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DISCRETE CARLEMAN ESTIMATES FOR ELLIPTIC OPERATORS
AND UNIFORM CONTROLLABILITY OF SEMI-DISCRETIZED
PARABOLIC EQUATIONS*

FRANCK BOYER'%, FLORENCE HUBERT!%, AND JEROME LE ROUSSEAU §9

Abstract. We derive a semi-discrete two-dimensional elliptic global Carleman estimate, in
which the usual large parameter is connected to the one-dimensional discretization step-size. The
discretizations we address are some families of smoothly varying meshes. As a consequence of the
Carleman estimate, we derive a partial spectral inequality of the form of that proved by G. Lebeau
and L. Robbiano, in the case of a discrete elliptic operator in one dimension. Here, this inequality
concerns the lower part of the discrete spectrum. The range of eigenvalues/eigenfunctions we treat is
however quasi-optimal and represents a constant portion of the discrete spectrum. For the associated
parabolic problem, we then obtain a uniform null controllability result for this lower part of the
spectrum. Moreover, with the control function that we construct, the L? norm of the final state
converges to zero super-algebraically as the step-size of the discretization goes to zero. A relaxed
observability estimate is then deduced.

Key words. Elliptic operator, discrete Carleman estimate, spectral inequality, parabolic equa-
tion, semi-discrete scheme, uniform controllability / observability.

AMS subject classifications. 35K05 - 65M06 - 93B05 - 93B07 - 93B40

1. Introduction and settings. Let ,w be connected non-empty bounded
open subsets of R™ with w € 2. We consider the following parabolic problem in
(0,7) x Q, with T > 0,

Oy — Vi (YWVay) =1,vin (0,7) x Q, ylaga =0, and yli—o = yo, (1.1)

where the diffusion coefficient v = v(x) > 0 satisfies

reg() = sup (+(0) + = + [V (@)]) < +o0. (12)
€N ’}/(Z‘)

G. Lebeau and L. Robbiano proved in [LR95] the null controllability of system (1.1),

i.e., for all yo € L2(Q), there exists v € L2((0,T) x ), such that y(T) = 0 and

vl 20,1y x2) < Clyolr2(q), where C' > 0 only depends on Q,w, v and 7. They in

fact constructed the control function v semi-explicitly. This construction is based on

the following spectral inequality.

THEOREM 1.1 ([LR95, JL99, LZ98a]). Let (¢x)ren+ be a set of L*(Q)-orthonormal
eigenfunctions of the operator A := —V .- (vV ) with homogeneous Dirichlet boundary
conditions, and (uk)ken+ be the set of the associated eigenvalues (with finite multi-
plicities) sorted in a non-decreasing sequence. There exists C' > 0 such that for all
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w >0 and for all (ay)ren- C C

2

> apdr(x)| du.

e <p

> apdr(z) ’ dx < C’ec\/ﬁf

M <p w

> Jow* = [

HEe<p Q

The proof of this result relied on local Carleman estimates for the augmented elliptic
operator —97 + A in (0,T%) x Q, for some T, > 0, where ¢ is an additional variable.

This article provides similar results, i.e., elliptic Carleman estimates, a Lebeau-
Robbiano-type spectral inequality, and controllability result, in the case of a spatial
discretization of the parabolic operator in (1.1).

To our knowledge, in the discrete case, the only positive uniform null controlla-
bility result is the one in [LZ98b] concerning the case of a boundary control in 1D,
with a constant diffusion coefficient v and for a constant step size finite-difference
discretization. In two dimensions, again for finite differences, there is however a
counter-example to the null and approximate controllabilities for uniform grids on a
square domain for distributed or boundary control (see [Zua06]).

On the one hand, the proof of the result of [LZ98b] relies on a decomposition
along a basis of explicit eigenfunctions of the finite-difference approximation of A
in one dimension, thus requiring the diffusion coefficient « and the step size to be
constant. On the other hand, the counter-example provided in [Zua06], exploits an
explicit eigenfunction of A in two dimensions that is solely localized on the diagonal
of the square domain. It naturally follows that the control region (distributed control
or boundary control) would have to meet the diagonal of the domain for the null or
approximate controllabilities to hold.

In this article, we concentrate on distributed control. The case of a boundary
control can then be obtained following a domain extension method (see e.g. [F196]). To
address non uniform discretizations and non constant diffusion coefficients, we propose
to base our analysis on discrete global Carleman estimates. As a first step, in this
article, for the sake of exposition, we restrict our analysis of semi-discrete parabolic
operators to one dimension in space. However, the proof of such Carleman estimates
does not effectively rely on the space dimension. As a consequence, we cannot expect
to obtain any uniform controllability result for the full spectrum with this method,
even in one dimension, because of the counter-example in higher dimension.

In [Zua06, Zhe08], the derivation of discrete Carleman estimates was proposed as
a challenging research problem. In fact, in the course of the proof of such estimates,
the Carleman large parameter s has to be connected to the mesh size h: we obtain a
condition of the form sh < g¢, with €9 = €¢(£2, w, ). This kind of condition cannot be
avoided: without such a restriction we would be able to achieve a Lebeau-Robbiano
spectral inequality for the full spectrum of the discrete operator. Yet, such a result
does not hold (see Remark 1.3 below). Note that an earlier attempt at deriving
discrete Carleman estimates can be found in [KS91]. The result presented in [KS91]
cannot be used here as the condition imposed by these authors on the discretization
step size, in connection to the large Carleman parameter, is too strong.

