N
N

N

HAL

open science

Electrically induced coalescence of two facing anchored
water drops in oil

Jonathan Raisin, Pierre Atten, Frédéric Aitken, Jean-Luc Reboud

» To cite this version:

Jonathan Raisin, Pierre Atten, Frédéric Aitken, Jean-Luc Reboud. Electrically induced coalescence of
two facing anchored water drops in oil. International Conference on Dielectric Liquids (ICDL-2008),

Jun 2008, Poitiers, France. hal-00366574

HAL Id: hal-00366574
https://hal.science/hal-00366574
Submitted on 31 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00366574
https://hal.archives-ouvertes.fr

IEEE International Conference on Dielectric Liquids (ICDL-2008), Poitiers, June 30-July 4, 2008
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Abstract- We investigate the deformation and coalescence of
two closely spaced drops of conducting liquid suspended in an
insulating fluid under the action of an electric field. The equations
governing droplets defor mation are derived in the case of drops
subjected to a potential difference. The critical conditions for
existence of a stationary solution are determined for drops
anchored on capillary tubes in the asymptotic case of very close
drops. In particular, electrocoalescence is predicted to occur
when the interfaces distortions are such that the initial drops
spacing has decreased by nearly 50 %. A numerical simulation
gives the critical conditions for any spacing between the drops.
Results compar e favour ably with the asymptotic approach in the
common range of application.

. INTRODUCTION

Electrocoalescence is the phenomenon of mergingletso
of conducting liquid, which are suspended in anulg$ng
liquid (or in a gas), under the action of an elecfield.[1].
This phenomenon is important for the petroleum stduas it
is used to increase the size of water dropletsendgd in
crude oils and, therefore, to drastically reduce time
required to separate water and oil phases undegitiety
effect. Now, compact electrocoalescers that
electrocoalescence in a very limited time, arerofteed [2].
But the control and increase of their efficiencg abnmetimes
very difficult as the numerous processes involvaud
electrocoalescence are far from being fully undet There

is also another domain where this phenomenon opsdro

merging under the action of an electric field migbtused: the
lab-on-a-chip domain devoted to various chemical
biological analyses on very small amounts of pre¢gluc

The action of an electric field on a water-in-aih@sion is,
first, to polarise the conducting water droplets &m promote
an attraction between them. For not very close ldtspthe
dipole-dipole interaction force is very small ans éffect can
be neglected when the emulsion is in motion. Foarlye
contacting droplets pairs, conversely, the attoactiorce is
strong; it induces a deformation of the dropletsirfg parts
and often results in their merging. It is therefoecessary to
distinguish the stage of build-up of drops pairstbhg fluid
motion (during which some droplets are broughtenyvclose
proximity), from the second stage, the coalesceitself,
during which the interfaces deform and disrupt [3he
determination of the probability of coalescencewved nearly
colliding droplets as a function of the main partame of the
problem (electric field, drops size distributionater volume
fraction and flow properties) is a difficult proble A

pre-requisite is a good description of the intezfadisruption
mechanism and the determination of the electroesnaince
critical conditions.

This problem of deformation and disruption of a evAil
interface has been studied recently in the pasdicul
configuration of a metallic sphere hanging abovsoezontal
layer of water [4] (this can be considered as it Icase of
interaction between a very small and a big dropl@ise major
fact is that a static shape of the electricallgsted interface
exists only for a limited deformation: the sphemeeiface
distance cannot decrease below about half of itsevaithout
field action [4]. General considerations [5] andagproximate
treatment [6] extended the basic properties ofabiity
conditions for two identical drops. However, thessults are
guestionable as two free drops attracting eachr atiozve and
the conditions of interface disruption are diffardrom the
ones characterising static (and immobile) drops.

We examine here the real static problem by conisiger
drops anchored at the tip of capillary tubes (E)g.We aim at
determining the critical conditions of electrocaalence
between two conducting drops of same radius wittvedl

efined potential difference.

promote

II.  AsYMPTOTICCASE OF VERY CLOSEDROPS
I We consider two water drops of radBgwith a spacings
suspended into an insulating fluid. The applicatioh a
potential differenceAV between the drops induces an electric
field E and an electrostatic pressyxe= E£%/2 at the interfaces
0(r,s: permittivity of the suspending fluid). The probries to
determine the subsequent deformation of the droms &
particular, of the facing zones of the interfaces.

