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Abstract

We investigate scattering properties of a Moyal deformed version of the nonlinear Schrödinger
equation in an even number of space dimensions. With rather weak conditions on the degree of
nonlinearity, the Cauchy problem for general initial data has a unique globally defined solution,
and also has soliton solutions if the interaction potential is suitably chosen.

We demonstrate how to set up a scattering framework for equations of this type, including
appropriate decay estimates of the free time evolution and the construction of wave operators
defined for small scattering data in the general case and for arbitrary scattering data in the
rotationally symmetric case.
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1 Introduction

The scattering problem for general nonlinear field equations has been intensively studied for
many years with considerable progress, a seminal result being the establishment of asymptotic
completeness in energy space for the nonlinear Schrödinger equation in space dimension n ≥
3 with interaction |ϕ|p−1ϕ, where 1 + 4/n ≤ p ≤ 1 + 4/(n − 2), and analogous results for
the nonlinear Klein-Gordon equation [7]. Still, many important questions remain unanswered,
in particular relating to the existence of wave operators defined on appropriate subspaces of
scattering states and to asymptotic completeness for more general interactions, although many
partial results have been obtained. We refer to [6,14] for an overview. One source of difficulties
encountered can be traced back to the singular nature of pointwise multiplication of functions
with respect to appropriate Lebesgue or Sobolev norms. It therefore appears natural to look
for field equations where this part of the problem can be eliminated while preserving as much
as possible of the remaining structure. One such possibility is to deform the standard product
appropriately, and our purpose in the present article is to exploit this idea.

We shall limit ourselves to studying a deformed version of the nonlinear Schrödinger equation
in an even number n = 2d of space dimensions. The rather crude Hilbert space techniques
[10, 11] we apply allow us to consider polynomial interactions only. Our main purpose will
be to demonstrate that, for the deformed equation, the Cauchy problem is in a certain sense
more regular as compared to the classical equation as well as to set up a natural scattering
framework, including appropriate decay estimates of the free time evolution and construction of
wave operators under rather mild conditions on the interaction.

The deformed, or noncommutative, version of the nonlinear Schrödinger equation (NCNLS)
in 2d space dimensions can be written as

(
i∂t − ∆

)
ϕ(x, t) = ϕ ⋆θ F⋆θ

(ϕ∗ ⋆θ ϕ)(x, t) , (1.1)

where ⋆θ denotes the Moyal product (see below) of functions of 2d space variables x, F⋆θ
denotes

a real polynomial with respect to this product, and ∆ = −∑2d
i=1 ∂

2
i is the standard Laplacian

in 2d variables. The Moyal product considered here is given by

f ⋆θ g(x) := (2π)−2d

∫
e−iyz f(x− 1

2Θy) g(x+ z) d2dy d2dz .

Here the constant skew-symmetric (2d × 2d)-matrix Θ is assumed to be given in the canonical
form

Θ = θ

(
0 Id

−Id 0

)
,

where Id denotes the d× d identity matrix and θ > 0 is called the deformation parameter.
Defining

ϕθ(x, t) = ϕ(θ
1

2x, θt) ,

we have the scaling identity
(ϕ ⋆θ ψ)θ = ϕθ ⋆1 ψθ .

It follows that ϕ satisfies (1.1) if and only if

(
i∂t − ∆

)
ϕθ(x, t) = θ ϕθ ⋆ F⋆(ϕ

∗
θ ⋆ ϕθ)(x, t) ,

where we have dropped the subscript on the ⋆-product when θ = 1.
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The ⋆-product is intimately connected to the so-called Weyl quantization map W . This map
associates an operator W (f) on L2(Rd) to suitable function (or distribution) f on R

2d whose
kernel KW (f) is given by

KW (f)(x, y) = (2π)−d

∫

Rd

f

(
x+ y

2
, p

)
ei(x−y)·p dp .

It is easily seen that W is an isomorphism from L2(R2d) onto the Hilbert space H of Hilbert-
Schmidt operators on L2(Rd) fulfilling

‖W (f)‖2 = (2π)−d/2‖f‖L2(R2d) , (1.2)

where ‖ · ‖2 denotes the Hilbert-Schmidt norm. Moreover, W maps the space S(R2d) onto the
space of operators whose kernel is a Schwartz function, and its relation to the ⋆-product is
exhibited by the identity

W (f ⋆ g) = W (f)W (g) .

Further properties of the ⋆-product can be found in e.g. [5].
By use of W , eq. (1.1) can be restated (see also [3]) as a differential equation

i∂tφ− 2

d∑

k=1

[a∗k, [ak, φ]] = θφF (φ∗φ) , (1.3)

for the operator-valued function φ(t) := W (ϕθ(·, t)), where we have introduced the creation and
annihilation operators

ak =
1√
2
(xk + ∂k) and a∗k =

1√
2
(xk − ∂k) .

The operator

∆ = 2
d∑

k=1

ad a∗k ad ak ,

with domain D(∆), is defined in a natural way as a selfadjoint operator on H by the relations

∆ = W∆W−1 , D(∆) = WD(∆) , (1.4)

where ∆ denotes the standard self-adjoint 2d-dimensional Laplace operator with maximal do-
main D(∆) = H2

2 (R2d).
We shall primarily be interested in globally defined mild solutions to the Cauchy problem

associated to equation (1.3), that is continuous solutions φ : R → H to the corresponding integral
equation

φ(t) = e−i(t−t0)∆φ0 − i

∫ t

t0

ei(s−t)∆φ(s)F
(
|φ(s)|2

)
ds . (1.5)

This equation is weaker than (1.3) in the sense that if φ : I → D(∆) is a continuously differen-
tiable solution to (1.3) defined on an interval I containing t0, i.e. a strong solution on I, then it
also fulfills (1.5). This latter equation naturally fits into the standard Hilbert space framework
for evolution equations, see e.g. [10,11]. The following theorem is proven in Section 2 below.
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Theorem 1.1. Let F be an arbitrary polynomial over R.

a) For every φ0 ∈ H, the equation (1.5) has a unique continuous solution φ : R → H. For
every φ0 ∈ D(∆), the equation (1.3) has a unique strong solution φ : R → D(∆) such that
φ(t0) = φ0.

b) Assume F is a polynomial over R with positive highest order coefficient that has a unique
local minimum x0 on the positive real line and that F (x0) < F (0). If θ is large enough,
there exist oscillating solutions to (1.3) of the form

φ(t) = eiω(t0−t)φ0 , t ∈ R ,

for suitably chosen initial data φ0 ∈ D(∆) and frequency ω ∈ R.