Here, the condition sh < gg in the Carleman estimate only yields a partial Lebeau-
Robbiano spectral inequality for the lower part of the spectrum. By “lower part” we
actually mean a constant portion of the discrete spectrum (see Remark 1.5 below).
In particular, the Lebeau-Robbiano inequality for the full spectrum of the differential
operator A can be recovered when h goes to zero.

As far as the controllability result in the semi-discrete case is concerned, we
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consider the following system,

Oy + A%y = Lovn,  ynloa =0,  Yli—o =y,

where A™ is a discrete approximation of A for a mesh 9 with step-size h to be
precisely introduced below. We prove that there exists a control function vy, with
lonllL20,m)xw) < C|y(’}|L2(Q), C > 0 independent of h, such that the frequencies of
the controlled solution y;, associated to the lower part of the spectrum vanish at the
final time 7. We furthermore prove that

2
lyn(T) 2y < Ce™ " |yl 12y (1.3)

This should not be considered as an approximate controllability result and should
rather be compared with the result obtained in [LTO06], where they proved (in a
somewhat more general framework) a result of the form (1.3) with e~/ h? replaced
by h®, for some explicit exponent o > 0. See also the observability estimate (1.10)
below. Note that in the sequel we shall drop the subscript h, in the case of discrete
function, as in yp or vy, for the sake of concision.

As mentioned above, we chose to restrict ourselves in one space dimension since
additional technicalities are needed for the multidimensional case. This issue will
be developed in future work [BHL09a]. With the discrete partial Lebeau-Robbiano
inequality we prove here, the full discrete problem can also be addressed [BHL09b,
BHL09¢].

A challenging question lays in the derivation of uniform discrete parabolic global
Carleman estimates. In the continuous case, global parabolic Carleman estimates
were introduced in [FI96] and they in particular lead to the null controllability of
linear and semi-linear parabolic equations [Bar00, FCZ00]. Like in the elliptic case
that we treat here, we cannot hope to obtain such estimates, in the discrete parabolic
case, with an arbitrary large parameter.

1.1. Discrete settings. As mentioned above we restrict our analysis of semi-
discrete parabolic operators to one dimension in space. Let us consider the elliptic
operator on ) = (a,b) given by A = —0,(v0,,) with homogeneous Dirichlet boundary
conditions and ~ satisfying (1.2).

We introduce finite difference approximations of the operator A. Let a = 2o <
1 < - <axy < xn41 = b, see Figure 1.1. We refer to this discretization as to the
primal mesh M := {x;; i =1,...,N}. We set [M] := N. We set hy 1 = @ip1 — 25
and z; 1 = (zit1 +2;)/2, 0= 0,...,N, and h = maxo<i<n h;y 1. We call M =
{le%; i:]\?,...,N} the dual mesh and we set h; = x; 1 —a;_1 = (hiy 1 +h_1)/2,
i1=1,...,N.

1
2

)
ol
-

|

o T Ti—1 i TN ZTN+1

Fic. 1.1. Notation for the mesh geometry
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In the present article, we shall only consider some families of regular non uniform
meshes, that will be precisely defined in Section 1.2. Note that the extension of our
results to more general mesh families does not seem to be straightforward.

We denote by C™ and C™ the sets of discrete functions defined on 9t and 9 re-
spectively. If u € C™ (resp. C™), we denote by u; (resp. “i+%) its value corresponding
to x; (resp. x;, 1). For u € C™ we define

N
uP =3 . u € L7(Q).
i=1 T2

1+%]

Since no confusion is possible, by abuse of notation we shall often write u in place of
u™. For u € C™ we define [, u:= [, u”(z)dr = Zf\; hiu;.
For u € C™ we define

N
M
u = z%)l[aj'iywi+l]ui+%'
i=

As above, for u € C™, we define [ u ifﬂ ™ (x)dr = YN, Riy1Uip . Similarly,
with @ = (0,7) x 2, and u(t) in C™ or C™ for all t € (0,T'), we shall write [[ ,u dt =
J éfﬂ u(t) dt. In particular we define the following L? inner product on C™ (resp.
c™)

(u,v)p2 = g;ugn(x)(v””(x))* dx, resp. (u,v)p2 = g;uﬁ(x)(vﬁ(x))* dx. (1.4)

For some u € C™, we shall need to associate boundary conditions u%™ = {ug, un1}.

