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Abstract

Recently, a new strategy was proposed to solve stochastic partial differential equa-
tions on random domains. It is based on the extension to the stochastic framework
of the eXtended Finite Element Method (X-FEM). This method leads by a “direct”
calculus to an explicit solution in terms of the variables describing the random-
ness on the geometry. It relies on two major points: the implicit representation of
complex geometries using random level-set functions and the use of a Galerkin ap-
proximation at both stochastic and deterministic levels. In this article, we detail
the basis of this technique, from theoretical and technical points of view. Several
numerical examples illustrate the efficiency of this method and compare it to other
approaches.
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1 Introduction

Computer simulations of mechanical models, supported by the availability
of enhanced computational resources, take today a very significant place in
decision-makings which can have major consequences in economic or human
terms. In a structural analysis, the incorporation of uncertainties inherent in

∗ Corresponding author. Tel.: +33(0)2-51-12-55-20; Fax: +33(0)2-51-12-52-52
Email address: anthony.nouy@univ-nantes.fr (A. Nouy).
URL: http://www.univ-nantes.fr/nouy-a (A. Nouy).

Preprint



the model, related to material properties, loadings or geometry, seems today
essential if one seeks to obtain “reliable” numerical predictions, usable in a
design process or a decision-making. This necessity led to a rapid development
of many ad hoc numerical methods, such as stochastic finite elements methods
[1–3]. These methods provide high quality predictions which are explicit in
terms of the random variables describing the uncertainties. The increase in
their performances, due to the development of ad hoc resolution techniques
[4,6–8], allows expecting their use in many domains of applications such as
structural design, reliability analysis, etc. The incorporation of uncertainties
on material properties or loadings is quite well mastered within the framework
of these techniques. However, there is still no available efficient strategy to deal
with uncertainties on the geometry although it could have a great interest in
various applications.

A natural way to solve a stochastic problem defined on a random domain con-
sists in using a classical stochastic finite element method with remeshings, such
as Monte-Carlo simulations [9,10], response surface method, projection [11] or
regression [12] methods. These techniques only require the use of a simple
deterministic finite element calculation code. However, they require numerous
deterministic computations, each of which requiring the construction of a new
conforming mesh, which leads to prohibitive computational costs.

In order to avoid remeshings and to obtain an “explicit” description of the
stochastic solution, a possible alternative technique consists in building a clas-
sical finite element approximation on a reference deterministic domain, and to
introduce a random mapping between this domain and the random domain.
This technique can also be seen as a classical finite element technique on a
random mesh. Such a strategy has been used in [13,14] and also in [5] for
the case of random interfaces in layered media. The main difficulty lies in the
construction of a suitable random mapping in the case of complex geometries.

Recently, a new stochastic finite element method was proposed for solving
partial differential equations on random domains [15]. This technique, called
eXtended Stochastic Finite Element method (X-SFEM), is based on an ex-
tension to the stochastic framework of the X-FEM method [16,17]. It relies
on two major points. The first one consists in representing the geometry in
an implicit way by using the level-set technique [18]. The random domain is
then characterized by the negative set of a random level-set function, which
is defined on a fictitious deterministic domain containing all outcomes of the
physical domain. The second point consists in using a Galerkin approxima-
tion technique at both deterministic and stochastic levels. A tensor product
approximation is made possible by considering prolongation of functions on
the fictitious domain. The resulting technique does not require any remeshing
and allows the handling of complex geometries. Another advantage is that it
leads to a solution which is explicit in terms of the basic random variables de-
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scribing the geometry, thus allowing an easy post-processing of the stochastic
solution at a very low cost.

In this paper, we introduce the basis of the X-SFEM method from a theo-
retical point of view and also focus on technical aspects. The method will be
presented in the context of linear elasticity. However, the mathematical results
and the proposed methodology could be applied to more general linear ellip-
tic stochastic partial differential equations defined on random domains. Here,
we only deal with random shapes. This is a degenerated case of the X-FEM
method [19,20] where only a classical finite element approximation can be
used at the space level, without enrichment of the approximation space by the
partition of unity method [21]. Let us mention that fictitious domain methods
[22–25], recently extended to the stochastic framework [26], start with similar
reformulation of the problem and definition of approximation spaces. How-
ever, the methodology proposed in this article differs by the representation
of the geometry and the underlying computational aspects (construction and
resolution of the discretized problem).

The outline of the paper is as follows. In section 2, we introduce the strong
and weak formulations of a linear elasticity problem defined on a random
domain. In section 3, we briefly recall the basis of stochastic finite element
methods in the case of a deterministic domain. It allows us to point out why
their extension in the case of a random domain is not straightforward and
also to introduce some useful notations. In section 4, we present possible finite
element strategies to deal with random domains and point out some of their
drawbacks. Section 5 is devoted to the presentation of the X-SFEM method
from a theoretical point of view. In particular, we focus on the mathemati-
cal interpretation of the approximation based on a Galerkin projection and
compare it to other projection methods. Section 6 details the computational
aspects of the X-SFEM method: construction and resolution of the discretized
problem. In particular, we illustrate that the construction of the discretized
problem requires the development of a specific numerical integration technique
at the stochastic level. For that purpose, a general numerical procedure is pro-
posed, which consists in building suitable partitions of the stochastic domain
and using a Gaussian quadrature on each subdomain. Finally, in section 7,
three numerical examples illustrate several aspects of the X-SFEM method:
quality of the Galerkin approximation, influence of the proposed stochastic
integration procedure and efficiency of the resolution strategy. The method is
systematically compared to other approaches. In particular, it is compared to
a stochastic L2 projection method based on X-FEM.
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2 Formulation of the problem

2.1 The deterministic problem

In this article, we will focus on the analysis of the deformation of a structure
under small perturbations assumption. We consider that the structure occu-
pies a domain Ω ⊂ R

d (see figure 1). It is submitted to body loads f(x) on
Ω and surface loads F (x) on a part Γ2 of the boundary ∂Ω. The structure is
fixed on a part Γ1 of the boundary ∂Ω such that Γ1∩Γ2 = ∅. The complemen-
tary part of Γ1 ∪ Γ2 in ∂Ω, denoted by Γ0, is considered as a free boundary.
We denote by u(x) the displacement field, ε(u) the symmetric part of the
displacement gradient (i.e. the strain tensor) and by σ the stress tensor. In
this article, we will consider the case of a linear elastic material and denote
by C the Hooke fourth-order tensor. The strong formulation of the problem
writes: find (u, σ) such that

div σ + f = 0 on Ω,

σ = C : ε(u) on Ω,

σ · n = F on Γ2,

σ · n = 0 on Γ0,

u = 0 on Γ1.

(1)

where n is the unit outward normal to the boundary.

Ω F
f

Γ
2

Γ
1

Fig. 1. Model problem

2.2 The stochastic problem

Now, we consider that the structure occupies a random domain. For the sake of
generality, we also consider that material properties and loads can be random.
Let us suppose that the probability space (Θ,B, P ) allows the representation
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of the probabilistic content of the problem. Θ is the set of elementary events,
B a σ-algebra on Θ and P a probability measure. An element θ ∈ Θ is an
elementary event. The random domain can be characterized by the random
variable Ω : θ ∈ Θ 7→ Ω(θ) ⊂ R

d. Ω(θ) represents an outcome of the domain.
Figure 2 illustrates two outcomes of the random domain and of the associated
parts of its boundary.

Γ (θ ) 1 1

Γ (θ ) 1 2

Ω(θ )
1

Ω(θ )
2

Γ (θ ) 
2 2

Γ (θ ) 2 1

Fig. 2. Two outcomes of the random domain Ω(θ) and associated parts of boundary
Γ1(θ) and Γ2(θ).

Then, the strong formulation of the stochastic problem writes: find random
fields u and σ which verify P -almost surely the set of equations (1). We recall
that a property is P -almost sure if the probability of the event “the property
is false” is zero.

2.3 Weak formulation of the stochastic problem

Let us first introduce a classical weak formulation at the space level: find u

such that ∀θ ∈ Θ, u(·, θ) ∈ U(θ) = {v ∈ (H1(Ω(θ)))d; v = 0 on Γ1(θ)}, and
such that we have P -almost surely

a(u(·, θ), v; θ) = b(v; θ) ∀v ∈ U(θ), (2)

where a(·, ·; θ) is a continuous symmetric coercive bilinear form on U(θ) and
b(·; θ) is a continuous linear form on U(θ), defined by

a(u, v; θ) =
∫

Ω(θ)
ε(v) : C : ε(u) dx, (3)

b(v; θ) =
∫

Ω(θ)
f · v dx +

∫

Γ2(θ)
F · v ds. (4)

Then, a weak formulation at both space and stochastic levels can be intro-
duced. We consider that the problem can be formulated in the following func-
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tion space:

V = {u : θ ∈ Θ 7→ u(·, θ) ∈ U(θ);
∫

Θ
‖u‖2

U(θ) dP (θ) < ∞}

:= L2(Θ, dP ; U). (5)

The weak formulation then writes : find u ∈ V such that

A(u, v) = L(v) ∀v ∈ V, (6)

where

A(u, v) =
∫

Θ
a(u,v; θ) dP (θ) := E(a(u, v; θ)), (7)

L(v) =
∫

Θ
b(v; θ) dP (θ) := E(b(v; θ)). (8)

E(·) denotes the mathematical expectation. We will consider that bilinear
form A is continuous and coercive on V and that linear form L is continuous
on V, such that problem (6) is well posed. In the case of a deterministic
domain, the reader can refer to [2,27] for a detailed and comprehensive study
of the regularity requirements on the data (C, f and F ) leading to the desired
properties. To the knowledge of the authors, stochastic problem (6) has not
been deeply studied from a mathematical point of view in the case of random
domains. In particular, regularity requirements on the random domain should
be further analyzed. These mathematical aspects are beyond the scope of this
article. Some mathematical results on the effects of uncertainties in the domain
can be found in [28,29].

Remark 1 Coercivity and continuity properties of A and L are inherited from
those of a and b: ∀u,v ∈ U(θ), |a(u,v; θ)| 6 Ca‖u‖U(θ)‖v‖U(θ), a(v,v; θ) >

αa‖v‖
2
U(θ), and |b(v; θ)| 6 Cb‖v‖U(θ), where Ca, Cb < ∞ and αa > 0. These

three constants depends on material properties, loads and also on the geom-
etry. If there exists such constants Ca, Cb and αa independent of the event
θ, coercivity and continuity properties of A and L follows with the same con-
stants.