At any point of a drop surface, the static equilibr
imposes that the pressure difference between thervia,)
and the outer fluidg,,) is compensated for by the electrostatic
pressurepes and the capillary pressupg,, associated with the
surface tension (for small enough droplets the itaaonal
force is negligible - Bond numb&o << 1) :
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Fig. 1 - Drops anchored at the end of capillanetub



1 1 1 5 iii) conservation of drop volum¥ol: AVol) =0
Pin = Pout = T[E"’R—j - ESE (1) Solutions of eq. (4) have been obtained by numlkrica

1 2 integration using the embedded Runge-Kutta-Fehlberg
hereR; andR, are the principal radii of curvature afidthe method. Determining solutions is not easy becauseuble
surface tension. Instead of the cylindrical systesh shooting method is required to solve the probldre: waluefy
coordinatesr, ¢, z considered in the classical problem of zf the deformation on the axi# (= 0) being given, we have to
drop deformed by the gravitational force [7], wee uthe determine the appropriate valuesB& and dp;, that satisfy the
spherical coordinates, 6, ¢ (for one drop). By taking into boundary conditions and the drop volume consermatio
account the axial symmetry of the problem, the &qoafor

the interface of the considered dropris g(&). Normalizing 03

the spatial coordinates by the radRisof non deformed drops Fa——
and introducing the deformatidnscaled with the spacing) — oz001] ===
between undistorted drops, we have (see Fig. 2) : 024 et

9(6) = RolL+ o 1(0)] 2) : 1
whereo = /Ry is the relative initial spacing. The curvature of o1l o
the surface is given by the divergence of the wsittor n "
normal to the interface. This leads to the expogssi .
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Fig. 3 - Variations of the electrical Bond numi®e as a function of the
In the asymptotic case << 1, we approximate the field by normalized deformatiofy on the axis for hemispherical drop&, € 172).

E = AV / Az whereAz = s [1-2f cosf +(2/0)(1- coL)] is the

distance between facing points of the interfacedterA  Fig. 3 illustrates the relation between the eleatriBond
introduction of non dimensional variables, we obtdhe nymberBeand the normalized deformatifyat the axis in the
following equation governing the deformation preffl (din  case of hemispherical menis@d.(= 172). The approximately
denotes the non dimensional change of the inngr dressure  parabolic shape of thBe(f)) curves is quite analogous to the

under the field action) : one obtained by the previous approximate treatmi@htsrhe

cosd o2f'2 maximum which corresponds to the critical condiiois

(1+of)f" + = f’|:l+ of + —:l 2 = reached fof, between 0.24 and 0.25 (Fig. 3); this leads,fo
¢ 1+df only slightly higher than 0.5.

2 2¢:2[3/2 /2 The distribution of the interface deformatif(#) is shown
- [(1+af) t o ] {2—2/[(1+0f)2 + azf'zll @) in Fig. 4 for differentBe values again for hemispherical drops

(8, = 2). Clearly there is an elongation of the dropscivhis
+py, + 87/{1— of COS€+§(1_ COS@)} } only slightly dependent on the ratio of initial spacings, and

g

radius R, [8]. The critical conditions vary in a rather lired
way ong for all values of the angl&, (Fig. 5).

(8)
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Deformed
interface

spherical drop (dashed line) in spherical coordisat -3

Fig. 2 - Distorted drop (full liner =g(6 =Ry + $f(6) ) and initial g
W.a

The boundary conditions are simple and concern:

l) the derlvatlye off on the axis : f=0 at =0 Fig. 4 - Deformatiorf of the interface as a function of the andlgin
i) the anchoring of the drops : f=0 at 8 =6, radians) for differenBe numbers in the case of a hemispherical
meniscus @, = 172).
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Fig. 5 - Critical value of the electric Bond numi=,;; as a function of
the relative initial spacingo for 3 values of the anglé,
characterizing the meniscus.

Ill. CRITICAL CONDITIONS IN THE GENERAL CASE

When the spacingy between the interfaces of the two

anchored drops is not very small compared withrthedius
Ry, the approximate expression retained in 82 fordleetric
field is not valid. It is then necessary to solve tLaplace
equation for the electric potential in the domaintsae the
deformed drops (and the capillary tube). This haenb
performed using the commercial software
Multiphysics™.

