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Abstract

Stochastic Galerkin methods have become a significant tool for the resolution of
stochastic partial differential equations (SPDE). However, they suffer from pro-
hibitive computational times and memory requirements when dealing with large
scale applications and high stochastic dimensionality. Some alternative techniques,
based on the construction of suitable reduced deterministic or stochastic bases, have
been proposed in order to reduce these computational costs. Recently, a new ap-
proach, based on the concept of generalized spectral decomposition (GSD), has been
introduced for the definition and the automatic construction of reduced bases. In this
paper, the concept of GSD, initially introduced for a class of linear elliptic SPDE, is
extended to a wider class of stochastic problems. The proposed definition of the GSD
leads to the resolution of an invariant subspace problem, which is interpreted as an
eigen-like problem. This interpretation allows the construction of efficient numerical
algorithms for building optimal reduced bases, which are associated with dominant
generalized eigenspaces. The proposed algorithms, by separating the resolution of
reduced stochastic and deterministic problems, lead to drastic computational sav-
ings. Their efficiency is illustrated on several examples, where they are compared to
classical resolution techniques.
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1 Introduction

Computer simulations have become an essential tool for the quantitative pre-
diction of the response of physical models. The need to improve the reliability
of numerical predictions often requires taking into account uncertainties in-
herent to these models.

Uncertainties, either epistemic or aleatory, are commonly modeled within a
probabilistic framework. For many physical models, it leads to the resolution
of a stochastic partial differential equation (SPDE) where the operator, the
right-hand side, the boundary conditions or even the domain, depend on a set
of random variables. Many numerical methods have been proposed for the ap-
proximation of such SPDEs. In particular, stochastic Galerkin methods [1–4]
have received a growing interest in the last decade. They allow the obtention
of a decomposition of the solution on a suitable approximation basis, the co-
efficients of the decomposition being obtained by solving a large system of
equations. These methods, which lead to high quality predictions, rely on a
strong mathematical basis. That allows deriving a priori error estimators [5–7]
but also a posteriori error estimators [8,9] and therefore to develop adaptive
approximation techniques. However, many complex applications require a fine
discretization at both deterministic and stochastic levels. This dramatically
increases the dimension of approximation spaces and therefore of the result-
ing system of equations. The use of classical solvers in a black box fashion
generally leads to prohibitive computational times and memory requirements.
The reduction of these computational costs has now become a key question
for the development of stochastic Galerkin methods and their transfer towards
large scale and industrial applications.

Some alternative resolution techniques have been investigated over the last
years in order to drastically reduce computational costs induced by the use of
Galerkin approximation schemes. Some of these works rely on the construction
of reduced deterministic bases or stochastic bases (sets of random variables)
in order to decrease the size of the problem [3,10,11]. These techniques usually
start from the assertion that optimal deterministic and stochastic bases can be
obtained by using a classical spectral decomposition of the solution (namely
a Karhunen-Loève or Hilbert Karhunen-Loève expansion). The solution being
not known a priori, the basic idea of these techniques is to compute an approx-
imation of the “ideal” spectral decomposition by ad hoc numerical strategies.
The obtained set of deterministic vectors (resp. random variables) is then con-
sidered as a good candidate for a reduced deterministic (resp. stochastic) basis
on which the initial stochastic problem can be solved at a lower cost. Let us
here mention that this kind of decomposition has already been introduced in
various domains of application such as functional data analysis [12], image
analysis [13], dynamical model reduction [14,15], etc. In other contexts, it is
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also known as Principal Component Analysis, Proper Orthogonal Decompo-
sition or Singular Value Decomposition.

In [16], a new approach has been proposed to define and compute suitable
reduced bases, without a priori knowing the solution nor an approximation
of it. This method, which is inspired by a technique for solving deterministic
evolution equations [17–19], is based on the concept of generalized spectral
decomposition (GSD). It consists in defining an optimality criterion of the
decomposition based on the operator and right-hand side of the stochastic
problem. In the case of a linear elliptic symmetric SPDE, the obtained de-
composition can be interpreted as a generalized Karhunen-Loève expansion of
the right-hand side in the metric induced by the operator. In [16], it has been
shown that corresponding optimal reduced bases were solution of an optimiza-
tion problem on a functional which can be interpreted as an extended Rayleigh
quotient associated with an eigen-like problem. In order to solve this problem,
a power-type algorithm has been proposed. This algorithm, by separating the
resolution of reduced deterministic problems and reduced stochastic problems,
has led to significant computational savings.

The aim of this paper is to extend the concept of generalized spectral decom-
position to a wider class of stochastic problems and to provide ad hoc efficient
numerical strategies for its construction. The proposed definition of the GSD
leads to the resolution of an invariant subspace problem, which in fact can be
interpreted as an eigen-like problem. This interpretation allows the develop-
ment of suitable algorithms for the construction of the decomposition. Algo-
rithms are inspired by resolution techniques for classical eigenproblems, such
as subspace iterations or Arnoldi techniques [20]. Significant computational
savings are obtained with these new algorithms, in comparison with classical
resolution techniques but also with previous GSD algorithms proposed in [16].

The proposed method will be presented on a generic discretized linear prob-
lem, encountered in many physical situations, without taking care of the initial
“continuous problem” and of the discretization techniques at the determinis-
tic and stochastic levels. In this paper, we consider that the solution of the
fully discretized problem is our reference solution. The proposed method then
leads to an approximation of this reference approximate solution. The study
of approximation error, i.e. the distance between the reference solution and
the solution of the continuous problem, is beyond the scope of this paper. For
details, the reader can refer to [4–9].

The outline of the paper is as follows. In section 2, we briefly recall the prin-
ciples of stochastic Galerkin methods leading to the definition of a fully dis-
cretized version of the stochastic problem. Section 3 introduces some possible
strategies for building deterministic or stochastic reduced bases. In section 4,
the principles of the generalized spectral decomposition method (GSD) are in-
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troduced. In particular, some mathematical considerations allow us to exhibit
the underlying eigen-like problem that defines the GSD. Section 5 is devoted
to the presentation of different algorithms for building the GSD. In sections 6
and 7, the method is applied to two model problems: the first one is a linear
elasticity problem and the second one is based on transient heat equation.
Those model problems illustrate the capabilities of the method respectively
for elliptic and parabolic stochastic partial differential equations.

2 Stochastic Galerkin methods

2.1 Stochastic modeling and discretization

We adopt a probabilistic modeling of the uncertainties. We consider that the
probabilistic content of the stochastic problem can be represented by a finite
dimensional probability space (Θ, B, P ). Θ ⊂ R

m is the space of elementary
events, B an associated σ-algebra and P the probability measure. We consider
that a preliminary approximation step has been performed at the deterministic
level and that the stochastic problem reduces to the resolution of the following
system of stochastic equations: find a random vector u : θ ∈ Θ 7→ u(θ) ∈ R

n

such that we have P-almost surely

A(θ)u(θ) = b(θ), (1)

where A : Θ → R
n×n is a random matrix and b : Θ → R

n is a random
vector. For the sake of clarity and generality, we do not focus on the way
to obtain this semi-discretized problem. In the following, we will admit that
the continuous and discretized problems are well-posed, which means that
the continuous problem and the approximation technique have “good math-
ematical properties”. Sections 6 and 7 will illustrate two continuous model
problems and associated approximation techniques that lead to a system of
type (1) (by introducing usual spatial and temporal discretizations). Now, we
introduce an ad-hoc real-valued random function space S, classically the space
of second order random variables L2(Θ, dP ), such that a weak formulation of
the stochastic problem (1) can be introduced. This weak formulation, whose
solution is not necessarily solution of (1), reads: find u ∈ R

n ⊗ S ∼= (S)n such
that

E(vTAu) = E(vTb) ∀v ∈ R
n ⊗ S. (2)
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Approximation technique at the stochastic level consists in introducing a suit-
able finite dimensional approximation space

SP = {v(θ) =
∑

α∈IP

vαHα(θ), vα ∈ R, Hα ∈ S}, (3)

where {Hα}α∈IP
is a basis of SP , and IP = {αi, i = 1 . . . P} is a set of P

indices. The approximate solution u ∈ R
n ⊗ SP then reads

u(θ) =
∑

α∈IP

uαHα(θ). (4)

A classical way to define the approximation is to use a Galerkin orthogonality
criterion reading

E(vTAu) = E(vTb) ∀v ∈ R
n ⊗ SP , (5)

where E denotes the mathematical expectation. System (5) is equivalent to
the following system of n × P equations:

∑

β∈IP

E(AHαHβ)uβ = E(Hαb) ∀α ∈ IP . (6)

Several choices have been proposed for the construction of a stochastic ap-
proximation basis in L2(Θ, dP ): polynomial chaos [1], generalized polynomial
chaos [21,22], finite elements [6,4], or multi-wavelets [23,24]. Such a choice
depends on the regularity of the solution at the stochastic level. Several tech-
niques have been investigated for the adaptive choice of this basis, based on a
posteriori error estimation with respect to the continuous model [25,7–9]. For
well-posed approximate problems, the solution of (5) weakly converges with
P (in a mean-square sense) towards the solution of problem (2). In this paper,
we will consider that this approximation basis is given (fixed P ). The approx-
imate solution of the fully discretized problem (5) will then be considered as
our reference solution. The study of the stochastic approximation error, i.e.
the distance between solutions of equations (5) and (2), is beyond the scope
of this article.

2.2 Classical techniques to solve the discretized problem

System (6) can be written in the following block-matrix form:




E(AHα1
Hα1

) . . . E(AHα1
HαP

)
...

. . .
...

E(AHαP
Hα1

) . . . E(AHαP
HαP

)







uα1

...

uαP




=




E(bHα1
)

...

E(bHαP
)




(7)
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System (7) is a huge system of n × P equations. Krylov-type iterative tech-
niques are classically used to solve this system [2,26–28], such as Precondi-
tioned Conjugate Gradient for symmetric problems (PCG), Conjugate Gradi-
ent Square (CGS), etc. These algorithms take advantage of the sparsity of the
system, coming both from the sparsity of random matrix A and from classi-
cal orthogonality properties of the stochastic approximation basis [2]. These
algorithms are quite efficient. However, when dealing with large scale applica-
tions (large n), and when working with high stochastic dimension, with a fine
discretization at the stochastic level (requiring large P ), computational costs
and memory requirements induced by these techniques increase dramatically.