2.4 Stochastic modeling and discretization

In practice, we generally consider that the probabilistic content of the stochas-
tic problem can be represented by a finite set of random variables ξ : Θ → R

m.
This is the case when material properties, loads and geometry depend on a
finite set of parameters which are random variables. When these parameters
are stochastic fields, a preliminary step is usually performed in order to dis-
cretize these parameters (e.g. by Karhunen-Loeve decomposition [30,31,1])
and represent them in terms of a finite set of random variables.
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Let us now consider that the data of stochastic problem (6) can be written
in terms of ξ, so that bilinear form a and linear form b can also be written
in terms of ξ: a(·, ·; θ) ≡ a(·, ·; ξ(θ)), b(·; θ) ≡ b(·; ξ(θ)). Then, by the Doob-
Dynkin’s lemma [32], we have that the solution of problem (6) can be written
in terms of ξ, i.e. u(·, θ) ≡ u(·, ξ(θ)). The stochastic problem can then be
reformulated in the m-dimensional image probability space (Θ,B, Pξ), where
Θ ⊂ R

m is the range of ξ and Pξ the probability measure associated with ξ

(see e.g. [2] for details). Function space (6) is now replaced by

V = {u : ξ ∈ Θ 7→ u(·, ξ) ∈ U(ξ); E(‖u(·, ξ)‖2
U(ξ)) < ∞}. (9)

In the definition of function space V and of bilinear form A and linear form L,
the mathematical expectation must be interpreted as E(f(ξ)) =

∫
Θ

f(y)dPξ(y).

In what follows, we will mainly use the initial probability space (Θ,B, P ). The
reader must keep in mind that at each moment, the elementary event θ ∈ Θ
can be replaced by ξ ∈ Θ in the expression of any random function.

3 Stochastic finite element methods in the case of a deterministic
domain

Before introducing some classical techniques to deal with random domains,
we briefly recall the basis of stochastic finite element methods in the case of
a deterministic domain (see e.g. [1–3,33]). It will allow us to introduce some
useful notations and to point out why their extension in the case of a random
domain is not straightforward.

Here, we suppose that the domain Ω and the associated parts of its boundary
Γi are deterministic. In this case, function space U does not depend on the
elementary event θ. Then, function space V has a tensor product structure:

V = L2(Θ, dP ; U) ∼= L2(Θ, dP ) ⊗ U := S ⊗ U, (10)

where S = L2(Θ, dP ) is the space of second order real-valued random variables.
Classical stochastic finite elements methods then introduce a tensor product
approximation as follows.
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3.1 Approximation at the space level

At the space level, we introduce a finite element approximation space Uh

defined by

Uh = {v(x) =
N∑

i=1

ϕi(x)vi = ϕ(x)v, v ∈ R
N}, (11)

where the ϕi(x) ∈ U are the finite element basis functions associated with a
mesh Th of domain Ω. A semi-discretized approximation space Vh ⊂ V can
then be defined as follows:

Vh = S ⊗ Uh

= {v(x, θ) =
N∑

i=1

ϕi(x)vi(θ) = ϕ(x)v(θ), v ∈ S ⊗ R
N}. (12)

The semi-discretized approximate solution uh ∈ Vh of problem (6) is defined
by:

A(uh, vh) = L(vh) ∀vh ∈ Vh. (13)

Problem (13) can be written under the following matrix strong form: find
u : θ 7→ u(θ) ∈ R

N such that we have P -almost surely

A(θ)u(θ) = b(θ), (14)

where random matrix A and random vector b are defined by:

(A(θ))ij = a(ϕj,ϕi; θ), (15)

(b(θ))i = b(ϕi; θ). (16)

3.2 Approximation at the stochastic level

Several choices have been proposed for the construction of a basis of the space
of second order random variables S = L2(Θ, dP ): polynomial chaos [1,34], gen-
eralized polynomial chaos [35,36], h-p finite elements [37] or wavelets [38,39].
Let {Hα}α∈I be such a basis, where I denotes a countable set of indices. Then,
we can naturally introduce a finite dimensional approximation space SP ⊂ S,
defined by

SP = {v(θ) =
∑

α∈IP

vαHα(θ), vα ∈ R}, (17)

where IP is a subset of P indices in I. In the following, we will suppose that
the Hα are orthonormal, i.e. E(HαHβ) = δαβ.
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Let us illustrate the construction of the generalized polynomial chaos approx-
imation [35,36], which will be used in numerical examples. We consider, as in
section 2.4, that the probabilistic content of the problem is represented by m

random variables (ξ1, . . . , ξm) := ξ. For the construction of chaos basis associ-
ated with an arbitrary probability measure, the reader can refer to [36]. Here,
we will consider that random variables are statistically independent (property
possibly obtained by a suitable mapping). Let (Θ,B, Pξ) be the associated im-
age probability space. The space L2(Θ, dPξ) of second order random variables
on Θ has a tensor product structure: L2(Θ; dPξ) = ⊗m

j=1L
2(Θ(j), dPξj

), where

Θ(j) ⊂ R is the range of random variable ξj and Pξj
the associated marginal

probability measure. Basis functions Hα are then taken as multi-dimensional
orthonormal polynomials. A simple way to define the Hα is to use a tensor
product basis. Let us denote by I = {α = (α1, . . . , αm) ∈ N

m} the set of

m-dimensional multi-indices. Then, denoting by {h
(j)
k }k>0 the set of orthonor-

mal polynomials in L2(Θ(j), dPξj
), where index k denotes the degree of the

polynomials, the Hα are simply defined as follows: Hα(ξ) =
∏m

j=1 h(j)
αj

(ξj). The
approximation space SP can then be defined by selecting the multi-dimensional
polynomials with total degree less than p. It consists in taking the following
subset of indices IP = {α ∈ I;

∑m
i=1 αi 6 p}. In this case, the number of basis

functions is P = (m+p)!
m!p!

.

Finally, a tensor product approximation space Vh,P ⊂ V is classically defined
as follows:

Vh,P = SP ⊗ Uh (18)

= {v(x, θ) =
N∑

i=1

∑

α∈IP

ϕi(x)Hα(θ)vi,α, vi,α ∈ R}

= {v(x, θ) = ϕ(x)v(θ), v(θ) ∈ SP ⊗ R
N}.

3.3 Definition of the approximation

Many choices are possible for the definition of an approximation in Vh,P . Be-
low, we present the more commonly used definitions, namely the stochastic
Galerkin method and the classical projection method.

3.3.1 Stochastic Galerkin method

A classical way to define the approximate solution uh,P ∈ Vh,P consists in
injecting the approximation space Vh,P in the weak formulation (6). It leads
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to the so-called Galerkin approximation which solves

A(uh,P , vh,P ) = L(vh,P ) ∀vh,P ∈ Vh,P , (19)

which is equivalent to the following system of N × P equations:

∑

α∈IP

E(HβAHα)uα = E(bHβ) ∀β ∈ IP . (20)

3.3.2 Projection method

The projection method consists in defining the approximate solution as the
projection on Vh,P of the semi-discretized solution with respect to a suitable
inner product. A classical choice consists in using the natural L2 inner product
on V, defined by

≪ u, v ≫L2=
∫

Θ

∫

Ω
u · v dx dP (θ). (21)

Denoting by uh(x, θ) = ϕ(x)u(θ) ∈ Vh the semi-discretized solution, which
solves (13), the approximation uh,P ∈ Vh,P is then defined by:

≪ uh,P , vh,P ≫L2=≪ uh,vh,P ≫L2 ∀vh,P ∈ Vh,P . (22)

Equation (22) is equivalent to the following definition of the coefficients of the
approximation:

uα =
∫

Θ
Hα(θ)u(θ)dP (θ) = E(Hαu). (23)

We emphasize on the fact that this equivalence comes from the tensor product
structure of the approximation and of the particular choice of inner product.
The expectation can then be computed by a suitable numerical integration at
the stochastic level (quadrature, Monte-Carlo, etc.), which writes

uα ≈
∑

k

ωkHα(θk)u(θk), (24)

where the θk are the integration points (particular elementary events) and
the ωk the associated integration weights. For each integration point, comput-
ing u(θk) = A−1(θk)b(θk) requires solving a classical deterministic problem.
In this case, the projection method is said to be non-intrusive since it only
requires the use of a simple deterministic code for each integration point. How-
ever, computational costs are generally prohibitive since this technique often
necessitates a large number of integration points in order to obtain a good ac-
curacy on the coefficients. Let us mention that sparse quadrature techniques
have been proposed in order to reduce the number of integration points [3].
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4 Classical stochastic finite elements to deal with random domains

The question is now: how to define an approximation of problem (6) in the
case of a random domain ? The extension of classical stochastic finite element
methods presented in section 3 is not straightforward since V, defined in (5),
has no more a tensor product structure. In the following, we recall two possible
strategies to construct stochastic finite element approximations in the case of
a random domain.

4.1 Classical finite element techniques with remeshings

A natural way to solve a stochastic problem defined on a random domain
consists in using a classical stochastic finite element method with remeshings,
such as Monte-Carlo simulation [9,10], response surface method, projection
[11] or regression [12] methods. These techniques require solving problem (2)
for given elementary events θk ∈ Θ. The meaning of these points depends
on the method which is used: random samplings for Monte-Carlo, stochas-
tic integration points for projection method, etc. These techniques have the
great advantage that they only require the use of a simple deterministic finite
element calculation code.

For a given elementary event θk ∈ Θ, we introduce a new finite element mesh
Th(θk) of the domain Ω(θk) and an associated finite element approximation

space Uh(θk) ⊂ U(θk) defined by Uh(θk) = {vh(x) =
∑N(θk)

i=1 ϕi(x, θk)vi, vi ∈
R}. The mesh, and then the basis functions ϕi(x, θk) ∈ Uh(θk), clearly depend
on the elementary event θk.

The first drawback of these techniques is that they require numerous deter-
ministic computations, each of which requiring the following classical steps:
remeshing of the domain, assembling and solving a finite element problem of
type (14). Another main drawback is that outcomes of the solution uh(·, θk) ∈
Uh(θk) are defined on different meshes and that corresponding finite ele-
ment problems (14) have a different algebraic structure. Information on non-
computed outcomes is then unreachable. Moreover, an a posteriori proba-
bilistic characterization of the solution is generally prohibitive since it would
require storing the meshes and finite element solutions for all computed ele-
mentary events.

Of course, it is possible to focus on a mesh and geometry independent quan-
tity of interest. Let us denote by J(uh(·, θ)) this quantity of interest and by
J(uh(·, θk)) its computed outcomes. In the context of Monte-Carlo simula-
tions, these outcomes allow evaluating statistics of J . In the case of projection
methods (see section 3.3.2), outcomes correspond to stochastic integration
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points which are used to compute the decomposition of J on a stochastic
basis: J =

∑
α∈I JαHα(θ), with

Jα = E(HαJ(uh)) ≈
∑

k

ωkHα(θk)J(uh(·, θk)). (25)

The problem is that these quantities of interest are not necessarily known a
priori, before having an idea of the solution.