This result follows by a slight adaptation of the methods of [2,3]. The essential new aspect of
a), as compared to the corresponding result for the classical case [14, Theorem 3.2], is its validity
for interaction polynomials without restrictions on the degree of nonlinearity. Standing waves
as in b) are well known to exist for the classical nonlinear Schrödinger equation with attractive
interaction −|ϕ|p−1ϕ in the range 1 < p < 1 + 4/(n − 2) for n ≥ 3 [1, 8, 12].

In order to formulate our main results on the scattering problem we need to introduce
appropriate Hilbert spaces and auxiliary norms.

By |n〉 , n = (n1, . . . , nk) ∈ N
d
0 we shall denote the standard orthonormal basis for L2(Rd)

consisting of eigenstates for the d-dimensional harmonic oscillator, and by (φmn) we denote the
matrix representing a bounded operator φ with respect to this basis, that is

φ =
∑

m,n

φmn|n〉〈m|, φmn := 〈n|φ|m〉 .

Let
bmn := 1 + |m− n| , m, n ∈ N

d
0 ,

where | · | denotes the Euclidean norm in R
d. For exponents p ≥ 1 , α ∈ R and φ as above, we

define the norms ‖.‖p,α by

‖φ‖p
p,α :=

∑

m,n

bαmn|φmn|p , (1.6)

for p <∞, and
‖φ‖∞,α := sup

m,n
{bαmn|φmn|} ,

and we let Lp,α denote the space of operators on L2(Rd) for which ‖.‖p,α is finite. We note that
Hα := L2,α is a Hilbert space with scalar product

〈φ,ψ〉α :=
∑

m,n

bαmn φmn ψmn ,

and, in particular, H0 equals the space H of Hilbert-Schmidt operators on L2(Rd) with ‖ · ‖2,0 =
‖ · ‖2. Clearly, the operator Uα : Hα → H defined by

(Uαφ)mn = bα/2
mnφmn , φ ∈ Hα , (1.7)

is unitary, and the operator
∆α := U∗

α ∆Uα ,
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is self-adjoint on Hα, with domain D(∆α) := U∗
αD(∆).

We use the notation ‖ · ‖op for the standard operator norm and define the norm ‖ · ‖a by

‖φ‖a := ‖φ̃‖op ,

whenever the operator

φ̃ :=
∑

m,n

|φmn| |n〉〈m| ,

is bounded.
With this notations we have the following decay estimate on the free propagation for initial

data in L1,α ⊂ Hα.

Theorem 1.2. For α > d there exists a constant cα > 0 such that

‖ e−it∆αφ ‖a ≤ cα(1 + |t|)− d

2 ‖φ‖1,α , φ ∈ L1,α . (1.8)

This estimate should be compared to the standard one used for the classical nonlinear wave
equations with the L∞-norm on the left and a L1-Sobolev norm on the right, applied to functions
of 2d space variables. In this case, one obtains rather trivially a decay exponent d instead of
d/2. However, those norms are not so well behaved with respect to the ⋆-product and cannot
be used for our puroses. Instead, we have to work a bit harder to establish (1.8) using uniform
estimates on the classical Jacobi polynomials. This is accomplished in Section 4.

Our last main result concerns the existence of wave operators defined on a scattering subspace
Σα ⊂ Hα. In order to define the latter we introduce, for fixed α > d, the scattering norm of
φ ∈ Hα by

|||φ|||α := ‖φ‖2,α + sup
t∈R

|t| d

2 ‖e−it∆αφ‖a ,

and set
Σα := {φ ∈ Hα | |||φ|||α <∞} .

From (1.6), we immediately see that Lp,α ⊂ Lq,β, if p ≤ q and α ≥ β, so that Theorem 1.2 gives,
in particular, the inclusion L1,α ⊂ Σα.

The relevant integral equations to solve in a scattering situation correspond to initial/final
data φ± at t = ±∞ and assume the form

φ(t) = e−it∆αφ− − i

∫ t

−∞
ei(s−t)∆αφ(s)F

(
|φ(s)|2

)
ds , (1.9)

and

φ(t) = e−it∆αφ+ + i

∫ +∞

t
ei(s−t)∆αφ(s)F

(
|φ(s)|2

)
ds , (1.10)

respectively, where F has been redefined to include θ. We assume here for simplicity that
the polynomial F has no constant term, since such a term could trivially be incorporated by
subtracting it from ∆α in the preceding formulas. The first problem then is to determine spaces
of initial/final data φ±, such that the equations above have a unique global solution and such
that these solutions behave as free solutions for t→ ±∞.

To this end we establish the following in Section 5.
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Theorem 1.3. Let α > 4d and assume that the polynomial F has no constant term and, in
addition, no linear term if d = 1 or d = 2.

Then there exists δ > 0 such that for every φ± ∈ Σα with ‖φ±‖1,α < δ, the equations (1.9)
and (1.10) have unique globally defined continuous solutions φ± : R → Σα fulfilling

‖φ±(t) − e−it∆αφ±‖2,α → 0, for t→ ±∞ . (1.11)

If, furthermore, F has no linear term, then we have

|||eit∆αφ±(t) − φ±|||α → 0, for t→ ±∞ . (1.12)

Remark 1.4. We do not know at present whether the assumption that F be without linear term
is strictly necessary or is merely an artifact due to the crudeness of the methods applied. A
similar, but weaker, limitation on the behaviour of F close to 0 appears in the corresponding
result for the classical NLS quoted in [14, Teorem 6.6], where the specification of the scattering
spaces is, however, not made explicit.

