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   Abstract- We investigate the deformation and coalescence of 
two closely spaced drops of conducting liquid suspended in an 
insulating fluid under the action of an electric field. The equations 
governing droplets deformation are derived in the case of drops 
subjected to a potential difference. The critical conditions for 
existence of a stationary solution are determined for drops 
anchored on capillary tubes in the asymptotic case of very close 
drops. In particular, electrocoalescence is predicted to occur 
when the interfaces distortions are such that the initial drops 
spacing has decreased by nearly 50 %. A numerical simulation 
gives the critical conditions for any spacing between the drops. 
Results compare favourably with the asymptotic approach in the 
common range of application.     

 
I.   INTRODUCTION 

 
Electrocoalescence is the phenomenon of merging droplets 

of conducting liquid, which are suspended in an insulating 
liquid (or in a gas), under the action of an electric field.[1]. 
This phenomenon is important for the petroleum industry as it 
is used to increase the size of water droplets suspended in 
crude oils and, therefore, to drastically reduce the time 
required to separate water and oil phases under the gravity 
effect. Now, compact electrocoalescers that promote 
electrocoalescence in a very limited time, are often used [2]. 
But the control and increase of their efficiency are sometimes 
very difficult as the numerous processes involved in 
electrocoalescence are far from being fully understood. There 
is also another domain where this phenomenon of drops 
merging under the action of an electric field might be used: the 
lab-on-a-chip domain devoted to various chemical or 
biological analyses on very small amounts of products. 

The action of an electric field on a water-in-oil emulsion is, 
first, to polarise the conducting water droplets and to promote 
an attraction between them. For not very close droplets, the 
dipole-dipole interaction force is very small and its effect can 
be neglected when the emulsion is in motion. For nearly 
contacting droplets pairs, conversely, the attraction force is 
strong; it induces a deformation of the droplets facing parts 
and often results in their merging. It is therefore necessary to 
distinguish the stage of build-up of drops pairs by the fluid 
motion (during which some droplets are brought in very close 
proximity), from the second stage, the coalescence itself, 
during which the interfaces deform and disrupt [3]. The 
determination of the probability of coalescence of two nearly 
colliding droplets as a function of the main parameters of the 
problem (electric field, drops size distribution, water volume 
fraction and flow properties) is a difficult problem. A               

pre-requisite is a good description of the interfaces disruption 
mechanism and the determination of the electro-coalescence 
critical conditions.  

This problem of deformation and disruption of a water/oil 
interface has been studied recently in the particular 
configuration of a metallic sphere hanging above a horizontal 
layer of water [4] (this can be considered as the limit case of 
interaction between a very small and a big droplets). The major 
fact is that a static shape of the electrically stressed interface 
exists only for a limited deformation: the sphere-interface 
distance cannot decrease below about half of its value without 
field action [4]. General considerations [5] and an approximate 
treatment [6] extended the basic properties of instability 
conditions for two identical drops. However, these results are 
questionable as two free drops attracting each other move and 
the conditions of interface disruption are different from the 
ones characterising static (and immobile) drops.  

We examine here the real static problem by considering 
drops anchored at the tip of capillary tubes (Fig. 1). We aim at 
determining the critical conditions of electrocoalescence 
between two conducting drops of same radius with a well 
defined potential difference.  

 
II.   ASYMPTOTIC CASE OF VERY CLOSE DROPS 

 
We consider two water drops of radius R0 with a spacing s0 

suspended into an insulating fluid. The application of a 
potential difference ∆V between the drops induces an electric 
field E and an electrostatic pressure pes = εE2/2 at the interfaces 
(ε : permittivity of the suspending fluid). The problem is to 
determine the subsequent deformation of the drops and, in 
particular, of the facing zones of the interfaces.  