3 Construction of reduced approximation basis

A rising tendency in the context of computational stochastic methods consists
in trying to obtain pertinent reduced models in order to drastically decrease
the size of the problem when dealing with large scale applications and high
stochastic dimension. The idea is to build a small set of M deterministic
vectors Ui ∈ R

n (or M random variables λi ∈ SP ), with M ≪ n (or M ≪ P ),
and then to compute the associated random variables λi (or deterministic
vectors Ui). The approximate solution of problem (5) can then be written:

u(θ) ≈
M∑

i=1

λi(θ)Ui. (8)

In the following, we will denote by W = (U1 . . .UM) ∈ R
n×M the matrix

whose columns are the deterministic vectors and Λ = (λ1 . . . λM)T ∈ R
M ⊗SP

the random vector whose components are the random variables. Decomposi-
tion (8) can then be written in a matrix form

u(θ) ≈ WΛ(θ). (9)

3.1 Working on a reduced deterministic basis

Let us first suppose that a reduced deterministic basis has been computed.
Then, W being fixed, a natural definition of Λ ∈ R

M ⊗ SP arises from the
following Galerkin orthogonality criterion:

E(Λ̃
T
(WTAW)Λ) = E(Λ̃

T
WTb) ∀Λ̃ ∈ R

M ⊗ SP . (10)

Problem (10) defines the approximation of problem (5) in the approximation
subspace span({Ui}

M
i=1) ⊗ SP . It can be interpreted as a classical stochastic
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Galerkin problem on the reduced deterministic basis which is spanned 1 by the
Ui. As problem (5), problem (10) can be written in the following block-matrix
form:



E(WTAWHα1
Hα1

) . . . E(WTAWHα1
HαP

)
...

. . .
...

E(WTAWHαP
Hα1

) . . . E(WTAWHαP
HαP

)







Λα1

...

ΛαP




=




E(WTbHα1
)

...

E(WTbHαP
)




,

(11)

which is a system of M × P equations. Let us note that the reduced ran-
dom matrix WTAW is generally full. However, system (11) keeps its block
sparsity pattern coming from orthogonality properties of the stochastic basis.
This system can then be solved by classical Krylov-type iterative techniques
mentioned in section 2.2.

3.2 Working on a reduced stochastic basis

Let us now suppose that a reduced stochastic basis has been computed. Then,
Λ being fixed, a natural definition of W ∈ R

n×M arises from the following
Galerkin orthogonality criterion:

E(ΛTW̃TAWΛ) = E(ΛTW̃Tb) ∀W̃ ∈ R
n×M . (12)

Problem (12) defines the approximation of problem (5) in the approximation
subspace R

n⊗span({λi}
M
i=1), i.e. on the reduced basis of SP which is spanned 2

by the λi. It can be interpreted as a deterministic problem that can be written
in the following block-matrix form:




E(Aλ1λ1) . . . E(Aλ1λM)
...

. . .
...

E(AλMλ1) . . . E(AλMλM)







U1

...

UM




=




E(bλ1)
...

E(bλM)




, (13)

which is a system of M × n equations. Let us note that this block-system is
generally full in the block sense but that each block inherits from the sparsity
pattern of random matrix A. This system can then be solved by classical
direct or iterative solvers (or block solvers), the choice depending on its size.

1 span({Ui}
M
i=1) = {

∑M
i=1 aiUi ∈ R

n; ai ∈ R} is the linear subspace of R
n spanned

by vectors {Ui}
M
i=1.

2 span({λi}
M
i=1) = {

∑M
i=1 aiλi ∈ SP ; ai ∈ R} is the linear subspace of SP spanned

by random variables {λi}
M
i=1.
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3.3 How to define pertinent reduced bases ?

Now, the key question is: how can we define an optimal reduced basis (of
deterministic vectors or random variables) which leads to the best accuracy
for a given order M of decomposition ?

A possible answer is based on the following property: “the classical spec-
tral decomposition, i.e. the Karhunen-Loève expansion, is the optimal re-
duced decomposition of the solution u with respect to the natural norm in
L2(Θ, dP ; Rn)”. This norm is defined as follows:

‖u‖2 = E(uTu). (14)

Of course, changing the norm on the solution leads to another optimal spectral
decomposition, called Hilbert-Karhunen Loève decomposition in the continu-
ous framework [13,11]. Then, if only we could compute the classical spectral
decomposition of the solution, we could consider the obtained random vari-
ables (resp. deterministic vectors) as good candidates for building a reduced
stochastic basis (resp. deterministic basis). The problem is that the solution,
and a fortiori its correlation structure, is not known a priori. Several tech-
niques have already been introduced to get an approximation of this spectral
decomposition. In [3], the authors proposed to compute an approximation of
the correlation matrix, by using Neumann expansion of A, and to compute
its M dominant eigenvectors. The obtained vectors, considered as a reduced
deterministic basis, can then be interpreted as an approximation of vectors of
the exact spectral decomposition of u. In [10,11], the authors propose to first
introduce a coarse approximation at the deterministic level (e.g. by using a
coarse finite element mesh), leading to the resolution of a coarse stochastic
problem Ac(θ)uc(θ) = bc(θ), with uc ∈ R

nc ⊗SP , nc ≪ n. Then, a Karhunen-
Loève (or Hilbert-Karhunen Loève) expansion of uc can be performed. After
truncation at order M , it leads to the M desired random variables λi ∈ SP ,
considered as a reduced stochastic basis which can be used to solve the initial
fine stochastic problem.

Another possible answer consists in defining another optimality criterion of
the decomposition (i.e. of the reduced basis) which could allow its computa-
tion without a priori knowing the solution nor even an approximation of it.
This answer has been formulated in [16] by introducing the concept of “gen-
eralized spectral decomposition” (GSD). The arising technique can be seen as
a general technique for the automatic construction of both deterministic and
stochastic bases simultaneously, the obtained bases being optimal with respect
to operator and right-hand side of the problem. In this paper, this concept of
generalized spectral decomposition will be presented in a more general context.
The definition of the decomposition as a solution of an eigen-like problem will
be clarified in section 4. This interpretation will help us to propose improved
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algorithms for computing the generalized spectral decomposition in section 5.

Finally, let us mention another technique for the a priori construction of
reduced bases, called the Stochastic Reduced Basis Method [29,30]. In this
method, the reduced basis composed by the Ui is chosen in the M-dimensional
Krylov subspace of random matrix A, associated with the right-hand side
b: Ui = AUi−1, for i = 2 . . .M , with U1 = b. This method differs from
the above techniques because the Ui are also random. Its main drawback
is that the computation of Ui from Ui−1 requires (in practice) a stochastic
projection on SP , which induces a loss of accuracy and then restricts the use
of this technique to a low dimensional Krylov subspace. Another drawback,
compared to the above techniques, is that it does not circumvent the problem
of memory requirements since random vectors Ui ∈ R

n⊗SP have to be stored.

4 Generalized spectral decomposition

The idea of the generalized spectral decomposition method (GSD), introduced
in [16], is to try to find an optimal approximation of problem (5) in the fol-
lowing form :

u(θ) ≈
M∑

i=1

λi(θ)Ui, (15)

where the λi ∈ SP are random variables and the Ui ∈ R
n are deterministic

vectors, none of these quantities being known a priori. A decomposition of this
type is said optimal if the number of terms M is minimum for a given quality
of approximation. The set of deterministic vectors (resp. random variables) is
then considered as an optimal deterministic (resp. stochastic) reduced basis.
In this section, we introduce a natural definition of this decomposition and
show that the deterministic vectors (resp. random variables) are solution of
an invariant subspace problem, which is interpreted as an eigen-like problem.
We also recall and revisit the results obtained in [16], which corresponds to
a particular case of the present article. In this section, we do not focus on
algorithms allowing the computation of this decomposition, which is the aim
of section 5.

4.1 Preliminary remarks

Let W = (U1 . . .UM) ∈ R
n×M be the matrix whose columns are the deter-

ministic vectors and Λ = (λ1 . . . λM)T ∈ R
M ⊗ SP the random vector whose

components are the random variables. Decomposition (15) is then written in
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a matrix form

u(θ) ≈ WΛ(θ). (16)

Due to our definition of optimality, it is natural to impose on the Ui to be
linearly independent, i.e. to span a M -dimensional linear subspace of R

n:
dim(span({Ui}

M
i=1)) = M . Equivalently, we impose on W to belong to the set

of n-by-M full rank matrices, called the noncompact Stiefel manifold [31]:

Sn,M = {W ∈ R
n×M ; rank(W) = M}. (17)

Indeed, if W were not full rank, decomposition (15) could be equivalently
rewritten as a decomposition of order M ′ < M . Then, the order M approxi-
mation would not be optimal since it would exist an order M ′ approximation,
with M ′ < M , leading to the same approximation. For the same reason, it
is natural to look for “linearly independent” λi, i.e such that they span a
M -dimensional linear subspace of SP . We then introduce the following space:

S
∗
P,M = {Λ = (λ1 . . . λM)T ∈ R

M ⊗ SP ; dim(span({λi}
M
i=1)) = M}. (18)

In the following, we will use the abuse of notation: span(W) ≡ span({Ui}
M
i=1)

and span(Λ) ≡ span({λi}
M
i=1).

Remark 1 A function λi ∈ SP can be identified with a vector λi ∈ R
P ,

whose components are the coefficients of λi on the basis {Hα} of SP , i.e. λi =
(. . . λi,α . . .)T . In the same way, a random vector Λ = (λ1 . . . λM)T ∈ R

M ⊗SP

can be identified with a matrix L ∈ R
P×M whose column vectors are the vectors

λi, i.e. L = (λ1 . . . λM) = (. . .Λα . . .)T . The property “the λi are linearly
independent” is simply equivalent to “the vectors λi are linearly independent”
or “rank(L)=M”. We then clearly have the following isomorphism: S

∗
P,M

∼=
SP,M .