This result allows the definition of injective wave operators Ω± : {φ± ∈ Σα| |||φ±|||α ≤ δ} →
Σα for small data at ±∞ in the standard fashion by

Ω±φ± = φ±(0) . (1.13)

It even allows a definition of a scattering operator S = Ω−1
+ Ω− for sufficiently small data at

−∞, see Remark 5.1 below. Existence of wave operators defined for arbitrary data in Σ± would
follow if the corresponding Cauchy problem

φ(t) = e−i(t−t0)∆αφ0 − i

∫ t

t0

ei(s−t)t∆αφ(s)F
(
|φ(s)|2

)
ds ,

has global solutions for all ψ0 ∈ Hα. The proof of the global existence result of Theorem 1.1
relies on the conservation of ‖ · ‖2-norm, which does not hold for the ‖ · ‖2,α-norm if α 6= 0.
Hence, we do not at present know how to treat large scattering data except for the case where φ
is assumed to be a diagonal operator w.r.t. the harmonic oscillator basis {|n〉}, and in particular
for the rotationally symmetric case. The results for this case are reported in Section 6.

2 Existence of global solutions

In this section we give a proof of Theorem 1.1.

Proof of part a). This follows by a straight-forward application of well known techniques, see
e.g. [10]. Hence, we only indicate the main line of argument.

Iterating the inequality

‖φ1φ2 − ψ1ψ2‖2 ≤ ‖φ1 − ψ1‖2‖φ2‖2 + ‖ψ1‖2‖φ2 − ψ2‖2 , φ1, φ2, ψ1, ψ2 ∈ H ,

and using ‖φ‖2 = ‖φ∗‖2 we obtain

‖φF (φ∗φ) − ψF (ψ∗ψ)‖2 ≤ C1(‖φ‖2, ‖ψ‖2)‖φ− ψ‖2 , (2.1)

where C1 is a polynomial with positive coefficients, in particular an increasing function of ‖φ‖2

and ‖ψ‖2. By Corollary 1 to Theorem 1 of [10], this suffices to ensure existence of a local
continuous solution φ :]t0 − T, t0 + T [→ H to (1.5), where T is a decreasing function of ‖φ0‖2.
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Using that the mappings φ → [ak, φ] and φ → [a∗k, φ] are derivations on W−1S(R2d), it
follows that ∆(φ1 . . . φn) is a polynomial in φi, [ak, φi], [a

∗
k, φi],∆φi, i = 1, . . . , n, k = 1, . . . , d.

Since
‖[ak, φ]‖2

2 = Tr(φ∗[a∗k, [ak, φ]]) = Tr(φ∗∆φ) ≤ ‖φ‖2‖∆φ‖2 , (2.2)

we conclude as above that

‖∆(φF (φ∗φ) − ψF (ψ∗ψ))‖2 ≤ C2(‖φ‖2, ‖ψ‖2, ‖∆φ‖2, ‖∆ψ‖2)(‖φ − ψ‖2 + ‖∆(φ − ψ)‖2) ,

where C2 is an increasing function of its arguments. In the first place, this inequality holds for
φ,ψ ∈ W−1S(R2d), but since ∆ equals the closure of its restriction to W−1S(R2d), it holds for
all φ,ψ in its domain D(∆). By Theorem 1 in [10] (or rather its proof) it follows that for each
φ0 ∈ D(∆) there exists a unique strong solution φ :]t0 − T, t0 + T [→ D(∆) to eq. (1.3) with
φ(t0) = φ0, where T > 0 can be chosen as a decreasing function of ‖φ0‖2 and ‖∆φ0‖2.

For strong solutions the 2-norm is conserved:

d

dt
‖φ(t)‖2

2 = −iTr
[
(∆φ− φF (φ∗φ))∗φ

]
+ iTr

[
φ∗(∆φ− φF (φ∗φ))

]
= 0 . (2.3)

Furthermore, since the polynomial ∆(φF (φ∗φ)) considered above, is a sum of monomials each
of which either contains one factor ∆φ or ∆φ∗ or two factors of the form [ak, φ], [a∗k, φ], [ak, φ

∗],
[a∗k, φ

∗], we conclude from (2.2) that

‖∆(φF (φ∗φ))‖2 ≤ C3(‖φ‖2)‖∆φ‖2 , φ ∈ D(∆) , (2.4)

where C3 is an increasing function of its argument.
Using (2.3) and (2.4) it follows from Theorem 2 of [10] that strong solutions are globally

defined, i.e. we can choose T = ∞. Finally, using (2.1) and (2.3) again one shows via Corollary
2 to Theorem 14 of [10] that the weak solutions are likewise globally defined. This proves a).

Proof of part b). Let G be the polynomial vanishing at x = 0 and satisfying G′ = F . Under
the stated assumptions on F it follows that the polynomial G(x2) − F (x0)x

2 is positive except
at x = 0, which is a second order zero, and its derivative is positive on R+ except for a zero at
x =

√
x0. Hence, for ǫ > 0 sufficiently small,the polynomial

V (x) =
1

2
(G(x2) − (F (x0) + ǫ)x2) ,

is positive, except for a second order zero at x = 0, and has a a single local minimum on R+.
Thus V (x) fulfills the assumptions of Theorem 1 of [3] implying the existence of a selfadjoint
solution φ0 ∈ D(∆) to the equation

∆φ+ θ V ′(φ) = 0 ,

if θ is sufficiently large. It then follows that φ(t) = eiω(t0−t)φ0 is a strong solution of (1.3), with
ω = θ(F (x0) + ǫ). This proves b).

3 Some norm inequalities

In preparation for the proofs of Theorems 1.2 and 1.3 we collect in this section a few useful
lemmas.
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Lemma 3.1. For α < −d, the matrix {bαmn} represents a bounded operator Bα on L2(Rd).

Proof. For any x, y ∈ L2(Rd), consider their coordinate sequences {xn}, {yn} ∈ ℓ2(Nd
0) with

respect to the basis {|n〉}. We have

|〈x,Bαy〉| =
∣∣∣
∑

m,n

xm bαmn yn

∣∣∣ ≤
∑

m,n

(1 + |m− n|)α |xm| |yn|

≤
∑

m,k

(1 + |k|)α |xm| |yk+m|

≤ 2
∑

k

(1 + |k|)α ‖x‖L2(Rd) ‖y‖L2(Rd) ,

which concludes the proof.