The set of such extended discrete functions is denoted by C™“9”*. Homogeneous
Dirichlet boundary conditions then consist in the choice ug = uny1 = 0, in short
u?” = 0. We can now define translation operators 7+, a difference operator D and
an averaging operator as the maps C™“9™ — C™ given by

(T+U)i+% = Ui, (T_U)H% =u;, t=0,...,N,
1 _ . 1 _

(Du)iys = P (Tu—r7 Wit 1, U= 5(7'Jr + 77 )u. (1.5)
its

We also define, on the dual mesh, translations operators 7%, a difference operator D
and an averaging operator as the maps C™ — C™ given by

(r7u); = Uiy 1, (T7u); = Uj_1, 1=1,...,N,
_ 1 1
(Du); == E(T"’u — T u);, U= §(T+ + 77 )u. (1.6)

Note that there is no need for boundary conditions here.
A continuous function f defined in a neighborhood of €2 can be sampled on the
primal mesh f™ = {f(x1),..., f(xy)} which we identify to

N
fgn:z]-[miil,xprl]fiv fz:f(xl)v i=1,...,N.
=1 2 2
We also set

1O = {f (o), flan+1)}s  f7O0 = {f(0), f(21), - flan), f@ns1)}-
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Fic. 1.2. Some non-uniform meshes for N = 10, 20,40 (left) and the corresponding map ¥ (right).

The function f can also be sampled on the dual mesh f™ = {f(x

)7 s 7f(xN+%)}
which we identify to

1
2

N
7= ;]l[mi,mi+1]fi+%7 fiJr% :f(xi+%)7 i=0,...,N.

In the sequel, we shall often use f for both the continuous function and its discretiza-
tion on the primal mesh, i.e., f?Y9™ We shall write f; for the sampling f™ of f on
the dual mesh. In fact we shall write Df := Df™Y9 and Df; := Df™, with similar
conventions for compositions of the discrete operators we defined above. See also
Remark 3.1 for conventions concerning the action of discrete operators on continuous
functions.

Throughout the article, a volume norm, i.e., over an open subset of @ = (0,7 x £,
will be denoted by ||.||; a surface norm will be denoted by |.|. Note that we shall use
the same norm signs for continuous, semi-discrete and discrete norms over volumes
and surfaces. For a semi-discrete function u on @, i.e., with u(t) € C™ or C™ for all

T
t € (0,T), we thus set [[ul|7o) = [ [ [u(t)]* dt.
00
1.2. Regular families of non-uniform meshes. In this paper, we address

non uniform meshes that are obtained as the smooth image of an uniform grid.
More precisely, let ¢ =|0, 1] and let ¥ : R +— R be an increasing map such that

9 EE™, IQo) =0, infd >0. (1.7)
Qo
Given an integer N, let My = (ih*)1<i<n, with h* = ﬁ be a uniform mesh of Qg

and 9, the dual mesh. We define a non-uniform mesh 9t of  as the image of M
by the map 9, setting

x; = 9(ih*), Vi€ {0,...,N+1}. (1.8)
The dual mesh 91, and the general notation are those of the previous section. We

give in Figure 1.2 an example of such a family of non-uniform meshes and the map 9
that we used to construct those meshes.
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1.3. Statement of the main results. With the notation we have introduced,
a consistent finite difference approximation of Au with homogeneous boundary con-
ditions is A%y = —D(yqDu) for u € C™Y9™ satisfying u?™ = 0. Recall that v is
the sampling of the given continuous diffusion coefficient 7 on the dual mesh 90, so
that for any u € C™Y9” we have

’Y(xwr%)ui%j —7(%7%)%
(Amu)zz— 2 - = y i=1,...,N.
7

Note however that other consistent choices of discretization of « are possible, such as
7, i.e. the averaging on the dual mesh of the sampling of v on the primal mesh.

REMARK 1.2. Note that the discretization we have introduced can also be viewed
as a finite volume approximation of the problem on the dual mesh.

For a suitable weight function ¢, the announced semi-discrete Carleman estimate
for the operator P™ = —0? + A™ on (0,7.) x €, for the non-uniform meshes we
consider, is of the form

$*lle*PullFaq) + slle™deull7z ) + slle™? Dull7z ) + sle*? ) 0u(0, ) [72(0)
+ 52T 0pu(Ts, )72 () + 57> T u(T, )72 (0

< C (e P™ul3a(q) + e 74T Du(T.. )y + 5160000, ),y )

for any s > so, and any h < hg such that sh < &o, and any u satisfying u|;0yxo = 0,
ul(o,1,)x00 = 0, where sq, hg and £y only depend on the data (see Theorem 5.5). The
proof of this estimate will be first carried out for uniform meshes, and then adapted
to the case of non-uniform meshes we introduced in Section 1.2.

Note that the discrete operator A™ is selfadjoint with respect to the L? inner
product on C™ introduced in (1.4). We denote by ¢™ a set of discrete L? orthonormal
eigenfunctions, ¢; € C™, 1 < j < ||, of the operator A™, and by p™ = {p;,1 <
7 < |9} the set of the associated eigenvalues sorted in a non-decreasing sequence.

The announced partial Lebeau-Robbiano spectral inequality for the lower part of
the spectrum reads

2 2
> Ja? = f’ > am] < Cec\/’jf’ > amk’ ; V(ar)1<k<om C C.
m Q m

K ER KL ER w #kEMW
g < B <p np<p

for C' > 0 only depending on (Q,w,v,9) and for ph? and h sufficiently small. (see
Theorem 6.1 for details).