4.2 Definition of the generalized spectral decomposition

On one hand, if W were fixed, a natural definition of Λ would arise from the
resolution of problem (5) in the approximation subspace span(W) ⊗ SP : find
Λ ∈ R

M ⊗ SP such that

E(Λ̃
T
(WTAW)Λ) = E(Λ̃

T
WTb) ∀Λ̃ ∈ R

M ⊗ SP . (19)

The associated system of equations, written in a block-matrix form, is given
in (11). We denote by Λ = f(W) its solution, where f is a mapping defined
as follows:

f : W ∈ Sn,M 7→ Λ = f(W) ∈ R
M ⊗ SP . (20)
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On the other hand, if Λ were fixed, a natural definition of W would arise from
the resolution of problem (5) in the approximation subspace R

n ⊗ span(Λ) :
find W ∈ R

n×M such that

E(ΛTW̃TAWΛ) = E(ΛTW̃Tb) ∀W̃ ∈ R
n×M . (21)

The associated system of equations, written in a block-matrix form, is given
in (13). Let us denote by W = F(Λ) the solution of equation (21), where F

is the following mapping:

F : Λ ∈ S
∗
P,M 7→ W = F(Λ) ∈ R

n×M . (22)

When neither W nor Λ are fixed, it is then natural to look for a couple (W,Λ)
that verifies both equations (19) and (21) simultaneously. The problem then
reads: find (W,Λ) ∈ Sn,M × S

∗
P,M such that

W = F(Λ) and Λ = f(W). (23)

We will see in the following that problem (23) can be interpreted as an invari-
ant subspace problem, which can be interpreted as an eigen-like problem.

4.3 Non-uniqueness of the decomposition - equivalence class of solutions

The couples (W,Λ) and (WP,P−1Λ) clearly lead to the same decomposition
for all P ∈ GLM . 3 We can then define an equivalence class of couples in
Sn,M × S

∗
P,M that leads to the same approximation:

(W1,Λ1) ∼ (W2,Λ2)

⇔ {W1 = W2P, Λ1 = P−1Λ2, P ∈ GLM}. (24)

If (W,Λ) verifies problem (23), the obtained decomposition can be equiva-
lently written in terms of Λ or W:

u ≈ F(Λ)Λ or u ≈ Wf(W) (25)

Proposition 2 The mappings f and F verify the following homogeneity prop-
erties: ∀P ∈ GLM ,

f(WP) = P−1f(W)

F(PΛ) = F(Λ)P−1

Proposition 2 allows us to introduce equivalence classes for Λ and W sepa-
rately, defined by the following proposition.

3
GLM denotes the linear group of invertible matrices in R

M×M
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Proposition 3 The obtained decomposition F(Λ)Λ (resp. Wf(W)) is unique
on the equivalence class on S

∗
P,M (resp. Sn,M) defined by the equivalence rela-

tion
Λ
∼ (resp.

W
∼) where

Λ1
Λ
∼ Λ2 ⇔ {Λ1 = PΛ2, P ∈ GLM} (26)

W1
W
∼ W2 ⇔ {W1 = W2P, P ∈ GLM} (27)

W1
W
∼ W2 implies that (W1, f(W1)) ∼ (W2, f(W2)) and Λ1

Λ
∼ Λ2 implies

that (F(Λ1),Λ1) ∼ (F(Λ2),Λ2)

Remark 4 The non-uniqueness of the decomposition offers a flexibility in the
choice of deterministic vectors or random variables. For example, it is possible
to choose the particular solution corresponding to orthonormal deterministic
vectors (or random variables), which can be interesting from a computational
point of view.

4.4 Interpretation as an eigen-like problem

For the interpretation of the generalized spectral decomposition, we will focus
on a formulation on W. Problem (23) can be rewritten as a problem on W:

W = F ◦ f(W) (28)

Let us now introduce the following mapping:

T : W ∈ Sn,M 7→ F ◦ f(W) ∈ R
n×M (29)

Equation (28) then reads

W = T(W) (30)

From mappings homogeneity properties (proposition 2), we deduce the follow-
ing homogeneity property for T:

Proposition 5 The mapping T verifies the following homogeneity property :
∀P ∈ GLM ,

T(WP) = T(W)P

Regarding proposition 5, if W ∈ Sn,M verifies equation (30), all matrices in
its equivalence class, defined by (27), also verifies this equation. The problem

can then be reformulated in the quotient space Grn,M = (Sn,M/
W
∼), which

can be identified with the set of M -dimensional linear subspace of R
n, the so
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called Grassmann manifold (see e.g. [31,32]). An element W ∈ Grn,M can be
associated with all matrices W ∈ R

n×M such that span(W) = W, i.e. whose
column vectors span W. The problem can then be interpreted as follows: find
a M -dimensional linear subspace of R

n such that for all W ∈ Sn,M that spans
this subspace, equation (30) holds. Equation (30) can then be rewritten:

W = T(W) (31)

where T is the following mapping :

T : W = span(W) ∈ Grn,M 7→ span(T(W)) (32)

Equation (31) means that we look for a linear subspace W that is invariant
by the mapping T. This is a fixed point problem on the Grassmann manifold.

In fact, problem (31) can be interpreted as an eigen-like problem. If W =
span(W) is one of its solutions, then W is interpreted as a generalized eigenspace
of operator T. The interpretation of (31) as an eigen-like problem is crucial
since it allows characterizing the best invariant subspace, regarding the de-
composition of the solution. This best invariant subspace appears to be the
“dominant eigenspace” of operator T. In some particular cases, problem (31)
exactly coincides with a classical eigenproblem, associated with a classical
spectral decomposition of the solution (see section 4.5 and [16]). In the general
case, this interpretation is motivated by the observed properties of the prob-
lem. It naturally leads to the introduction of dedicated algorithms, inspired by
classical algorithms for solving eigenproblems. These algorithms, introduced
in section (5), present similar behaviors when applied to the present eigen-like
problem or to a classical eigenproblem. Numerical examples will illustrate this
classical behavior of algorithms and the soundness of the interpretation as an
eigen-like problem.

Remark 6 In fact, due to the definition of mappings f and F, the mapping
T is only defined on a subset Sn,M ⊂ Sn,M such that f(Sn,M) ⊂ S

∗
P,M . For

the same reason, mapping T is only defined on the quotient space Grn,M =

(Sn,M/
W
∼), which is a subset of the Grassmann manifold Grn,M .

Remark 7 We could have equivalently written the problem in terms of Λ:

Λ = f ◦ F(Λ) ≡ T∗(Λ)

This equation is an invariant subspace problem on GrP,M , which can be inter-
preted as an eigen-like problem on mapping T∗.
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4.5 The case of a coercive symmetric bounded random matrix

We here briefly recall and comment some mathematical results obtained in
[16] for the case where A is a bounded linear coercive symmetric operator
from R

n ⊗ S to R
n ⊗ S. These results clarify in which sense the decomposition

is optimal and generalizes the concept of Rayleigh quotient in the case of
our eigen-like problem. We first recall that in this case, A defines a norm on
R

n ⊗ SP , equivalent to the L2 norm (14), and defined by:

‖u‖2
A

= E(uTAu) (33)

Proposition 8 In the case of a bounded coercive symmetric random matrix
A, the optimal decomposition Wf(W) with respect to the A-norm is such that
W verifies the following optimization problem:

W = argmax
W∈Sn,M

R(W) (34)

where R(W) is a functional defined by:

R(W) = Trace(R(W)) (35)

with R(W) = E(f(W)bTW) (36)

The error in A-norm then verifies:

‖u − Wf(W)‖2
A

= ‖u‖2
A
− R(W) (37)

In the case where A is deterministic, functional R(W) reduces to

R(W) = (WTAW)−1WT E(bbT )W, (38)

and the mapping T reads

T(W) = A−1E(bbT )WR(W)−1. (39)

Then, problem (30) reads:

AWR(W) = E(bbT )W (40)

which is a classical generalized eigenproblem. Moreover, if A is symmetric,
R appears to be the classical associated matrix Rayleigh quotient (see e.g.
[33]). The obtained decomposition is then a classical spectral decomposition
of A−1b in the metric induced by A. In the case of a random matrix, we also
have the following properties of classical Rayleigh quotients [34].

Proposition 9 Functionals R(W) and R(W), defined by equation (36) and
(35), verify the following properties:

14



(i) Homogeneity: ∀P ∈ GLM ,

R(WP) = P−1R(W)P and R(WP) = R(W).

(ii) Stationarity : W verifies eigen-like problem (30) if and only if it is a sta-
tionarity point of R(W).

Regarding proposition 9, functional R (resp. R) can still be interpreted as
a generalized matrix (resp. scalar) Rayleigh quotient associated with eigen-
like problem (30). Vectors that makes R stationary are then naturally called
generalized eigenvectors, the value of R being interpreted as a generalized
eigenvalue. This functional allows us to quantify the quality of generalized
eigenspaces and eigenvectors, regarding (37). The best eigenspace (resp. eigen-
vector), which maximizes R, will then be called the dominant eigenspace (resp.
eigenvector).

Remark 10 Due to homogeneity property of the generalized Rayleigh quo-
tient, the optimization problem (34) can be interpreted as an optimization
problem on Grasmann Manifold Grn,M [33].

Remark 11 In this particular case of a coercive symmetric bounded random
matrix, the generalized spectral decomposition can be thought as a spectral de-
composition of A−1b in the metric induced by random matrix A, i.e. associated
with the inner product

((u,v))A = E(uTAv) (41)

However, this decomposition is not classical and does not lead to a classical
eigenproblem since inner product (41) is not a natural inner product on tensor
product space R

n ⊗ SP , usually built by tensorisation of inner products on R
n

and SP . It only coincides with a classical spectral decomposition for the case
of a deterministic symmetric positive definite matrix A. In the continuous
framework, this classical decomposition is called a Hilbert Karhunen Loève
decomposition [11].

5 Algorithms for the construction of the generalized spectral de-

composition

We have seen in the previous section that the construction of the generalized
spectral decomposition (GSD) consists in solving a fixed point problem in the
non-compact Stiefel manifold Sn,M , i.e. to find W ∈ Sn,M such that

T(W) = W, (42)
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where T is defined in (29). From properties of operator T, this problem has
been interpreted as an eigen-like problem, the optimal GSD of order M being
associated with the M -dimensional dominant eigenspace of operator T. This
interpretation naturally leads to the introduction of the following algorithms,
inspired by classical algorithms that allow the capture of dominant eigenspaces
of linear operators. Numerical examples in Sections 6 and 7 will illustrate the
ability of the proposed algorithms to construct the GSD.

