V such that ∀w * ∈ V,

α 1 a 1 (w, w * ) + α 2 a 2 (w, w, w * ) = Ω g w * ,
with deterministic parameters α 1 = E(α 1 λ 2 ) and α 2 = E(λ 3 ), and deterministic source term g = E(gλ). The method authorizes the use of classical deterministic solvers. In this sense, the GSD method can be said non intrusive. Classical deterministic approximation techniques can be used for obtaining an approximate solution w ∈ Vn. Let us note that for each deterministic problem, a specic solver can be chosen, adapted to the values α i of parameters.

⋄ Problem of type λ = f (w)
Computing λ = f (w) for a given w requires the resolution of:

λ ∈ S, E(λ * ( a (1) λ + a (2) λ 2 )) = E(λ * b) ∀λ * ∈ S, (114) 
with b(ξ) = Ω g(ξ) w, a (1) (ξ) = α 1 (ξ)a 1 (w, w) and a (2) = a 2 (w, w, w). This is a classical stochastic nonlinear algebraic equation (with quadratic nonlinearity). A classical stochastic Galerkin approach can be used in order to nd an approximate solution λ ∈ S P ⊂ S. That leads to a small system of P nonlinear equations.

⋄ Problem of type Λ = f (W ) Computing Λ = f (W ) ∈ (S) M for a given W = (w i ) M i=1 ∈ (V)
M requires the resolution of the following system of stochastic algebraic equations: ∀j ∈ {1, ..., M }, ∀λ * j ∈ S,

E λ * j M i=1 a (1) ji λ i + M i,k=1 a (2) jik λ i λ k = E(λ * j b j ),
with b j (ξ) = Ω g(ξ) w j , a (1) ji (ξ) = a 1 (w i , w j ) and a (2) jik = a 2 (w i , w k , w j ). By introducing an approximation space S P ⊂ S, we obtain a Galerkin approximate solution Λ ∈ (S P ) M by solving a system of M × P nonlinear equations.

About non intrusivity

As shown in the two above model examples, the GSD method allows to separate the resolution of classical deterministic problems and stochastic algebraic equations. Deterministic problems may be solved in a non intrusive fashion. Then, Galerkin spectral approaches, when using the GSD method, recover a part of non intrusivity. The convergence of the generalized spectral decomposition is very similar to the convergence of classical Hilbert Karhunen-Loève decompositions of the solution. For a desired accuracy, the required order of decomposition is clearly problem-dependent. However, in practice, one observes that a low order (M < 10) is often sucient to reach satisfactory accuracies (see illustrations in [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF][START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF]). In these situations, the GSD method leads to accurate predictions by solving a very few deterministic problems, compared to classical non intrusive approaches (L 2 projection, Monte-Carlo...).

Conclusion

Uncertainty quantication appears today as a crucial point in numerous branches of science and engineering. By improving the predictability and robustness of numerical models, it answers technical, economic or societal issues.

In the last two decades, a growing interest has been devoted to a new family of methods, called spectral stochastic approaches, which rely on a fruitful marriage of probability theory and functional analysis. This marriage has allowed to transpose into the stochastic context a set of mathematical and numerical tools which are well mastered within the deterministic context. These methods oer a unied framework for the quantication and propagation of uncertainties in a probabilistic context. In other words, they allow handling both the validation and verication of physical models, from inputs identication based on observations to the numerical prediction of outputs, using a unique formalism.

Although these methods are relatively mature for some classes of problems, numerous theoretical, methodological and technical diculties still remain to surmount in order to guarantee their long-lasting transfer towards a wider eld of applications. First of all, these methods require to revisit in depth elds of applications which are well mastered in the deterministic context. For example, in the eld of nonlinear structural dynamics, the current deterministic methods allow to tackle with large-scale simulations while taking into account complex nonlinear behaviors (visco-plasticity, contact, damage,...). The treatment of these in an uncertain context remains a crucial issue in the medium or long terms. A challenge consists in proposing generic methods, applicable to a wide class of problems and exploiting at best the existing know-how and softwares. The transfer of these methods towards complex industrial applications will be made possible if consequent eorts are led on the development of robust solution techniques, allowing to obtain of predictions with reasonable computation times.