4.2 Finite element approximation on a random mesh

In order to avoid remeshings and to obtain an “explicit” description of the
stochastic solution, an alternative technique consists in building a classical
finite element approximation on a reference deterministic domain, and to in-
troduce a random mapping between this domain and the random domain
Ω(θ). Such a strategy has been used in [13,14]. Let us briefly describe this
methodology in our context to point out its advantages and drawbacks.

4.2.1 Description of the random geometry by a random mapping

We first introduce a reference deterministic domain Ω0 ⊂ R
d and suppose that

there exists a continuous one to one mapping T (·, θ) between Ω0 and the out-
come Ω(θ) of the random domain: T (·, θ) : x0 ∈ Ω0 7→ x = T (x0, θ) ∈ Ω(θ).
We denote by T ∗(·, θ) the inverse mapping. Reference domain Ω0 and mapping
T allow the description of the random domain Ω. We suppose that the parts
Γi(θ) of boundary ∂Ω(θ) are the images by mapping T (·, θ) of complementary
parts Γ0

i of ∂Ω0. We denote by T |i the restriction of T on Γ0
i .

4.2.2 Construction of an approximation space

We introduce a fixed finite element mesh T0
h of reference domain Ω0, leading

to the definition of the following finite element approximation space: U0
h =

{v0(x0) =
∑N

i=1 ϕ0
i (x

0)vi, vi ∈ R}, where the ϕ0
i ∈ U0 = {v ∈ (H1(Ω0))d; v =

0 on Γ0
1} are the finite element basis functions associated with the mesh T0

h.
Approximation space U0

h being independent of the event, a tensor product
approximation space can be introduced: V0

h,P
∼= SP ⊗ U0

h. An approximation
subspace Vh,P of V is then simply defined by a suitable mapping of functions
in V0

h,P :

Vh,P = {v(x, θ) = v0(T ∗(x, θ), θ), v0 ∈ V
0
h,P} (26)

= {v(x, θ) =
N∑

i=1

ϕi(x, θ)vi(θ), vi(θ) ∈ SP},
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where ϕi(x, θ) = ϕ0
i (T

∗(x, θ)). The image of T0
h by mapping T (·, θ) is a mesh

of Ω(θ), denoted by Th(θ), which can be considered as a random mesh.

4.2.3 Definition and construction of the approximation

At this point, different definitions of the approximation can still be used, as
introduced in section 3.3. The approximation uh,P ∈ Vh,P can be written
uh,P = ϕ(x, θ)u(θ), with u(θ) =

∑
α∈IP

uαHα(θ). The standard Galerkin ap-
proximation is still defined by problem (19). Although the approximation has
not a tensor product structure, coefficients uα ∈ R

N are still defined by the
system of equations (20), where components of random matrix A and random
vector b can be written as integral on the reference domain. For every func-
tion f(x, θ), with x ∈ Ω(θ), let f 0(x0, θ) = f(T (x0, θ), θ) be the corresponding
function defined on Ω0 × Θ. Then, components of A and b write:

(A(θ))ij = a(ϕj, ϕi; θ) =
∫

Ω0
ε(ϕ0

i ) : C0 : ε(ϕ0
j) J0 dx0, (27)

(b(θ))i = b(ϕi; θ) =
∫

Ω0
ϕ0

i · f
0 J0 dx0 +

∫

Γ0
2

ϕ0
i · F

0 J0
2 ds0, (28)

where J0 and J0
2 are the jacobians of mappings T and T |2 respectively. In

equation (27), the strain term can be written as follows: ε(ϕ0
j) = 1

2
(

∂ϕ0
j

∂x
+

∂ϕ0
j

∂x

T

),

with
∂ϕ0

j

∂x
=

∂ϕ0
j

∂x0 ·
(

∂T
∂x0

)−1
. The randomness on the geometry is then only

contained in mappings T and T |2 and their jacobians. However, the integration
of the left and right-hand sides of system (20) is not so trivial and necessitates
a particular attention. An a priori explicit stochastic representation of the
mappings can facilitate this integration.

Another definition of the approximation, based on a projection method, can
also be used. It still consists in defining the random vector u ∈ R

N ⊗ SP

by equations (23) and (24). However, in this case, the approximation uh,P

appears to be the projection of the semi-discretized solution with respect to
the following inner product on V:

≪ u,v ≫ =
∫

Θ

∫

Ω(θ)
u · v(J0)−1 dx dP (θ)

=
∫

Θ

∫

Ω0
u0 · v0 dx dP (θ). (29)

4.2.4 Remarks

Compared to classical finite element techniques with remeshings, this method
has the advantage to do not require any remeshing. It also leads to a complete
description of the stochastic solution. However, some drawbacks can be pointed
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out. First, the construction of mapping T is not so trivial and necessitates the
elaboration of ad-hoc numerical techniques [40,13]. Regularity requirements
on the random mapping avoid dealing with general random domains, and in
particular with topology changes. Moreover, since the approximation space
has not a tensor product structure, a simple post-processing of random vector
u does not give meaningful information on the solution. For example, the
expectation E(u) leads to the expectation of u0(x0, θ) but not the expectation
of the physical displacement field u(x, θ) at a given point x.

5 The eXtended Stochastic Finite Element Method (X-SFEM)

In this section, we present the basic principles of the eXtended Stochastic
Finite Element Method (X-SFEM), which is the extension of the X-FEM
method in the stochastic framework. In this article, we only deal with random
shapes. This is a degenerated case of the X-FEM method [19,20] where only
a classical finite element approximation can be used, without enrichment of
the approximation space by the partition of unity method. In this section,
the method is introduced from a theoretical point of view. Computational
aspects related to the construction of the approximation will be detailed in
the following section.

5.1 Reformulation of the problem on a deterministic domain

We introduce a deterministic spatial domain B which contains all outcomes
of the random domain, i.e.

⋃
θ∈Θ Ω(θ) ⊂ B (figure 3).

B

Ω(θ)

Fig. 3. Deterministic domain B including all outcomes of the random domain Ω(θ)

The problem is then reformulated by considering prolongation of functions of
V on B×Θ. The aim of working in this deterministic domain is to facilitate the
construction of approximation spaces, independently of the random geometry.
We first introduce the function space

U(θ) = {v ∈ (H1(B))d; v = 0 on Γ1(θ)}. (30)
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Then, the prolongation of the stochastic solution u will be searched in the
following function space

V = {v : θ ∈ Θ → v(·, θ) ∈ U(θ);
∫

Θ
‖v‖2

U(θ)
dP (θ) < ∞}

:= L2(Θ, dP ; U) (31)

The stochastic problem (6) can now be equivalently reformulated as follows:
find u ∈ V such that

A(u, v) = L(v) ∀v ∈ V (32)

where bilinear form A and linear form L are defined as in the initial formulation
(6). Bilinear form A is clearly only semi-coercive on V, such that there exists
infinitely many solutions of problem (32). However, we can show that the
“physical part” of these solutions is unique and coincides with the solution of
the initial problem (6) (see [15]). The physical part of a solution u ∈ V is the
restriction u|P of u on the physical domain P of B × Θ, defined by

P = {(x, θ) ∈ B × Θ; x ∈ Ω(θ)}. (33)

In other words, all solutions of problem (32) differs by functions whose support
is included in the complementary subset of P, which can be called the “non-
physical domain”. In the following, we will denote by IP(x, θ) the indicator
function of P, defined on B × Θ, which writes

IP(x, θ) =





1 if (x, θ) ∈ P

0 otherwise
:= IΩ(θ)(x), (34)

where IΩ(θ)(x) is the classical indicator function of spatial domain Ω(θ). Bi-
linear form A and linear form L can be equivalently rewritten as follows:

A(u, v) =
∫

Θ

∫

B
ε(v) : C : ε(u) IP dx dP (θ), (35)

L(v) =
∫

Θ

∫

B
v · f IP dx dP (θ) +

∫

Θ

∫

Γ2(θ)
v · F ds dP (θ). (36)

5.2 Representation of the geometry using random level-sets

5.2.1 Random level-sets

Here, we represent the random geometry in an implicit manner using the level-
set technique [18]. The level-set technique consists in representing an hyper-
surface Γ in R

d by the iso-zero of a function φ called a level-set function. Then,
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to represent a random hyper-surface Γ(θ), it is natural to introduce a random
level-set function φ(x, θ) such that

Γ(θ) = {x ∈ R
d; φ(x, θ) = 0}. (37)

The level-set is generally taken as the signed distance function to the hyper-
surface: φ(x, θ) = ±dist(x, Γ(θ)). The distance function have some interesting
properties. For example, on the hyper-surface, the gradient of φ with respect
to x is the unitary normal to the hyper-surface. Let us note that the dirac
measure on Γ(θ), characterized by a level-set φ, can be written δΓ(θ)(x) =
δ(φ(x, θ)), where δ is the classical dirac delta function.

Fig. 4. Random level-set φ(x, θ) whose iso-zero represents the boundary of random
domain Ω(θ)

Here, the hyper-surface to be represented can be the complete boundary ∂Ω(θ)
of domain Ω (figure 4) or a part of this boundary. By convention, we consider
that φ(·, θ) takes negative values on random domain Ω(θ) and positive val-
ues on the complementary domain in B. The random domain Ω(θ) and its
boundary can then be characterized by

Ω(θ) = {x ∈ B; φ(x, θ) < 0}, (38)

∂Ω(θ) = {x ∈ B; φ(x, θ) = 0} ∪ {x ∈ ∂B; φ(x, θ) < 0}. (39)

The indicator function of the physical domain, defined by (34), can then be
simply written in terms of the level-set:

IP(x, θ) = IΩ(θ)(x) = H(−φ(x, θ)) (40)

where H : R → {0, 1} is the heaviside function defined by H(y) =





1 if y > 0

0 if y 6 0
.

In order to define boundary conditions, we also need to describe random parts
of the boundary ∂Ω. This description is also greatly simplified by using the
level-set technique. Let us see for example how to describe Γ2(θ), where sur-
face loads are applied, and how to define integrals on Γ2. Two first cases can
be encountered:
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• Γ2 = {x ∈ B; φ = 0} :

∫

Γ2(θ)

f ds =
∫

B

fδ(φ) dx (41)

• Γ2 = {x ∈ ∂2B; φ < 0} :

∫

Γ2(θ)

f ds =
∫

∂2B

fH(−φ) ds (42)

In (41), Γ2 is the iso-zero of the level-set φ. In (42), Γ2 = ∂2B ∩Ω, where ∂2B

is a deterministic part of the boundary of B. Of course, these cases do not
span all the possibilities. For example, a specific treatment is required if Γ2 is
only included in the hyper-surfaces described in (41) and (42). A possibility
consists in introducing an auxiliary level-set φ̃ whose iso-zero characterizes
the boundary of the hyper-surface. If we consider by convention that φ̃ takes
negative values on Γ2, that leads to the following two other cases:

• Γ2 = {x ∈ B; φ = 0; φ̃ < 0} :

∫

Γ2(θ)

f ds =
∫

B

fH(−φ̃)δ(φ) dx (43)

• Γ2 = {x ∈ ∂2B; φ < 0; φ̃ < 0} :

∫

Γ2(θ)

f ds =
∫

∂2B

fH(−φ)H(−φ̃) ds (44)

The case of equation (43) is illustrated on figure 5.