REMARK 1.3. The inequality we have obtained only concerns a constant portion of
the discrete spectrum. It is however quasi-optimal by the following arqgument. Observe
indeed that the map

(o)i<k<mr € cM - < > ak¢k(xj)> € CNe,
- TjEw

where N, = #(OM Nw), is never injective if M > N,. The mazimal number of

eigenfunctions we could possibly have in such an inequality is then of the order of %
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Since we can prove the asymptotic behavior py, ~ Ck?, we are clearly restricted to the
2
condition ph? < C’“g‘lg.

holds for ph? < &¢ but we do not know if the ¢y we obtain is optimal.

We show here that the discrete Lebeau-Robbiano inequality

We introduce the following finite dimensional spaces
Ej; = Span{¢y; 1 <y, <2} CC™, jeN,

and denote by Ilg; the L? orthogonal projection onto E;. The controllability result
we can deduce from the above results is the following.

THEOREM 1.4. Let T > 0 and ¥ satisfying (1.7). There exist ho > 0, Cp > 0
and Cy, Cy, C3 > 0 such that for all meshes M defined by (1.8), with 0 < h < hy,
and all initial data yo € C™, there exists a semi-discrete control function v such that
the solution to

Oy — D(vaDy) = 1,0, y?™ =0, yli—o = yo. (1.9)

satisfies HEjmy(T) =0, for ;™ = max{j; 2%/ < Cy/h?}, with vl z2(@) < Crlyolr2(0)
and furthermore |y(T')|p2(q) < 026_03/h2|y0|L2(Q).

The different constants hg, Cj, j = 1,2,3, appearing in the statement of the
theorem will be made more explicit in the main text.

REMARK 1.5. Here the highest mode we are able to control uniformly satisfies
we < 51/h2. In fact for some dy > 0 and dy > 0, for all 1 < k < N we have
dik? < pp < dok?. It follows that we can treat any mode that satisfies dok? <
51/h2 < ONZ2, or rather k < C'N. The result of Theorem 1.4 thus states the null
controllability of a constant portion of the discrete spectrum. Furthermore, note that
for h sufficiently small the error made for the remainder of the spectrum goes to zero
super-algebraically.

The (relaxed) observability estimate we then obtain is of the form

T 1 5
40) sy < Or ([ la)F dt)" + O la(T) 20 (1.10)

for any ¢ solution to the adjoint system of system (1.9) (see Corollary 7.5 for details).

1.4. Outline. In Section 2, in the continuous case, we present an alternative
method to prove the Lebeau-Robbiano spectral inequality. A large part of the article
is dedicated to the extension of this approach to the discrete case. In Section 3 we have
gathered preliminary discrete calculus results. To ease the reading most of the proofs
have been placed in Appendix A. Section 4 is devoted to the proof of the semi-discrete
elliptic Carleman estimate for uniform meshes. Again, to ease the reading, a large
number of proofs of intermediate estimates have been placed in Appendix B. This
result is then extended to non-uniform meshes in Section 5. In Section 6, with such
a Carleman estimate at hand, we derive a partial discrete Lebeau-Robbiano spectral
inequality. Finally, in Section 7, as an application, we prove the controllability result
of Theorem 1.4.
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1.5. Additional notation. We shall denote by z* the complex conjugate of
z € C. In the sequel, C' will denote a generic constant independent of h, whose value
may change from line to line. As usual, we shall denote by O(1) a bounded function.
We shall denote by O, (1) a function that depends on a parameter p and is bounded
once (. is fixed. The notation C,, will denote a constant whose value depends on the
parameter f.

We sometimes use multi-indices. We say that « is a multi-index if « = (v, ..., ay)
N™. For o and § multi-indices £ € R™ then write

lal = a1+ + an, N R L S L S

Tn?

B<a,if fr<ar,....fo<an, (5)=(3) - (5)if8<a

2. The continuous case. Let © be a bounded open subset of R" with %>
boundary. Let w be a nonempty open subset of €2 such that w € Q2. Let T, > 0
and Q = (0,T) x 2. We shall use the notation V = (8, V)" here and we denote
by n the outward unit normal to @ on dQ and by n, the outward unit normal to
Q on 09. We consider the operator A = —V, - (vV;) defined on  with domain
D(A) = H*(Q) N H} () (homogeneous Dirichlet boundary conditions).

The Lebeau-Robbiano spectral inequality of Theorem 1.1 measures the loss of
orthogonality of the eigenfunctions (¢ )gen+, when restricted to w. It yields the null
controllability of the associated parabolic equation through a semi-explicit construc-
tion of the control function, which makes use of the natural parabolic exponential
decay of the solution (see e.g. [LR95, LZ98a, Mil06, LL09]). Other applications can
be found in [JL99].

In this section we give a proof of the Lebeau-Robbiano inequality that differs from
the original proof provided in [LR95]. Specifically, the proof in [LR95] relies on an
interpolation inequality, itself based on local Carleman estimates. Here, we do not
rely on such an interpolation inequality and use a global Carleman estimate instead.
The alternative method we propose will be used in the sequel for the discrete version
A™ of the operator A.

