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Discrete approximation of stable white noise -

Application to spatial linear filtering.

Clment Dombry

March 9, 2009

Abstract

Motivated by the simulation of stable random fields, we consider the issue of
discrete approximations of independently scattered stable noise. Two approaches are
proposed: grid approximations available when the underlying space is R

d and shot
noise approximations available on more general spaces. Limit theorems stating the
convergence of discrete random noises to stable white noise are proved. These results
are then applied to study moving average spatial random fields with heavy-tailed
innovations and related limit theorems. A second application deals with discrete
approximation for Brownian Lvy motion on the sphere or on the euclidean space.

Key words: stable white noise, stable fractional noise, linear filtering.

1 Motivations

Stable integration is a basic tool in the theory of stable random process. Indeed, if W
denotes a stable random noise on the measurable space (E, E) with control measure
m and (ft)t∈T a kernel such that ft ∈ Lα(E, E ,m) for any t ∈ T , then the random
process defined by

Xt =

∫

E
ft(x)W (dx), t ∈ T

is a stable process, and the path properties of the process can be deduced from the
properties of the kernel (see for instance [18] chapter 10). For example, the first ex-
amples of self-similar stationary increments (SSSI) stable process were constructed in
such a way: using a moving average kernel, Taqqu & Wolpert [19] and Maejima [13]
constructed the linear fractional stable motion; the harmonisable fractional stable
motion was proposed by Cambanis & Maejima [2] as the stable integral of the har-
monisable kernel. More recently, Cohen and Samorodnitsky [4] propose a new class
of SSSI stable process defined as the stable integral of a random kernel, the random
kernel being the local time of a fractional Brownian motion. Generalizing the notion
of selfsimilarity for random field in higher dimension, operator scaling stable random
fields were defined and constructed by Bierm & Scheffler [1] as stable integrals of
high-dimensional kernel with suitable scaling properties.
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For the purpose of simulation of these processes, we need a general theory of dis-
crete approximation of stable random measures. An approach based on Lepage’s
series also called shot noise series was developped: generalized shot noise series were
introduced for simulation in [15], further developments were done in [16] and [17] and
a general framework was developed in [3]. In this paper, we propose a new approach
for the discrete approximation of stable random noise. We propose and developp two
alternatives: in the case when W is a stable white noise on R

d, a grid approximation
can be used (see Theorem 3.1); for more general spaces, an approximation of the
stable white noise by a Poisson random measure is discussed (see Theorem 3.2).
We apply our results on grid approximation of stable random noise on R

d to the
study of stable noise obtained by linear filtering from i.i.d. random fields in the
domain of attraction of stable distributions. This extends the results of Kokoszka &
Taqqu [8, 9, 10, 11] for one dimensional sequences such as ARMA or FARIMA with
stable inovations to spatial random fields. We prove a limit theorem for the suitably
rescaled random noise (see Theorem 4.1). Two cases occur: if the coefficients of
the random filter decrease quickly, the limit random field is stable white noise and
the dependence vanishes in the limit; if the coefficients decrease slowly like a power
function, the limit random field is fractional stable random noise with long range
dependence.

Another application of the Poisson approximation for stable white noise is given
in the framework of stable Lvy motion on the sphere Sd or on the euclidean space
R
d. These processes mimick the simple covariance structure of standard Brownian

motion on R to more general metric spaces (see [12]). As a direct application of our
results, we give a Donsker’s type Theorem for stable Lvy motion on the sphere or on
the euclidean space.

The paper is organised as follows. In section 2, we remind the reader of general
results on random noise, stable white noise, Poisson random measures and their con-
vergence. In section 3, the convergence of discrete random measure to stable white
noise is proven for two different models: grid approximations and Poisson approxi-
mation. In section 4, two applications are exposed: linear filtering of i.i.d. random
field and Donsker’s type theorem for Lvy stable motion on the sphere or on the eu-
clidean space. Section 5 is devoted to the proof of our results. Technical results on
convergence of deterministic functions are gathered in an appendix.

2 Stable random noises and Poisson random

measures

A random noise on (E, E) is a generalized random field (W [f ])f∈F indexed by a
linear subspace F of the space of real-valued measurable functions on E, verifying
the linearity property: for all a1, a2 ∈ R and f1, f2 ∈ F .

W [a1f1 + a2f2] = a1W [f1] + a2W [f2] a.s. (1)
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Using the Cramer-Wold’s device, this implies that the finite-dimensional distributions
of the process (W [f ])f∈F are determined by its one-dimensional distributions. The
set of functions F is thought as the set of integrands. To emphasize the analogy with
usual integration, we use the notation

W [f ] =

∫

E
f(x)W (dx).

If 1A ∈ F for some measurable set A ⊆ E, the value W (A) = W [1A] is thought as
the measure of A. However, each realisation of W does not define an usual signed
measure because it needs not to have finite variations. That’s why some author
(including myself) prefer the term random noise to random measure, this last term
being reserved for measure-valued random variables.

We recall in this section the definition and properties of stable white noises (in-
cluding Gaussian white noises) and Poisson random measures.

2.1 Independently scattered α-stable random noises

Let (E, E ,m) be a measured space with m a σ-finite measure. For α > 0, we denote
by Lα = Lα(E, E ,m) the space of measurable functions f : E → R such that
∫

E |f |αdm < ∞. For f ∈ Lα, let ||f ||Lα =
(∫

E |f |αdm
)1/α

. If α ≤ 1, this defines
a norm and Lα is a Banach case. This is no longer the case if 0 < α < 1.

The stable distribution of index α ∈ (0, 2] and parameters σ ≥ 0 (scale), ν ∈
[−1, 1] (skewness) is denoted by Sα(σ, ν). For the sake of simplicity, we will always
assume that ν = 0 if α = 1. The distribution Sα(σ, ν) is defined by its Fourier
transform

λ̄(θ) = exp
(

−σα|θ|α
(

1 − iνε(θ) tan
πα

2

))

, θ ∈ R (2)

where ε(a) = +1 if a > 0, ε(a) = −1 if a < 0 and ε(0) = 0.
The α-stable random noise Wα on (E, E) with control measure m and skewness

function v : (E, E) → [−1, 1] is the stable random process defined on some probability
space (Ω,F ,P) and indexed by Lα, verifying the linearity property 1 and with one
dimensional marginal distributions given by

Wα[f ] ∼ Sα(σf , νf ), f ∈ Lα

where

σf =

(∫

E
|f |αdm

)1/α

and σαf νf =

∫

E
νε(f)|f |αdm. (3)

Evaluating the process Wα at functions (fi)1≤i≤k with pairwise disjoint supports
yields independent random variables (Wα[fi])1≤i≤k: we say that the random noise
Mα is independently scattered or white to qualify this property.

In the Gaussian case α = 2, the parameter ν is irrelevant and we retrieve the usual
Wiener integral, which is an isometry from L2(E) onto some Gaussian subspace of
L2(Ω,F ,P). In the case 1 < α < 2, the stable integral induces an isometry from
Lα(E) onto some subspace of stable random variables on (Ω,F ,P) equipped with
the covariation norm (see [18]).
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2.2 Poisson random measures

Poisson random measures are measure-valued random variables and they induce a
random noise on their sets of integrands. In the following presentation, we focus on
the point of view of random noises, a general reference is [7].