5.1 Subspace Iteration type algorithm (SI-GSD)

For classical eigenproblems, the basic algorithm for finding the dominant
eigenspace of a linear operator T is the subspace iteration method. Subspace
iterations consist in building the series W(k+1) = T(W(k)). In the case of clas-
sical eigenproblems, this series converges towards the dominant eigenspace.
The extension in the case of our eigen-like problem (42) is straightforward
and leads to algorithm 1. In practice, as shown in examples, this algorithm
converges very quickly towards the dominant generalized eigenspace.

Algorithm 1 Subspace Iteration (SI-GSD)

1: Initialize W(0) ∈ Sn,M

2: for k = 1 to kmax do

3: Compute W(k) = T(W(k−1))
4: Orthonormalize W(k) (e.g. by QR factorization)
5: end for

6: Set W = W(k) and compute Λ = f(W)

Remark 12 Algorithm 1 with M = 1 corresponds to a power-type algorithm,
which leads to the construction of the dominant generalized eigenvector of T.

At each iteration k, the computation of T(W(k−1)) (step 3 of (SI-GSD)) can
be decomposed into two steps:

Λ(k−1) = f(W(k−1)) and W(k) = F(Λ(k−1)) (43)

The first step consists in solving a stochastic problem on a fixed deterministic
basis (problem of type (10)), which is a problem of size M×P . The second one
consists in solving a deterministic problem on a fixed stochastic basis (problem
of type (12)), which is a problem of size M × n. Iterations of (SI-GSD) then
asks at most for the resolution of kmax problems of size M × P and kmax

problems of size M × n.

We observe in practice that the initialization step has a low influence on the
convergence of the algorithm. A simple and efficient choice consists in taking
an initial vector Λ(0)(θ) =

∑
α Λ(0)

α Hα(θ) ∈ R
n ⊗ SP with random coefficients
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Λ(0)
α . Then, we simply compute W(0) = f(Λ(0)) by solving a deterministic

problem of size n × M (problem of type (12)).

5.2 Arnoldi type algorithm (A-GSD)

Subspace iteration algorithm 1 can be considered as the reference algorithm,
which leads to the “ideal” generalized spectral decomposition associated with
the dominant eigenspace. Here, we present an algorithm which gives an ap-
proximation of this decomposition and leads to significant computational sav-
ings. It is inspired by the Arnoldi technique for solving classical eigenproblems
(see e.g. [20]). Here, the idea is to find a matrix W whose columns span a M -
dimensional “generalized Krylov subspace” of operator T and then to build the
associated random vector Λ = f(W). The obtained linear subspace can then
be considered as a “Ritz approximate” of the dominant generalized eigenspace
of T. The “generalized Krylov subspace” KM(T,U1) associated with operator
T and an initial deterministic vector U1 can be defined as follows:

KM(T,U1) = span({Ui}
M
i=1},

with Ui = T(Ui−1), i = 2 . . . M. (44)

That leads to the following algorithm.

Algorithm 2 Arnoldi type algorithm (A-GSD)

1: Initialize U1 ∈ R
n and set U1 = U1

‖U1‖

2: for i = 1 to M do

3: Compute U = T(Ui)
4: Compute Ui+1 = U −

∑i
j=1(U

T
j U)Uj (Orthogonalization step)

5: if ‖Ui+1‖ < ǫ‖U‖ then

6: break
7: end if

8: Ui+1 = Ui+1

‖Ui+1‖

9: end for

10: Set W = (U1 . . .Ui) and compute Λ = f(W)

The construction of a M -dimensional Krylov subspace (steps 2 to 9) requires
to apply (M − 1) times the mapping T to a vector. Then, it requires only the
resolution of (M−1) problems of size P and (M−1) problems of size n. Finally,
the calculation of Λ requires to solve a problem of size M × P . That leads
to significant computational savings compared to algorithm 1. In practice, for
the initialization, we introduce an initial λ0(θ) =

∑
α λ0,αHα(θ) ∈ SP with

random coefficients λ0,α. Then, we compute the initial vector U1 = f(λ0) by
solving a simple deterministic problem of size n (problem of type (12) with
M = 1).
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By using a M -dimensional Krylov subspace, we only get an approximation
of the “ideal” generalized spectral decomposition of order M . If we want to
improve the quality of this decomposition, we can of course generate a (M+k)-
dimensional Krylov subspace KM+k(T,U1). That leads to a decomposition of
order (M + k), from which we can select the M most significant modes with
respect to a given metric. This selection step consists in a classical spectral
decomposition with respect to this metric (see appendix A). This methodology
will be denoted by (AM+k-GSD). The computational time required for the
selection is very low.

5.3 Restarting algorithms by “operator deflation”

Of course, when using algorithms 1 or 2 to solve a stochastic problem, we do
not know a priori the required order M to reach a given accuracy. Suppose
that we have built a first decomposition of a given order M and that we have
estimated the residual error. If the current decomposition does not reach the
required accuracy, we can of course reuse algorithm 1 or 2 with a higher order
M .

Remark 13 A basic way to estimate the error is to compute the norm of the
residual of the stochastic problem. For the case of a symmetric bounded coer-
cive random matrix A, another estimator (computationally cheaper) has been
proposed in [16]. Other strategies to estimate the error of the decomposition
in a more general context will be introduced in a subsequent paper.

Another possibility consists in building the subsequent deterministic vectors
and random variables by using a “deflation” of operator T. Let us suppose
that we have built a first decomposition WrΛr(θ). The deflated operator can
be defined by T(r) = F(r) ◦ f (r), where mappings f (r) and F(r) are defined as
mappings f and F by replacing the right-hand side b by the residual of the
stochastic problem

b(r) = b − AWrΛr. (45)

The subsequent deterministic vectors can then be found by computing the
dominant eigenspace of T(r) with algorithm 1 or 2. This strategy leads to the
global algorithm 3.

Algorithm 3 Restarted algorithm by operator deflation

1: Set b(0) = b, W0 = ∅, Λ0 = ∅
2: for r = 1 to rmax do

3: Compute the Mr-dimensional dominant eigenspace Ŵr of the deflated
operator T(r−1) = F(r−1) ◦ f (r−1)

4: Set Wr = (Wr−1 Ŵr)
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5: (without global updating) Compute Λ̂r = f (r−1)(Ŵr) and set Λr =

(ΛT
r−1 Λ̂

T

r )T

(with global updating) Compute Λr = f(Wr)
6: Check convergence
7: end for

Algorithm 3 introduces two variants which only differ at step 5, where random
variables are or are not updated with respect to all previously computed deter-
ministic vectors. In the case of a deterministic definite matrix A (symmetric
or not), we can prove (see proposition 19 in appendix B) that these two vari-
ants are equivalent and that they correspond to a usual deflation procedure to
solve the associated classical generalized eigenproblem written in (40). In the
general case of a random operator, proposition 19 is not true, even with global
updating. Indeed, the obtained linear subspace span(W), being the sum of
invariant subspaces of subsequent deflated operators T(r), is not necessarily an
invariant subspace of the initial operator T. In practice, the global updating
step leads to a better accuracy for a given order of decomposition.

Remark 14 In fact, the global updating can be interpreted as a subspace it-
eration on the initial eigen-like problem. Of course, the accuracy of the GSD
could be improved by performing additional subspace iterations. However, we
observe in practice that these additional iterations do not significantly improve
the accuracy. Then, since they are computationally expensive, they should be
avoided. In the general case, an important question concerns the study of the
relationship between generalized eigenspaces of deflated operators T(r) and gen-
eralized eigenspaces of the initial operator T. In particular, that could allow
to modify the proposed algorithms in order to directly build the optimal GSD,
without performing any global updating. This question is currently under in-
vestigation.

We have seen that algorithm 1 for M = 1 corresponds to a power-type algo-
rithm. If we use Mr = 1 in algorithm 3, the use of the power-type algorithm
allows the construction of the dominant eigenvector of the deflated operator
T(r). It leads to a power-type algorithm with deflation, which was first intro-
duced in [16]. This algorithm was called (P-GSD) when no global updating is
performed and (PU-GSD) when the global updating is performed. The effect
of global updating was first illustrated in [16].

Remark 15 The proposed deflation procedure can be also interesting when
dealing with large scale applications (needing large n and large P ) and when a
high order M of decomposition is required to reach a good accuracy. Indeed, in
this case, algorithms 1 or 2 require the resolution of “not so reduced” problems
of size M×P or M×n. When using restarted algorithm 3, algorithm 1 (or 2),
which is used at step 3, requires to solve problems of size Mr × n or Mr × P ,
with Mr < M .
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5.4 Ability to capture a solution with “low dimensionality”

An “ideal” GSD algorithm should be able to automatically capture the optimal
reduced basis. In other words, it should be able to capture an exact solution
u ∈ R

n ⊗ SP with a decomposition order M equal to the ideal decomposition
order. This ideal order can be defined as the minimum order M that leads to
an exact decomposition of u under the form (15), i.e.

Mu = min{M ∈ N;u =
M∑

i=1

λiUi, λi ∈ SP , Ui ∈ R
n} (46)

In fact, Mu is the number of terms in the exact spectral decomposition of u. It
can be called the dimensionality of random vector u. As R

n⊗SP is isomorphic
to R

n⊗R
P , the dimensionality is clearly finite and verifies Mu 6 min(n, P ). Of

course, in general, the dimensionality of a solution verifies Mu = min(n, P ).
However, for some problems, the solution may have a low dimensionality. For
example, for the case where matrix A is deterministic, the dimensionality of
the solution is the dimensionality of the right-hand side b, i.e. Mu = Mb. In
this particular case, we can prove that all the proposed algorithms (P-GSD,
PU-GSD, A-GSD, SI-GSD) allow the capture of the exact solution u with
exactly Mu modes. This good property has been also verified in [16] for the
power-type algorithm when matrix A has a very specific structure (product
of a random variable by a deterministic matrix). In more general cases, the
proposed subspace iteration algorithm (SI-GSD) and Arnoldi-type algorithm
(AM+k-GSD) have also this property. This will be illustrated in example 2
(section 7.7).