From the regularity of the boundary we may choose a function v that satisfies
the following property. We enlarge the open set €2 to a larger open set Q as this will
be needed for the discrete case in the following sections.

ASSUMPTION 2.1. Let Q be a smooth open and connected neighborhood of Q0 in
R™ and set Q = (0, Ty) x Q. The function ¥ is in %%Q,R) and satisfies, for some
c> 0,

VY| > candp >0 in Q, 8, v(t,x) <0 in (0,T,) x Vaq,
) > ¢ on {0} x (Q\w), Vuo=0 and dp < —c on {T.} x Q,

where Vi is a sufficiently small neighborhood of O in 0, in which the outward unit
normal ng to Q is extended from OS.

Such a function can be obtained by following the technique of [F196], i.e., making
use of Morse functions and the associated approximation theorem [AE84]. Some
details of the construction of ¥ are given in Appendix C.

With such a function 1), we define the weight function ¢ := e*”. We denote by
¢(T.) the constant value taken by ¢ over {T.} x Q. We have the following global
Carleman estimate for the elliptic operator P = —97 + A.
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THEOREM 2.2. For A > 1 sufficiently large, there exist C' > 0 and sq > 1, both
depending on Q, w, Ty, and reg(y), such that

s le*?ull 72 ) + slle™* Vull72(g) + €™ 0u(0, )72 (2.1)

+ se”

Nu(Tey iz
(T, )z + 51e D0, )R ag,)

(T, Ni2q) + %™
<C (||es“’Pu||2L2(Q) + se”

for s > sq, and for all u € H*(Q), satisfying ulfoyxe = 0, ulo,1,)x00 = 0.

REMARK 2.3. Note that we do not impose any boundary condition for u on
{T.} xQ. The proof of the Carleman estimate can be found in Appendix 3.A of [Le 07].
Note also that letting the step size h go to zero in the discrete Carleman estimate of
Theorem 4.1 below yields a proof for Theorem 2.2.

With this global Carleman estimate we can now prove the Lebeau-Robbiano in-
equality.

Proof of Theorem 1.1.  We set u(t,x) =3, -, ; gmh(‘/’ﬂ) ¢j(x). We observe
that u satisfies Pu = 0, u[{oyxo = 0 and u| 1,)xa0 = 0. Slmply keeping the fifth
term in the Lh.s. of (2.1) we have

(T, ) 3oy < C (se* T, ey + 512 CI0u(0, ) ,)

for all s > s¢g > 0. We note that

sinh(T./71;) ’2>T2 > foyl?
Vi - o

(T, ey = 5 | 0
HiSp

ey <

since the eigenfunctions (¢x)ren are chosen orthonormal in L2 (recall that the L2
inner product is defined in (1.4)). We furthermore note that

2090, )| 2wy < P00 0, )| p2() = €SP #0) ’ > ajoi(x)

)
Hi <p L2(w)

where the supremum is taken for € Q. The result will thus follow if we prove
1
ST i) > CIVau(Te, Mo (2.2)

for s > C\/ﬁ. We write

sinh (7T \/E)
u(Ty, . 2 = o } o sinh (T /1
L S y 2 Jaysnb(Tyim
and
1 1
|Vu(Ty, .)|%2(Q) < - (Vou(Ty,.),vVau(Ty '))L2(Q) < 5 > |y sinh(T \/_)|
min min /J,J<p,

since the functions (V, ¢k )ken satisfy (vmk,wm@) = urdxl, k,1 € N. We thus

see that condition (2.2) is fulfilled for s > Cp. O

L2(©)
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3. Some preliminary discrete calculus results. Here, to prepare for Sec-
tion 4, we only consider constant-step discretizations, i.e., hi+% =h,i=0,...,N.

This section aims to provide calculus rules for discrete operators such as D, D
and also to provide estimates for the successive applications of such operators on the
weight functions. To avoid cumbersome notation we introduce the following continu-
ous difference and averaging operators. For a function f defined on R we set

Hf(x) = fla+h/2), 7 f(z):=flz—h/2),
Df:=(rt —77)f/h, f=(t+77)f/2.

REMARK 3.1. To iterate averaging symbols we shall sometimes write Af = f,

and thus A2f = f.

Discrete versions of the results we give below will be natural; with the notation
given in the introduction, for a function f continuously defined on R, the discrete
function Df is in fact Df sampled on the dual mesh, MM, and D fq is Df sampled on
the primal mesh, M. We shall use similar meanings for averaging symbols, f, f (see

(1.5) and (1.6)), and for more general combinations: for instance DD f will be the

—

function DDf sampled on M.

3.1. Discrete calculus formulae. We provide calculus results for the finite-
difference operators that were defined in the introductory section.