Let (E, E , n) be a measured space with n a σ-finite measure. We denote by E0

the class of measurable sets with finite n-measure. A random measure N on (E, E)
is called a Poisson random measure with intensity n if and only if for any finite
collection (Ai)1≤i≤n of pairwise disjoint sets in E0, the random variables (N(Ai))1≤i≤n
are independent with N(Ai) following a Poisson distribution with mean n(Ai). The
(a priori random) space L1(E, E , N) of integrable functions with respect to N is
almost surely equal to

FN =
{

f : E → R | |f | ∧ 1 ∈ L1(E,n)
}

and N induces a random noise on FN . We note N [f ] =
∫

E fdN for f ∈ FN . This
random noise is characterized by the linearity property (1) and the one dimensional
marginals given by their characteristic functions

E [exp(iθN [f ])] = exp

(
∫

E
(eiθf − 1)dn

)

, f ∈ FN , θ ∈ R.

2.3 Convergence of random measures

In this paper, we are mainly concerned with convergence of random noises (µh)h>0 to
stable random noise W , either independently scattered (Theorem 3.1) or fractional
(Theorem 4.1). We shall now give a precise definition of convergence of random
noises.

For h > 0, let µh be a random noise with integrand space Fµh
and let W be some

random noise with integrand space FW . Let furthermore F be a subspace included
in all the Fµh

’s, h > 0 and in FW .

Definition 2.1 We say that µh converges weakly to W on F as h→ 0 and write

µh
F

=⇒W as h→ 0,

if the finite dimensional marginal distributions of (µh[f ])f∈F weakly converge to those
of (W [f ])f∈F .

Using the linearity property of the random noises and the Cramer-Wold’s device,
we easily see that convergence of finite dimensional distributions is equivalent to con-
vergence of one dimensional distributions, which is in turn equivalent to convergence
of characteristic functions. Although straightforward, this will be of constant use
and is stated for future reference in the following proposition:

Proposition 2.1 The following statements are equivalent, where convergence is meant
as h→ 0:

1. µh converges weakly to W on F ,
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2. for any f ∈ F , µh[f ] converges weakly to W [h],

3. for any f ∈ F and θ ∈ R, E [exp(iθµh[f ])] converge to E [exp(iθW [f ])].

To illustrate this definition, we give a first example of weak convergence of ran-
dom noises.

Example : Let (E, d) be some metric space and E the borelian σ-algebra. Let
m and (mh)h>0 be finite measures on E and ν and νh be measurable functions
E → [−1, 1]. Define W (resp. Wh) as the α-stable random measure with control
measure m (resp. mh) and skewness function ν (resp. νh). Let Cb(E) denotes the
space of bounded continuous functions on E. Note that from the assumption that m
is finite, Cb(E) ⊂ FW = Lα(E, E ,m), and similarly Cb(E) ⊂ FWh

= Lα(E, E ,mh) for
all h > 0.

Then the following two statements are equivalent, where convergences are meant
as h→ 0:

1. the random noises Wh converge weakly to W on Cb(E),

2. the control measures mh converge weakly to m and the skewness measures
νhdmh converge weakly to νdm.

The proof is direct once we recall that the α-stable distributions Sα(σh, νh) converge
to Sα(σ, ν) (with σ > 0)if and only if (σh, νh) → (σ, ν).

3 Discrete approximations of white stable noises

We introduce two methods for approximating an independently scattered stable ran-
dom noise on (E, E). The first one, available when the underlying space is E = R

d

and the control measure is the Lebesgue measure, relies on a grid approximation
hZd ⊆ R

d when the span h of the grid goes to zero. The second one, avalaible on a
general space E, relies on the approximation of the stable random noise by suitable
Poisson random measures or shot noise, when the intensity λ goes to infinity.

3.1 Grid approximation of white stable noise on R
d

In this section, E = R
d and Wα denotes the independently scattered α-stable random

noise on R
d with Lebesgue intensity and constant skewness ν. We propose a discrete

approximation of Wα based on the grid approximation hZd ⊆ R
d with span h > 0.

The construction uses a family ξ = {ξk, k ∈ Z
d} of real random variables satisfying

the following assumption:

Hα the ξk’s are i.i.d. random variables in the normal domain of attraction of the
stable distribution Sα(σ, ν).

We suppose furthermore ν = 0 if α = 1. Recall that the normal domain of attraction
of the stable distribution Sα(σ, ν, 0) consists in the random variables Y such that

n−1/α
n

∑

i=1

Yi =⇒ Sα(σ, ν) as n→ ∞
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where the Yi are i.i.d. random variables distributed as Y . If α = 2, H2 holds if and
only if the ξk’s are i.i.d. random variables with E[ξk] = 0 and E[ξ2k] = 2σ2. The
stable distribution S2(σ, 0) is then the normal distribution with mean 0 and variance
2σ2 (the skewness parameter ν is irrelevant in this case). In the case 0 < α < 2,
from the known characterization of the domain of attraction of stable distributions
(see [6]), the ξk’s must satisfy the following tail assumptions as x→ +∞:

P(ξk ≥ x) ∼ px−α and P(ξk ≤ −x) ∼ qx−α, (4)

where the constants σ, ν, p, q satisfy

σα = (p + q)

∫ ∞

0
t−α sin tdt,

σαν tan(πα/2) = (p − q)

∫ ∞

0
t−α(1 − cos t)dt.

Note that equation (4) is equivalent to the fact that ξ − τ belongs to the normal
domain of attraction of the α-stable distribution Sα(σ, ν) for some τ ∈ R, but we
assume here furthermore that τ = 0.

We propose the discrete approximation of Wα obtained by replacing Wα(dx) by
γhξk1h(k+Id)(x)dx on each cell h(k + Id), k ∈ Z

d. Here Id = [0, 1)d and γh =

σ−1h( 1

α
−1)d. More formally, let µh = µh(ξ) be the random measure on Rd absolutely

continuous with respect to Lebesgue measure with random density

dµh
dx

(x) = γh
∑

k∈Z
d

ξk1h(k+Id)(x). (5)

The random signed measure µh defined by (5) induces a random noise on the
integrands set

Fµh
=

{

f ∈ L1
loc(R

d) ;

∫

R
d
fdµh converges a.s.

}

. (6)

Note that in this definition, only the semi-convergence of the integral
∫

R
d fdµh or

equivalently of the series

γh
∑

x∈Z
d

ξk

∫

h(k+Id)
f(x)dx

is required almost surely.
The following scaling relation is worth noting:

µh[f(c.)] = c−α
−1dµch[f(.)], c > 0 (7)

whenever these quantities are well-defined.
Our first result precise the integrands sets Fµh

. We need to introduce the space

Dα(Rd) of locally integrable function f ∈ L1
loc(R

d) such that f(x) = o(|x|−η) for
some η > α−1d.
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Proposition 3.1 Let 0 < α ≤ 2 and suppose that ξ satisfies assumption Hα.
For h > 0, consider the random measure µh defined by equation (5). Then,

1. If 1 ≤ α ≤ 2, Lα(Rd) ⊂ Fµh
.

2. If 0 < α < 1, Dα(Rd) ⊂ Fµh
.

We then consider weak convergence of the random measures (µh)h>0. To unify the
notation, we introduce Fα = Lα(Rd) if 1 ≤ α ≤ 2, and Fα = Dα(Rd) if 0 < α < 1.