Γ2

Fig. 5. Level-set φ̃(·, θ) whose iso zero on ∂Ω(θ) represents the boundary of hyper–
surface Γ2(θ)

5.2.2 On the construction of levels-sets

For some particular shapes (circles, hyper-planes, ellipses, polygones, etc),
an explicit expression of level-sets can be used [20]. Then, considering the
parameters of these level-sets as random variables (e.g. center coordinates and
radius of the circle, etc), we easily define the associated random level-sets.
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In the context of the level-set technique, a simple way to obtain more complex
geometries consists in using classical boolean operations on basic domains. Let
us suppose that Ω1 and Ω2 are two random domains, respectively characterized
by random level-sets φ1 and φ2. Then, we want to define a random domain
Ω, characterized by a random level-set φ, by doing boolean operations on Ω1

and Ω2. Below, we present classical boolean operations and the associated
manipulations on level-sets:

• union : Ω = Ω1 ∪ Ω2,

φ(x, θ) = min{φ1(x, θ), φ2(x, θ)} (45)

• intersection: Ω = Ω1 ∩ Ω2,

φ(x, θ) = max{φ1(x, θ), φ2(x, θ)} (46)

• complement: Ω = Ωc
1,

φ(x, θ) = −φ1(x, θ) (47)

In this article, we will consider that level-sets are obtained by the above tech-
niques and that the probabilistic characterization of these level-sets is given.
The question of the probabilistic identification of random level-sets, as well
as the representation of more general random shapes by level-sets, will be
introduced in a subsequent paper.

5.2.3 Discretization of level-sets

In practice, a level-set is approximated at the space level by introducing a fi-
nite element mesh of domain B. This mesh can be different from the one which
is used for the approximate solution. However, the use of the same finite el-
ement mesh greatly simplifies the computational aspects within the context
of X-SFEM. We denote by {ϕi(x)}i∈I the set of finite element interpolation
functions associated with the nodes {xi}i∈I of the mesh. A level-set, approx-
imated at the space level, writes φ(x, θ) =

∑
i∈I ϕi(x)φi(θ), where the φi(θ)

are the nodal values of the random level-set, which are random variables. In
this article, we will consider a linear interpolation for the level-set. The iso-
zero of the approximate level-sets is then continuous and piecewise linear, thus
approximating the geometry piecewise linearly.

The randomness on the geometry is completely contained in the random level-
sets. Level-sets, after the stochastic modeling step (see section 2.4), can be
expressed in terms of basic random variables ξ. In some cases, a simple and
explicit representation of the level-set in terms of ξ could be available. How-
ever, in practice, an approximation of the level-set at the stochastic level can
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be convenient from a computational point of view. It consists in decompos-
ing the level-set on a suitable stochastic basis (in practice the same as for
the approximate solution): φ(x, ξ(θ)) =

∑
i∈I

∑
α ϕi(x)Hα(ξ(θ))φi,α. Giving

the coefficients φi,α then allow a complete characterization of the approximate
random geometry and a quick evaluation of outcomes of the random level-set.

5.3 Discussion on boundary conditions

In the case where only Neumann boundary conditions are applied (Γ1 = ∅),
V = L2(Θ, dP ; (H1(B))d) has a tensor product structure, i.e. V ∼= L2(Θ, dP )⊗
(H1(B))d. A classical tensor product approximation can then be easily con-
structed.

In the case where Dirichlet boundary conditions are applied on the random
boundary’s part Γ1, V has no more a tensor product structure. A reformulation
of the problem must then be introduced if we want to work in a tensor product
function space for the displacement field and then facilitates the construction
of approximation spaces. A possible way to achieve this is to introduce a
Lagrange multiplier p in order to impose the Dirichlet boundary conditions
in a weak sense. The problem can be reformulated as follows: find u ∈ S ⊗
(H1(B))d and p ∈ Q such that ∀v ∈ S ⊗ (H1(B))d and ∀q ∈ Q,

A(u, v) +
∫

Θ

∫

Γ1(θ)
p · v ds dP (θ) = L(v), (48)

∫

Θ

∫

Γ1(θ)
q · u ds dP (θ) = 0. (49)

A natural choice consists in introducing a boundary supported Lagrange mul-
tiplier, whose function space is defined by

Q = {p : θ 7→ p(·, θ) ∈ H−1/2(Γ1(θ));∫

Θ
‖p(·, θ)‖2

H−1/2(Γ1(θ)) dP (θ) < ∞}. (50)

Although the construction of an approximation space for the displacement
field is then greatly simplified, a particular care must still be taken for the
choice of the approximation space of Q in order to satisfy the discrete inf-
sup condition [41]. In the case where Γ1 is deterministic, Q ∼= S ⊗ H−1/2(Γ1)
has a tensor product structure. The construction of approximation spaces can
then be made independently at space and stochastic levels. It allows taking
part of previous works in the deterministic context for a suitable construction
of approximation subspaces of (H1(B))d and H−1/2(Γ1). For example, the
methodology proposed in [42,43] can be used.
Of course, when Γ1 is random, Q has no more a tensor product structure. An
alternative could consist in introducing a distributed Lagrange multiplier, with
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Q ⊂ L2(B)⊗S, while keeping the same weak formulation. This allows to obtain
a formulation with tensor product function spaces for both displacement field
and Lagrange multiplier. Finally, to avoid the use of Lagrange multiplier, other
alternatives could also be used to impose Dirichlet boundary conditions, such
as penalty method [44] or Nitsche’s method [45]. Those different strategies
will be investigated in a subsequent article.

5.4 Definition of approximation spaces

From now on, we will consider that Γ1 is deterministic and is contained in
the boundary ∂B of the deterministic domain (figure 6). The first condition
makes that V recovers a tensor product structure

V = L2(Θ, dP ; U) ∼= L2(Θ, dP ) ⊗ U. (51)

The second condition makes classical the construction of a finite element sub-
space in U, which satisfies the Dirichlet boundary conditions.

B

Ω(θ)

Γ1

Fig. 6. Case of a deterministic boundary part Γ1 ⊂ ∂B

Let Th be a finite element mesh of domain B and {ϕi}
N
i=1 be a finite element

approximation basis in U. The approximation space at the space level can
then be written:

Uh = {v(x) =
N∑

i=1

ϕi(x)vi = ϕ(x)v, v ∈ R
N}. (52)

A semi-discretized approximation space Vh ⊂ V is defined as follows:

Vh = S ⊗ Uh = {v(x, θ) = ϕ(x)v(θ), v ∈ S ⊗ R
N}. (53)

At the stochastic level, we introduce the approximation space SP ⊂ S, defined
in (17). Finally, as in equation (18), we introduce the following approximation
space in V:

Vh,P = SP ⊗ Uh = {v(x, θ) = ϕ(x)v(θ), v ∈ SP ⊗ R
N}. (54)
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5.5 Galerkin approximation

The Galerkin approximation uh,P ∈ Vh,P is defined by

A(uh,P , vh,P ) = L(vh,P ) ∀vh,P ∈ Vh,P , (55)

which is equivalent to the following system of equations:
∑

α∈IP

E(HβAHα)uα = E(bHβ) ∀β ∈ IP . (56)

Computational aspects related to the resolution of problem (56) will be de-
tailed in the following section. Below, we show that the Galerkin approxima-
tion can be said optimal in a certain sense with respect to the exact solution.
Since A is symmetric, continuous and coercive on V, it defines an inner product
on V, defined ∀u, v ∈ V by

≪ u, v ≫A= A(u,v). (57)

We denote by ‖ · ‖A the associated norm. By prolongation, ≪ , ≫A (resp.
‖ · ‖A) defines a semi-inner product (resp. semi-norm) on V. Let us denote by
u ∈ V a solution of problem (32). Then, the Galerkin approximation uh,P is
the optimal approximation of u in Vh,P with respect to the semi-norm ‖ · ‖A:

‖uh,P − u‖A = min
vh,P∈Vh,P

‖vh,P − u‖A. (58)

Equation (58) can also be interpreted as follows: uh,P is the projection of u on
Vh,P with respect to the inner-product ≪ , ≫A. The semi-inner product giving
no weight to the non-physical part of the solution, it can also be interpreted as
follows: the physical part of the approximate solution uh,P |P is the projection
of the exact physical solution u|P with respect to the inner product ≪ , ≫A

on V. We will see in examples that the Galerkin approximation leads to a very
good approximation of the exact physical solution.

Remark 2 (Non-uniqueness of the approximation) System (56) may be
only semi-definite, which means that the Galerkin approximation may not be
unique. It is the case if a basis function ϕi(x)Hα(θ) is in the left kernel of
bilinear form A, which is only semi-coercive on V. This occurs if the measure
of the intersection between the support of the basis function and the physical
domain P is zero, i.e.

µ(supp(ϕi(x)Hα(θ)) ∩ P) = 0, (59)

where µ = λ⊗P is the product measure on B×Θ, with λ the Lebesgue measure
on B. The support of the basis function is defined by

supp(ϕi(x)Hα(θ)) = closure({(x, θ) ∈ B × Θ; ϕi(x)Hα(θ) 6= 0}). (60)

21



The associated degree of freedom is undetermined but since it only contributes
to the non-physical part of the solution, it can be arbitrarily chosen. In practise,
they can be easily detected in the resolution procedure since they correspond to
zero diagonal terms of the system of equation (56), i.e. E((A)iiHαHα) = 0.
Of course, one can also use any linear solver allowing the obtention of a par-
ticular solution of a singular linear system of equations.
In the particular case where supp(Hα) = Θ, which is the case when we use clas-
sical polynomial chaos basis, condition (59) is equivalent to P ({λ(supp(ϕi) ∩
Ω) = 0}) = 1 and occurs if the set of elements in Th composing supp(ϕi) is
almost surely outside the domain Ω. Elements surely outside the domain being
automatically detected by the resolution procedure proposed in the following
section, the detection of undetermined degrees of freedom is straightforward.
In the contrary, if all elements in Th have a non-zero probability to intersect
the domain Ω, the Galerkin approximation is unique.