LEMMA 3.2. Let the functions fi and fa be continuously defined over R. We
have

D(f1f2) = D(f1) f2 + f1 D(f2).
Note that the immediate translation of the proposition to discrete functions fi, fo €
C™, and g1,g2 € C™ is
D(f1f2) = D(f1) f2+ fi D(f2),  D(g192) = D(91) G + 1 D(g2)-

Proof. We have

D(fifo)(@) = B (fife)(z +h/2) = B (f1f2)(z — h/2)
= (D) (@) (7" f2)(x) + (77 f1)(2)(Df2)(2).
For symmetry reasons we also have D(f1 f2) = D(f1) 7~ (f2)+77(f1)D(f2). Averaging
the two equations we obtain the result. 0

LEMMA 3.3. Let the functions fi and fa be continuously defined over R. We
then have

— ~ A h2
fifa= fifa+ ZD(fl)D(fﬂ
Note that the immediate translation of the proposition to discrete functions fi, fo €
(Cma 91, 92 S Cm is
2 h2

file =f1f2+%D(f1)D(f2), m=§1§2+ZD(91)D(92)-

Some of the following properties can be extended in such a manner to discrete func-
tions. We shall not always write it explicitly.
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Proof. We have

Afifo= (T +7 )T fo+ 7 o) =27 (fifo) + 277 (fif2)
+1r Gt o=t )+ AT fa— T f2)
=4f1fo — h2(Df1)(Df2). D

Averaging a function twice gives the following formula.
LEMMA 3.4. Let the function f be continuously defined over R. We have

2 ; h?
A2f:=f = [+ =-DDF.

Proof. We have

AF = (P02 F + (TP +20) = 4F + (P F + (772 = 2f)
=4f 4+ h(rT(Df) — 7 (Df)) = 4f + h°DDf. O

The following proposition covers discrete integrations by parts and related for-
mulae. _
PROPOSITION 3.5. Let f € C™V9 qnd g € C™. We have the following formulae:

[ a9y = [ flg—hfogs, [ 9) = [(zF g —hfnt1gn+1,

Q Q Q Q

[ f(Dg) == [(Df)g+ fns1gnis — fogs, [ fa= [ fg— ng+1gN+% = gfog%-
Q Q Q Q

LEMMA 3.6. Let f be a smooth function on R. We have

Hf=f+ g}amf(.iah/z)da, N f=f+C;h? }(1 — o) O2f(. + ljoh) do,
0

—1

) ) 1 ) ) 1
D7 f =03 f +Cjh? [ (L= o))" 012 f (- + loh)do,  j=1,2, h=g, =1

Proof. The results follow from Taylor formulae,

)n—l

n—1 ,,J . 1 _
flatn) =S L@ 4y [ ST 1+ ) do

j=0J n—1)!

at order n = 1 for the first result, order n = 2 for the second one and orders n = 3
and 4 for the last one. O

3.2. Calculus results related to the weight functions. We now provide
some technical lemmata related to discrete operations performed on the Carleman
weight functions that is of the form e*? with ¢ € €%, with k sufficiently large. For
concision, we set » = e*? and p = r~!. The positive parameters s and h will be large
and small respectively and we are particularly interested in the dependence on s, h
and A in the following basic estimates.

We assume s > 1 and A > 1. We shall use multi-indices of the form o = (o, ;) €
N2. The proofs can be found in Appendix A.
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LEMMA 3.7. Let a and (8 be multi-indices. We have

07 (0 p) =Ja] 7 () N (V) (31)
+ laf|B](s) N F=10(1) 4 5% o (Ja| = 1)OA(1) = Oa(s).
Let o € [-1,1]. We have
P (r(x)(9%p)(x + ah)) = Ox(s!1(1 + (sh)IPl)) Orh), (3.2)
Provided sh < & we have 0°(r(z)(0%p)(x + oh)) = Ox.a(s*!). The same expressions
hold with r and p interchanged and with s changed into —s.

With Leibniz formula we have the following estimate.
COROLLARY 3.8. Let a, B and § be multi-indices. We have

0" (r2(9° p)0"p) =l + B/ () AN ()8
+ oo+ Bl(sp) 0 (1)
+ 517 fal (o] = 1)+ [8](18] ~ 1)OA(1) = Ox(sl™*+71).

PROPOSITION 3.9. Let a be a multi-index. Provided sh < K, we have

rrE% = rd%p + 51910, a(sh) = 51410, &(1),
rNO%p = rd%p + 5190, a((sh)?) = 51?10y c (1), j=1,2,
rADp = 10, p + 5O 5((sh)?) = sOx g(1), j=0,1
rD?p = r02p + 52 Oy a((sh)?) = 52Oy a(1).

The same estimates hold with p and r interchanged.
LEMMA 3.10. Let o, B be multi-indices and k = 1,2, j = 1,2. Provided sh < &,
we have
D*(97(ro®p)) = 9;0°(rd* p) + h*Ox,a(s'),
AP (rd%p) = 8P (rd®p) + 2Oy a(s1).
Let o € [=1,1], we have D*0P(r(x)0% p(x + oh)) = O 4(s!°). The same expressions
hold with r and p interchanged.
LEMMA 3.11. Let «, 3, § be multi-indices and k = 1,2, j = 1,2. Provided
sh < R, we have
AT (1207 )0 p) = 0 (2 (0 )0 p) + 2 Or, (1 17) = O, (5117191,
D0 (r2(9%p)0° p) = 95 (9" (r* (9% p)0°p)) + h*Ox 5 (s*1H1P1) = Oy s (s*1H171).
Let 0,0’ € [-1,1]. We have
A (r(z)2(0%p(a + oh))d%p(x + o'h)) = Oy s (s*1H18]),
D0’ (r(2)?(8%p(x + 0h))d® p(x + o'h)) = Ox a(s!*IF17)).