Theorem 3.1 Let 0 < α ≤ 2 and suppose that ξ satisfies assumption Hα.
Then as h→ 0, µh converge weakly to Wα on Fα.

Remark: In the case 1 ≤ α ≤ 2, we obtain convergence on Lα(Rd) the full natural
set of integrands for Wα. In the case 0 < α < 1, we have to restrict on the smaller
subspace Dα(Rd) because Lα is not included in Fµh

(see the remark after Lemma
5.2 in the Appendix.)

Remark: We prove in fact a slightly stronger result

µh[fh] ⇒Wα[f ] as h→ 0 if fh → f in Fα.

See Proposition 5.1 for a precise statement including the definition of convergence in
Dα(Rd) if 0 < α < 1. This diagonal convergence can be used to prove the following
interesting corollary.
Let C(Rd) denote the space of continuous functions on R

d.

Corollary 3.1 Let 0 < α ≤ 2 and suppose that ξ satisfies assumption Hα.
Then the random signed measure µ̃h on R

d defined by

µ̃h = σ−1hα
−1d

∑

k∈Z
d

ξkδhk

converges weakly to Wα on Fα ∩ C(Rd) as h→ 0.

These results can be used to propose simulation of α-stable processes represented
as stable integrals. Another approach developed in [3] is to use the representation
of stable integral in Lepage’s series. For the purpose of simulation, it is important
to provide error bounds or speed of convergence for the method. We now consider
the speed of the convergence of the random noise µh to the stable integrals Wα

in Theorem 3.1. Better rates of convergence are expected if the random variables
ξ satisfy Hα with distribution Sα(σ, ν) rather than in the domain of attraction of
the stable distribution. In this case, the discrete approximation µh[f ] has the same
distribution as

µ̄h[f ] =

∫

R
d
(ψ̃hf)(x)Wα(dx),

where ψ̃hf is the discrete approximation of f obtained by replacing f by its mean
value on each cell h(k+[0, 1[d), k ∈ Z

d (see equation 19 below). In this representation
ξk corresponds to σh−d/αWα[h(k+[0, 1[d)] ∼ Sα(σ, ν). As a consequence, the random
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variable can be represented on the same space and we can focus on Lp convergence
and give Lp error bounds. Furthermore, during the simulation, the kernel f must
sometimes be replaced by some approximated kernel fM . For example, when f has
infinite support, fM might be the restriction of f on a bounded domain. Or fM
might be a piecewise constant approximation of f so that the mean value of fM on
h(k + [0, 1[d) reduces to fM(hk).

Proposition 3.2 Let 0 < α ≤ 2 and fM ∈ Fα be an approximation of the kernel
f ∈ Fα and let

µ̄h[fM ] =

∫

R
d
(ψ̃hfM )(x)Wα(dx).

Then, for every 0 < p < α,

E
[∣

∣µ̄h[fM ] −Wα[f ]
∣

∣

p] ≤ Cα,p||ψ̃hfM − f ||pLα

and Cα,p is the absolute p-th moment of the distribution Sα(1, ν).
In the case α = 2, the result holds for all p > 0

Remark: Note that ψ̃hfM → fM in Fα as h → 0 and explicit error bounds can be
given under suitable regularity condition on fM .

3.2 Shot noise approximation of white stable noise on a

general space

In this section, (E, E ,m) is a general measured space with m a σ-finite measure and
Wα denotes the independently scattered α-stable random noise on E with control
measure m and constant skewness ν. We propose a discrete approximation of Wα

based on shot noises, i.e. on Poisson random measures.
Let G be some distribution on R belonging to the normal domain of attraction

of the stable distribution Sα(σ, ν). For λ > 0, let Nλ(de, dξ) be the Poisson random
measure on E × R with intensity measure nλ(de, dξ) = λm(de)G(dξ). It induces a
random noise µλ on E by the heuristic formula

µλ(dx) = γλ

∫

E×R

ξδe(dx)Nλ(de, dξ),

where γλ = σ−1λ−
1

α . More formally, let Fµλ
be the set of functions f : E → R such

that
∫

E×R

|ξf(e)| ∧ 1 nλ(dξ, de) <∞. (8)

We consider the random noise µλ on Fµλ
defined by

µλ[f ] = γλ

∫

E×R
ξf(e)Nλ(de, dξ). (9)

Our result is the following:
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Theorem 3.2 Suppose G belongs to the normal domain of attraction of the stable
distribution Sα(σ, ν). Then, for any λ > 0, Lα(E, E ,m) ⊆ Fµλ

and as λ → ∞, µλ
converge weakly to Wα on Lα(E, E ,m).

Remark: In the case when m is finite and normalized to m(E) = 1, we can
replace the Poisson random measure Nλ by the binomial random measure Ñn =
σ−1n−

1

α

∑n
i=1 δ(ξi,ei) where (ξi, ei)i≥1 is a sequence of i.i.d. random variables with

distribution G(dξ)m(de). We then consider the random noise

µ̃n[f ] = σ−1n−
1

α

n
∑

i=1

ξif(ei).

Similar results as those of Theorem 3.2 hold: for any n ≥ 1, Lα(E, E ,m) ⊆ Fµ̃n and
µ̃n weakly converge to Wα on Lα(E, E ,m) as n → ∞. The proof is very similar to
that of Theorem 3.2 and will be omitted.

4 Applications

We propose two applications of the above results about convergence to stable random
noise. The first application based on Theorem 3.1 is an analysis of random noises
arrising from linear filtering of i.i.d. random fields. Interessant fields appear in the
limit that we call fractional stable random noise. The second application based on
Theorem 3.2 proposes a Donsker’s type theorem for stable Lvy field on the sphere or
on the euclidean space.

4.1 Spatial linear filtering

In this section, we consider a random measure µ̂h of the form

dµ̂h
dx

(x) = γ̂h
∑

k∈Z
d

ξ̂k1h(k+Id)(x), (10)

where γ̂h > 0 is a normalisation constant and the field ξ̂ = (ξ̂k)k∈Z
d is not any more

i.i.d. but stationary with spatial dependence (possibly long range dependence). More
precisely, we consider the case when the field ξ̂ is obtained from a random field ξ
satisfying Hα by linear filtering. The linear filter is given by c = (ck)k∈Z

d ∈ ℓα and

the random field ξ̂ by

ξ̂k = (ξ ∗ c)k =
∑

l∈Z
d

ck−lξl.

The corresponding assumption is

Ĥα ξ̂ = ξ ∗ c with ξ satisfying Hα and c ∈ ℓα.