Another key question concerns the control and the reduction of the errors introduced in the various steps of the validation/verication chain: measurement error, modeling error, approximation error, resolution error. Indeed, mastering these various errors would allow to obtain more predictions of the outputs of the models. In an uncertain context, the reduction of measurement errors generally requires to increase the number of observations (if possible) as well as the quality of their statistical treatment. Modeling errors can be reduced through a better understanding of the physical phenomena and sources of uncertainties, and through the development of robust identication procedures in a probabilistic context. The control of approximation requires the development of robust a posteriori error estimators and associated adaptive approximation procedures, in order to improve the quality of the numerical models. Finally, the reduction of resolution errors asks for a better control of the solvers in terms of precision and robustness. These questions of error controlling is certainly an important axis of development for the spectral stochastic approaches. These approaches have the advantage to inherit from an existing know-how in deterministic simulations and in other branches of probabilistic analysis.

Another diculty, which is not restricted to spectral approaches but to uncertainty quantication methods in general, concerns the relevant modeling of uncertainties. In the physical models, sources of uncertainty appear at various scales, involving dierent physical phenomena. Uncertainties are often well understood and modeled in certain scales which do not correspond to the scales under study. Fully multi-scale computational methods, allowing to transfer the uncertainties through the scales, could lead to the construction of more relevant models, to more reliable predictions, as well as to a better understanding of the physical phenomena. Beyond these issues, these multiscale strategies will allow to increase the eciency of the spectral stochastic approaches and thus to solve problems which are currently unaordable with available computational resources. In this context, the development of model reduction techniques, which is already a challenging issue in the deterministic context, seem to be unavoidable as an additional probabilistic dimension has to be dealt with.

All these questions constitute some important scientic and technical challenges, which could lead to a better control of models and numerical simulations in an uncertain context. It thus remains to hope that future developments will allow to reach a full maturity of these methods and allow their massive use for the resolution of problems of interest.

A Representation and discretization of random processes or elds

Here, we briey introduce some classical techniques for representing random processes (or elds). For an introduction to random processes, the reader can refer to [START_REF] Doob | Stochastic Processes[END_REF][START_REF] Krée | Mathematics of Random Phenomena[END_REF][START_REF] Adler | The Geometry of Random Fields[END_REF][START_REF] Loève | Probability Theory. I[END_REF][START_REF] Loève | Probability Theory[END_REF] for a mathematical point of view or to [START_REF] Papoulis | Probability, Random Variables, and Stochastic Processes[END_REF][START_REF] Grigoriu | Applied non-Gaussian Processes[END_REF][START_REF] Grigoriu | Stochastic Calculus -Applications in Science and Engineering[END_REF]126,[START_REF] Christakos | Random Field Models in Earth Sciences[END_REF] for more technical aspects.

A.1 Denition and characterization of random processes

A random process with value in E is formally dened as a indexed set of random variables {ux(θ))} x∈Ω , where the ux(θ) are random variables with values in E, dened on a probability space (Θ, B, P ). Ω can be a nite or countable set, in which case the stochastic process is called a discrete stochastic process, or an uncountable set such as an interval Ω ⊂ R or even a domain Ω ⊂ R d . In the case where Ω is a spatial domain, the random process is rather called a random eld. A stochastic process can be equivalently seen as a measurable function

u : (x, θ) ∈ Ω × Θ → u(x, θ) ∈ E,
or still as a random variable with values in a space of functions dened on Ω with values in E. The equivalence between these dierent interpretations require some technical considerations [START_REF] Krée | Mathematics of Random Phenomena[END_REF][START_REF] Loève | Probability Theory. I[END_REF][START_REF] Keese | Numerical methods and Smolyak quadrature for nonlinear stochastic partial dierential equations[END_REF]. In the following, one restricts the presentation to scalar random processes, i.e.

E = R.

The probabilistic characterization of a stochastic process then requires the probabilistic characterization of a set of random variables, eventually uncountable. In fact, a random process can be completely characterized by its nite dimensional probability laws [START_REF] Adler | The Geometry of Random Fields[END_REF][START_REF] Krée | Mathematics of Random Phenomena[END_REF], which are the joint probability laws of all nite sets of random variables {ux 1 , ..., u xn }, n ∈ N, x i ∈ Ω.