5.6 About projection methods

5.6.1 A L2 projection method based on X-FEM (P-X-FEM)

Here, we present another definition of the approximation which can be ob-
tained by simply applying a classical L2 projection method (see section 3.3.2),
where the deterministic code is based on the deterministic X-FEM method.
Let uh ∈ Vh be a solution of the semi-discretized problem:

A(uh, vh) = L(vh) ∀vh ∈ Vh. (61)

Denoting by uh = ϕ(x)u(θ), the random vector u(θ) verifies P -almost surely

A(θ)u(θ) = b(θ). (62)

Equation (62) corresponds to the classical system of equations which could be
obtained by the X-FEM method, when considering the deterministic problem
associated with elementary event θ. A(θ) may be only semi-definite positive.
A natural definition of a pseudo-inverse A(θ)+ of A(θ) consists in setting to
zero the undetermined degrees of freedom. They correspond to basis functions
ϕi whose support is such that λ(supp(ϕi)∩Ω(θ)) = 0, where λ is the classical
Lebesgue measure, or equivalently to basis functions ϕi such that all finite
elements composing supp(ϕi) are outside the domain Ω(θ).

A classical projection method, as introduced in section 3.3.2, would then con-
sist in projecting u on SP ⊗ R

N with respect to the natural inner-product
in L2(Θ, dP ; RN). The coefficients uα, α ∈ IP , of the approximate solution
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uh,P ∈ Vh,P are then approximated by a suitable stochastic integration

uα = E(Hαu) ≈
∑

k

ωkHα(θk)A
+(θk)b(θk). (63)

At the continuous level, this is equivalent to define uh,P as the projection of
uh ∈ Vh on Vh,P in the following sense:

‖uh,P − uh‖L2(B×Θ,dµ) = min
vh,P∈Vh,P

‖vh,P − uh‖L2(B×Θ,dµ), (64)

where µ = λ ⊗ P is the product measure on B × Θ, and

‖v‖2
L2(B×Θ,dµ) =

∫

Θ

∫

B
v(x, θ) · v(x, θ)dx dP (θ). (65)

As we will see in examples, this strategy leads to a relatively bad approxi-
mation, compared to the Galerkin approximation. In fact, significant errors
are made on finite elements K ∈ Th which have a non-zero probability to be
outside the domain but also a non-zero probability to intersect the domain,
i.e. 0 < P ({λ(K ∩ Ω(θ)) = 0}) < 1.

5.6.2 What should be a good projection method based on X-FEM ?

The problem with the above classical projection method is that it gives a
weight to the non-physical part of the solution, obtained by an artificial pro-
longation to zero of the solution. In fact, a good projection technique should
be based on a physical norm of the solution, as for the Galerkin approach. For
example, we could define the approximate solution by

‖uh,P − uh‖L2(P,dµ) = min
vh,P∈Vh,P

‖vh,P − uh‖L2(P,dµ), (66)

where uh(x, θ) = ϕ(x)u(θ) is the semi-discretized solution and where the
norm ‖ · ‖L2(P,dµ) is a classical L2-norm on the restriction of functions on the
physical domain P. That leads to solve the following stochastic problem:

∫

Θ

∫

Ω(θ)
vh,P · uh,P dx dP (θ) =

∫

Θ

∫

Ω(θ)
vh,P · uh dx dP (θ). (67)

Problem (67) is equivalent to the following system of equations:

∑

α∈IP

E(HβMHα)uα = E(HβMu) ∀β ∈ IP , (68)
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where M : Θ 7→ R
N×N is the random geometrical mass matrix, whose coeffi-

cients are defined by

(M(θ))ij =
∫

Ω(θ)
ϕi(x) · ϕj(x) dx

=
∫

B
ϕi(x) · ϕj(x) IP(x, θ) dx. (69)

A good projection method, based on a projection of the physical part of the
solution, then leads to the resolution of a problem similar to (56), which is
obtained by the Galerkin method. This “good” projection method based on
X-FEM would lead to the same computational aspects as X-SFEM.

6 Computational aspects of X-SFEM

In this section, we focus on the computational aspects of the X-SFEM method,
i.e. the construction and resolution of the discretized problem (55), leading
to the Galerkin approximation. We will first present the general resolution
procedure, which is quite classical in the context of stochastic finite element
methods. Then, we will come back on numerical aspects which are specific to
the X-SFEM method. From now on, we consider that the probabilistic content
of the problem is represented by a finite set of random variables ξ. We denote
by (Θ, B, Pξ) the associate finite-dimensional probability space. All random
quantities will then be expressed in terms of ξ instead of θ (see section 2.4).

6.1 The general resolution procedure

The coefficients of the Galerkin approximation uh,P ∈ Vh,P are solution of the
following system of equations:

∑

α∈IP

E(HβAHα)uα = E(bHβ) ∀β ∈ IP , (70)

where A and b are respectively the random finite element matrix and vec-
tor. A first step generally consists in decomposing these quantities on the
orthonormal basis {Hα}α∈I of S = L2(Θ, dPξ):

A =
∑

γ∈IA

AγHγ with Aγ = E(AHγ), (71)

b =
∑

γ∈Ib

bγHγ with bγ = E(bHγ). (72)

From orthonormality of the basis functions, the coefficients of the decompo-
sition of b lead directly to the right-hand side terms of system (70). Then,
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these coefficients must be computed only for indices Ib = IP . The left hand
side terms of system (70) can be written

E(AHαHβ) =
∑

γ∈IA

AγE(HγHαHβ). (73)

When using polynomial (eventually piecewise polynomial) basis functions {Hα},
if IP corresponds to polynomial up to degree p, the coefficients Aγ must only be
computed for the set of indices IA corresponding to polynomial functions up to
degree 2p. Indeed, E(HγHβHα) = 0 for γ ∈ (I\IA). Computing E(HγHαHβ)
is classical within the context of Galerkin stochastic finite element methods.
These quantities only depend on the chosen stochastic basis and are gener-
ally pre-computed. In the case where we use classical polynomial chaos or
generalized polynomial chaos, an analytical expression of these quantities is
sometimes available.

Finally, system (70), which is a huge system of size P ×N , is classically solved
by iterative solvers as preconditioned conjugate gradient [46,6,7]. These solvers
take part of the sparsity of the system, coming both from the sparse structure
of random matrix A and from orthogonality properties of basis functions in
SP . Some alternative resolution techniques can be used at this step for saving
computational times and memory requirements [3,8].

6.2 Computing the stochastic decomposition of random matrix and vector

In the general resolution procedure presented above, the only step which re-
quires further details concerns the stochastic decomposition of random matrix
and vector. To simplify the presentation, we consider that material properties
(represented by tensor C) and loadings (F and f) are deterministic. Also to
simplify the presentation, we consider that surface loads are applied on a ran-
dom part of the boundary Γ2 which can be characterized by the level-set φ as
follows: Γ2(ξ) = {x ∈ B; φ(x, ξ) = 0} ∪ {x ∈ ∂2B; φ(x, ξ) < 0}, where ∂2B is
a part of the boundary ∂B. This is a combination of the two cases introduced
in (41) and (42).

6.2.1 Decomposition of elementary matrices and vectors

Finite element matrix and vector are obtained by assembling element contri-
butions:

A(ξ) =
∑

K∈Th

AK(ξ), b(ξ) =
∑

K∈Th

bK(ξ), (74)
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where components of elementary matrices and vectors are defined by

(AK)ij =
∫

K

ε(ϕj) : C : ε(ϕi) H(−φ) dx, (75)

(bK)i =
∫

K

ϕi · f H(−φ) dx+

∫

∂K∩∂2B

ϕi · F H(−φ) ds +
∫

K

ϕi · F δ(φ) dx. (76)

The stochastic decompositions (71) and (72) can be performed element by
element. Then, we need to compute coefficients {AK,γ}γ∈IA

and {bK,γ}γ∈Ib
,

defined by

AK,γ = E(AK(ξ)Hγ(ξ)) =
∫

Θ

AK(y)Hγ(y) dPξ(y), (77)

bK,γ = E(bK(ξ)Hγ(ξ)) =
∫

Θ

bK(y)Hγ(y) dPξ(y). (78)

Coefficients of the decomposition can be obtained be a suitable integration on
Θ with respect to probability measure dPξ. Let us denote by QK = {(ξ, ω)}
a quadature rule, where ξ and ω denote respectively integration points and
integration weights, such that

E(f(ξ)) =
∫

Θ

f(y)dPξ(y) ≈
∑

(ξ,ω)∈QK

ωf(ξ). (79)

Computing coefficients of the decomposition then requires computing element
quantities AK(ξ) and bK(ξ) for some given elementary events ξ, correspond-
ing to given outcomes φ(·, ξ) of the random level-set. These computations are
classical within the context of the deterministic X-FEM method [20]. If the
element is cut by the iso-zero of the level set φ(·, ξ), a suitable subdivision of
the element and of its edges, illustrated on figure 7, allows defining a spatial
numerical integration on K ∩ Ω(ξ), ∂K ∩ Γ2(ξ) and K ∩ Γ2(ξ).

The question is then: how to define a suitable quadrature rule QK on Θ ?
Of course, it depends on the regularity of AK(ξ) and bK(ξ) with respect to
ξ. For example, if components of AK(ξ) were polynomial of degree up to j

with respect to ξ, and if we were using polynomial basis functions Hα up
to degree p, the integration of (AKHα) on Θ would require the integration
of polynomial functions of degre p + j. We could then construct a classical
Gaussian quadrature rule associated with measure dPξ, leading to an exact
computation of coefficients AK,γ.
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φ(.,ξ)=0

Ω(ξ)K

U

Γ (ξ) 2K

U

K

Γ (ξ) 2K

U

Fig. 7. For a given outcome φ(·, ξ) of the level-set, subdivision of a 3-nodes triangle
K and of its edges for the numerical integration on K ∩ Ω(ξ), ∂K ∩ Γ2(ξ) and
K ∩ Γ2(ξ).

6.2.2 Stochastic regularity of element matrices and vectors

Let us take a simple example to analyze the regularity of element matrices
and vectors with respect to random variables ξ. We consider that the spatial
mesh Th is composed by 3-nodes triangles. We also consider that the material is
homogeneous and deterministic. Basis functions ϕi being linear on an element
K ∈ Th, element matrix AK(ξ) writes

AK(ξ) = A0
K

∫

K
H(−φ(x, ξ)) dx = A0

Kλ(K ∩ Ω(ξ)), (80)

where (A0
K)ij = ε(ϕi) : C : ε(ϕj) is a constant matrix. In this case, the

stochastic regularity of AK only depends on the regularity of the function
λ(K ∩ Ω(ξ)), which is the measure of the intersection between K and the
physical domain. Let us consider that the iso-zero of the level-set is an hyper-
plane with a fixed unitary normal a and a position which depends on a unique
random variable ξ. The level-set can be written φ(x, ξ) = x · a − ξ. Figure 8
illustrates the dependence on ξ of the function λ(K ∩ Ω(ξ)). The stochastic
domain, included in R, can be split into four intervals. On ] −∞, ξ1[, λ(K ∩
Ω(ξ)) is equal to zero, on ]ξ3,∞[, it is constant and equal to λ(K). On the
two other intervals ]ξ1, ξ2[ and ]ξ2, ξ3[, λ(K ∩ Ω(ξ)) is polynomial of degree 2
with respect to ξ. These last two intervals correspond to the case where the
iso-zero of the level-set is cutting two edges of the element, each interval being
associated with a different pair of edges.