The time dependent Navier-Stokes equations areeddlv
the water (NS1) and oil (NS2) media (Fig. 6). Bessathe two
fluids are incompressible we have volume consesaadif the
droplets. These fluid dynamic equations are couplgd the
successive solution of the Laplace equation appbethe oil
medium, water being considered as perfectly corericthus
at constant electric potential. The deformatiorihef water-oil
interface is implemented by using an Arbitrary Laaggian-
Eulerian formulation with deforming meshes. Thigpm@ach
allows to define the forces that act on the intafasuch as
surface tension and electrostatic pressure, andk tthe
interface deformation in a very accurate way. leorto obtain
static solutions for the deformed drops, the applieltage is
varied very slowly in time so that the inertial aridcous terms
remain in practice negligibly small. All the teshses were
computed considering axial symmetry, and, in thatipular
case of two droplets of same radius, using the eplah
symmetry between the drops.

Main modification of the standard software conceting
computation of the surface tension forces perforthedugh a
weak formulation of the fluid dynamics equation §lapted to
the axial symmetry conditions. At each time std, ¢lectric
field E is computed in the oil domain, taking irsocount the
actual surface deformation of the water drop. Beumnd
conditions imposed for Navier Stokes equationsha two
liquid domains are:

i) Constant static pressure is imposed at the uppendzoy
of the oil domain. The pressure computed in oildified

Comsol i

i) The velocity field computed within the water drdple
ensuring the volume conservation, is in its turpligo as
boundary condition at the interface for the oil ddm

iii) Liquid velocity at the water-oil interface is amdi in a
Lagrangian way to move the boundary. The water-oil
interface is closed, above the anchorage poing bgrtical
impervious fixed boundary.

i Axial symmetry

—

Fixed boundary

Oil :
-NS2
- Electric field

Imposed electric potential
Moving boundary :

- surface tension

- mass conser vation

Symmetry plane/ Grounded

Fig. 6 - Geometry and equations solved

Fig. 7 illustrates the instantaneous shape of ardefig
droplet and associated fields, in conditions vdpse to the
critical potential differencedV,;. The transient calculation
was performed with a slow rise of the voltagd//At = 0.1
V/s. Initial non dimensional spacing = sy/Ry = 0.7 is here
much higher than the limit allowing the asymptotiase
formulation, with its simple electric field approxation.
Electric field lines are drawn in the oil domainillostrate the
point. A small pressure gradient can be seen insidavater,
due to increasing electrostatic pressure on therfate and
associated with the very close appearance of théacsu
instability.

1300

by electrostatic pressures E?/ 2, is applied as boundary Fig. 7 - Deformation of droplet shape near theiaait conditions,

condition at the interface for the water domainrf&ee

tension Tand local curvature involved in equation (1) are

implemented indirectly through the weak formulation

electric streamlines in the outer field (oil), pere field in the
water (full color scale: 0.05 Pa#.=150°, R=0.28 mm, o= 0.7,
T =25 mN/m,s=21.2 pF/m



As expected the difference between results giverhbytwo
methods increases with The general numerical method gives
critical values slightly lower than the asymptatices because
the real electric field on the interface is slightigher than the
uniform field retained in the asymptotic approadhus
requiring a slightly lower applied voltage. Finalgt us note
that the influence of relative spacimgpn the critical condition
becomes stronger whea is increased.

Distance between droplet vs Voltage (So/Ro = 0.7 )

IV. CONCLUSION

Two different methods have been compared to ealtinat
critical conditions leading to the electrocoaleseenf close
_ , _ , _ anchored water droplets in oil. Asymptotic approechpplied
Fig. B'T'msof%pfgd;g: s;’fcéafeﬁ'ﬂsz'gcr;eﬁfn'q”g_"g'iagyl':/f]": 72, in the range of small relative spacing, while nuicer
i 'BQ,n:(’dZ} (Av’zlsoz_) (RYT) = 0?’;12. < prEm, simulation was developed to extend the results vthennitial
spacing becomes of the same order of magnitudethigadrop
Spacings is drawn on Fig. 8 as a function of potentiafadius. The two methods show a good agreement eir th
difference AV. It can be seen that the appearance of tfgommon range of application. Further investigatiangh the
interfacial instability corresponds to a very sharpp of the numerical model are planed to extend the analysésusient
curve that provides an accurate evaluation M. The electric fields and associated coalescence criteria
critical spacings.;; appears to be slightly larger than &6
The difference with the value close to 0sp obtained
previously by the asymptotic approach, can be mainl
attributed to the effects of large deformation doehe larger
initial spacing.

Voltage AV (V)
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