In the following, we consider the representation and discretization of second order processes (for an introduction to generalized random processes, see [START_REF] Gel | Generalized Functions -Volume 4: Applications of harmonic analysis[END_REF][START_REF] Krée | Mathematics of Random Phenomena[END_REF][START_REF] Christakos | Random Field Models in Earth Sciences[END_REF][START_REF] Holden | Stochastic Partial Dierential Equations[END_REF]). Various discretization techniques are available in the literature (see [115,117,[START_REF] Matthies | Uncertainties in probabilistic numerical analysis of structures and solids -stochastic nite elements[END_REF]125,[START_REF] Keese | A review of recent developments in the numerical solution of stochastic pdes (stochastic nite elements)[END_REF]). We here present two techniques classically used in the context of spectral stochastic methods: the Karhunen-Loève decomposition and the polynomial chaos decomposition.

A.2 Karhunen-Loève decomposition

Karhunen-Loève decomposition [START_REF] Loève | Fonctions aléatoires du second ordre[END_REF][START_REF] Karhunen | Zur spektraltheorie stochastischer prozesse[END_REF] applies to second order stochastic processes u ∈ L 2 (Ω)⊗ L 2 (Θ, dP ). It consists in decomposing the random process u under the form:

u(x, θ) = µu(x) + ∞ i=1 √ σ i w i (x)ζ i (θ) (115) 
where µu is the mean value of u, where functions w i (x) form a particular Hilbertian basis of L 2 (Ω), where the ζ i ∈ L 2 (Θ, dP ) are centered uncorrelated random variables with unit variance and where the σ i are positive constants. Couples (w i , σ i ) ∈ L 2 (Ω) × R + are solutions of an eigenproblem Ω Cu(x, y)w i (y) dy = σ i w i (x),

where C u is the covariance function of u, dened by: Cu(x, y) = E (u(x, θ)µu(x))(u(y, θ)µu(y)) .

(117)

Couples (w i , σ i ) are then the eigenpairs of operator (119)

In the case of a Gaussian random process, random variables ζ i are uncorrelated and hence independent Gaussian random variables. The Karhunen-Loève decomposition is then very interesting in this case since it allows representing the process in terms of a set of random variables whose probability law is completely and easily characterized. In the case of a non-Gaussian random process, this decomposition is still valid. However, the probabilistic characterization of the set of random variables is more delicate.

Remark 18 -In very particular cases, eigenproblem (116) admits analytical solutions. In the general case, the resolution asks for ad hoc numerical techniques [START_REF] Atkinson | The Numerical Solution of Integral Equations of the Second Kind[END_REF].

The stochastic discretization of the process consists in truncating the Karhunen-Loève up to an order m, keeping the m dominant eigenvalues:

u(x, θ) ≈ um(x, θ) = µu(x) + m i=1 √ σ i w i (x)ζ i (θ). (120) 
It results the following optimality property: the truncated Karhunen-Loève decomposition (120) is the optimal decomposition of the process with respect to the natural norm in L 2 (Ω) ⊗ L 2 (Θ, dP ) over the set of decompositions of type µu(x) + m i=1 w i (x)ν i (θ), with w i ∈ L 2 (Ω) and ζ i ∈ L 2 (Θ, dP ): Remark 19 -Let us note that generalizations of Karhunen-Loève expansion exists in the case where the covariance operator T u is not compact or not continuous [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF][START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF].

A.3 Hilbert Karhunen-Loève decomposition

A natural extension of Karhunen-Loève decomposition, called Hilbert Karhunen-Loève [START_REF] Levy | Some properties of smoothed principal component analysis for functional data[END_REF][START_REF] Doostan | Stochastic model reductions for chaos representations[END_REF], consists in searching an optimal decomposition of the process u ∈ V ⊗ L 2 (Θ, dP ), where V is a Hilbert space of functions dened on Ω. The space V ⊗ L 2 (Θ, dP ) is endowed with the inner product

< •, • > V⊗L 2 (Θ,dP ) = E(< •, • > V ),
where < •, • > V is an inner product on V. We introduce the linear operator Tu from V to V dened by Tu(w) =< Cu, w > V := E((uµu) < (uµu), w > V ), (121) where Cu ∈ V ⊗ V is the covariance function of random process u, dened by equation (117). Under regularity assumptions on Cu, Tu is a continuous self-adjoint positive semi-denite and compact operator from V to V and classical spectral theory applies. Eigenfunctions w i of Tu form a Hilbertian basis of V (i.e. a complete set of functions which are orthonormal with respect to inner product < •, • > V ). Denoting (w i , σ i ) the eigenpairs of Tu, one obtains the following decomposition of the random process:

u(x, θ) = µ u(x) + ∞ i=1 √ σ i w i (x)ζ i (θ) (122) 
where the ζ i ∈ L 2 (Θ, dP ) are centered uncorrelated random variables with unit variance. This decomposition is convergent in V ⊗ L 2 (Θ, dP ): (

u -µu - m i=1 √ σ i w i ζ i
) 124 
This truncated decomposition veries the following optimality property: the truncated Hilbert Karhunen-Loève expansion (124) is the optimal decomposition of the random process with respect to the natural norm in V ⊗ L 2 (Θ, dP ) over the set of decompositions of type µu(x) + m i=1 w i (x)ν i (θ), with w i ∈ V and ν i ∈ L 2 (Θ, dP ): 

u -um 2

A.4 Polynomial chaos decomposition

Another type of representation of second order random processes consists in using a polynomial chaos expansion. As suggested by Wiener [130], any random variables in L 2 (Θ, dP ) can be represented as a series of polynomials in independent standard Gaussian random variables [START_REF] Cameron | The orthogonal development of non-linear functionals in series of fourier-hermite functionals[END_REF][START_REF] Ghanem | Stochastic nite elements: a spectral approach[END_REF]57].

Let us denote by ξ = {ξ i } i∈N * a countable set of independent standard Gaussian random variables. Orthogonal polynomials in ξ are the multidimensional Hermite polynomials. By introducing the set of nite length multi-indices

I = {α = (α i ) i∈N * ∈ N N * ; |α| = i∈N * α i < ∞},
Hermite polynomials can be written as:

H α(ξ) = ∞ i=1 hα i (ξ i ),
where the hn(x) are unidimensional Hermite polynomials which are orthonormal polynomial with respect to Gaussian measure ϕ(x)dx = 1

√ 2π exp(-x 2 
2 )dx. The homogeneous chaos of degree p is the space Hp dened by: Hp = span{Hα; α ∈ I, |α| = p}.

The polynomial chaos of degree is then dened by

⊕ p k=0 H k .
We have the following orthogonal decomposition of the space of second order random variables:

L 2 (Θ, dP ) = ⊕ ∞ k=1 H k .
In other terms, the set of polynomials {H α } α∈I form a Hilbertian basis of L 2 (Θ, dP ). A stochastic process (or eld) u(x, θ) can then be decomposed as follows: This decomposition converges in L 2 (Θ, dP ) [START_REF] Cao | On the rate of convergence of wiener-ito expansion for generalized random variables[END_REF] (and eventually in other L p spaces [57]). This representation can be used as a complement to Karhunen-Loève expansions (115) or (122). Indeed, it allows for a representation of random variables which appear in these expansions:

ζ i (θ) = α∈I ζ i,α Hα(ξ(θ)
). An approximation of the random process is then obtained by truncating the polynomial chaos to a nite degree, with a nite number of random variables.

B Generalized spectral decomposition for linear elliptic symmetric problems

Here, we detail the concept of generalized spectral decomposition for the case of linear elliptic symmetric problems, introduced in [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF]. In this case, the method can be interpreted as a natural extension of the Hilbert Karhunen-Loève decomposition. Let us note that the following results apply to more general symmetric elliptic problems formulated in tensor product spaces (i.e. not only to stochastic PDEs). Let u ∈ V ⊗ S denote the solution of problem

A(u, v) = B(v) ∀v ∈ V ⊗ S, (125) 
where A is a linear continuous coercive symmetric bilinear form on the Hilbert space V ⊗ S and where B is a linear continuous form on V⊗ S. Bilinear form A denes a norm and an inner product on Hilbert space V ⊗ S, respectively dened by: ∀u, v ∈ V ⊗ S, u A = A(u, u), < u, v > A = A(u, v).