The same expressions hold with v and p interchanged.
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PropPOSITION 3.12.
Let o« be a multi-index. For k=0,1,2, j =0,1,2, and for sh < K, we have

DFAT9%(rDp) = 950 (rd,p) + sOx.x((sh)?) = sOx.x(1),
D¥(rD?p) = 0F(rd2p) + 5O a((sh)?) = s?Oxr (1), DF(rA%p) = Oy x((sh)?).

The same expressions hold with r and p interchanged.
ProproOSITION 3.13. Let o and (8 be multi-indices and k = 0,1,2, 7 = 0,1,2
Provided sh < & we have

AID*9% (12 (0 p)Dp) = 9F° (r2(9°p)Dep) + s11H1 0, 1 ((sh)?) = s1*1T10, (1),

(r*(9%p) (
AIDR8 (12 (0% p)A2p) = 8%9° (r(0%p)) + 51 Oy a((sh)?) = 51?10y (1),
AIDFOP (r2(8%p)D?p) = %95 (r2 (8% )2 p) + 51120 «((sh)?) = s/1T20, 4 (1),
AIDF9%(r2DpD?p) = 89 (r2(9,p)02p) + 5> Ox 1 ((sh)?) = s°On 1 (1),

(

r“D
AIDFO*(r2Dp A%p) = 050% (rdup) + sOx.a((sh)?) = sOx.a(1).

REMARK 3.14. We set Dy := ((77)% — (77)?)/2h = AD and Ay = ((v7)% +
(17)?)/2. We see that the results in the previous Lemmata and Propositions are
preserved when we replace some of the D by Dy and some of the A by As.

4. A semi-discrete elliptic Carleman estimate for uniform meshes. Here
we consider constant-step discretizations. The case of non-uniform meshes is treated
in the following section.

For any uniform mesh 901, let & € R™ and & € R™ be two positive discrete
functions. We denote by reg(£) the following quantity

&) s Dal.swlDel).

52 m m

Hence, reg(§) measures the boundedness of £ and & and of their discrete derivatives
as well as the distance to zero of & and &s.

We extend & and & to piecewise affine functions in the neighborhood Q of Q
on the dual and the primal meshes respectively. Continuous versions of the previous
properties are then satisfied. We also call £ and & the two piecewise affine functions.
Note that &> 4 gives the discrete function & we started from.

We let w @ Q be a nonempty open subset. We set the operator P™ to be
P™ = —(£0} + D(&,4D)), continuous in the variable ¢ € (0,7%), with T > 0, and
discrete in the variable z € Q.

The Carleman weight function is of the form r = e with ¢ = e*¥, where

(NS (fk(@), with k& € N sufficiently large, satisfies Assumption 2.1. Here, to treat
the semi-discrete case, we shall use the enlarged neighborhood Q of Q introduced in
Assumption 2.1. This will allow multiple actions of discrete operators such as D and
A on the weight functions. In particular we take ¢ such that 9,4 > 0 in (0,7%) x V,
and 0,1 > 01n (0,7y) x Vj, where V,, and V}, are neighborhoods of a and b respectively.
This then yields

e o (s (642 ) o

(rDp)o <0, (rDp)n+1 > 0. (4.1)
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We recall that p = r~!. We introduce the following notation

Vef = (20,620, 1), Aef = Q02f + £02F.

We prove the following semi-discrete Carleman estimate. The function u denotes
a function that is continuously defined and regular (¢2) w.r.t. t and discrete w.r.t. z.

THEOREM 4.1. Let reg® > 0 be given. For the parameter X > 1 sufficiently large,
there exist C, sg > 1, hg > 0, g9 > 0, depending on w, Ty, reg®, such that for any
€ = (&1, &) with reg(€) < reg®, we have

33||6WU||2L2(Q) + 5||€S<p8tu”2L2(Q) + 5||68WDU||%2(Q) + e 9,u(0, -)|2L2(Q)
@,u(T*, )|%2(Q) + 83628¢(T*) U(T*, )|%2(Q)
DU(T*7 )|%2(Q) + S|€S¢(O7.)atu(oa )|2L2(w)) ) (42)

+ Ser@(T*)

<C (||es¢Pmu||2L2(Q) + se259(T+)
for all s > s9, 0 < h < hg and sh < g, and u € €>([0,T],C™Y9™)  satisfying

ulroyxa =0, ulo,1.)x00 = 0.
The proof of some of the lemmata below can be found in Appendix B.

Proof. We set f := —P™u. At first, we shall work with the function v = ru, i.e.,

u = pv, that satisfies
(4.3)

r (€107 (pv) + D(€2.4D(pv))) = 1f.