In the same way, if surface loads F and body loads f are polynomial functions
of x, we can easily show that the surface loads and body loads contributions
in bK are piecewise polynomial with respect to ξ. Then, it is clear that such
functions of ξ can’t be integrated by a classical quadrature constructed on the
whole stochastic domain. The idea is then to build a suitable partition of the
stochastic domain, on which finite element quantities are piecewise regular, in
order to define a suitable quadrature rule.
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Fig. 8. Function λ(K ∩ Ω(ξ)) as a function of ξ. Level-set φ(x, ξ) = x · a − ξ

In fact, the above partition of Θ can be completely characterized by the values
of the random level-set. Indeed, we can observe that each stochastic subdomain
corresponds to a constant state of the element K, defined by the sign of the
level-set at the nodes of the element. For our example, the four states of the
element, corresponding to each subdomain of Θ, are illustrated on figure 9.
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Fig. 9. Sign of the level-set φ(·, ξ) at nodes of element K for each stochastic subdo-
main.

6.2.3 Partitioning the stochastic domain for integration

Following the above observations, we here introduce a general procedure to
create a partition of the stochastic domain which is adapted to a finite element
K. This will allow us to define a suitable quadrature rule on Θ for integrating
element matrix and vector. This procedure only requires the use of the set
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of values of the level-set at the nodes IK of the finite element, denoted by
(φi(ξ))i∈IK

.

We suppose that random variables ξ = (ξ1, . . . , ξm) are statistically indepen-
dent and that each ξj is a uniform random variable with values in [aj, bj].
This can be obtained by a suitable iso-probabilistic mapping of the basic
random variables. Then, the stochastic domain is the hyper-rectangle Θ =∏m

j=1[aj, bj] ⊂ R
m.

For a given elementary event ξ, we define the state of an element by SK(ξ) =
(sign(φi(ξ)))i∈IK

, where sign(φi(ξ)) ∈ {−1, 0, 1}. The aim is to create a parti-
tion CK of Θ such that on each subdomain C ∈ CK , SK(ξ) takes the same value
for all ξ ∈ C. The proposed procedure consists in building a m-dimensional
cartesian mesh CK by a “tree type” recursive procedure. An element C ∈ CK ,
called a cell, is an hyper-rectangle C =

∏m
j=1[ξ

(1)
j , ξ

(2)
j ]. It has 2m vertices, de-

noted by vertices(C). We denote by split(C) the boolean function indicating
whether a cell should be split or not. The boolean value split(C) is false if
SK(ξ) = SK(ξ′) for all ξ, ξ′ ∈ vertices(C), and true otherwise. We denote
by order(C, j) the order of the cell along dimension j, defined as the number
of splittings along dimension j which has led to C, starting from Θ. Then,
we define the order of a cell by order(C) = maxj(order(C, j)) and the order
of a partition by order(CK) = maxC∈CK

(order(C)). Let us denote by k the
maximum order of the partition, which will be directly related to the precision
of the associated quadrature rule.

When splitting a cell C, there are different ways of defining the children cells.
The basic way consists in performing an isotropic splitting, leading to 2m chil-
dren. We denote by children(C; k) the set of children cells of C with order less
than k, which means that children(C; k) is empty if order(C) = k. However,
in order to reduce the number of cells in the partition and then to reduce the
size of the quadrature rule on Θ, it can be interesting to use an anisotropic
splitting criterium, defined as follows. A cell C has 2m faces, grouped by pairs
(Fj, F

′
j) of opposite faces orthogonal to dimension j. A parent cell will then be

split along dimension j only if order(C, j) < k and if state(Fj) 6= state(F′
j),

where the state of a face F is defined by state(F) = {SK(ξ)}ξ∈vertices(F). Ver-
tices of two opposite faces F and F′ are ordered in the same way. Then, they
have the same state if each pair (ξ, ξ′) of opposite vertices have the same
state, i.e. SK(ξ) = SK(ξ′). We denote by children(C; k) the obtained set of
children of order less than k. Let us denote that for a given cell, the anisotropic
criterium can lead to different non-empty sets of children for different k values.

The meshing algorithm then only consists in applying function recursive split,
described in algorithm 1, to the initial domain Θ or to cells of a pre-defined
partition of Θ.
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Algorithm 1 Recursive construction of a m-dimensional cartesian mesh CK

of order k

function resursive split(C)
1: if split(C) and children(C; k) not empty then

2: for all C ′ ∈ children(C; k) do

3: recursive split(C ′)
4: end for

5: else

6: add C to mesh CK

7: end if

Figures 10 and 11 illustrate the isotropic and anisotropic splitting respectively
for a 2D and 3D cells.

AnisotropicIsotropic

Fig. 10. Comparison between isotropic and anisotropic split of a 2D cell. ¤ and △
denote two different states of the vertices.

AnisotropicIsotropic

Fig. 11. Comparison between isotropic and anisotropic split of a 3D cell. ¤ and △
denote two different states of the vertices.

Finally, a quadrature rule QK on Θ can be defined by using the resulting carte-
sian mesh CK of Θ. For that, we proceed as follows. For each cell C ∈ CK , let fC

be the linear mapping which transforms the reference hyper-cube C̃ = [0, 1]m

into C =
∏m

j=1[ξ
(1)
j , ξ

(2)
j ] and let Q̃ be a classical Gauss-Legendre quadra-

ture rule on C̃. Let us denote by (ξ̃, ω̃) ∈ Q̃ the corresponding integration
points and weights. A quadrature rule QC,K on C is then defined as follows:

QC,K = {(ξ, ω) = (fC(ξ̃), ω̃Pξ(C)), (ξ̃, ω̃) ∈ Q̃)}, where Pξ(C) =

∏m

j=1
(ξ

(2)
j −ξ

(1)
j )∏m

j=1
(bj−aj)

is the probability of C. Finally, QK is defined by QK = ∪C∈CK
QC,K .

6.2.4 Summary

The stochastic decomposition of element matrices AK and element vectors bK

then requires the following steps:
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• Creation of the partition CK of Θ with given maximum order k

• Definition of a quadrature rule QK associated with CK

• Computation of AK(ξ) and bK(ξ) for each integration point ξ in QK (spa-
tial integration defined in equations (75) and (76))

• Computation of coefficients AK,γ and bK,γ (defined by equations (77) and
(78)).

All these steps, which require the main computational effort of X-SFEM, must
be performed for each finite element K ∈ Th. However, these calculations are
independent of one another so that the stochastic integration can be com-
pletely parallelized at the finite element level.

Remark 3 The quadrature rule on each subdomain of stochastic partitions
will be chosen in accordance with the expected theoretical regularity of AK and
bK, in order to well integrate AK(ξ)Hα(ξ) and bK(ξ)Hα(ξ). This regularity
should be estimated a priori. The regularity of AK and bK depends on the type
of finite elements and of the regularity of the level-set with respect to ξ. For
example, for the case of a 3-nodes triangle illustrated in section 6.2.2, it was
found that AK(ξ) was piecewise polynomial of degree 2. In this case, the order
of the quadrature can then be chosen in order to exactly integrate polynomials
of degree (2 + j), where j is the maximum degree of polynomials Hα(ξ).

7 Numerical examples

In this section, three numerical examples will illustrate the efficiency of the
X-SFEM method. In example 1, we consider a random plate in tension where
a probabilistic modeling with two independent random variables is chosen.
As this problem has an analytical solution, true error indicators will be in-
troduced in order to estimate the precision of the X-SFEM method. In this
first problem, the approximation space contains the exact solution, so that
X-SFEM leads to the exact numerical solution. This will allow us to focus on
the precision of the integration at the stochastic level. Then, we will compare
the X-SFEM method with a L2 projection method based on a deterministic
X-FEM code (P-X-FEM). In example 2, we consider a plate with a random
circular hole, randomness being modeled with three independent random vari-
ables. The X-SFEM method will be compared with Monte-Carlo method and
P-X-FEM. In example 3, a simplified 2D modeling of a random welded joint
will be considered. This last example presents a more complex random geom-
etry whose representation by the level-set technique is obtained by suitable
boolean operations on basic random domains. X-SFEM will be compared to
a classical FEM approach and P-X-FEM.
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7.1 Example 1 : random plate in tension

7.1.1 Problem definition and approximation

F Fa(θ)

Ω(θ)

Fig. 12. Example 1. Random plate in tension

We consider the problem of a plate submitted to uniform tension, represented
on figure 12. The plate lies in the random domain Ω(θ) =]0, 1[×]− a(θ)

2
,

a(θ)
2

[⊂
B =]0, 1[×] − 1

2
, 1

2
[, where a(θ) is a random variable writing: a(θ) = ξ1(θ) +

ξ2(θ), where ξ1 ∈ U(0.75, 0.95) and ξ2 ∈ U(0, 0.05) are two statistically inde-
pendent uniform random variables 1 . We will then work in the 2-dimensional
stochastic domain Θ = [0.75, 0.95] × [0, 0.05]. We work under plane stress as-
sumption and consider a homogeneous isotropic elastic material with Young
modulus equal to 1 and Poisson coefficient equal to 0.3. The random domain
is characterized by the following random level-set: for x = (x, y) ∈ B,

φ(x, θ) = max{y −
a(θ)

2
,−

a(θ)

2
− y}. (81)

The plate is submitted to a uniform and unitary tension load F = (±1, 0) on
Γ2(θ) = {x ∈ ∂B; φ(x, θ) < 0}. The exact solution u to this problem writes:
for x = (x, y) ∈ Ω(θ), u(x, θ) = (x,−0.3y). Let us notice that u does not
depend on the elementary event θ.

With the X-SFEM method, we work on a unique mesh Th of B, represented
on figure 13, where elements can be split into two groups: the first group (ei)
gathers all the elements surely in the domain and the second group (ec) gathers
all the elements possibly cut by the boundary. For the approximation at the
stochastic level, we use a generalized polynomial chaos with degree p = 1,
which should be sufficient regarding the exact solution.

In order to estimate the quality of the X-SFEM solution, we introduce the
following global error indicator on the stress field:

ε =
‖σh,P − σ‖L2(P,dµ)

‖σ‖L2(P,dµ)

, (82)

1 ξ ∈ U(a, b) denotes a uniform random variable with values in [a, b].
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e
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Fig. 13. Example 1. X-SFEM mesh with 2 element groups: surely in the domain (ei)
and possibly cut by the boundary (ec)

where σ and σh,P respectively denote the exact and approximate stress field
and where the L2-norm is defined by

‖σ‖2
L2(P,dµ) =

∫

Θ

∫

Ω(θ)

σ(x, θ) : σ(x, θ) dx dP (θ). (83)

We also introduce the error indicator εK , which is the local contribution of a
finite element K ∈ Th to the global error:

εK =
‖σh,P − σ‖L2(PK ,dµ)

‖σ‖L2(PK ,dµ)

, (84)

where PK = {(x, θ) ∈ B × Θ; x ∈ K ∩ Ω(θ)} denotes the physical part of
K × Θ.