A natural extension of classical spectral decomposition consists in using the norm • A in the optimality condition [START_REF] Le Maître | Multi-resolution analysis of wiener-type uncertainty propagation schemes[END_REF], i.e. by dening an optimal decomposition u M = M i=1 w i λ i , with w i ∈ V and λ i ∈ S, as follows: (127)

u -u M 2 A = min {λ i } M i=1 ∈(S) M {w i } M i=1 ∈(V) M u - M i=1 w i λ i 2 A . (126) 
Stationarity conditions of optimization problem (127) with respect to w and λ respectively write:

A(w * λ, wλ) = B(w * λ) ∀w * ∈ V,

A(wλ * , wλ) = B(wλ * ) ∀λ * ∈ S. (

) 133 
The optimal function w is then the xed point of T that maximizes σ(w). In fact, operator T : V → V is homogeneous of degree 1 and σ : V → R + is homogeneous of degree 0, i.e. ∀α ∈ R\{0}, T (αw) = αT (w) and σ(αw) = σ(w). Problem (131) can then be interpreted as a generalized eigenproblem with associated generalized Rayleigh quotient σ(w). The optimal function w can then be interpreted as the dominant eigenfunction of T , associated with generalized eigenvalue σ(w). This generalized eigenproblem (131) can be written in a more conventional way by introducing a rescaled operator T (w) = σ(w)T (w). Problem (131) is then equivalent to:

T (w) = σ(w)w.

(134)

Remark 20 -Equations (130) can be equivalently interpreted as a problem on λ:

T ⋄ (λ) = λ, with T ⋄ (λ) = f • F (λ), (135) 
which can be rewritten as follows:

T ⋄ (λ) = σ ⋄ (λ)λ, (136) 
where T ⋄ (λ) = σ ⋄ (λ)T ⋄ (λ) and σ ⋄ (λ) = A(λF (λ), λF (λ)) = λF (λ) 2 A .

(137)

If λ solves (135), then

u -F (λ)λ 2 A = u 2 A -σ ⋄ (λ),
and if we let w = F (λ) be the associated deterministic function, then λF (λ) = wf (w), w solves eigenproblem (131) and σ ⋄ (λ) = σ(w).
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 1 γ Aγ , ξ γ := m i=1 ξ γi i , Aγ ∈ R n×n , the use of an approximation with Lagrange interpolants (see section 3.2.3) allows obtaining the Galerkin solution u by a simple stochastic collocation method, equivalent to the resolution of P uncoupled deterministic problems. This comes from orthogonality properties (30) and (31) of the basis functions. Denoting by {yα} α∈IP the inter- polation points associated with a Gaussian quadrature (obtained by tensorization of one-dimensional interpolation grids), and by {ωα} α∈I P the weights of the associated quadrature, one has E(ξ γ HαH β ) = y γ α ωαδ αβ , ∀γ such that |γ| 1.
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 32 Model example 2: a non-linear problem

Tu : w ∈ L 2 1 √√ σ i w i ζ i 2 L 2 (

 2122 (Ω) → Tu(v) = Ω Cu(•, y)w(y)dy (118):=< C u, w > L 2 (Ω) .Tu is called the covariance operator and Cu the covariance kernel. Under regularity assumptions on Cu (e.g. Cu ∈ C(Ω × Ω) with Ω compact, or Cu ∈ L 2 (Ω × Ω)), one shows that Tu is a continuous self-adjoint positive semi-denite and compact operator from L 2 (Ω) to L 2 (Ω), so that classical spectral theory applies[105]. Tu has a countable set of non-negative eigenvalues with only possible accumulation point zero. The set of its eigenfunctions form a Hilbertian basis Eigenproblem (116) is a homogeneous Fredholm integral equation of second type[START_REF] Courant | Methods of Mathematical Physics[END_REF]105]. of L 2 (Ω). Random u can then be decomposed under the form (115), where random variables ζ i are dened byζ i (θ) = 1 √ σ i < uµu, w i > L 2 (Ω) = σ i Ω (u(x, θ)µu(x))w i (x)dx.The series (115) converges in L 2 (Ω) ⊗ L 2 (Θ, dP ):uµu -m i=1 Ω)⊗L 2 (Θ,dP )= uµu 2 L 2 (Ω)⊗L 2 (Θ,dP ) -

u -um 2 L 2 w i ν i 2 L 2

 2222 (Ω)⊗L 2 (Θ,dP ) = min w i ∈L 2 (Ω) ν i ∈L 2 (Θ,dP ) uµu -m i=1 (Ω)⊗L 2 (Θ,dP ) .

2 V⊗L 2 = u -µ u 2 V⊗L 2 (

 222 (Θ,dP ) obtain a discretized version of the random process by truncating the decomposition:u(x, θ) ≈ u m(x, θ) = µu(x) + m i=1 √ σ i w i (x)ζ i (θ).