Remark 16 Mu can also be interpreted as the unique integer such that there
exists Wu ∈ Sn,Mu

and Λu ∈ S
∗
P,Mu

such that u = WuΛu. Mapping T,

defined in (32), seems to have a unique fixed point on Grn,Mu
(see remark

6), which is the span of Wu (observed in practice). If M > Mu, problem
(30) has no solution. In fact, in this case, Sn,M (resp. Grn,M) is empty, which
means that we can not find a full rank matrix in Sn,M such that the associated
random variables are linearly independent. One could interpret this property as
follows: if M were greater than Mu, a part of the generalized eigenspace would
be associated with zero eigenvalue. All these remarks are easily proven in the
case of a deterministic symmetric matrix A but need for more mathematical
investigations in the general case.
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6 Example 1: a linear elasticity problem

In this first model problem, the mathematical framework is the one of section
4.5, already illustrated in [16]. The aim of this section is to validate the new
algorithms proposed in this article. In particular, we show that the subspace
iteration algorithm 1 (SI-GSD) allows constructing the ideal generalized spec-
tral decomposition and that Arnoldi algorithm 2 (A-GSD) leads to a rather
good approximation of this ideal decomposition, which converges towards the
ideal decomposition when using higher dimensional generalized Krylov sub-
spaces. The computational costs of these algorithms are then illustrated.

6.1 Formulation of the problem, stochastic modeling and approximation

6.1.1 Formulation of the problem and spatial discretization

Γ
1

Γ
2

Ω

Fig. 1. Model problem 1: bending of an elastic structure

We consider a classical linear elasticity problem on a domain Ω ⊂ R
2 (Figure

1). We work under plane strain assumption. We denote by u(x, θ) the dis-
placement field. We denote by g(x, θ) the surface load applied on a part Γ2

of the boundary. Homogeneous Dirichlet boundary conditions are applied on
another part of the boundary, denoted by Γ1. We consider the complementary
part of Γ1 ∪ Γ2 in ∂Ω as a free boundary. A classical weak formulation of this
problem reads: find u ∈ V ⊗ S such that

A(u, v) = B(v) ∀v ∈ V ⊗ S (47)

where

A(u, v) = E
(∫

Ω
ε(v) : C : ε(u) dx

)

B(v) = E
(∫

Γ2

g · v ds
)

ε(u) is the symmetric part of the displacement gradient (or stain tensor) and
C the Hooke fourth-order tensor. Under classical regularity assumptions on
the data (see [4,35]), i.e. material properties and loadings, an ad-hoc choice
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for function spaces consists in taking V = {v(x) ∈ (H1(Ω))2; v|Γ1
= 0} and

S = L2(Θ, dP ). A classical finite element approximation at the space level can
be introduced. Let us denote by Vn = {v(x) =

∑n
i=1 viϕi(x), ϕi ∈ V} ⊂ V

the finite element approximation space. A function v ∈ Vn ⊗ S will then
be associated with the random vector v(θ) = (v1(θ), . . . , vn(θ))T ∈ R

n ⊗ S.
Random matrix A and random vector b in equation (1) are then defined as
follows: ∀u, v ∈ Vn,

A(u,v) = E(vTAu),

B(v) = E(vTb).

Here, we use a mesh composed by 3-nodes triangles, illustrated on Figure 2.
The dimension of the approximation space Vn is n = 1624.

Fig. 2. Finite element mesh: 3-nodes triangles

6.1.2 Stochastic modeling and stochastic discretization

We consider an isotropic material, with a Poisson coefficient ν = 0.3 and a
Young modulus κ(x, θ) which is a lognormal random field reading

κ(x, θ) = exp(µ + σγ(x, θ))

where γ(x, θ) is a homogeneous Gaussian random field with a zero mean,
a unitary standard deviation and an exponential square correlation function
with a correlation length equal to 1 (the horizontal length of the structure
is 2): E(γ(x, θ)γ(x′, θ)) = exp(−‖x − x′‖2). µ and σ are chosen such that
the marginal distribution of κ has a mean equal to 1 and a standard de-
viation equal to 0.25. The stochastic field κ is discretized as follows: we
first perform a truncated Karhunen-Loève decomposition of γ on 9 modes:
γ(x, θ) ≈

∑9
i=1 γi(x)ξi(θ), where the ξi ∈ N(0, 1) 4 are statistically indepen-

dent standard Gaussian random variables. We then decompose κ on a Hermite
polynomial chaos of degree 3 in dimension 9: κ ≈

∑
α κα(x)Hα(ξ(θ)). Coef-

ficients κα of the decomposition can be obtained analytically (see e.g. [10]).

4 ξ ∈ N(µ, σ) is a Gaussian random variable with mean µ and standard deviation
σ
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Finally, a truncated Karhunen Loève decomposition of order 9 is performed
in order to reduce the number of space functions for the representation of κ:
κ ≈

∑9
i=1 κi(x)ei(θ). The first 9 modes of this decomposition are shown in

Figure 3. The overall discretization procedure of κ leads to a relative L2 error
of 10−2 between the discretized stochastic field and the initial stochastic field.

We consider that the surface load g is vertical, uniformly distributed on Γ2:
g(x, θ) = −ξ10(θ)ey, where ξ10 ∈ N(1, 0.2) is a Gaussian random variable,
statistically independent of the previous random variables {ξi}

9
i=1.

The probabilistic content is then represented by m = 10 random variables
{ξi}

m
i=1. For the approximation space SP , we first choose a polynomial chaos

of degree p = 3 in dimension m = 10, thus leading to a dimension P = 286 of
the stochastic approximation space SP .

κ
1

κ
2

κ
3

κ
4

κ
5

κ
6

κ
7

κ
8

κ
9

Fig. 3. First modes {κi(x)}9
i=1 of the Karhunen-Loève decomposition of the lognor-

mal field κ(x, θ).

6.2 Reference solution and definition of errors

The reference solution, denoted by u, is the solution of the initial discretized
problem (5). It is computed by a classical Preconditioned Conjugate Gradient
algorithm (PCG). The preconditioner is a block preconditioner based on the
expectation E(A) of the random matrix (see [26] for its definition). We de-
note by (GSD) the generalized spectral decomposition and (SD) the classical
spectral decomposition of the reference solution. We denote by u(M) a spectral
decomposition of order M . In order to estimate the quality of approximate so-
lutions, we will use the following relative errors, respectively in L2-norm and
A-norm:

ε
(M)
L2 =

‖u − u(M)‖

‖u‖
, ε

(M)
A

=
‖u − u(M)‖A

‖u‖A
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The norms ‖ · ‖ and ‖ · ‖A are defined in equations (14) and (33) respectively.
In this example, we can notice that the A-norm is in fact equivalent to an
energy norm:

‖v‖2
A

= E(vTAv)

=
∫

Θ

∫

Ω
ε(v(x, θ)) : C : ε(v(x, θ)) dx dP (θ)

6.3 Comparison between Generalized Spectral Decomposition (GSD) and clas-
sical Spectral Decomposition (SD)

Here we compare the generalized spectral decomposition (GSD) with the clas-
sical spectral decomposition (SD) of the reference solution. The reference GSD
is obtained by algorithm 1 (SI-GSD). Figure 4 shows the convergence of SD
and GSD with respect to the order M of decomposition. We clearly observe
that the GSD is better than the SD with respect to the A-norm and that
the SD is better than the GSD with respect to the L2-norm. This result was
expected regarding the definition of spectral decompositions. For this model
problem, we recall that the A-norm is equivalent to an energy norm and then,
GSD leads to a better decomposition with respect to the energy norm.

In Figure 5 (resp. 6), we plot the first 9 deterministic functions of the GSD
(resp. SD).

For SD, the deterministic vectors are uniquely defined as the M dominant
eigenvectors of correlation matrix E(uuT ), sorted by decreasing eigenvalues.
This corresponds to a sorting regarding their contributions to the spectral
decomposition with respect to the L2-norm. The GSD vectors are not uniquely
defined. Every set of vectors which spans the same linear subspace of R

n leads
the same GSD. Then, in order to compare the deterministic vectors with those
of SD, we perform a classical spectral decomposition of the GSD with respect
to the L2-norm. This is just a rewriting of the GSD, the initial and final
deterministic vectors belonging to the same equivalence class, i.e. spanning
the same linear subspace (see appendix A for the definition of the sorting
procedure). The obtained vectors, shown in Figure 7, are very similar to the
one obtained by SD.

Finally, in Figure 8 we compare the GSD decomposition with a classical spec-
tral decomposition SD in the metric associated with E(A), which is in fact
a Hilbert-Karhunen Loève decomposition of the solution with respect to the
inner product < u,v >= E(uT E(A)v) in R

n ⊗ SP . We observe that such a
SD decomposition is more similar to the GSD decomposition.
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Fig. 4. Classical SD in the natural metric of L2(Θ, dP ; Rn) versus SI-GSD: conver-
gence in L2-norm (a) and A-norm (b)

U
1

U
2

U
3

U
4

U
5 U

6

U
7

U
8 U

9

Fig. 5. First modes {Ui}
9
i=1 of the GSD obtained by (SI-GSD)

6.4 Convergence of algorithm (SI-GSD)

In order to evaluate the convergence of the subspace iteration algorithm (SI-
GSD), we compare successive linear subspaces span(W(k)). The comparison
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Fig. 7. First modes {Ui}
9
i=1 of the GSD, sorted with respect to the L2 norm

between two linear subspaces can be made by computing the largest principal
angle between these linear subspaces. Two matrices W and W̃ being given,
the largest principal angle between the associated linear subspaces span(W)
and span(W̃) is defined by

∠(W,W̃) = max
U∈span(W)

min
Ũ∈span(W̃)

∠(U, Ũ)

where ∠(U, Ũ) is the classical angle between the two vectors (see e.g. [36]).
Figure 9 shows the cosinus of angle ∠(W(k),W(k+1)) between two successive it-
erates of algorithm SI-GSD for different orders M of decomposition. Figure 10
shows, for different orders M , the cosinus of angle ∠(W(k),W(ref)) between an
iterate W(k) of algorithm SI-GSD and the reference subspace W(ref). Finally,
we observe the convergence of SI-GSD in Figure 11 by estimating the dis-
tance (in A-norm) between the reference GSD u(M) and W(k)f(W(k)), which
is the approximate GSD obtained at iteration k. On all these figures, we ob-
serve a very fast convergence of SI-GSD towards the dominant generalized
M -dimensional eigenspace, whatever the dimension M is.
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Fig. 8. classical SD in the metric induced by E(A) versus SI-GSD: convergence in
L2-norm (a) and A-norm (b)

1 2 3 4 5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration k

co
s(

ω
k)

 

 

M = 1
M = 3
M = 5
M = 8

Fig. 9. Convergence of (SI-GSD) for different orders M of decomposition: cosinus
of the largest principal angle between two iterates ωk = ∠(W(k),W(k+1))

6.5 Arnoldi-type algorithm (A-GSD) versus Subspace Iterations (SI-GSD)

Here, we will evaluate the quality of the decomposition obtained by the Arnoldi-
type algorithm 2 (A-GSD). The obtained decomposition is compared with
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Fig. 10. Convergence of (SI-GSD) for different orders M of decomposition: cosi-
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ωk = ∠(W(k),W(ref))

1 2 3 4 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

iteration k

A
 e

rr
or

 

 

M = 1
M = 3
M = 5
M = 8

Fig. 11. Convergence of (SI-GSD) for different orders M of decomposition: error
‖W(k)

f(W(k)) − u
(M)‖A with respect to k

the decomposition obtained by algorithm (SI-GSD), considered as the exact
GSD. Figure 12 shows the error in A-norm with respect to the order M of
the decomposition for both algorithms. Here, A-GSD consists in generating a
M -dimensional Krylov subspace. We observe that A-GSD leads to a relatively
good approximate decomposition.