7.1.2 Efficiency of the integration at stochastic level

First, we study the quality of the proposed integration technique at the stochas-
tic level. In particular, we compare the two proposed recursive procedures for
partitioning the stochastic domain Θ (see section 6.2.3). Let K ∈ Th be a
given finite element and let CK denote the associated cartesian mesh of Θ,
obtained by the isotropic or the anisotropic splitting procedure. We denote by
k the maximum order of the partition, which is directly related to the integra-
tion precision. Figure 14 presents stochastic domain partitions of order k = 4
which are associated with a particular finite element (shown on figure 12).
This finite element belongs to the set of possibly cut elements (ec). We ob-
serve that the number of stochastic subdomains is lower with the anisotropic
splitting (69 versus 88). On this figure, the recursive splitting procedure has
stopped for cells C which are not colored in purple. We recall that the recur-
sive split stops if all vertices ξ ∈ vertices(C) correspond to the same state
SK(ξ) = (sign(φi(ξ)))i∈IK

of the finite element K. If we increase the maxi-
mum order k of the partition, only cells colored in purple will be split again.
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Let us here recall that ξ1 and ξ2 have not the same range. Axis in Figure 14
have been rescaled for clarity.

 

ξ2

ξ
1

ξ
1

ξ
2

Fig. 14. Example 1. Stochastic partitions CK of order k = 4 for a particular finite
element K: isotropic splitting (left) and anisotropic splitting (right).

Let NK be the number of subdomains in partition CK . Table 1 shows the mean
value of NK over all K ∈ (ec), denoted by µN , for both partition procedures
and for different orders of partitions. We note that this number is lower with
the anisotropic splitting. We denote by TK the computational time for creating
partition CK and integrating elementary quantities AK and bK . Table 1 also
shows the mean time µT over all elements K ∈ (ec). We note that this time
is reduced with the anisotropic procedure, especially for high k values. In
fact, the computational time of X-SFEM mainly comes from the integration
of element quantities for elements in (ec). The computational time TK for
K ∈ (ei) and solving the Galerkin system of equations (56) is negligible for
this problem (less than 1 second).

partition order k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

µN

isotropic 1 4 14 32 69 143

anisotropic 1 4 11 26 54 106

µT

isotropic 0.04s 0.11s 0.24s 0.5s 1.1s 2.6s

anisotropic 0.04s 0.12s 0.22s 0.46s 1.0s 2.0s

Table 1
Example 1. Comparison between the isotropic and anisotropic partitioning proce-
dures for different orders k of stochastic partitions: µN is the average number of
stochastic subdomains for elements belonging to (ec) and µT is the corresponding
average CPU times (for creating the stochastic partition and integrating element
quantities).

Here, the approximation space contains the exact solution. Then, since X-
SFEM is based on a Galerkin projection of the exact physical solution, it leads
to the exact solution. However, the obtained approximate solution clearly de-
pends on the partition order k (related to the integration precision). Let us
denote by σk

h,P the associate approximate stress field and by εk the correspond-
ing value of the global error indicator. On figure 15, we show the convergence
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of εk with respect to k. We can observe a quick convergence towards the exact
solution for both procedures. For instance, for k = 2, both procedures lead to
a relative error inferior to 10−4.
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Fig. 15. Example 1. Integration precision: convergence of global error indicator εk

with respect to k for isotropic and anisotropic procedures.

7.1.3 Quality of the X-SFEM solution

Some examples of post-processing will now illustrate the quality of the solution
obtained by X-SFEM. The solution being explicit in terms of basic random
variables, post-processing can be performed at a very low cost. The following
results have been obtained with the mesh presented on figure 13 and with a
stochastic integration based on a stochastic partition of order k = 2. Figure 16
presents the response surfaces of the horizontal displacement for two points:
x1 = (1, 0.5) which is surely inside the random domain and x2 = (1, 0.95)
which is possibly inside or outside the random domain. For both points, we
observe that the approximation matches very well the exact physical solution.
For point x2, we observe that the non-physical part of the solution is the unique
possible prolongation (in the approximation space) of the physical part of the
solution.

Fig. 16. Example 1. Response surfaces of horizontal displacement for points
x1 = (1, 0.5) and x2 = (1, 0.95).

Figure 17 represents the stress field component σxx for a particular event
such as a(θ) = 0.75. The iso-zero of the corresponding outcome φ(x, θ) of the
level-set is represented by the red line. We observe that the stress solution is
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uniform and equal to 1 according to the exact solution even in the non-physical
domain. We also show on the same figure the local contribution εK of each
finite element to the global error. We note that these local contributions are
really low and concentrated on few elements.
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Fig. 17. Example 1. Stresses σxx (left) and local contributions to the error εk
K for

k = 2 (right) for a particular event (a(θ) = 0.75).

7.1.4 Comparison with a projection method based on X-FEM (P-X-FEM)

We now focus on the comparison between the X-SFEM method and P-X-FEM
(see section 5.6.1). Here, let us denote by σ̃h,P the solution obtained by P-X-
FEM and by ε̃p and ε̃

p
K the corresponding values of the global and local error

indicators (defined in (82) and (84)). Superscript p is related to the chosen
degree of the generalized polynomial chaos. Figure 18 shows the evolution of
ε̃p with respect to p. We observe a very slow convergence of P-X-FEM. Even
for a degree p = 8, the error is still high as opposed to the X-SFEM solution
which reaches a very high precision with a degree equal to 1. This is due to
the bad definition of the P-X-FEM approximation, which gives weight to the
non-physical part of the solution.
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Fig. 18. Example 1. Convergence of P-X-FEM: error indicator ε̃p with respect to
generalized polynomial chaos degree p.

As we can see on figure 19, which plots the local error indicator, the error
is concentrated on elements which are possibly cut by the boundary, more
precisely on elements which have a non-zero probability to be outside the
random domain. Figure 19 also plots the stress field component σxx for a
particular event such that a(θ) = 0.75.
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Fig. 19. Example 1. P-X-FEM: stress field component σxx (left) and local contribu-
tion ε̃

p
K to the global error (right) for a particular event (a(θ) = 0.75)

Figure 20 shows the horizontal displacement for points x1 and x2 for which
the X-SFEM solutions were presented on figure 16. Those results have been
calculated with a generalized polynomial chaos of degree p = 8. We observe
that the P-X-FEM solution for x1 (point surely inside the domain) is very
good, as the X-SFEM solution. However it is not the case for point x2, which
is possibly outside the domain: that clearly illustrates the bad behavior of the
approximation based on a L2 projection.

Fig. 20. Example 1. P-X-FEM: response surfaces of horizontal displacements for
points x1 and x2.

7.1.5 A particular case where no specific integration is required

At the spatial level, if we use a coarse finite element mesh as presented on figure
21, we can observe that the X-SFEM leads the exact solution in the numerical
sense (relative error less than 10−14). This can be explained as follows. For each
finite element K, the SK(ξ) = (sign(φi(ξ)))i∈IK

is the same for all elementary
events ξ ∈ Θ (illustrated on figure 21, which plots all possible outcomes of
the random level-set). Therefore, local quantities AK(ξ) and bK(ξ) are global
polynomial (of degree 2 in ξ) on the whole stochastic domain (see section
6.2.2). In this case, a classical quadrature rule defined on the whole stochastic
domain Θ (without partitioning) leads to an exact integration of element
quantities. Then, we obtain the exact approximate solution of X-SFEM, which
is the exact solution for this simple problem.
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Fig. 21. Example 1. Coarse X-SFEM finite element mesh.

7.2 Example 2 : plate with a random circular hole in tension

We consider the problem of a plate with a random circular hole submit-
ted to uniaxial tension. We consider a homogeneous isotropic elastic ma-
terial, under plane stress assumption, with Young modulus equal to 1 and
Poisson coefficient equal to zero. The plate lies in a square domain B =
]0, 3[×]0, 3[. The location of the center of the hole c = (cx, cy) depends on
two statistically independent uniform random variables cx(θ) ∈ U(1.4, 1.5)
and cy(θ) ∈ U(1.5, 1.55). The radius is also modeled with a uniform ran-
dom variable R(θ) ∈ U(0.45, 0.5), which is statistically independent of cx and
cy. In this case, the level-set function can be explicitly written as follows:
φ(x, θ) = R(θ) − ‖x − c(θ)‖. With the X-SFEM method, we use a unique
mesh represented on figure 22. The plate is submitted to a uniform deter-
ministic tension load: F = (−1, 0) on {x ∈ ∂B; x = 0} and F = (1, 0) on
{x ∈ ∂B; x = 3}.
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Fig. 22. Example 2. Plate with a random hole in tension; X-SFEM mesh with three
element groups: surely inside the domain (ei), possibly cut by the boundary of the
hole (ec) and surely outside the domain (eo).

We denote by ξ = (cx, cy, R). The stochastic domain is then Θ = [1.4, 1.5] ×
[1.5, 1.55]× [0.45, 0.5]. At the stochastic level, we use for the approximation a
3-dimensional generalized polynomial chaos with degree p = 2.
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7.2.1 Efficiency of the integration at stochastic level

We study the efficiency of the stochastic integration technique based on a
partitioning of the stochastic domain (see section 6.2.3). Figure 23 presents
different partitions CK obtained with the isotropic and anisotropic procedures
for a particular finite element K (shown on figure 22) and for different orders
k of the partitions. We recall that cells which are not colored in purple corre-
spond to cells whose vertices ξ ∈ Θ have all the same state SK(ξ). Then, for
these cells, the splitting procedure has reached its stopping criterium.

Let NK be the number of subdomains in partition CK . Table 2 indicates the
mean value of NK over all K ∈ (ec), denoted by µN , for both partition proce-
dures and for different orders of partitions. It also indicated the mean time µT ,
over all elements K ∈ (ec), which is required for creating stochastic partitions
and integrating element quantities AK and bK . As in the previous example,
we notice that µN is reduced with the anisotropic procedure: for instance,
with k = 4 or k = 5, this number is up to 20% lower than with the isotropic
splitting. Therefore, it also leads to a reduction of computation time µT .

Fig. 23. Example 2. Stochastic partitions CK associated with a finite element K

for different orders k : comparison between isotropic splitting (left) and anisotropic
splitting (right).