V⊗L 2 (w i ν i 2 V⊗L 2

 222 Θ,dP ) = min w i ∈V ν i ∈L 2 (Θ,dP ) uµu -m i=1 (Θ,dP ) .

u

  (x, θ) = α∈I uα(x)Hα(ξ(θ)), u α (x) =< u(x, •), H α (ξ(•)) > L 2 (Θ,dP ) = E(u(x, θ)H α (ξ(θ))).

B. 1

 1 Generalized spectral decomposition B.1.1 Optimal order 1 decomposition Let us rst consider the case where M = 1 and let us denote by (λ, w) ∈ S × V the optimal couple verifying: uλw 2 A = min λ∈S w∈V uλw 2 A .

  the mapping F : S → V where w = F (λ) is the solution of equation (128) for a given λ. Let us also introduce the mapping f : V → S where λ = f (w) is the solution of equation (129) for a given w. The simultaneous verication of (128) and (129) imposes the following relations: w = F (λ) and λ = f (w).

  can be interpreted as a problem on w:T (w) = w, with T (w) = F • f (w).

  w solves problem (131), it satises uf (w)w 2 A = u 2 Aσ(w),(132)withσ(w) = A(f (w)w, f (w)w) ≡ f (w)w 2 A .

' Let us consider that V is a Hilbert space of functions dened on a domain Ω (time, space or space-time domain). If V ֒→ L 2 (Ω) and if we choose for < •, • > V the natural inner product in L 2 (Ω), the optimal decomposition is the classical Karhunen-Loève decomposition (see appendix A).
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then searched under the form: [START_REF] Ladevèze | Nonlinear Computational Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF] On one side, when a reduced basis of deterministic functions is available, it denes an approximation space V M = span{w i } M i=1 ⊂ V. Approximation [START_REF] Ladevèze | Nonlinear Computational Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF] can then be naturally dened by the following Galerkin orthogonality criterium:

By introducing an approximation space S P ⊂ S in equation [START_REF] Ladevèze | Verication of stochastic models in uncertain environments using the constitutive relation error method[END_REF], it leads to a system of M × P equations.

On the other side, when a reduced basis of stochastic functions is available, it denes an approximation space S M = span{λ i } M i=1 ⊂ S. Approximation [START_REF] Ladevèze | Nonlinear Computational Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF] can still be naturally dened by the following Galerkin orthogonality criterium:

When introducing an approximation space Vn ⊂ V in equation [START_REF] Le Maître | Uncertainty propagation using Wiener-Haar expansions[END_REF], it leads to a system of n × M equations.

The question is then: how to dene reduced basis leading to an optimal decomposition of the solution for a given order M of decomposition ?

Classical spectral decomposition and related techniques

One way to dene optimal basis, explored in dierent works [START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial dierential equations[END_REF][START_REF] Ghanem | Ecient solution of stochastic systems: application to the embankment dam problem[END_REF][START_REF] Doostan | Stochastic model reductions for chaos representations[END_REF], is based on the following property: the optimal decomposition of type [START_REF] Ladevèze | Nonlinear Computational Structural Mechanics -New Approaches and Non-Incremental Methods of Calculation[END_REF] in the sense of a natural norm • in V ⊗ S is a classical spectral decomposition of the solution. Optimal basis are dened by:

Of course, the obtained decomposition depends on the chosen norm. Let < •, • > V denote an inner product on Hilbert space V, with associated norm • V . A natural choice consists in introducing for • the natural norm on V ⊗ L 2 (Ξ, dP ξ ):

For this choice, it is well known that the optimal decomposition dened by [START_REF] Le Maître | Multi-resolution analysis of wiener-type uncertainty propagation schemes[END_REF] is the Hilbert Karhunen-Loève decomposition [START_REF] Levy | Some properties of smoothed principal component analysis for functional data[END_REF] ' , truncated at order M (see appendices A B.1.2 Optimal order M decomposition let us consider the case of an order M decomposition. We use the same notations as in section 6.1, where

The order M decomposition is denoted by u M := W • Λ. The optimal decomposition of order M can be naturally dened as the one which minimizes uu M A . Stationarity conditions with respect to deterministic functions and stochastic functions respectively lead to equations ( 86) and [START_REF] Nair | Stochastic reduced basis methods[END_REF]. Following section 6.1, we introduce the equivalent problem on W :

If W solves problem (138), it satises

with

σ(W ) can be interpreted as a Rayleigh quotient ! . The optimal reduced basis W is such that it maximizes σ(W ). The subspace spanned by an optimal W is called the dominant eigenspace.