Here ℓα = ℓα(Zd) is the space of sequence u = (uk)
k∈Z

d such that
∑

k∈Z
d |uk|α <∞

and ∗ denotes the convolution product of sequences.We will see that if ξ satisfies Hα

and c ∈ ℓα then ξ ∗ c is defined almost surely.
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The integrands set associated to the random measure µ̂h is

Fµ̂h
=

{

f ∈ L1
loc(R

d) ;

∫

R
d
fdµ̂h converges a.s.

}

. (11)

We consider the convergence of the random measure µ̂h to some α-stable noise.
According to the behavior of c at infinity, the limit field can be either a white stable
noise or a fractional stable noise (to be defined below). In the former case, spatial
dependence disappear in the limit and weak dependence holds, whereas in the latter
case, spatial dependence persists in the limit and strong dependence holds. For the
sake of simplicity, we focus on the case 1 < α ≤ 2. As in section 3.1, Wα denotes a
stable white noise on R

d with Lebesgue control measure and constant skewness ν.

Theorem 4.1 Let 1 < α ≤ 2 and suppose that ξ̂ satisfies assumption Ĥα.
For h > 0, consider µ̂h the random measure given by equation (10).

1. Suppose c ∈ ℓ1 and let γ̂h = σ−1h(α−1−1)d and C = (
∑

k∈Z
d ck).

Then for any h > 0, Lα ⊆ Fµ̂h
and as h → 0, µh converge weakly to CWα on

Lα.

2. Suppose that c has regular variations at infinity of order −β ∈ (−d,−α−1d) in
the sense that

lim
t→∞

sup
|x|=1

∣

∣

∣
tβc[tx] − p(x)

∣

∣

∣
= 0, (12)

where p : R
d\{0} → R is some locally integrable homogeneous function of order

−β (hyp ??). Let γ̂h = σ−1hα
−1d−β .

Then for any h > 0, Lα ∩L1 ⊆ Fµ̂h
and as h→ 0, µh converge weakly to Wα,p

on Lα ∩ L1, where Wα,p is the fractional stable random noise defined by

Wα,p[f ] = Wα[f ∗ p̌] , f ∈ L1 ∩ Lα

We now give some interessant properties of the random noise Wα,p.

Proposition 4.1 Let 1 < α ≤ 2 and p be as in Theorem 4.1.

1. The random noise Wα,p on Lα ∩ L1 is α-stable, stationary and α−1d − β + d
self-similar.

2. In the case α = 2, W2,p is the centered Gaussian random noise with covariance
function

E (Wα,p[f ]Wα,p[g]) =

∫

R
d
×R

d
f(x)K(x, y)g(y)dxdy, f, g ∈ L1 ∩ L2

where K : R
d × R

d → R is the kernel given by

K(x, y) =

∫

R
d
p(x− z)p(y − z)dz.

10



Remark: The notions of stationarity and selfsimilarity are invariance properties
of the random noise under the transformation group of translations and dilatations
respectively. The formal definition is given in equation ?? and ??.

Remark Self-similarity can be stated using the notion of renormalisation groups.
Let F be a linear space of functions on R

d closed under dilatations, i.e. for any h > 0

and f ∈ F , f(h.) ∈ F . Let u ∈ R. For h > 0 let T
(u)
h be the transformation acting

on a random noise W on F by

(T
(u)
h W )[f(.)] = huW [f(h.)] , f ∈ F .

The group relations T
(u)
1 = Id and T

(u)
h ◦ T (u)

h′ = T
(u)
hh′ holds and the group of trans-

formation (T
(u)
h )h>0 is called the normalisation group of index u. Our results have

a nice interpretation in terms of normalisation group. Consider first Theorem 3.1.

The scaling relation (7) implies that the random measure µh is equal to T
(α−1d)
h µ1

and the Theorem states that the random noise T
(α−1d)
h µ1 converges to Wα as h→ 0.

Furthermore, Wα is a fixed point of the renormalisation group of index α−1d, i.e.

T
(α−1d)
h Wα = Wα, meaning that Wα is (α−1d)-selfsimilar. In the same way, con-

sider Theorem 4.1 part 2. Here µ̂h = T
(α−1d−β+d)
h µ̂1 and the Theorem states that

T
(α−1d−β+d)
h µ̂1 converges to Wα,p as h→ 0. Furthermore, Wα,p is a fixed point of the

renormalisation group of index α−1d− β + d, i.e. T
(α−1d−β+d)
h Wα,p = Wα,p, meaning

that Wα,p is α−1d− β + d-selfsimilar.

4.2 Convergence to Lvy Brownian motion on the sphere

or on the euclidean space

The Brownian motion parametrized by a general metric space was introduced by
P.Lévy. It is defined as follows: let O be a fixed point in a metric space (M,d), a
Brownian motion parametrized with the metric space (M,d) and with origin O is a
centered Gaussian process (B(m))m∈M such that :
- B(0) = 0 almost surely,
- B(m) −B(m′) has variance d(m,m′).
There does not always exist a Brownian motion on (M,d) for an arbitrary metric
space (M,d) but constructions of such Lvy Brownian motion have been proposed in
the case when M is a sphere, a euclidean space or an hyperbolic space (see [12]).
These constructions are based on Gaussian white noise and have been extended to
stable white noise in order to get stable processes with interesting properties.

First consider the case when M = Sq is the unit sphere in R
q+1 and d is the

geodesic distance. Let O be a fixed point on the sphere Sq, for example the northern
pole and let W2 be a Gaussian white noise on the sphere with control measure ds the
normalized uniform measure on the sphere Sq. For m ∈ Sq, let Hm be the hemisphere
centered at m defined by

Hm = {m′ ∈ Sq | d(m,m′) ≤ π

2
}.

11



Then the process (B(m))m∈Sq defined by

B(m) =
√
πW2 (HO∆Hm) , m ∈ Sq

is a Brownian motion on (Sq, d). Here ∆ denotes the symmetric difference. More
generally, the Lvy stable motion on the sphere Sq is defined by the same formula
with the Gaussian white noise W2 replaced by a symmetric α-stable random measure
Wα with control measure ds.

When the metric space (M,d) is the euclidean space R
q, a Brownian motion is

constructed in the following way (Lvy-Chenstov construction). Let W2 be a white
Gaussian noise on Sq × R

⋆
+ with control measure ds × dr. A pair (s, r) represents

the hyperplane in R
q with equation <x, s>= r and Sq × R

⋆
+ is thought as the set

of hyperplanes that do not contain the origin. For m ∈ R
q define Vm as the set of

hyperplanes that separate O and m, i.e.

Vm = {(s, r) ∈ Sq × R
⋆
+ ; 0 < r <<s,m>}.

Then the process (B(m))
m∈R

q defined by

B(m) = W2 (Vm) , m ∈ R
q

is a Brownian motion on (Rq, d). Replacing the Gaussian white noise W2 by the
symmetric α-stable random measure Wα with control measure dsdr, we obtain the
symmetric α-stable Lvy-Chenstov random field, which is a α−1-self-similar stationary
increments process.

We apply our results on convergence of Poisson random measures to stable noises
to obtain a Donsker’s theorem for stable Lvy motion on the sphere Sq or on R

q.