In Figure 13, we compare the convergence of the GSD decompositions ob-
tained by SI-GSD and AM+k-GSD. We recall that AM+k-GSD consists in
building a generalized spectral decomposition of order M + k, by generat-
ing a (M + k)-dimensional generalized Krylov subspace and then to select
the M most significant modes (see section 5.2). In Figure 13(a) (resp. 13(b)),
the M modes for AM+k-GSD are selected with respect to the natural inner
product in L2(Θ, dP ; Rn) (resp. to the inner product induced by E(A)). We
observe that by increasing the dimension of the generalized Krylov subspace,
we rapidly converge towards an optimal spectral decomposition, whatever the
metric used for the selection is.
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Fig. 12. SI-GSD versus A-GSD: convergence of the decomposition A-norm
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Fig. 13. SI-GSD versus AM+k-GSD: selection of the M most significant modes with
respect to the natural metric in L2(Θ, dP ; Rn) (a) or with respect to the metric
induced by E(A) (b)

6.6 Computational costs: comparison with a classical resolution technique

6.6.1 Comparison between GSD algorithms and a standard PCG

Here, we compare the computational times required by the classical Precon-
ditioned Conjugate Gradient (PCG) and by the (GSD) algorithms. Figure 14
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shows the error with respect to computational time for different algorithms.
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Fig. 14. Comparison between resolution techniques: L2-error versus computational
time (reference discretization)

Arnoldi-type algorithm (A-GSD) leads to significant computational savings
compared to PCG but also compared to algorithms P-GSD and PU-GSD,
which were proposed in a previous paper [16]. PU-GSD (resp. P-GSD) is a
power-type algorithm with deflation and with updating (resp. without updat-
ing). We recall that these power-type algorithms are equivalent to a subspace
iteration algorithm to build the generalized spectral decomposition. We ob-
serve that PU-GSD and P-GSD lead to similar computational times. In fact,
the computational time required by the updating step in PU-GSD is balanced
by the fact that PU-GSD needs for a lower order of decomposition than P-GSD
(the computed modes are more pertinent). We also observe that algorithms
AM+k-GSD and A-GSD lead to similar computational times. Of course, for a
given order of decomposition, AM+k-GSD requires more computational times.
However, this decomposition is more accurate than with A-GSD since the
computed modes are more pertinent.

6.6.2 Influence of the dimension of approximation spaces

To go further in the comparison of computational costs, we will analyze the
influence of the dimensions P and n of stochastic and deterministic approx-
imation spaces. Here, we only compare PCG with the most efficient GSD
algorithm, namely the Arnoldi-type algorithm (A-GSD). Four meshes, shown
in Figure 15, are used to analyze the influence of n. Meshes 1 to 4 correspond
respectively to n = 1150, 1624, 3590 and 6166. To analyze the influence of
P , we simply increase the order p of the polynomial chaos expansion of the
solution. We will use p = 2, 3 or 4, corresponding to P = 66, 286 or P = 1001
respectively.

Figure 16 (resp. 17) shows the computational times for different p and for the
fixed finite element mesh 2 (resp. mesh 4). We can observe than the PCG
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(a) mesh 1 : n = 1150

(b) mesh 2 : n = 1624

(c) mesh 3 : n = 3590

(d) mesh 4 : n = 6166

Fig. 15. Different finite element meshes

computational times drastically increase with p while the A-GSD computa-
tional times are almost independent of p. More precisely, we notice that when
P ≪ n, the computational times required by A-GSD are almost independent
of P . This result is clearly observed when we use the fine mesh 4. This is due to
the fact that deterministic and stochastic problems are uncoupled. Then, for
large n, P has a low influence on computational times, which comes essentially
from the resolution of deterministic equations.

Figure 18 (resp. 19) shows the computational times for different n and for a
fixed p = 2 (resp. p = 4). We can observe than the PCG computational times
drastically increase with n while the A-GSD computational times are almost
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Fig. 16. Influence of stochastic dimension (variable p) with fixed mesh 2
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Fig. 17. Influence of stochastic dimension (variable p) with fixed mesh 4

independent of n (especially for large P ). This result is clearly observed when
we use p = 4 (P = 1001). This is still due to the fact that deterministic and
stochastic problems are uncoupled. Then, for large P , n has a low influence on
computational times, which comes essentially from the resolution of stochastic
equations.
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Fig. 18. Influence of deterministic dimension (different meshes) with fixed stochastic
discretization (p = 2)
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Fig. 19. Influence of deterministic dimension (different meshes) with fixed stochastic
discretization (p = 4)

Finally, Table 1 shows the gains in terms of computational times to reach
a given relative error of 10−2. It also shows the gains in terms of memory
requirements to store the corresponding approximate solution. For the largest
P and n, we observe that the computational time with A-GSD is 50 times
lower than with PCG and that memory requirements are about 200 times
lower.

P=66 (p=2) P=286 (p=3) P=1001 (p=4)

Tg Mg Tg Mg Tg Mg

n=1150 9.3 15.3 15.4 57.3 11.2 133.8

n=1624 8.8 15.9 21.6 60.8 17.2 154.8

n=3590 14.8 16.2 42.6 66.2 33.1 195.7

n=6166 20.2 16.3 51.9 68.3 47.2 215.3

Table 1
Comparison between PCG and A-GSD: computational time gain factor Tg =

time(PCG)
time(A−GSD) to reach a relative error of 10−2 and memory gain factor Mg =

memory(PCG)
memory(A−GSD) to store the approximate solution

7 Model problem 2: a transient heat diffusion problem

7.1 Formulation of the problem and semi-discretization

We consider a transient heat diffusion equation as a model problem for parabolic
stochastic partial differential equations (see Figure 20). The problem reads:
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Fig. 20. Model problem 2 and associated finite element mesh

find a temperature field u : Ω × (0, T ) × Θ → R such that

c∂tu −∇ · (κ∇u) = f on Ω × (0, T )

−κ∇u · n = gi on Γi × (0, T ), i = 1, 2

u = 0 on Γ0 × (0, T )

u|t=0 = u0 on Ω (48)

where Ω denotes the spatial domain, (0, T ) the time domain, c and κ the ma-
terial parameters, f the volumic heat source and g1 (resp. g2) a normal flux on
a part Γ1 (resp. Γ2) of the boundary. Homogeneous Dirichlet boundary condi-
tions are applied on a part Γ0 of the boundary, which is the complementary
part of Γ1 ∪Γ2. For numerical examples, we will take u0 = 0. However, for the
sake of generality, this term is kept in the presentation of the method.

For space discretization, we use four-nodes linear finite elements (see mesh in
Figure 20). It classically leads to the following system of stochastic differential
equations in time: find u : (0, T ) × Θ → R

nx such that

M(θ)u̇(t, θ) + B(θ)u(t, θ) = c(t, θ) (49)

u(0, θ) = u0(θ) (50)

When using a classical time integration scheme, the resulting semi-discretized
stochastic problem can formally be written as in equation (1). Let us illus-
trate this for the case of a standard backward Euler scheme. We denote by
(0 = t0, t1, . . . , tnt

= T ) the time grid. For the sake of simplicity, we sup-
pose that we have a uniform time step δt. Denoting the solution by u(θ) ≡
(u(t1, θ)

T ,u(t2, θ)
T , . . . ,u(tnt

, θ)T )T ∈ R
n ⊗ S, with n = nx × nt, problem

((49),(50)) can then be written under the form (1) where random matrix A
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and random vector b are defined by:

A =




M + Bδt 0 . . . 0

−M M + Bδt
. . .

...
...

. . . . . . 0

0 . . . −M M + Bδt




(51)

b =




c(t1)δt + Mu0

c(t2)δt
...

c(tnt
)δt




(52)

The present model problem is then equivalent to our generic problem (1),
whose weak formulation writes (5). For the reference problem, we consider
nx = 1179 and nt = 30.

The generalized spectral decomposition technique can then be directly applied
to problem (5). Here, the GSD decomposition (15) reads

u(t, θ) ≈ W(t)Λ(θ) ⇔ u(θ) ≈ WΛ(θ)

where W ≡ (W(t1)
T , . . . ,W(tnt

)T )T ∈ R
n×M . With the proposed algorithms,

the construction of this decomposition requires the resolution of reduced deter-
ministic problems (13) and reduced stochastic problems (11). Of course, this
writing is just formal. In practice, those problems are re-interpreted with re-
spect to the initial evolution problem. This interpretation and computational
aspects are detailed in appendix C. In particular, it is shown that GSD takes
into account initial conditions in a week sense.

7.2 Stochastic modeling and approximation

Material parameters are considered as simple random variables, independent
of space and time. We take c(θ) = ξ1(θ) + ξ2(θ) and κ = ξ3(θ) + ξ4(θ), where
ξ1, . . . , ξ4 ∈ U(0.7, 1.3) 5 are four independent identically distributed uniform
random variables. The volumic heat source is considered as a simple Gaus-
sian random variable, independent of time and space: f = ξ5(θ) ∈ N(1, 0.2).
Normal fluxes are taken as: g1(t, θ) = ξ6(θ)

t
T

and g2(t, θ) = ξ7(θ)
t
T
, where

ξ6, ξ7 ∈ N(1, 0.2). The probabilistic content is then represented by m = 7

5 ξ ∈ U(a, b) is a uniform random variable on (a, b)
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random variables {ξi}
7
i=1, which are considered statistically independent. For

the approximation at the stochastic level, we use a generalized polynomial
chaos approximation of order p [21,22]. Basis functions of SP are then multi-
dimensional polynomials, which are the product of Legendre polynomials in
ξ1, ξ2, ξ3 and ξ4 and Hermite polynomials in ξ5, ξ6 and ξ7. For the reference
problem, we take p = 4, corresponding to P = (p+m)!

m!p!
= 330 basis functions in

SP .