In fact, we classically show that if W and W * span the same subspace, then " σ(W ) = σ(W * ), which means that σ can be equivalently interpreted as a real-valued function on M -dimensional linear subspaces of V.

The generalized spectral decomposition u M = W Λ, with Λ = f (W ), is the optimal decomposition of order M with respect to the norm • A . Since problem (138) is not a classical eigenproblem, functions w i and λ i do not verify classical simultaneous orthogonality properties (see below for classical spectral decompositions).

Remark 21 -Connection between generalized eigenfunctions and generalized eigenspaces.

Of course, for classical eigenproblems, the k dominant generalized eigenfunctions span the k-dimensional dominant eigenspace. For the above eigen-like problem, this property is not necessarily true. In particular, the dominant eigenfunction of T is not necessarily included in the k-dimensional dominant eigenspace of T . That means that for obtaining the optimal order M decomposition, one has to consider the research of the M -dimensional dominant generalized eigenspace and not the research of generalized eigenfunctions independently. However, in practice, the above mentioned property is almost veried (can be observed by computing angles between generated linear subspaces).

B.1.3 Sub-optimal Order M decomposition

In the case where we dene the couples (w i , λ i ) of the decomposition one after the other, i.e. if we dene (w i , λ i ) such that it minimizes uu i-1λ i w i , we can write an eigen-like problem on a deated operator T (•; u i-1 ) (see section 6.2.2) and dene an associated generalized Rayleigh quotient σ(w; u i-1 ). With this one-by-one construction, the optimal decomposition veries

which leads to an error greater than (139), obtained with the dominant eigenspace of the initial operator. This fact, connected to remark 21, explains why in GSD algorithms, a global update of random variables (or deterministic functions) with respect to the initial problem (not deated) generally improves the obtained decomposition.

! One can also introduce an associated generalized matrix Rayleigh quotient

), and such σ(W ) = T race(Σ(W )) (see [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial dierential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for solving stochastic nite element equations: invariant subspace problem and dedicated algorithms[END_REF]). " This equivalence between elements W spanning the same subspace is due the homogeneity property of σ,i.e. σ(W • P ) = σ(W ) for all invertible matrix P , where (W • P ) i := M j=1 w j P ji .

B.2 Connection with classical spectral decompositions

In the case where inner product A(•, •) results from a tensorization of inner products on V and S, i.e. if we can write

mappings F and f in equation ( 130) write as follows:

Operator T and function σ(w) then write:

T appears as a classical correlation operator associated with particular metrics on V and S.

In this case, problem (134) is then a classical eigenproblem. Eigenfunctions w i are orthogonal with respect to inner product < •, • > V and associated functions λ i = f (w i ) are orthogonal with respect to inner product < •, • > S . Retaining the M dominant eigenfunctions then leads to a Hilbert Karhunen-Loève decomposition

In this case, we can show that sub-optimal spectral decomposition dened in section B.1.3 coincides with the optimal spectral decomposition of order M .

Example 2 (Deterministic operator)

If A(u, v) = E(a(u, v)), where a is a deterministic continuous coercive symmetric bilinear form on V, property (141) is then veried with < w * , w > V = a(w * , w) and < λ * , λ > S = E(λλ * ), which is the classical inner product in L 2 (Ξ, dP ξ ). The generalized spectral decomposition then exactly coincides with the classical Hilbert Karhunen-Loève decomposition of u ∈ V⊗ L 2 (Ξ, dP ξ ), where the inner product on V is based on the bilinear form a. This case is encountered for stochastic elliptic symmetric PDE with deterministic operator and stochastic right-hand side.

Example 3 (Operator with order 1 decomposition) If A(u, v) = E(α(ξ)a(u, v)), where a is a deterministic continuous coercive symmetric bilinear form on V and α(ξ) is a random variable such that 0 < α 0 α(ξ) α 1 < ∞ almost surely, property (141) follows with < w, w * > V = a(w, w * ) and < λ, λ * > S = E(αλλ * ). This case is encountered for stochastic linear elliptic symmetric PDE where the operator is the product of a random variable by a deterministic operator (i.e. when the operator admits an order 1 spectral decomposition).