At any point of a drop surface, the static equilibrium 
imposes that the pressure difference between the water (pin) 
and the outer fluid (pout) is compensated for by the electrostatic 
pressure pes and the capillary pressure pcap associated with the 
surface tension (for small enough droplets the gravitational 
force is negligible - Bond number Bo << 1) : 

 
 
 
 
 
 
 

Fig. 1 - Drops anchored at the end of capillary tubes. 
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here R1 and R2 are the principal radii of curvature and T the 
surface tension. Instead of the cylindrical system of 
coordinates r, ϕ, z  considered in the classical problem of a 
drop deformed by the gravitational force [7], we use the 
spherical coordinates r, θ, ϕ  (for one drop). By taking into 
account the axial symmetry of the problem, the equation for 
the interface of the considered drop is r = g(θ ). Normalizing 
the spatial coordinates by the radius R0 of non deformed drops 
and introducing the deformation f scaled with the spacing s0 
between undistorted drops, we have (see Fig. 2) : 

 [ ] )(     1     )( 0 θσθ fRg +=   (2) 

where σ = s0/R0 is the relative initial spacing. The curvature of 
the surface is given by the divergence of the unit vector n 
normal to the interface. This leads to the expression :   
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In the asymptotic case  σ  << 1, we approximate the field by 
E = ∆V / ∆z  where ∆z = s0 [1-2f cosθ +(2/σ)(1- cosθ )] is the 
distance between facing points of the interfaces. After 
introduction of non dimensional variables, we obtain the 
following equation governing the deformation profile f (δpin 
denotes the non dimensional change of the inner drop pressure 
under the field action) :  
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Fig. 2 - Distorted drop (full line : r = g(θ) = R0 + s0 f(θ) )  and initial 
spherical drop (dashed line) in spherical coordinates. 

 
The boundary conditions are simple and concern: 

i)  the derivative of  f on the axis :  f’  = 0   at   θ  = 0 
ii)  the anchoring of the drops :  f = 0   at   θ  = θm 

iii)  conservation of drop volume Vol:  δ(Vol) = 0   
Solutions of eq. (4) have been obtained by numerical 

integration using the embedded Runge-Kutta-Fehlberg 
method. Determining solutions is not easy because a double 
shooting method is required to solve the problem: the value f0 
of the deformation on the axis (θ  = 0) being given, we have to 
determine the appropriate values of Be and δpin that satisfy the 
boundary conditions and the drop volume conservation. 
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Fig. 3 - Variations of the electrical Bond number Be as a function of the 

normalized deformation f0  on the axis for hemispherical drops  (θm = π/2). 

 
Fig. 3 illustrates the relation between the electrical Bond 

number Be and the normalized deformation f0 at the axis in the 
case of hemispherical menisci (θm = π/2). The approximately 
parabolic shape of the Be(f0) curves is quite analogous to the 
one obtained by the previous approximate treatments [6]. The 
maximum which corresponds to the critical conditions is 
reached for f0  between 0.24 and 0.25 (Fig. 3); this leads to scrit 
only slightly higher than 0.5 s0. 

The distribution of the interface deformation f(θ) is shown 
in Fig. 4 for different Be values again for hemispherical drops 
(θm = π/2). Clearly there is an elongation of the drops which is 
only slightly dependent on the ratio σ  of initial spacing s0 and 
radius R0 [8]. The critical conditions vary in a rather limited 
way on σ  for all values of the angle θm  (Fig. 5). 
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Fig. 4 - Deformation f of the interface as a function of the angle θ  (in 
radians) for different Be numbers in the case of a hemispherical 
meniscus (θm = π/2). 
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Fig. 5 - Critical value of the electric Bond number Becrit  as a function of 

the relative initial spacing σ  for 3 values of the angle θm 
characterizing the meniscus. 

 
III.   CRITICAL CONDITIONS IN THE GENERAL CASE  

 
When the spacing s0 between the interfaces of the two 

anchored drops is not very small compared with their radius 
R0, the approximate expression retained in §2 for the electric 
field is not valid. It is then necessary to solve the Laplace 
equation for the electric potential in the domain outside the 
deformed drops (and the capillary tube). This has been 
performed using the commercial software Comsol 
Multiphysics™.  

The time dependent Navier-Stokes equations are solved in 
the water (NS1) and oil (NS2) media (Fig. 6). Because the two 
fluids are incompressible we have volume conservation of the 
droplets. These fluid dynamic equations are coupled with the 
successive solution of the Laplace equation applied to the oil 
medium, water being considered as perfectly conductive, thus 
at constant electric potential. The deformation of the water-oil 
interface is implemented by using an Arbitrary Lagrangian-
Eulerian formulation with deforming meshes. This approach 
allows to define the forces that act on the interface, such as 
surface tension and electrostatic pressure, and track the 
interface deformation in a very accurate way. In order to obtain 
static solutions for the deformed drops, the applied voltage is 
varied very slowly in time so that the inertial and viscous terms 
remain in practice negligibly small. All the test cases were 
computed considering axial symmetry, and, in that particular 
case of two droplets of same radius, using the plane of 
symmetry between the drops.  