Theorem 4.2 Suppose G is in the normal domain of attraction of the distribution
Sα(σ, 0) for some σ > 0. The following convergence hold in the sense of finite
dimensional distributions as λ→ ∞.

1. Let Nλ(ds, dξ) be a Poisson random measure on Sq×R with intensity λdsG(dξ).
The random process Bλ on Sq defined by

Bλ(m) =
√
πσ−1λ−1/α

∫

Sq×R

ξ1HO∆Hm(s)Nλ(ds, dξ) , m ∈ Sq

weakly converges to the symmetric α-stable Lvy motion on the sphere Sq.

2. Let Nλ(ds, dr, dξ) be a Poisson random measure on Sq ×R
⋆
+ ×R with intensity

λdsdrG(dξ). The random process Bλ on R
q defined by

Bλ(m) = σ−1λ−1/α

∫

Sq×R
⋆
+×R

ξ1Vm(s, r)Nλ(ds, dr, dξ), m ∈ R
q

weakly converges to the symmetric α-stable Lvy motion on the euclidean space
Rq.

12



Remark : The random fieldsBλ can be easily simulated, which is not clear for the
limit field B. For example in the case of Lvy motion on the sphere Sq, simulating the
Poisson integral can be made as follows. Draw T according to a Poisson distribution
with mean λ, conditionally to T = t, draw (si, ξi)1≤i≤t identically distributed with
distribution dsG(dξ) and let

Bλ(m) =
√
πσ−1λ−1/α

t
∑

i=1

ξi1HO∆Hm(si).

Note that the quantity x ∈ Hm is easily calculated since x ∈ Hm if and only if
< x,m>≥ 0. In the case of Lvy motion on the sphere R

q, the method is just the
same once we observe that simulating Bλ(m),m ∈ D in a bounded domainD requires
the knowledge of the Poisson random measure on a bounded domain of Sq×R

⋆
+ and

hence only of a finite number of random points.

5 Proofs

5.1 Preliminaries on stable distributions

We recall some known facts about normal domains of attraction of stable distribution
(see [6]). Let ξ belong to the normal domain of attraction of the stable distribution
Sα(σ, ν). Then, the following estimate holds for its characteristic function as θ → 0

λ(θ) = E

[

eiθξ
]

= λ̄(θ) + o(|θ|α). (13)

where λ̄ is given by (2). Furthermore, in the case 0 < α < 2, the tail estimate (4)
implies that there exists C > 0 such that for any s > 0

Var[ξ1{|ξ|≤s}] ≤ Cs2−α and E[|ξ|1{|ξ|≤s}] ≤ Cs1−α. (14)

5.2 Proof of Proposition 3.1

The random measure defined by (5) is linked with the discretization of the space R
d

by hZd, h > 0. Introduce the operator

ψh :
L1
loc → R

(Zd)

f 7→
(

h−d
∫

h(k+Id) f(u)du
)

k∈Z
d

.

Define the random signed measure ν on Z
d by

ν =
∑

k∈Z
d

ξkδk. (15)

It defines a random noise on the integrands set Fν defined by

Fν =
{

f : Z
d → R; sumk∈Z

dfkξk converges a.s.
}

13



where once again convergence means semi-convergence of the integral. We have the
formal relation

µh[f ] = γhh
dν[ψhf ]

from which we deduce that f ∈ Fµh
if and only if ψhf ∈ Fν . But we will see below

that Fν = ℓα (see Lemma 5.1) and that ψh(L
α) ⊂ ℓα if 1 ≤ α ≤ 2 and ψh(Dα) ⊂ ℓα

if 0 < α < 1 (see Lemma 5.2 in the Appendix). This proves Proposition 3.1. �

Lemma 5.1 Suppose α ∈ (0, 2] and ξ satisfies Hα. Then, Fν = ℓα.

Proof of Lemma 5.1

This is a direct application of Kolmogorov’s three series Theorem (see [6]). The
random series

∑

k∈Z
d fkξk with independent summands converges almost surely if

and only if for any s > 0, the following three numeric series converge:

∑

k∈Z
d

P [|fkξk| > s] <∞,
∑

k∈Z
d

Var
[

fkξk1{|fkξk|≤s}

]

<∞,

and
∑

k∈Z
d

E
[

fkξk1{|fkξk |≤s}

]

converges.

Note that the convergence of the first series for small s implies that fk → 0 as
k → ∞, so we do suppose fk → 0 as k → ∞. In the case α = 2, this implies

Var
[

fkξk1{|fkξk|≤s}

]

∼k→∞ f2
kE[ξ2k]

and hence the second series converges if and only if f ∈ ℓ2. Suppose now f ∈ ℓ2.
Cebycev’s inequality implies

P [|fkξk| > s] ≤ f2
kE[ξ2k]s

−2

so that the first series converges. Applying Borel-Cantelli’s Lemma, this in turn en-
tails that the event lim sup{|fkξk| > s} has probability 0. Hence, the set {k; |fkξk| >
s} is almost surely finite, so that in the third series almost all terms vanish and the
third series converges.

In the case 0 < α < 2, we deduce from equation (4) that

P [|fkξk| > s] ∼ (p+ q)|fk|αs−α (16)

and hence the first serie converges if and only if f ∈ ℓα. Suppose now that f ∈ ℓα.
Equation (14) implies the second and third series converge. �

5.3 Proof of Theorem 3.1 and of Proposition 3.2

Proof of Theorem 3.1

Using Proposition 2.1, it is enough to prove the convergence of one dimensional
distribution: for f ∈ Fα,

µh[f ]⇒Wα[f ] as h→ 0.

14



We will prove in fact a stronger result that will be useful in the sequel and we consider
diagonal convergence. Recall that Fα = Lα if 1 ≤ α ≤ 2 and Fα = Dα if 0 < α < 1.
If α ∈ [1, 2], Fα is a Banach space when endowed with the norm ||.||Lα and the notion
of convergence fh → f in Lα is clear. In the case 0 < α < 1, we need the following
definition of convergence in Dα.

Definition 5.1 We say that (fh)h>0 converge to f in Dα if the following two con-
ditions hold:

• for any compact K ⊂ R
d, fn1K converges to f1K in L1,

• there is some η > α−1d such that fh(x) = o(|x|−η) and f(x) = o(|x|−η) as
x→ ∞ uniformly in h > 0.

Theorem 3.1 is then a direct consequence of the following Proposition.

Proposition 5.1 Suppose ξ satisfies Hα and let (fh)h>0 converge to f in Fα . Then,
the following diagonal weak convergence holds:

µh[fh]⇒Wα[f ] as h→ 0.