7.3 Reference solution and error indicator

The reference solution, denoted by u, is the solution of the initial discretized
problem (5). It is computed by a time incremental resolution. At each ti,
i = 1, . . . , nt, u(ti, θ) ∈ R

nx ⊗ SP verifies the problem: ∀v ∈ R
nx ⊗ SP ,

E(vT (M(θ) + B(θ)δt)u(ti, θ)) = E(vT (M(θ)u(ti−1, θ) + c(ti, θ)δt)) (53)

Problem (53), which is a system of nx×P equations, is solved as in model prob-
lem 1 using a classical Preconditioned Conjugate Gradient algorithm (PCG)
with a tolerance 10−5. The preconditioner is a block diagonal preconditioner
based on the expectation E(M + Bδt) (see [26] for its definition). In the fol-
lowing, this reference resolution technique is simply denoted by PCG. We
denote by u(M) a spectral decomposition of order M . In order to compare
approximate solutions, we use the following relative error:

ε(M) =
‖u − u(M)‖

‖u‖
(54)

where the norm ‖ · ‖ is the following L2-norm on the approximation space :

‖u‖2 =
nt∑

i=1

δtE(u(ti, θ)
Tu(ti, θ)) (55)

Remark 17 The L2-norm defined in (55) coincides with the natural norm
in L2(Θ, dP ; L2((0, T ); Rn)) if we consider that the approximation is piecewise
constant on each time interval and lower semi-continuous:

‖u‖2 =
∫

Θ

∫ T

0
u(t, θ)Tu(t, θ) dt dP (θ)

7.4 Comparison between Generalized Spectral Decomposition (GSD) and clas-
sical Spectral Decomposition (SD)

Here, we compare the generalized spectral decomposition (GSD) with the
classical spectral decomposition (SD) of the reference solution. The SD of the
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reference solution u ∈ R
n ⊗ SP is defined as the best decomposition of order

M with respect to the norm defined in (55). The time grid being uniform,
this decomposition can be obtained by applying a classical Karhunen-Loève
decomposition to random vector u. The GSD is obtained by algorithm 2 (A-
GSD). Figure 21 shows the convergence of SD and GSD with respect to the
order M of decomposition. We observe that A-GSD leads to a rather good
decomposition with respect to the L2-norm.
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Fig. 21. Convergence of GSD, obtained by algorithm (A-GSD), versus convergence
of classical SD (in the L2 metric)

We recall that A-GSD consists in generating a M -dimensional generalized
Krylov subspace. We now use algorithm AM+k-GSD in order to improve the
quality of the decomposition of order M (see section 5.2). We recall that
this algorithm consists in building a GSD of order (M + k) (by building a
(M + k)-dimensional generalized Krylov subspace) and then in selecting the
M most significant modes with respect to a given metric. Here, we use the L2

metric for the selection. In Figure 22, we compare the convergence of the GSD
decomposition obtained by AM+k-GSD with the convergence of the classical
SD of the reference solution. We still observe that by increasing the dimension
of the Krylov subspace, the GSD quickly converges towards an optimal spectral
decomposition, which is very similar to L2-optimal classical SD.

7.5 Quality of the generalized spectral decomposition

In Figure 23 (resp. 24), we can see the quantiles (5% and 95%) of the GSD
approximation at a given point (resp. at a given time on a vertical line). We
observe that the approximation of these quantiles converges very fast with
the order M of the GSD. For M = 4, corresponding to an error in L2 norm
inferior to 10−2, the approximation of the quantiles is very good.
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Fig. 22. (SD) versus (AM+k-GSD): selection of the M most significant modes with
respect to the L2 metric

Fig. 23. Quantiles 0.05 and 0.95 of approximate solutions at point (0.5, 1.5)

Fig. 24. Quantiles 0.05 and 0.95 of the approximate solutions on the line x = 0.5 at
time t = 0.65s

7.6 Computational costs

Now, we illustrate the efficiency of the proposed algorithm A-GSD by compar-
ing it to the classical resolution technique PCG. Figure 25 shows the evolution
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of the error with respect to computational time. We can observe that the con-
vergence rate of A-GSD is far better than the one of PCG.
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Fig. 25. Error versus computation time for PCG and A-GSD (reference discretiza-
tion)

To go further in the comparison of computational costs, we will analyze the
influence of the dimensions P and n of stochastic and deterministic approx-
imation spaces. Figure 26 shows the convergence curves for different orders
p = 3, 4 and 5 of polynomial chaos expansions, respectively corresponding to
P = 120, 330 and 792. We clearly observe that an increasing P has a very low
influence on the convergence rate of A-GSD while it drastically deteriorates
the convergence rate of PCG.
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Fig. 26. Influence of the dimension of the stochastic approximation space for PCG
and A-GSD (for p=3, 4 or 5)

Table 2 shows the gains in terms of computational times for different dis-
cretizations at stochastic level (different orders p of polynomial chaos) and
deterministic level (different numbers of spatial degrees of freedom nx and
time steps nt). The gain is computed by comparing computational times of
PCG and A-GSD to reach a given relative error of 10−2. We observe that for
the finest discretizations, computational times can be divided by 100.
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Tg

p=3 nt=10 nt=30 nt=50

nx=289 7 15 19

nx=659 8 15 19

nx=1179 6 14 19

p=4 nt=10 nt=30 nt=50

nx=289 17 39 49

nx=659 18 39 50

nx=1179 13 33 43

p=5 nt=10 nt=30 nt=50

nx=289 35 76 103

nx=659 36 85 103

nx=1179 27 64 87

Table 2
Time gain factor Tg = time(PCG)

time(A−GSD)

In Figure 27, we illustrate the computational time required by (PCG) to reach
a relative error of 10−2 with respect to the total dimension n × P of the ap-
proximation space. We observe that computational time grows approximately
linearly with respect to n×P (unitary slope in log-log plot). Results of Table
2 are plotted in Figure 28, where we can observe a quasi linearity between
the gain and the total dimension of the approximation space (unitary slope in
log-log plot).
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Fig. 27. time(PCG) with respect to n × P

Finally, Table 3 shows the gains in terms of memory requirements for the stor-
age of the solution, for different discretizations. For the finest discretizations,
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Fig. 28. Time gain factor Tg = time(PCG)
time(A−GSD) with respect to n × P

the memory requirements are divided by 200.

Mg

p=3 nt=10 nt=30 nt=50

nx=289 29 30 30

nx=659 30 30 30

nx=1179 30 30 30

p=4 nt=10 nt=30 nt=50

nx=289 74 80 81

nx=659 79 81 82

nx=1179 80 82 82

p=5 nt=10 nt=30 nt=50

nx=289 155 181 188

nx=659 177 190 193

nx=1179 186 194 195

Table 3
Memory gain factor Mg = memory(PCG)

memory(A−GSD) for the storage of the solution

7.7 Manufactured problem with low dimensionality solution

The aim of this last section is to illustrate the ability of the proposed algo-
rithms to capture an exact solution u ∈ R

n⊗SP with “low dimensionality” (see
section 5.4). For the case where matrix A is deterministic, the dimensionality
of the solution is the dimensionality of the right-hand side b, i.e. Mu = Mb.
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In this particular case, all the proposed algorithms allow the capture of the
exact solution u with exactly Mu modes. For the present example, it has
been verified by taking M and B deterministic and by keeping unchanged the
right-hand side, whose dimensionality is 3.

Here, in a more general case, we want to illustrate that the Arnoldi-type al-
gorithm still has this ability to construct the ideal decomposition, i.e. to con-
struct the optimal Mu-dimensional reduced basis. For that purpose, we give
us a solution u with a desired dimensionality Mu and define a manufactured
right-hand side c = Mu̇ + Bu such that the solution of the new evolution
problem is u. For u, we consider the truncation at order 3 of the SD of the
solution of the previous reference problem. We use AM+k-GSD with M = 3.
That means that we only look for an order M = 3 generalized spectral decom-
position u(3)(t, θ) = W(t)Λ(θ). The 3 “spectral modes” can be interpreted as
the Ritz approximate of the 3 first “exact” dominant generalized eigenmodes
using a generalized Krylov subspace of dimension (3 + k). In Figure 29, we
observe that the relative error in L2 norm between u(3) and the manufactured
solution u decreases very rapidly towards the machine precision, which means
that the linear subspace which is spanned by the 3 generalized eigenmodes
quickly converges towards the expected dominant 3-dimensional generalized
eigenspace of operator T.
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Fig. 29. Manufactured problem with a solution of dimensionality 3: L2 error obtained
by (AM+k-GSD) with M = 3

Remark 18 The optimal 3-dimensional eigenspace can also be captured with
a very high precision by the SI-GSD in a few iterations.