Lemma 3.2. For any α > d, there exists a constant Cα > 0 such that the following holds:

‖φ‖a ≤ Cα ‖φ‖∞,α , φ ∈ L∞,α .

Proof. With notation as in the previous proof we have, for φ ∈ L∞,α,
∣∣∣
∑

m,n

|φmn|xn ym

∣∣∣ ≤
∑

m,n

∣∣bαmn φmn

∣∣ ∣∣b−α
mn xn ym

∣∣

≤ supm,n

∣∣bαmnφmn

∣∣ ‖B−α‖op ‖x‖L2(Rd) ‖y‖L2(Rd) ,

which evidently implies the claim by Lemma 3.1.

Lemma 3.3. For any α < −d there exists a constant C ′
α > 0 such that

‖φ‖1,α ≤ C ′
α ‖φ‖1 , φ ∈ L1 ,

where L1 denotes the space of trace class operators and ‖ · ‖1 is the standard trace-norm.

Proof. Writing the trace class operator φ as 1
2(φ + φ∗) + i

2(iφ∗ − iφ) we may assume that φ is
self-adjoint. Then, writing φ = φ+−φ− where φ± are positive operators each of which has trace
norm at most that of φ, we can assume φ is positive. In this case the Cauchy-Schwarz inequality
gives

|φkl| ≤
(
φkk φll

)1/2
,

and hence
∑

k,l

bαkl |φkl| ≤
∑

k,l

bαkl φ
1/2
kk φ

1/2
ll ≤ ‖Bα‖op

∑

k

φkk = ‖Bα‖op ‖φ‖1 ,

which proves the claim thanks to Lemma 3.1.

Lemma 3.4. a) For any α ≥ 0 there exists a constant C1,α > 0 such that

‖φψ‖2,α ≤ C1,α(‖φ‖2,α ‖ψ‖a + ‖φ‖a ‖ψ‖2,α), φ, ψ ∈ L2,α . (3.1)

b) For any α > d there exists a constant C2,α > 0 such that

‖φψ‖1,α ≤ C2,α(‖φ‖2,4α ‖ψ‖2 + ‖φ‖2 ‖ψ‖2,4α), φ, ψ ∈ L2,4α . (3.2)
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Proof. First, note that for α ≥ 0

bαmn ≤ c(α) (bαmk + bαkn) , m, n, k ∈ N
d
0, (3.3)

where the constant c(α) depends only on α.
We then have

‖φψ‖2
2,α =

∑

m,n

bαmn

∣∣∣
∑

k

φmk ψkn

∣∣∣
2

≤ C
∑

m,n

(∑

k

b
α/2
mk |φmk| |ψkn| +

∑

k

b
α/2
kn |φmk| |ψkn|

)2

≤ 2C
∑

m,n

(∑

k

b
α/2
mk |φmk| |ψkn|

)2
+ 2C

∑

m,n

(∑

k

b
α/2
kn |φmk| |ψkn|

)2

= 2C
(
‖(Uαφ̃) ψ̃‖2

2 + ‖φ̃ (Uαψ̃)‖2
2

)

≤ 2C
(
‖Uαφ̃‖2

2 ‖ψ̃‖2
op + ‖Uαψ̃‖2

2 ‖φ̃‖2
op

)

≤ 2C
(
‖φ‖2,α ‖ψ‖a + ‖ψ‖2,α ‖φ‖a

)2
,

where C = c(α
2 )2 and Uα : Hα → H0 is the unitary operator defined by (1.7). This establishes

(3.1).
Using again (3.3), we have

‖φψ‖1,α =
∑

m,n

bαmn

∣∣∣
∑

k

φmk ψkn

∣∣∣

≤ c(2α)
∑

m,n,k

b−α
mn

(
|b2α

mk φmk| |ψkn| + |φmk| |b2α
kn ψkn|

)

= c(2α)
(
‖(U4αφ̃) ψ̃‖1,−α + ‖φ̃ (U4αψ̃)‖1,−α

)
. (3.4)

Lemma 3.3 and a Hölder inequality now yield, for α > d,

‖(U4αφ̃) ψ̃‖1,−α ≤ C−α‖(U4αφ̃) ψ̃‖1 ≤ C−α‖U4αφ̃‖2‖ψ‖2 = C−α‖φ‖2,4α‖ψ‖2 .

Combining this with (3.4) gives (3.2).

4 Decay of free solutions

The goal in this section is to prove Theorem 1.2. The main step in the proof is to establish
appropriate time-decay estimates for the matrix elements

(
e−it∆

)
nm,kl

of the free time-evolution

operator with respect to the orthonormal basis {(|n〉〈m|)} for H. This is our first objective.
Since the Weyl map W is unitary up to a constant factor by (1.2), the matrix elements of

the heat operator e−t∆ t > 0, can be obtained in closed form from the well-known expression
for the heat kernel in Euclidean space and the relation (1.4), making use of the fact that the
functions W−1(|n〉〈m|) can be computed explicitly in terms of Laguerre polynomials. The result
is given in [15] and reads, in case d = 1,

(
e−t∆

)
nm,kl

= δm+k,n+l

min{m,l}∑

v=0

Cnm,kl,v
tm+l−2v

(1 + t)m+k+d
,
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where

Cnm,kl,v :=

√(
n

m− v

)(
k

l − v

)(
m

m− v

)(
l

l − v

)
, (4.1)

for arbitrary non-negative integers n,m, k, l. By convention the binomial coefficient
(n
m

)
vanishes

unless 0 ≤ m ≤ n. Note that the presence of the Kronecker delta factor is a consequence
of rotational invariance of the heat kernel in two-dimensional space, which in the operator
formulation entails that e−t∆ commutes with e−isa∗a for s ∈ R, where we have dropped the
subscript on the annihilation and creation operators when d = 1.