We prove convergence of the characteristic functions. Let θ ∈ R. From the
definition of stable white noise,

E [exp(iθWα[f ])] = exp
(

−σαf |θ|α(1 − iνfε(θ) tan(πα/2))
)

(17)

with σf and νf given by (3). On the other hand, we can rewrite

µh[fh] = σ−1hα
−1d

∑

k∈Z
d

ξk(ψ̃hfh)(hk), (18)

where ψ̃h : L1
loc → L1

loc is the linear functional defined by

(ψ̃hf)(x) = h−d
∫

h([x]h+Id)
f(u)du, (19)

and [x]h = h[h−1x]. Note that ψ̃hf is the approximation of f when the space R
d

is discretized by hZd and the function f is replaced by its mean value on each cell
of the form h(k + Id), k ∈ Z

d. With these notations, the characteristic function of
µh[fh] is given by

E [exp(iθµh[fh])] =
∏

k∈Z
d

λ
(

σ−1hα
−1d(ψ̃hfh)(hk)θ

)

. (20)

Here we have used equation (18), the independence of the ξk’s and the almost sure
convergence of the random serie (18) implying the convergence of the above infinite
product.

First step: we begin to show that as h→ 0,

E [exp(iθµh[fh])] =
∏

k∈Z
d

λ̄
(

σ−1hα
−1d(ψ̃hfh)(hk)θ

)

+ o(1). (21)
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To see this, we estimate the difference and use the following inequality : let (zi)i∈I
and (z′i)i∈I two families of complex numbers in D̄ such that the products

∏

i∈I zi and
∏

i∈I z
′
i are convergent, then

∣

∣

∣

∣

∣

∏

i∈I

z′i −
∏

i∈I

zi

∣

∣

∣

∣

∣

≤
∑

i∈I

∣

∣z′i − zi
∣

∣ .

Using equation (20), this yields

∣

∣

∣

∣

∣

E [exp(iθµh[fh])] −
∏

k∈Z

λ̄
(

σ−1hα
−1d(ψ̃hfh)(hk)θ

)

∣

∣

∣

∣

∣

≤
∑

k∈Z

∣

∣ λ (uh(k)) − λ̄ (uh(k))
∣

∣ (22)

with
uh(k) = σ−1hα

−1d(ψ̃hfh)(hk)θ.

Equation (13) implies that the function g defined by g(0) = 0 and

g(v) = |v|−α
∣

∣λ(v) − λ̄(v)
∣

∣ , v 6= 0,

is continuous and bounded so that for any k ∈ Z
d,

∣

∣λ (uh(k)) − λ̄ (uh(k))
∣

∣ = g(uh(k))|uh(k)|α.

In order to obtain an uniform estimation, define the function g̃ : [0,+∞) → [0,+∞)
by

g̃(u) = sup
|v|≤u

|g(v)|.

Note that g̃ is continuous, bounded and vanishes at 0, and that for any k ∈ Z
d such

that |uh(k)| ≤ ε,
∣

∣λ (uh(k)) − λ̄ (uh(k))
∣

∣ ≤ g̃(ε)|uh(k)|α. (23)

Let ε > 0. Equations (20), (22) and (23) together yield

∣

∣

∣

∣

∣

E [exp(iθµh[fh])] −
∏

k∈Z

λ̄
(

σ−1hα
−1d(ψ̃hfh)(hk)θ

)

∣

∣

∣

∣

∣

≤ g̃(ε)
∑

k∈Z
d

|uh(k)|α 1{|uh(k)|≤ε} + 2
∑

k∈Z
d

1{|uh(k)|>ε}.

Here we have used equation (23) to bound |λ̄(uh(k))−λ(uh(k))| from above whenever
|uh(k)| ≤ ε, and the trivial upper bound 2 otherwise. Now we remark that

∑

k∈Z
d

|uh(k)|α 1{|uh(k)|≤ε} ≤
∑

k∈Z
d

|uh(k)|α = σ−α|θ|α||ψ̃hfh||αLα
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is bounded since from Corollary 5.1 |ψ̃hfh|α → |f |α in L1 whenever fh → f in Fα.
By the continuity of g̃ in 0, g̃(ε) is small for ε small enough. Furthermore,

∑

k∈Z
d

1{|uh(k)|>ε} = h−d
∫

R
d
1
{|ψ̃hfh(x)|>εσ|θ|−1h−α−1d}

dx

≤ ε−ασ−α|θ|α||(ψ̃hfh)1{|ψ̃hfh|>εσ|θ|−1h−α−1d}
||αLα

and this quantity goes to 0 as h→ 0 because Corollary 5.1 implies that |ψ̃hfh|α → |f |α
in L1 whenever fh → f in Fα and hence the familiy |ψ̃hfh|α, h > 0 is uniformly in-
tegrable. These estimates imply equation (21).

Second step: we prove that as h→ 0,

∏

k∈Z
d

λ̄
(

σ−1hα
−1d(ψ̃hfh)(hk)θ

)

= exp
(

−σαf |θ|α(1 − iνfε(θ) tan(πα/2))
)

+ o(1).

(24)
To see this, we take here advantage of the exponential form of λ̄ and write the l.h.s.
of (24) as

exp



−|θ|αhd
∑

k∈Z
d

|(ψ̃hfh)(hk)|α + iν tan(πα/2)θ<α>hd
∑

k∈Z
d

((ψ̃hfh)(hk))
<α>





= exp

(

−|θ|α
∫

R
d
|(ψ̃hfh)(x)|αdx+ iν tan(πα/2)θ<α>

∫

R
d
|(ψ̃hfh)(x)|<α>dx

)

(25)

where u<α> = ε(u)|u|α denotes the signed power function.
Corollary 5.1 implies that

∫

R
d
|(ψ̃hfh)(x)|αdx =

∫

R
d
|f(x)|αdx+ o(1)

and
∫

R
d
|(ψ̃hfh)(x)|<α>dx =

∫

R
d
|f(x)|<α>dx+ o(1).

This together with equation (25) implies equation (24).

Conclusion: The convergence of the characteristic functions of µh[fh] given by (20)
to the characteristic function of W [f ] given by (17) is a direct consequence of equa-
tions (21) and (24). This proves the weak convergence µh[fh] ⇒ W [f ]. Proposition
5.1 and Theorem 3.1 are proved. �

Proof of Corollary 3.1

Note that formally µ̃h[f ] = µh[fh], where fh is the function defined by fh(x) =
f([x]h). The result follows from Proposition 5.1 and from the fact that if f ∈
Fα ∩ C(Rd), then fh → f in Fα. �
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Proof of Proposition 3.2

The proof is rather straightforward once we observe that µ̄h[fM ]−Wα[f ] = Wα[φhfM−
f ] has the same distribution as ||φhfM − f ||LαXα where Xα has distribution Sα(1, ν).
Hence,

E [|µ̂h[fM ] −Wα[f ]|p] = ||ψ̃hfM − f ||pLα
E[|Xα|p],

and Cα,p = E[|Xα|p]. �

5.4 Proof of Theorem 3.2

We first prove that for any λ > 0, the integrand set Fµλ
contains Lα(E, E ,m). Let

f : E → R be such that
∫

E |f |αdm < ∞. We have to prove that equation (8) is
satisfied and compute
∫

E×R

|ξf(e)| ∧ 1 nλ(dξ, de) = λ

∫

E

(

|f(e)|E[|ξ|1|f(e)ξ|≤1] + P[|f(e)ξ| > 1]
)

m(de)

≤ λ

∫

E
C|f(e)|αm(de) <∞

where the last inequality is a consequence of equations (16) and (14). This proves
the required inclusion.