8 Conclusion

An efficient alternative approach has been proposed for the resolution of equa-
tions arising from stochastic Galerkin schemes. This approach generalizes the
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concept of spectral decomposition for the resolution of stochastic problems.
Deterministic vectors and random variables that appear in this decomposi-
tion are obtained by solving an invariant subspace problem, which can be
interpreted as an eigen-like problem. It has been shown that the associated
dominant generalized eigenspaces define pertinent reduced bases, allowing the
obtention of a very accurate low-order spectral decomposition of the solution.
This interpretation has allowed us to derive efficient algorithms, inspired by
Subspace Iteration and Arnoldi algorithms for classical eigenproblems. These
algorithms have the great advantage to only require the resolution of separated
reduced stochastic problems and reduced deterministic problems. The method
has been illustrated on two model problems: a linear elasticity problem and
a transient heat diffusion equation. The proposed algorithms have been sys-
tematically compared to classical resolution techniques. The examples clearly
show that the proposed GSD algorithms lead to significant savings in terms
of computational times and memory requirements. The method has been de-
veloped on a generic discretized problem, arising from spatial, temporal and
stochastic discretizations of SPDEs. Further mathematical and numerical in-
vestigations will be necessary to rigourously define the class of problems for
which the GSD can be applied. The introduction of pertinent error estimators,
based on a posteriori error estimation techniques, is also an important issue
for the proposed methodology. Indeed, it could lead to a more pertinent and
adaptive construction of the GSD. Lastly, the methodology and algorithms
can be naturally extended to the case of stochastic non-linear problems. This
will be developed and illustrated in a forthcoming paper.
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Appendix

A Basic operations on spectral decompositions

A.1 Orthogonalization of deterministic vectors and random variables

Let us suppose that a spectral decomposition u(θ) =
∑M

i=1 λi(θ)Ui = WΛ(θ)
has been found, with W ∈ Sn,M and Λ ∈ S

∗
P,M . Let us denote by DW ∈ R

M×M
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and DΛ ∈ R
M×M the matrices such that W̃ = WD−1

W
and Λ̃ = D−T

Λ
Λ are

orthonormal in the following sense:

W̃TMW̃ = IM , E(Λ̃Λ̃
T
) = IM , (A.1)

where M is a symmetric definite positive matrix. Matrix DW can for example
be obtained using a cholesky factorization of M and a QR decomposition
of W ∈ R

n×M . Matrix DΛ can be obtained by a QR factorization of the
matrix in R

P×M whose columns represent the components of the λi on the
orthonormal basis of SP (see remark 1). Then, denoting by D = DWDT

Λ
, the

initial decomposition can be rewritten

u = W̃DΛ̃. (A.2)

A.2 Sorting and truncating a spectral decomposition

Suppose that we have obtained a spectral decomposition u = WΛ. We have
seen that there exists an infinite number of matrices and random vectors
leading to the same decomposition (see section 4.3). It could be interesting
to extract some deterministic vectors and random variables, respectively in
span(W) and span(Λ), which are sorted by decreasing contribution in the de-
composition. The simplest way to proceed consists in performing a Karhunen-
Loève decomposition of u with respect to a given metric. Let us explain how to
build this decomposition in practice. Let us denote by ((u,v))M = E(uTMv)
the chosen inner product, where M is a deterministic symmetric positive def-
inite matrix. We start to compute the decomposition (A.2), leading to or-
thonormal deterministic vectors and random variables. We then apply a sin-
gular value decomposition of matrix D:

D = UDΣDVT
D

,

where UT
D
UD = IM , VT

D
VD = IM and ΣD = diag(σ1, . . . , σM) ∈ R

M×M is
diagonal, with σ1 > . . . > σM . The decomposition can then be rewritten

u = WΣDΛ =
M∑

i=1

σiUiλi,

where W = W̃UD and Λ = VT
D
Λ̃ are orthonormal in the sense of (A.1). We

can easily verify that

E(uuT ) =
M∑

i=1

σ2
i UiU

T
i ,

‖u‖2
M

= E(uTMu) =
M∑

i=1

σ2
i .
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A truncation of the spectral decomposition can then be simply performed. If
we want a precision ǫ on the relative error, a simple criterion is to choose the
minimum order M ′ 6 M such that

M∑

i=M ′+1

σ2
i 6 ǫ2

M∑

i=1

σ2
i

B Restarted algorithm in the case of a deterministic definite ma-

trix

Proposition 19 In the case where A is a deterministic definite matrix, restarted
algorithm 3 corresponds to a classical deflation technique. At stage r, span(Wr)
is the (

∑r
i=1 Mi)-dimensional dominant invariant subspace of T. The approx-

imation WrΛr is the same as the one obtained by computing the (
∑r

i=1 Mi)-
dimensional dominant invariant subspace of T.

PROOF. We will first prove this result for the algorithm with global updat-
ing (i) and then show that algorithms with or without global updating are
equivalent in the case where A is a deterministic definite matrix (ii).
(i) Algorithm with global updating
Let us use a proof by induction. Proposition 19 is trivially verified for r = 1.
Let us now suppose that it is verified at stage r. span(Wr) is the dominant
invariant subspace of T, with dimension M =

∑r
i=1 Mi. Then, Wr verifies the

following generalized eigenproblem:

AWrR(Wr) = E(bbT )Wr,

where R(Wr) = (WT
r AWr)

−1WT
r E(bbT )Wr. Let span(Ŵr+1) be the domi-

nant Mr+1-dimensional invariant subspace of the deflated operator T(r), which
verifies the following generalized eigenproblem:

AWR(r)(W) = E(b(r)b(r)T )W,

where R(r)(W) = (WTAW)−1WT E(b(r)b(r)T )W. After some algebra, we can
show that

E(b(r)b(r)T ) = E(bbT ) − AWrR(Wr)(W
T
r AWr)

−TWT
r AT ,

which is a classical deflation of matrix E(bbT ). Now, using lemma 20, we
conclude that span((Wr Ŵr+1)) is the dominant (M + Mr+1)-dimensional
invariant subspace of the initial operator T, which ends the proof for the case
with global updating.
(ii)Without global updating
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To end up with the proof, we just have to show that with or without global
updating, we obtain the same random vector, i.e.

f(Wr) = f((Wr−1 Ŵr)) =




f(Wr−1)

f (r−1)(Ŵr)


 .

Noting that WT
r−1AŴr = 0 (lemma 20), we have, with a little algebra,

f((Wr−1 Ŵr)) =




WT
r−1AWr−1 0

ŴT
r AWr−1 ŴT

r AŴr




−1 


WT
r−1b

ŴT
r b




=




(WT
r−1AWr−1)

−1WT
r−1b

(ŴT
r AŴr)

−1ŴT
r (b − AWr−1f(Wr−1))




which ends the proof.

The following lemma is quite classical and can be proven with little algebra.

Lemma 20 We consider a M1-dimensional subspace span(W1) which ver-
ifies the generalized eigenproblem AW1R(W1) = BW1, where A is a def-
inite matrix, B a (semi)definite symmetric positive matrix and R(W) =
(WTAW)−1(WTBW). We then consider a M2-dimensional subspace span(Ŵ2)
which verifies the deflated generalized eigenproblem: AŴ2R

(1)(Ŵ2) = B(1)Ŵ2,
where B(1) is the deflated matrix

B(1) = B − AW1R(W1)(W
T
1 AW1)

−TWT
1 AT ,

and R(1)(W) = (WTAW)−1(WTB(1)W). We have the following properties:

(i) span(W1) is an eigenspace of the deflated eigenproblem associated with zero
eigenvalues.

(ii) WT
1 AŴ2 = 0

(iii) there exists W2 such that span(W2) ⊂ span((W1 Ŵ2)) is an eigenspace of
the initial eigenproblem and such that

R(W2) = R(1)(Ŵ2)

(iv) span((W1 Ŵ2)) is an eigenspace of the initial generalized eigenproblem
associated with the same eigenvalues as span((W1 W2)).
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C Interpretation of GSD for stochastic time evolution equation

Here, we give an interpretation of reduced problems arising from GSD algo-
rithms in the case of model problem 2. After having introduced space and
time discretizations, we have seen that this problem is equivalent to problem
(5), where random matrix A and random vector b are respectively given in
(51) and (52).

C.1 Reduced stochastic problems

Computing Λ = f(W) for a fixed W ∈ R
n×M requires to solve the following

equation:

E(Λ̃
T
WTAWΛ) = E(Λ̃

T
WTb) ∀Λ̃ ∈ R

M ⊗ SP

where

WTAW = δt
nt∑

i=1

W(ti)
TBW(ti) + W(t1)

TMW(t1)+

nt∑

i=2

W(ti)
TM(W(ti) − W(ti−1))

WTb = W(t1)
TMu0 + δt

nt∑

i=1

W(ti)
Tc(ti)

In fact, the problem to be solved is a time-discretized version of the following
equation, arising from a natural weak formulation in time:

(∫

(0,T )
W(t)T (MẆ(t) + BW(t)) dt + W(0+)TMW(0+)

)
Λ =

∫

(0,T )
W(t)Tc(t) dt + W(0+)TMu0

where, in the time-discretized version, a(0+) is identified with a(t1) and the
time integrals must be interpreted as follows. For any a : (0, T ) → R and
b : (0, T ) → R,

∫

(0,T )
a(t)b(t) dt ≈

nt∑

i=1

a(ti)b(ti)δt

∫

(0,T )
a(t)ḃ(t) dt ≈

nt∑

i=2

a(ti)(b(ti) − b(ti−1))
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C.2 Reduced deterministic problems

Computing W = F(Λ) for a fixed Λ ∈ R
M ⊗SP requires to solve the following

equation:

E(AWΛΛT ) = E(bΛT )

In fact, it is a time-discretized version of the following system of evolution
equations:

E(MẆ(t)ΛΛT ) + E(BW(t)ΛΛT ) = E(c(t)ΛT ) (C.1)

E(MW(0)ΛΛT ) = E(Mu0Λ
T ) (C.2)

which is equivalent to the set of M coupled deterministic evolution equations:
for i = 1, . . . ,M ,

M∑

j=1

E(Mλiλj)U̇j(t) +
M∑

j=1

E(Bλiλj)Uj(t) = E(c(t)λi) (C.3)

M∑

j=1

E(Mλiλj)Uj(0) = E(Mu0λi) (C.4)

Equation (C.2) (or (C.4)) is equivalent to a weak imposition of the initial
condition.

Remark 21 In the case where M and B are deterministic, it can be conve-
nient to orthonormalize the λi. Indeed, computing W then requires to solve a
set of M uncoupled deterministic evolution equations: for i = 1, . . . , M ,

MU̇i(t) + BUi(t) = E(c(t)λi)

Ui(0) = E(u0λi)
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[19] A. Nouy and P. Ladevèze. Multiscale computational strategy with time
and space homogenization: a radial-type approximation technique for solving
micro problems. International Journal for Multiscale Coputational Engineering,
170(2):557–574, 2004.

[20] Y. Saad. Numerical methods for large eigenvalue problems. Halstead Press,
New York, 1992.

[21] D. B. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for
stochastic differential equations. SIAM J. Sci. Comput., 24(2):619–644, 2002.

[22] C. Soize and R. Ghanem. Physical systems with random uncertainties: chaos
representations with arbitrary probability measure. SIAM J. Sci. Comput.,
26(2):395–410, 2004.
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