Since ∆ is a positive, self-adjoint operator we obtain
(
e−it∆

)
nm,kl

for t ∈ R by analytic
continuation in t, that is

(
e−it∆

)
nm,kl

= δm+k,n+l

min{m,l}∑

v=0

Cnm,kl,v
(it)m+l−2v

(1 + it)m+k+d
. (4.2)

We next observe that these latter matrix elements are expressible in terms of Jacobi poly-
nomials.

Lemma 4.1. For d = 1 and l ≤ m,k ≤ n, we have

(
e−it∆

)
nm,kl

= δm+k,n+l

√
n! l!

m! k!

(it)m+l

(1 + it)m+k+1
(1 + t−2)l Pn−m,m−l

l

(t2 − 1

t2 + 1

)
, (4.3)

where Pα,β
l (X), l ∈ N0, α, β ≥ 0, X ∈ [−1, 1] are the classical Jacobi polynomials with standard

normalization [13].

Proof. For m+ k = n+ l and n ≥ m we have

Cnm,kl,v =

√
n! l!

m! k!

(
m

v

)(
l + n−m

l − v

)
.

and consequently, for l ≤ m,

(
e−it∆

)
nm,kl

= δm+k,n+l

√
n! l!

m! k!

(it)m+l

(1 + it)m+k+1

l∑

v=0

(
m

v

)(
l + n−m

l − v

)
(−t−2)v . (4.4)

Recall now [13] that the classical Jacobi polynomials Pα,β
l (X) , l ∈ N0 , are orthogonal w.r.t. the

weight function
w(X) = (1 −X)α(X + 1)β , X ∈ [−1, 1] , (4.5)

for fixed values of α , β > −1. For our purposes we may restrict attention to integer values of α
and β. A convenient explicit form of Pα,β

l (X) with standard normalization is

Pα,β
l (X) =

l∑

j=0

(
l + α

l − j

)(
l + β

j

)(X − 1

2

)j(X + 1

2

)l−j
.

With
X = (t2 − 1)/(t2 + 1) ∈ [−1, 1] , (4.6)
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this gives

Pα,β
l

(t2 − 1

t2 + 1

)
= (1 + t−2)l

l∑

j=0

(
l + α

l − j

)(
l + β

j

)
(−t−2)j ,

and the result follows by comparison with (4.4).

The representation (4.3) combined with rather recently obtained uniform estimates on the
Jacobi polynomials may now be used to derive the following bound on the matrix elements in
question.

Lemma 4.2. For any d ≥ 1 there exists a constant Cd, independent of n,m, k, l ∈ N
d
0 and t,

such that ∣∣ (e−it∆
)
nm,kl

∣∣ ≤ Cd |t|−
d

2 , |t| ≥ 1 . (4.7)

Proof. From the definition of ∆ it follows that the matrix elements in question factorize into
those for the one-dimensional case, so it suffices to consider d = 1.

Since e−it∆ is unitary, it follows from (4.2) that

(
e−it∆

)
nm,kl

=
(
e−it∆

)
kl,nm

.

Moreover, since W (f) = W (f)∗ and the heat kernel on R
2 is symmetric in its two arguments

we likewise have (
e−it∆

)
nm,kl

=
(
e−it∆

)
mn,lk

.

These symmetries may also be checked directly from (4.2) and (4.1).
Taking into account that m+ k = n+ l for non-vanishing matrix elements we can therefore

assume that l ≤ m,k ≤ n. Lemma 4.1 then yields

∣∣∣
(
e−it∆

)
nm,kl

∣∣∣ = δm+k,n+l

√
n! l!

m! k!
(1 + t2)−1/2 (1 + t−2)(l−n)/2 |t|l−k

∣∣∣Pα,β
l

( t2 − 1

t2 + 1

)∣∣∣ , (4.8)

where we have set
α := n−m and β := m− l .

Introducing the orthonormal Jacobi polynomial P
α,β
l of degree l by normalizing w.r.t. the

L2−norm defined by the weight (4.5) one finds (see e.g. [13] p. 67)

P
α,β
l (X) =

√
(2l + α+ β + 1)

2α+β+1

(l + α+ β)! l!

(l + α)! (l + β)!
Pα,β

l (X) ,

and (4.8) can be rewritten as

∣∣∣
(
e−it∆

)
nm,kl

∣∣∣ = δm+k,n+l

(
l +

α+ β + 1

2

)− 1

2

(1 + t2)−1/2 (1 −X)α/2(1 +X)β/2
∣∣∣Pα,β

l (X)
∣∣∣ ,
(4.9)

with X given by (4.6).
Now, we use the following uniform bound for the orthonormal Jacobi polynomial, proven

in [4]:

(1 −X)α/2+1/4 (1 +X)β/2+1/4
∣∣∣Pα,β

l (X)
∣∣∣ ≤

√
2e

π

√
2 +

√
α2 + β2 , (4.10)
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valid for all X ∈] − 1, 1[, l ≥ 0 and α, β ≥ −1/2.
Applying this inequality in conjunction with (4.9) we obtain, for m,n, k, l ≥ 0 and |t| ≥ 1,

∣∣∣
(
e−it∆

)
mn,kl

∣∣∣ ≤ C δm+k,n+l

(
2 +

√
α2 + β2

2l + α+ β + 1

) 1

2

|t|− 1

2

≤ C ′ δm+k,n+l |t|−
1

2 ,

which is the announced result.

In a recent article [9], Krasikov has improved the bound (4.10) to

(1 −X)α/2+1/4 (1 +X)β/2+1/4
∣∣∣Pα,β

l (X)
∣∣∣ ≤

√
3 α1/6

(
1 +

α

l

)1/12
,

valid for X ∈] − 1, 1[, l ≥ 6 and α ≥ β ≥ (1 +
√

2)/4. Apart from the restricted domain of
validity, which presumably can be extended to α, β, l ≥ 0, it is not clear whether it may lead to
a stronger decay estimate than (6.3). In particular, we do not know whether the decay exponent
d/2 in (4.7) is optimal. It is, on the other hand, easy to obtain improved uniform bounds on
diagonal matrix elements as will be demonstrated in the following Lemma, and used in the
treatment of the diagonal case in Section 6.