We now prove the convergence of the random measures to the stable random
noise. Following Proposition 2.1, we compute the characteristic function of Nλ[f ] for
f ∈ Lα(E, E ,m):

E [exp(iθNλ[f ])] = exp

(
∫

E×R

Ψ(θγλξf(e))λm(de)G(dξ)

)

,

where Ψ(u) = eiu − 1. Performing integration with respect to G, the integral in the
right hand side rewrites

∫

E
ΨG (θγλξf(e)))λm(de)G(dξ),

with ΨG(u) =
∫

R
Ψ(uξ)G(dξ). We now prove the following asymptotic result:

lim
λ→∞

∫

E
ΨG (θγλf(e))λm(de) = −

∫

E
|θf(e)|α(1 − νε(θf(e)) tan(πα/2)).

This is a consequence of Lebesgue’s convergence Theorem. Indeed γλ → 0 as λ→ ∞
and the asymptotic behaviour of ΨG at 0 given by equation (13) yields

ΨG(θγλf(e)) = −|θf(e)|α(1 − νε(θf(e)) tan(πα/2)) + o(1).

Furthermore, there is some C > 0 such that |ΨG(θ)| ≤ C|θ|α for some C > 0 and
this implies the domination condition

λΨG(θγλf(e)) ≤ C|θ|α|f(e)|α

where the r.h.s. is integrable with respect to m(de) and does not depend on λ. Hence
we have proved that

lim
λ→∞

E [exp(iθNλ[f ])] = exp

(

−
∫

E
|θf(e)|α(1 − νε(θf(e)) tan(πα/2))m(de)

)

,

and this is precisely the characteristic function of Wα[f ]. �
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5.5 Proof of Theorem 4.1

In view of Lemma 5.1, the conditions c ∈ ℓα and ξ satisfies Hα ensure that ξ̂ = ξ ∗c is
well defined. This convolution relation implies that the random measures µh and µ̂h
defined by equations (5) and (10) respectively are linked by a simple relation. This
is the object of the following Lemma. In order to unify the two cases considered in
Theorem 4.1, we denote the integrands set by F̂α with F̂α = Lα in the first case and

F̂α = Lα ∩ L1 in the second case. We define č ∈ R
Z

d

by čk = c−k, k ∈ Z
d.

Lemme Under the assumptions of Theorem 4.1 (both cases), F̂α ⊆ Fµ̂h
and the

relation µ̂h[f ] = µh[ψ̃
c
hf ] holds for any f ∈ F̂α with

ψ̃chf =
γ̂h
γh
φh((ψhf) ∗ č), (26)

where

ψh :
L1
loc → R

Z
d

f 7→ h−d
(

∫

h(k+Id) f(u)du
)

k∈Z
d

, (27)

and

φh : R
Z

d

→ L1
loc

u = (uk)k∈Z
d 7→ f : x 7→ u[h−1x]

. (28)

Proof:

We have formally,

µ̂ξh[f ] = γ̂h
∑

k∈Z
d

(ψhf)kξ̂k

= γ̂h
∑

(k,l)∈Z
d×Z

d

(ψhf)kck−lξl

= γ̂h
∑

l∈Z
d

((ψhf) ∗ č)lξl

=
γ̂h
γh
µh[φh((ψhf) ∗ č)].

Furthermore, this formal computations are valid because the assumptions of Theorem
4.1 entail (ψhf) ∗ č ∈ ℓα and hence ψ̃chf ∈ Lα ⊆ Fµ. Recall indeed that Hlder
inequality implies that u ∗ v ∈ ℓα as soon as u ∈ ℓ1 and v ∈ ℓα. Here in the first case
(resp. in the second case) c ∈ ℓ1 and ψhf ∈ ℓα (resp. c ∈ ℓα and ψhf ∈ ℓ1). �

Proof of Theorem 4.1:

Theorem 4.1 is a direct consequence of the above Lemma, of Theorem 3.1 (or rather
of Proposition 5.1 about diagonal convergence) and of the convergence of ψ̃chf in Lα

as h → 0. Lemma 5.5 in the appendix states indeed that ψ̃chf → Cf converges to
Cf (resp. to f ∗ p̌) in the first case (resp. second case). �
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Appendix: some results on space functions

The following Lemma gathers some useful properties of the linear operators ψ̃h, ψh
and φh defined by equations (19), (27) and (28) respectively. It is standard material
for α ≥ 1 but some extra care is needed when 0 < α < 1.

Lemma 5.2 1. The relations ψ̃h = φh ◦ ψh, ψh ◦ φh = Id
R

Z
d and ψ̃h ◦ ψ̃h = ψ̃h

hold.

2. φh(ℓ
α) ⊂ Lα and for any u ∈ ℓα, ||φhu||Lα = hd/α||u||ℓα .

3. If α ≥ 1, ψh(L
α) = ℓα and ψ̃h(L

α) ⊂ Lα and ψ̃h induces a linear projection on
Lα. Furthermore, if fh → f in Lα as h→ 0, then ψ̃h(fh) → f in Lα.

4. If 0 < α < 1, ψh(Dα) ⊂ ℓα, and ψ̃h(Dα) ⊂ (Dα). Furthermore, if fh → f
strongly in Dα as h→ 0, then ψ̃h(fh) → f strongly in Dα.

Remarks: Extra care is needed in the case 0 < α < 1 because ψ̃h(L
1
loc ∩ Lα) is not

included in Lα as the following example shows: for γ > 0 and δ ∈ R consider the
function f ∈ L1

loc defined by f(x) = kδ if x ∈ [k, k + k−γ ] for k ≥ 1, and f(x) = 0
otherwise. Then it is easily seen that f ∈ Lα if and only if αδ − γ < −1, and that
ψ̃1f ∈ Lα if and only if α(δ − γ) < −1. Comparing these to conditions, we can even
find f ∈ Lα ∩ L1 such that ψ̃1f /∈ Lα. That’s why we need some stronger condition
on f in the case 0 < α < 1 and we introduce the space of rapidly decaying functions
Dη.

Proof of Lemma 5.2:

1. This is routine verification using the definitions.

2. Let u ∈ ℓα. Then,
∫

bbsRd

|φhu(x)|αdx =

∫

bbsRd

|u[h−1x]|αdx

= hd
∑

k∈Z
d

|uk|α,

and this implies φhu ∈ Lα and ||φhu||Lα = hd/α||u||ℓα .

3. Let α ≥ 1 and f ∈ Lα. Using Jensen inequality with the convex function
y 7→ |y|α,

||ψhf ||αℓα = h−d
∑

k∈Z
d

∣

∣

∣

∣

∣

h−d
∫

h(k+Id)
f(u)du

∣

∣

∣

∣

∣

α

≤
∑

k∈Z
d

h−d
∫

h(k+Id)
|f(u)|αdu

= h−d||f ||αLα .
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This implies that ψhf ∈ ℓα and ||ψhf ||ℓα ≤ h−d/α||f ||Lα . Together with point 1.
and 2., we easily prove that ψ̃h induces a linear projection on Lα.
We now prove that ψ̃h converge weakly as a linear operator to the idendity.
First consider the case when f is continuous with compact support. Then
from the continuity of f , for every x ∈ Rd (ψ̃hf)(x) → f(x) as h → 0. The
assumption that f is compactly supported implies that Lebesgue’s convergence
theorem applies and ψhf → f in Lα.
The space of continuous compactly supported function is dense in Lα and the ψh
are (uniformly) bounded linear operator. Hence the convergence ψhf → f holds
for every f ∈ Lα. Diagonal convergence is a consequence of the equicontinuity
of the ψh which all have linear norm less than 1.