Let us denote by εk the global L2 error indicator between the approximate
stress field σk

h,P (for a given k) and a reference approximate stress field σh,P
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partition order k = 1 k = 2 k = 3 k = 4 k = 5

µN

isotropic 8 50 245 1076 4493

anisotropic 7 41 198 840 3413

µT

isotropic 0.45s 2.3s 12.1s 49.8s 210s

anisotropic 0.43s 2.1s 10.3s 42.4s 188s

Table 2
Example 2. Comparison between the isotropic and anisotropic partitioning proce-
dures for different orders k of stochastic partitions: µN is the average number of
stochastic subdomains for elements belonging to (ec) and µT is the corresponding
average CPU times (for creating the stochastic partition and integrating element
quantities).

(computed with an integration on an isotropic partition of order k = 6). On
figure 24, we can observe a good convergence of εk with respect to k for both
partition procedures. In the following, we will use the X-SFEM approximate
solution corresponding to an anisotropic splitting of order k = 3, which leads
to a relative error lower than 10−3 on the calculation of the approximate
solution.
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Fig. 24. Example 2. Convergence of εk with respect to k for the isotropic and
anisotropic partitions of Θ.

7.2.2 Comparison with classical approaches

In this section, we compare the X-SFEM solution with solutions calculated
with classical approaches: figure 25 shows a comparison between FEM and
X-SFEM solutions for a particular outcome of the geometry. We observe a
very good matching between stress fields σxx.

Figure 26 shows the probability density function for the horizontal elongation
∆U(θ) = ux(x2, θ) − ux(x1, θ) where x1 = (0, 1.5) and x2 = (3, 1.5). The
reference solution has been calculated with a Monte-Carlo approach with 104

samplings using an X-FEM code to solve each deterministic problem. We
observe a good X-SFEM solution according to the reference solution, even
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Fig. 25. Example 2. Comparison between FEM (left) and X-SFEM (right): stresses
σxx for cx = 1.4, cy = 1.5 and R = 0.45. (for vizualisation, stresses in elements
outside the physical domain are set to zero)

with a polynomial chaos of degree p = 2. Finally, let us indicate that on a
personal computer, the computational time took about 180 minutes with the
Monte-Carlo approach and only about 6 minutes with the X-SFEM method.
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X−SFEM order 3
X−SFEM order 4
Monte−Carlo + X−FEM

Fig. 26. Example 2. Probability density function of ∆U : comparison of X-SFEM
solutions (for different polynomial chaos degree p) with a Monte-Carlo approach
coupled with X-FEM (104 samplings).

7.3 Example 3 : random welded joint

We consider the problem of a structure with a random welded joint. The prob-
lem is represented on figure 27. The structure is embedded on a part Γ1 of its
boundary and submitted a uniform bending surface load F = (0, 0.1) MPa

on Γ2. The shape of the welded joint is represented by an elliptical arch char-
acterized by its two semi-axes a and b which also define the center of the
ellipse. Those two parameters are taken as statistically independent uniform
random variables a(θ) ∈ U(0.05, 0.15) and b(θ) ∈ U(0.05, 0.15). We then work
in a 2-dimensional stochastic domain Θ = [0.05, 0.15] × [0.05, 0.15]. We con-
sider that the material is homogeneous (same material for the structure and
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a(θ)

b(θ)

Γ1

Fig. 27. Example 3. Welded joint problem

the welded part) isotropic elastic with Young modulus equal to 210 GPa and
Poisson coefficient equal to 0.3. We solve the problem under the plane strain
assumption. With the X-SFEM method, we use a single mesh lying in the
domain B =]0, 0.4[×]0, 0.7[. In order to represent the random geometry, we
introduce boolean operations on several simple random domain (ellipses and
semi-planes), characterized by basic level-sets (see section 5.2.2). Figure 28
presents the X-SFEM finite element mesh composed by 2304 3-nodes trian-
gles with average size h = 1.5 10−2. Figure 29 shows the interpolation of the
level-set for an outcome of the geometry corresponding to a = b = 0.1.

P
1

P
2

ec

e
i

eo

Fig. 28. Example 3. X-SFEM mesh with three element groups: surely inside the
domain (ei), possibly cut by the boundary (ec) and surely outside the domain (eo).

7.3.1 Efficiency of the integration at stochastic level

As in previous examples, we first study the influence of the integration tech-
nique at the stochastic level. At the stochastic level, we use a 2-dimensional
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Fig. 29. Example 3. Outcome of the random level-set corresponding to a = 0.1 and
b = 0.1.

generalized polynomial chaos of degree p = 2. Let k denote the maximum
order of stochastic partitions (anisotropic or isotropic) and let us introduce
the global L2 error indicator εk between the approximate stress field σk

h,P (for
a given order k of stochastic partitions) and a reference approximate stress
field σh,P (computed with an integration on an anisotropic partition of order
k = 6). This error indicator is defined as in (82). Let us also introduce the
local error contribution εk

K of a finite element K, defined as in (84). Figure 30
shows the convergence of εk with respect to k and figure 31 shows the local
errors εk

K for k = 3 and k = 4. We note a good convergence towards the refer-
ence solution and, as we have noticed in previous examples, an order k equal
to 3 seems to be sufficient to perform a good integration at the stochastic
level. We still observe that errors are concentrated on a few elements which
are possibly cut by the boundary.
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Fig. 30. Example 3. Convergence of εk with respect to the order k of stochastic
partitions (isotropic and anisotropic).
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Fig. 31. Example 3. Local errors εk
K for stochastic partitions orders k = 3 and k = 4.

7.3.2 Comparison between X-SFEM, P-X-FEM and a classical FEM ap-
proach

In this section, we focus on comparison between the X-SFEM solution and
the solutions obtained with two other approaches: a classical FEM approach
with remeshings and P-X-FEM (L2 projection method based on X-FEM).
X-SFEM and P-X-FEM use the same same finite element mesh but we use
a generalized polynomial chaos of degree p = 4 for X-SFEM and of degree
p = 8 for P-X-FEM. FEM solutions have been obtained with conforming
meshes, corresponding to given outcomes of the geometry, with a mesh size
equivalent to the X-SFEM and P-X-FEM mesh size. First we compare the
solutions for the vertical displacement at two points P1 and P2, shown on
figure 27, which are respectively surely inside the domain and possibly inside
the domain. Figures 32 and 33 show the response surfaces corresponding to
each approach for those two points. For point P1, we observe a very good
agreement between the response surfaces of the three approaches. For point
P2, X-SFEM and P-X-FEM solutions are composed by a physical part and a
non-physical part. We observe that X-SFEM (based on a Galerkin projection
of the physical part of the exact solution) is much better than P-X-FEM (based
on a L2 projection of an artificial prolongation of the exact solution).

Fig. 32. Example 3. Response surfaces for vertical displacement at point P1 surely
inside the domain: comparison between FEM (left), X-SFEM (center) and P-X-FEM
(right).
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Fig. 33. Example 3. Response surfaces for vertical displacement at point P2 possibly
inside the domain: comparison between FEM (left), X-SFEM (center) and P-X-FEM
(right).

Figure 34 shows the response surfaces of the maximum value of stress field
component σxx for the three approaches. This quantity of interest, writing
σmax

xx (ξ) = maxx∈Ω(ξ)(σxx(x, ξ)), can be very useful in practice. On this fig-
ure, we still observe a good agreement between FEM and X-SFEM response
surfaces. P-X-FEM solution is clearly less accurate than X-SFEM. While FEM
and X-SFEM give a maximum stress for a = 0.05 and b = 0.15, P-X-FEM
gives this maximum at a = 0.15 and b = 0.15. Moreover, the maximum stress
value supξ∈Θ(σmax

xx (ξ)) given by P-X-FEM is much higher that the one given
by FEM and X-SFEM. Finally, let us indicate the computational times re-
quired by these approaches on a personal computer: 5 minutes for X-SFEM,
13 minutes for P-X-FEM and 4 hours for a Monte-Carlo approach coupled
with a classical FEM code and 104 samplings.

Fig. 34. Example 3. Response surfaces for maximum stress σmax
xx : comparison be-

tween FEM (left), X-SFEM (center) and P-X-FEM (right).

7.3.3 Convergence of the X-SFEM solution

In this section, we focus on the convergence of the X-SFEM solution. We intro-
duce the following global error indicator between the X-SFEM displacement
solution uh,P and a reference displacement field u:

εh,p =
‖uh,P − u‖L2(P,dµ)

‖u‖L2(P,dµ)

, (85)

where index p denotes the degree of the generalized polynomial chaos, h the
average finite element mesh size and ‖ · ‖L2(P,dµ) the L2 norm on the physical
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part of the displacement field, defined as for stresses in equation (83). The
reference solution u is obtained with X-SFEM with a mesh size h ≈ 0.015 and
a degree p = 6. Figure 35 shows the convergence of εh,p with respect to p and
h. For a given h, we observe a very quick convergence with respect to p. For
p > 2, we can conclude that the contribution to error comes essentially from
the finite element error. For a given p, we observe a classical convergence in
O(h2).
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Fig. 35. Example 3. Convergence of the X-SFEM approximation: error indicator
εh,p with respect to p (top) and h (bottom)

8 Conclusion

We proposed a Stochastic Finite Element Method to solve stochastic par-
tial differential equations defined on random domains. The first point of this
method lies in the use of the level-set technique, which represents in an im-
plicit way the geometry and allow the handling of complex random geometries.
The second point lies in the construction of a tensor product approximation
space, which is made possible by considering prolongation of solutions on a
deterministic spatial domain. A Galerkin criterium is then used to define the
approximation. Another definition of the approximation has been also intro-
duced, which is based on a classical L2 projection method based on a classical
X-FEM code. The superiority of the Galerkin projection has been illustrated
and interpreted from a mathematical point of view. The technical aspects for
the construction and the resolution of the discretized problem have been de-
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tailed. A particular care has been devoted to the numerical integration of the
weak form, requiring the development of a specific quadrature technique at
the stochastic level. For the numerical examples treated in this article, the
proposed stochastic quadrature technique has given very good results since
elementary matrices and vectors had a nice dependence on the random vari-
ables. The case where these quantities have a more complex dependence on
the random variables and also the case of higher stochastic dimension are key
questions which are currently under investigation. These points will certainly
require the development of simpler quadrature techniques and the use of the
high degree of parallelism of the method in order to reduce computational
costs.

Acknowledgement

This work is supported by the French National Research Agency (grant ANR-
06-JCJC-0064) and by the European Community and FEDER funds within
the project MEDACHS Interreg IIIB.

References

[1] R. G. Ghanem and P. D. Spanos. Stochastic finite elements: a spectral approach.
Springer, Berlin, 1991.
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[30] M. Loève. Probability Theory. I, fourth edition, in: Graduate Texts in
Mathematics, vol. 45. Springer-Verlag, New York, 1977.
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[42] N. Moës, E. Béchet, and M. Tourbier. Imposing dirichlet boundary conditions
in the extended finite element method. Int. J. for Numerical Methods in
Engineering, 67(12):1641–1669, 2006.
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