Lemma 4.3. For any d ≥ 1 there exists a constant C ′
d, independent of n,m ∈ N

d
0 and t, such

that
|
(
e−it∆

)
nn,mm

| ≤ C ′
d |t|−d(1 + log |t|)d , |t| ≥ 1 . (4.11)

Proof. Again, we may assume that d = 1. We then obtain from (4.8)

∣∣∣
(
e−it∆

)
nn,mm

∣∣∣ = (1 + t2)−1/2 (1 + t−2)−β/2
∣∣∣P 0,β

l

(t2 − 1

t2 + 1

)∣∣∣, with β = n−m,

and (4.11) will follow once we show that there exist constants C1, C2, independent of α, β, l ∈ N0

and X ∈] − 1, 1[, such that

∣∣∣Pα,β
l (X)

∣∣∣ ≤
( 2

1 −X

)α/2 ( 2

1 +X

)β/2 (
C1 + C2

∣∣ log(1 − |X|)
∣∣
)
.

This alternative estimate on the Jacobi polynomials relies on a very standard integral represen-
tation. We give a detailed proof for the sake of completeness. Taking into account the symmetry
relation

Pα,β
l (X) = (−1)l P β,α

l (−X) ,

it suffices to consider X ∈ [0, 1[. Setting X = cos θ, θ ∈]0, π
2 ], the assertion we want to prove is

equivalent to (
sin

θ

2

)α (
cos

θ

2

)β ∣∣∣Pα,β
l (cos θ)

∣∣∣ ≤ C1 + C2 | log θ | .

For X 6= ±1, we can use the following integral representation of the Jacobi polynomials, see
e.g. [13, p. 70]:

Pα,β
l (X) =

2α+β

2πi

∫

Γ

dz

zl+1

R(X, z)−1

(
1 − z +R(X, z)

)α(
1 + z +R(X, z)

)β ,
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where R(X, z) =
√

1 − 2Xz + z2 and Γ is a positively oriented contour in the complex plane
enclosing the point X. Choosing for Γ the unit circle centered at the origin, this yields

Pα,β
l (cos θ) =

2α+β

2π

∫ π

−π
dϕ

e−ilϕR(θ, ϕ)−1

(
1 − eiϕ +R(θ, ϕ)

)α(
1 + eiϕ +R(θ, ϕ)

)β ,

where

R(θ, ϕ) =
√

1 − 2 cos θ eiϕ + e2iϕ = 2

√
−eiϕ sin

ϕ+ θ

2
sin

ϕ− θ

2
,

and the complex square root is defined such that
√

1 = 1. Using a trigonometric identity one
finds

R(θ, ϕ) =





2 eiϕ/2
∣∣ sin ϕ+θ

2 sin ϕ−θ
2

∣∣1/2
, if

∣∣ sin ϕ
2

∣∣ ≤ sin θ
2 ,

−2i eiϕ/2
∣∣ sin ϕ+θ

2 sin ϕ−θ
2

∣∣1/2
, if sin ϕ

2 ≥ sin θ
2 ,

2i eiϕ/2
∣∣ sin ϕ+θ

2 sin ϕ−θ
2

∣∣1/2
, if sin ϕ

2 ≤ − sin θ
2 ,

and thus

∣∣1 − eiϕ +R(θ, ϕ)| = 2
∣∣ sin ϕ

2
+
i

2
e−iϕ/2R(θ, ϕ)

∣∣

=

{
2
(
sin2 ϕ

2 + | sin ϕ+θ
2 sin ϕ−θ

2

∣∣)1/2
= 2 sin θ

2 , if
∣∣ sin ϕ

2

∣∣ ≤ sin θ
2 ,

2
(∣∣ sin ϕ

2

∣∣+ | sin ϕ+θ
2 sin ϕ−θ

2

∣∣) ≥ 2 sin θ
2 , if

∣∣ sin ϕ
2

∣∣ ≥ sin θ
2 .

Similarly, one establishes
∣∣1 + eiϕ +R(θ, ϕ)| ≥ 2

∣∣ cos θ
2

∣∣ .

This eventually implies the following bound:

(
sin

θ

2

)α (
cos

θ

2

)β ∣∣∣Pα,β
l (X)

∣∣∣ ≤ 1

2π

∫ π

−π
dϕ
∣∣R(θ, ϕ)

∣∣−1
=

1

2π

∫ π

0
dϕ
∣∣∣ sin ϕ+ θ

2
sin

ϕ− θ

2

∣∣∣
−1/2

.

Finally, it is easily seen that there exists an upper bound of the form C1 + C2 | log θ | for the
latter integral, thus completing the proof.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Recalling the definition (1.7) of Uα and that bmn only depends on |n−m|,
it follows from the presence of the Kronecker-delta factor in (e−it∆)nm,kl that

e−it∆α(|n〉〈m|) = U−1
α e−it∆Uα(|n〉〈m|) = e−it∆(|n〉〈m|) ,

is independent of α. Since {b−α/2
mn |n〉〈m|} is an orthonormal basis for Hα we obtain, for α ≥ 0

and
φ =

∑

m,n

φmn|n〉〈m| ∈ Hα ⊆ H ,

that
e−it∆αφ =

∑

n,m

φmne
−it∆α(|n〉〈m|) =

∑

n,m

φmne
−it∆(|n〉〈m|) = e−it∆φ ,
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i.e. e−it∆α equals the restriction of e−it∆ to Hα. Applying Lemma 3.2 we then get, for α > d
and φ ∈ L1,α ⊆ Hα,

‖e−it∆αφ‖a ≤ Cα supn,m

∣∣∣bαnm

∑

k,l

(
e−it∆

)
nm,kl

φkl

∣∣∣

≤ Cα supn,m

∑

k,l

∣∣∣
(
e−it∆

)
nm,kl

bαkl φkl

∣∣∣

≤ Cα supn,m,k,l

∣∣∣
(
e−it∆

)
nm,kl

∣∣∣
∑

k,l

∣∣∣bαkl φkl

∣∣∣

= Cα supn,m,k,l

∣∣∣
(
e−it∆

)
nm,kl

∣∣∣ ‖φ‖1,α ,

where, in the second step, we have once more made use of the Kronecker-delta factor in
(e−it∆)nm,kl. The claim now follows from Lemma 4.2.