4. Let f ∈ Dα. From the definition of Dα, there is some integer M > 0 and
C > 0 and some η > α−1d such that if |x|∞ > M then |f(x)| ≤ C|x|−η∞ . As a
consequence, if h ≤ 1 and |x|∞ ≥ M + h, we have h([h−1x] + Id) ⊆ B(O,M)c

and

|ψ̃hf(x)|α =

∣

∣

∣

∣

∣

h−d
∫

h([h−1x]+Id)
f(u)du

∣

∣

∣

∣

∣

α

≤ h(1−α)d(|x|∞ − h)−αη .

This implies
∫

R
d |ψ̃hf(x)|αdx <∞ since αη > d and hence ψ̃hf ∈ Lα.

Now let fh → f strongly in Dα. From the above discussion and the definition
of strong convergence in Dα, we see that a similar inequality holds uniformly in
h ≤ 1: there is some M > 0, C > 0 and η > α−1d such that if |x|∞ > M then
|f(x)| ≤ C|x|−η∞ and also for any h ≤ 1 |fh(x)| ≤ C|x|−η∞ . As a consequence, for
any ǫ > 0, there is some M > 0 such that for any h ≤ 1

∫

|x|∞>M
|ψ̃hfh(x)|αdx ≤ ǫ (29)

On the other hand, for fixed M > 0, we prove that |ψ̃hfh|α1B(0,M) is uniformly
integrable. Let K = B(0,M + 1). Then fh1K → f1K in L1, and point 3.
implies that ψ̃h(fh1K) → f1K in L1. Since the restrictions of ψ̃h(fh1K) and
ψ̃hfh to B(0,M) are equal, this implies (ψhfh)1B(0,M) converge to f1B(0,M) in

L1. This in turn implies that |ψ̃hfh|α1B(0,M) is bounded in Lp for p = α−1 > 1,
and hence uniformly integrable. This together with equation (29) implies the
uniform integrability of the sequence |ψ̃nfn|α. �

Corollary 5.1 Let α ∈ (0, 2]. Suppose (fh)h>0 converge to f in Fα as h→ 0. Then
|ψ̃h(fh)|α → |f |α in L1 as h→ 0 and also (ψ̃h(fh))

<α> → f<α> in L1

Proof of Corollary 5.1:

We consider the convergence of (ψ̃hfh(x))
<α> to f<α> in L1, the other case being

treated in the same way. First of all, as above, for any ǫ > 0 there is some M > 0
such that for any h ≤ 1

∫

|x|∞>M

∣

∣

∣(ψ̃hfh(x))
<α> − f(x)<α>

∣

∣

∣dx ≤ ǫ. (30)
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For fixed M > 0, the application L1(B(0,M)) → R, f 7→
∫

B(0,M) f(x)<α>dx is

continuous. Hence the convergence (ψhfh)1B(0,M) → f1B(0,M) in L1 implies

lim
n→∞

∫

B(0,M)
(ψhfh)(x)

<α>dx =

∫

B(0,M)
(ψhfh)(x)

<α>dx.

Together with equation (30), this yields the result. �

We now consider the convergence of ψ̃chf defined by (26). Lemme Under the
assumptions of Theorem 4.1

1. In the first case, for any f ∈ Lα, ψ̃chf → Cf in Lα as h→ 0.

2. In the second case, for any f ∈ L1 ∩ Lα, ψ̃chf → f ∗ p̌ in Lα as h→ 0.

Proof of Lemma 5.5:

1. Consider first the case when c ∈ ℓ1. We easily see that

ψ̃chf =
∑

k∈Z
d

ckψ̃hf(· + hk).

For each fixed k, the sequence of function ψ̃hf(·+ hk) converge to f in Lα (use
the fact that according to Lemma 5.2 point 3, ψ̃hf → f in Lα and that the
translation operator f → f(. + hk) is continuous and converge to identity as
h→ 0). Then for any fixed M ,

∑

|k|≤M

ckψ̃hf(· + hk) → (
∑

|k|≤M

ck)f

in Lα as h→ 0. Furthermore, since c ∈ ℓ1, the remainder

||
∑

|k|>M

ckψ̃hf(· + hk)||Lα ≤





∑

|k|>M

|ck|



 ||f ||Lα

is small when M is large. Thanks to these estimates, we prove that ψ̃chf → Cf
in Lα.

2. Consider the second case when c is such that

lim
t→∞

sup
|x|=1

∣

∣

∣tβc[tx] − p(x)
∣

∣

∣ = 0,

and note that ψ̃chf can be rewritten as

ψ̃chf(x) =

∫

R
d
ψ̃hf([x]h − y)p̌h(y)dy = ((ψ̃hf) ∗ p̌h)([x]h) (31)
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with

p̌h(y) = h−d
γ̂h
γh
c−[h−1y] = h−β č[h−1y].

Using equation 12, we see that for any y 6= 0, p̌h(y) → p̌(y) as h→ 0.
More precisely, equation 12 entails that p̌h1B → p̌h1B in L1 and p̌h1Bc → p̌h1Bc

in Lα, where B denotes the unit ball B(0, 1) in R
d and Bc its complementary

set. Using Lemma 5.2 and the assumption f ∈ L1 ∩Lα, we have also ψ̃hf → f
in L1 and in Lα. The bilinear application L1 × Lα → Lα, (g1, g2) 7→ g1 ∗ g2 is
continuous and

||g1 ∗ g2||Lα ≤ ||g1||L1 ||g2||Lα .

This entails (ψ̃hf)∗ (p̌h1B) → f ∗ (p̌1B) in Lα and (ψ̃hf)∗ (p̌h1Bc) → f ∗ (p̌1Bc),
and finally (ψ̃hf) ∗ p̌h → f ∗ p̌ in Lα.

At last, we prove that ψ̃chf → f ∗ p̌ in Lα. We have indeed

∣

∣

∣

∣

∣

∣
ψ̃chf − (ψ̃hf) ∗ p̌h

∣

∣

∣

∣

∣

∣

α

Lα

≤
∫

R
d

∣

∣

∣

∣

∫

R
d
|ψ̃hf([x]h − y) − ψ̃hf(x− y)||p̌h(y)|dy

∣

∣

∣

∣

α

dx

≤ ||p̌h1B ||αL1 sup
0≤u≤h

||ψ̃hf(.+ u) − ψ̃hf ||αLα + ||p̌h1Bc ||αLα sup
0≤u≤h

||ψ̃hf(.+ u) − ψ̃hf ||αL1

and these quantities vanish as h→ 0. �
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