Main modification of the standard software concerns the 
computation of the surface tension forces performed through a 
weak formulation of the fluid dynamics equation [9] adapted to 
the axial symmetry conditions. At each time step, the electric 
field E is computed in the oil domain, taking into account the 
actual surface deformation of the water drop. Boundary 
conditions imposed for Navier Stokes equations in the two 
liquid domains are:  
i) Constant static pressure is imposed at the upper boundary 

of the oil domain. The pressure computed in oil, modified 
by electrostatic pressure - ε E2 / 2, is applied as boundary 
condition at the interface for the water domain. Surface 
tension T and local curvature involved in equation (1) are 
implemented indirectly through the weak formulation. 

ii)  The velocity field computed within the water droplet, 
ensuring the volume conservation, is in its turn applied as 
boundary condition at the interface for the oil domain. 

iii)  Liquid velocity at the water-oil interface is applied in a 
Lagrangian way to move the boundary. The water-oil 
interface is closed, above the anchorage point, by a vertical 
impervious fixed boundary. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 - Geometry and equations solved  
 
Fig. 7 illustrates the instantaneous shape of a deforming 

droplet and associated fields, in conditions very close to the 
critical potential difference ∆Vcrit. The transient calculation 
was performed with a slow rise of the voltage: ∆V/∆t = 0.1 
V/s. Initial non dimensional spacing σ = s0/R0 = 0.7 is here 
much higher than the limit allowing the asymptotic case 
formulation, with its simple electric field approximation. 
Electric field lines are drawn in the oil domain to illustrate the 
point. A small pressure gradient can be seen inside the water, 
due to increasing electrostatic pressure on the interface and 
associated with the very close appearance of the surface 
instability. 

 

 
Fig. 7 - Deformation of droplet shape near the critical conditions, 

electric streamlines in the outer field (oil), pressure field in the 
water (full color scale: 0.05 Pa). θm=150°,  Ro=0.28 mm,  σ = 0.7,                      
T = 25 mN/m,  ε = 21.2 pF/m. 
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Fig. 8 - Time-dependent spacing s versus increasing voltage ∆V.  θm = π/2,  
Ro= 0.28  mm,  σ = 0.7,  T = 25 mN/m,  ε = 21.2 pF/m,   

Becrit = (ε/2) (∆V 2/s0 
2) (R0/T) = 0.512. 

 
Spacing s is drawn on Fig. 8 as a function of potential 

difference ∆V. It can be seen that the appearance of the 
interfacial instability corresponds to a very sharp drop of the 
curve that provides an accurate evaluation of ∆Vcrit. The 
critical spacing scrit appears to be slightly larger than 0.6 s0. 
The difference with the value close to 0.5 s0, obtained 
previously by the asymptotic approach, can be mainly 
attributed to the effects of large deformation due to the larger 
initial spacing.  

Results of the asymptotic and numerical approaches are 
plotted on Fig. 9 as a function of the relative spacing σ. In the 
range 0.01 - 0.1 for σ , there is a good agreement between the 
two models, validating the numerical approach proposed here.        
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Fig. 9 - Critical value of the electric Bond number Becrit as a function of the 

relative initial spacing σ.  Asymptotic and numerical approaches. 

As expected the difference between results given by the two 
methods increases with σ. The general numerical method gives 
critical values slightly lower than the asymptotic ones because 
the real electric field on the interface is slightly higher than the 
uniform field retained in the asymptotic approach, thus 
requiring a slightly lower applied voltage. Finally let us note 
that the influence of relative spacing σ on the critical condition 
becomes stronger when  σ  is increased.  

 
IV.   CONCLUSION 

 
Two different methods have been compared to evaluate the 

critical conditions leading to the electrocoalescence of close 
anchored water droplets in oil. Asymptotic approach is applied 
in the range of small relative spacing, while numerical 
simulation was developed to extend the results when the initial 
spacing becomes of the same order of magnitude than the drop 
radius. The two methods show a good agreement in their 
common range of application. Further investigations with the 
numerical model are planed to extend the analyses to transient 
electric fields and associated coalescence criteria. 
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