Remark 4.4. The time-decay exponent d
2 found in Lemma 4.2 equals half the value of the one

for 2d-dimensional Euclidean space, which is d. It is worth noting that the corresponding heat
kernel actually exhibits the same decay rate as for Euclidean space. In order to see this it suffices
to note that

Cnm,kl,v ≤
√(

n+ l

n−m+ 2v

)(
m+ k

n−m+ 2v

)
=

(
m+ k

n−m+ 2v

)
,

for m+ k = n+ l. Hence, for t > 0,

(
e−t∆

)
nm,kl

≤ δm+k,n+l

min{m,l}∑

v=0

(
m+ k

n−m+ 2v

)
tm+l−2v

(1 + t)m+k+d

= δm+k,n+l
tm+k

(1 + t)m+k+d

min{m,l}∑

v=0

(
m+ k

n−m+ 2v

)
t−(n−m+2v)

≤ tm+k

(1 + t)m+k+d

m+k∑

w=0

(
m+ k

w

)
t−w

=
tm+k

(1 + t)m+k+d

(
1 + t−1

)m+k
= (1 + t)−d .

5 Existence of wave operators for small data

Proof of Theorem 1.3. Both statements follow from [10, Theorem 16] once we verify the
following four conditions for α > 4d and some δ > 0, where p denotes the lowest degree of the
monomials occurring in F :

i) There exists a constant c1 > 0 such that

‖e−it∆φ‖a ≤ c1 |t|−d/2 ‖φ‖1,α/4, |t| ≥ 1 .
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ii) There exists a constant c2 > 0 such that

‖φ‖a ≤ c2 ‖φ‖2,α .

iii) There exists a constant c3 > 0 such that

‖φF (φ∗φ) − ψF (ψ∗ψ)‖2,α ≤ c3

(
‖φ‖a + ‖ψ‖a

)2p−1
‖φ− ψ‖2,α , if ‖φ‖2,α, ‖ψ‖2,α ≤ δ .

iv) There exists a constant c4 > 0 such that

‖φF (φ∗φ) − ψF (ψ∗ψ)‖1,α/4 ≤ c4

{(
‖φ‖a + ‖ψ‖a

)2p−2
‖φ− ψ‖a

+
(
‖φ‖a + ‖ψ‖a

)2p−1
‖φ− ψ‖2,α

}
, if ‖φ‖2,α, ‖ψ‖2,α ≤ δ .

Moreover, it is required that the constants c3, c4 can be chosen arbitrarily small by choosing δ
small enough.

To be specific, the stated basic assumptions about F ensure that 2p−1 ≥ 1 and d
2(2p−1) > 1

for all d ≥ 1, which implies (1.11) by [10, Theorem 16]. If, in addition, F has no linear term, we
have 2p− 1 > 1 and (1.12) follows similarly.

Condition i) above is a restatement of Theorem 1.2. That condition ii) holds follows from

‖φ‖2
a ≤ ‖φ̃‖2

2 = ‖φ‖2
2,0 ≤

∑

m,n

bαmn

∣∣φmn

∣∣2 = ‖φ‖2
2,α, α ≥ 0 ,

where we have used that the Hilbert-Schmidt norm dominates the operator norm in the first
step and that bαmn ≥ 1 for α ≥ 0 in the third step.

To establish iii) and iv) we make use of Lemma 3.4. As a consequence of the ineqality
‖φψ‖a ≤ ‖φ‖a ‖ψ‖a, which follows immediately from

(φ̃ψ)mn =
∣∣∣
∑

k

φmk ψkn

∣∣∣ ≤
∑

k

|φmk| |ψkn| = (φ̃ ψ̃)mn ,

the first part of the Lemma implies

‖φ1 · · ·φr‖2,α ≤ C(α, r)

r∑

i=1

‖φi‖2,α

∏

j 6=i

‖φj‖a , (5.1)

valid for α ≥ 0 and some constant C(α, r) depending on α and r only.
The second statement of Lemma 3.4 implies, for α > 4d,

‖φ1 · · ·φr‖1,α/4 ≤ C2,α/4

(
‖φ1‖2,α

∥∥
r∏

i=2

φi

∥∥ + ‖φ1‖
∥∥

r∏

i=2

φi

∥∥
2,α

)

≤ 2C2,α/4 ‖φ1‖2,α

∥∥
r∏

i=2

φi

∥∥
2,α

.

where, in the second step, it has been used that ‖φ‖2,α is an increasing function of α.

15



The last expression can now be estimated by making use of (5.1). Thus we obtain

‖φ1 · · · φr‖1,α/4 ≤ 2C(α, r − 1)C2,α/4 ‖φ1‖2,α

r∑

i=2

‖φi‖2,α

∏

j 6=1,i

‖φj‖a . (5.2)

Now, let p be an arbitrary positive integer and write

φ |φ|2p − ψ |ψ|2p =

p−1∑

i=0

φ |φ|2(p−1−i) (φ∗ (φ− ψ) + (φ∗ − ψ∗)ψ) |ψ|2i + (φ− ψ) |ψ|2p .

Since the norms ‖ · ‖2,α, ‖ · ‖a, ‖ · ‖1,α are ∗-invariant, an application of (5.1) and (5.2) yields
the inequalities

‖φ |φ|2p − ψ |ψ|2p‖2,α ≤ c′3
(
‖φ‖2,α + ‖ψ‖2,α

)(
‖φ‖a + ‖ψ‖a

)2p−1‖φ− ψ‖2,α ,

and

‖φ |φ|2p − ψ |ψ|2p‖1,α/4 ≤ c′4

{(
‖φ‖2,α + ‖ψ‖2,α

)2(‖φ‖a + ‖ψ‖a

)2p−2‖φ− ψ‖a

+
(
‖φ‖2,α + ‖ψ‖2,α

)(
‖φ‖a + ‖ψ‖a

)2p−1‖φ− ψ‖2,α

}
,

respectively, for suitable constants c′3, c
′
4, where the obvious inequality

‖φ‖a ≤ ‖φ‖2,α , α ≥ 0 ,

has also been used. This evidently proves iii) and iv), with c3 and c4 of order δ, if F is a
monomial of degree p. The same bounds then follow immediately for an arbitrary polynomial
F without constant term, if p denotes the lowest degree of monomials occurring in F . �

Remark 5.1. As pointed out in [10, Theorem 17], the assumptions of Theorem 1.3 also ensure
the existence of a scattering operator defined for sufficiently small initial data. More precisely,
if δ0 > 0 is small enough, there exists, for each φ− ∈ Σα with ‖φ−‖2,α ≤ δ0, a unique φ+ ∈ Σα

with ‖φ−‖2,α ≤ 2δ0, such that the solution φ−(t) to (1.9) fulfills

‖φ−(t) − e−it∆αφ+‖2,α → 0, for t→ +∞ ,

and the so defined mapping S : {φ− ∈ Σα | ‖φ−‖2,α ≤ δ0} → {φ+ ∈ Σα | ‖φ+‖2,α ≤ 2δ0}, called
the scattering operator, is injective and continuous w.r.t. the topology defined by ‖ · ‖2,α.

6 The diagonal case

In this final section we discuss briefly eq. (1.1) when restricted to functions ϕ(x, t) that corre-
spond under the Weyl map to operators that are diagonal w.r.t. the basis {|n〉}. This means
that the operators φ(t) commute with the number operators a∗kak , k = 1, . . . , d. Since a∗kak cor-
responds under the Weyl map to the generator of rotations in the (xk, xk+d)-plane, the functions
ϕ(x, t) in question are invariant under such rotations, i.e. under the action of the d-fold prod-
uct of SO(2). Since, clearly, φF (|φ|2) is diagonal and Hilbert-Schmidt if φ is and ∆ naturally
restricts to a selfadjoint operator on the Hilbert subspace

Hdiag = {φ ∈ H | φ diagonal} ,
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(see [3]) it follows that the equations (1.3) and (1.5) make sense as equations on Hdiag.
We first note that Theorem 1.1 still holds with H replaced by Hdiag. In fact, the proof of

a) applies without additional changes and part b) follows likewise since the operator φ0 in the
proof obtained from [3] is diagonal.

Concerning Theorem 1.2 we have the stronger decay estimate
∣∣(eit∆

)
nn,mm

∣∣ ≤ C |t|−d(1 + ln |t|)d , |t| ≥ 1 , (6.1)

from Lemma 4.3 above as noted previously. Note also that for φ ∈ Hdiag the norms ‖φ‖p,α are
independent of α and the identities

‖φ‖a = ‖φ̃‖op = sup
n

|φnn| = ‖φ‖op ,

‖φ‖1,α =
∑

n

|φnn| = ‖φ‖1 ,

hold. In view of (6.1) the decay estimate in Theorem 1.2 is hence replaced by

‖e−it∆φ‖op ≤ C |t|−d (1 + log |t|)d ‖φ‖1 , |t| ≥ 1 . (6.2)

We therefore define the subspace of diagonal scattering states by

Σdiag := {φ ∈ Hdiag, |||φ||| <∞} ,
where

|||φ||| := ‖φ‖2 + sup
|t|≥1

|t|d(1 + ln |t|)−d ‖e−it∆φ‖op .

Using the well known inequalities

‖φψ‖2 ≤ 1

2

(
‖φ‖op ‖ψ‖2 + ‖φ‖2 ‖ψ‖op

)
, ‖φψ‖1 ≤ ‖φ‖2 ‖ψ‖2 ,

as a replacement for Lemma 3.4, we obtain the estimates

‖φ |φ|2p − ψ |ψ|2p‖2 ≤ C1

(
‖φ‖2 + ‖ψ‖2

)(
‖φ‖op + ‖ψ‖op

)2p−1‖φ− ψ‖2 ,

‖φ |φ|2p − ψ |ψ|2p‖1 ≤ C2

{(
‖φ‖2 + ‖ψ‖2

)2(‖φ‖op + ‖ψ‖op

)2p−2‖φ− ψ‖op

+
(
‖φ‖2 + ‖ψ‖2

)(
‖φ‖op + ‖ψ‖op

)2p−1‖φ− ψ‖2

}
,

by arguments analogous to those in the proof of Theorem 1.3. It hence follows that the conclu-
sions of Theorem 1.3 hold in the diagonal case with ‖ · ‖2 replacing ‖ · ‖2,α and ||| · ||| replacing
||| · |||α, provided F has no constant term and, in addition, no linear term if d = 1. According
to the diagonal version of Theorem 1.2, we have in this case also global existence of solutions
to the Cauchy problem on H. It then follows by standard arguments [10, Theorem 19] that the
restriction to small data at ±∞ can be dropped, i.e. the wave operators Ω± can be defined on
the full space Σdiag, if F has no linear term. More precisely we have:

Theorem 6.1. Assume the polynomial F is real and contains no constant and linear terms.
Then, for all φ± ∈ Σdiag, equations (1.10) and (1.9) have unique globally defined continuous
solutions φ± : R → Σdiag fulfilling

‖φ±(t) − e−it∆φ±‖2 → 0 for t→ ±∞ , (6.3)

|||eit∆φ±(t) − φ±||| → 0 for t→ ±∞ . (6.4)
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Remark 6.2. This result allows us to define the wave operators Ω± : Σdiag → Σdiag by eq. (1.13)
that are injective and uniformly continuous on balls in Σdiag. In general, Ω± are not surjective:
Choosing F to satisfy the assumptions of Theorem 1.1 b) the oscillating solution φ(t) = eiωtφ0

to the Cauchy problem (with t0 = 0) fulfills ‖φ(t)‖1 = ‖φ0‖1 < ∞ by [3, Lemma 2]. Hence,
φ0 ∈ Σdiag by (6.2). On the other hand, since the unique solution φ(t) to the Cauchy problem
with initial value φ0 at t = 0 has constant operator norm, it cannot fulfill (6.3) for any φ± ∈ Σdiag.
Even in this case, an appropriate characterization of the images of Ω± remains an open question.
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