By Lemma 3.2, we have 92 (pv) = (92 p)v + 2(9¢p)Orv + pd?v and
D(&2,4D(pv)) = (D(&2,aDp)) 0 + &2,aDp DO + (Dp) €2,aDv + pD(€2,aDv),

since rp = 1. By Lemma 3.3 we have
2

. _ h - _ . _ _
§o,aDv = &4 Dv + Z(D&,d)(TJFDU — 71" Dv), &aDp=E&.qa Dp+ I(sz,d)(DDp),

D(&2,aDp) = (D&2,4)Dp + &,4D Dp.
Equation (4.3) thus reads Av + Biv = ¢’ where

Av = €020 +1p D(€2,4Dv) + &17(02p) v + &r(DDp) 7,
A2’U

Aiv
Byv = 2&17(0yp)0yv + 2rDp & Do,
2
g =rf- grD_p(ng7d)(T+Dv — 77 Dv) — %(ngd)?“(DDp)D’U
— hO(1)rDp Dv — (r(Déz,a)Dp + hO(1)r(DDp)) 7,

since D = Duw, for any function w and since |24 — &0 < Ch. Following [F196]

we now set
Bv = 2&7(0p)0v + 2rDpéa Dv - —2s(Acp)v, g=9 —2s(A¢p)v.
Biv Bawv
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Equation (4.3) now reads Av + Bv = g and we write

We shall need the following estimation of ||g||12(q)-
LEMMA 4.2 (Estimate of the r.h.s.). For sh < & we have

19120) < Ona (Irf 300y + 103y + (52 IDVIEq)) - (45)

Most of the remaining of the proof will be dedicated to computing the inner-
product Re (Awv, BU)Lz(Q)- Developing the inner-product Re(AU,Bv)LQ(Q), we set
Iij = Re (Aiv, Bjv) 12 g)-
Note that all the estimates depend on reg®, which is a bound of the regularity
measure reg(£) of & and &s.

LEMMA 4.3 (Estimate of I11). For sh < K we have I11 > Iy + Wi+ Y11 — X11 —
.]11, with

Iy = — s\? [[ &p| Ve |2 |00 dt — sA? [[[ (€20 Vet|*)a | Do|? dt
Q Q
Ty

o [ffl ) |atv|ﬂ # 50 [(@E00)a(T.) Do),

0
and

T, .
Yii = [(1+Oxa((sh)?)) ((5252,dTDP)N+1|DU|?v+% - (5252,d7"DP)0|DU|2%) dt
0

X11 = [[ Bu1 [0w[* dt + [[ 141 |Dv[? dt + Re [[ o{Y 00 Do* dt,
Q Q Q

Jin = f511 |Dv|2(T*), Wi = ff’711|D8t'U|2 dt,
@ Q

where

1
Y1 = §h23x2(gl¢|v5¢|2)d + h%sApgO(1) + hOy a((sh)?), 611 = sOx a(sh),
Bi1 = sApO(1) + sOx q(sh) + hOx(1), vi1 = sApaO(1) + sOx z(sh),
agl) = sApqdO(1) 4+ sOx a(sh).

LEMMA 4.4 (Estimate of I12). For sh < R, the term I is of the following form
12 = 25A% [[ 10| Ve |?|0pv]? dt + 2502 [[ (9&2|Ve|?)a| Do) dt — X1a — Jia,
Q Q
with
Xy = ffﬁ12|3fv|2 dt + ff vig|Dv|? dt + ff paz2|v)? dt—l—Reff a12 ) 5* D dt,

Jia = Re f(a12 v*0)(Ty) + fn12|v| T.),
Q
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where

Brz = sApO(1), 112 = sApO(1) + sOx a(h + (sh)?), p12 = sOx (1),

ozg =50, x(1), ag) =350, 4(1) and ma = sOx(1).

LEMMA 4.5 (Estimate of Io1). For sh < R, the term Is1 can be estimated as
Iy >35°\* g P IVer|Hof? dt — (sA)° £€1(903(3t¢)|vwl2)(ﬂ) [0]*(T%)
+Yo1 + War — Xo1 — Joy,
with

Wo1 = ff ’721|D8tv|2dt,
Q

T, o T, _
Yar = [ Oxa((sh)*)(rDp)o| Dvf3 dt + [ Ox.a((sh)*)(rDp)n+1| Dol 1 dt,
0 0

Xo1 = [[ pan[o? dt + [[ vor|Dv?dt,  Jor = [np1|v[*(Te) + [ 821 Dof*(T%),
Q Q Q Q

where

Vo1 = hO(sh), pa1 = (shp)*O(1) + s°Ox(1) + 5°Ox a((sh)?),
Vo1 = s(’)A,ﬁ((sh)Q), No1 = SSOA’_Q((Sh)Q) + 820)\,_@(1), and 091 = s(’)A,ﬁ((sh)Q).

LEMMA 4.6 (Estimate of Iz). For sh < R, the term Iss is of the following form

Inp = =25\ [[ @®|Vep|* |v]? dt — Xoo, Xog = [[ paz|v)? dt + [[ voo| Dol dt,
Q Q Q

where pga = (sA)2O(1) + 32(’))\@(1) + ngA,g((sh)Q) and voy = s(’)&ﬁ((sh)z),

Continuation of the proof of Theorem 4.1. Collecting the terms we have obtained
in the previous lemmata, from (4.4) we obtain, for sh < &,

2s\? [[ &1\ V|2 |0pv|? dt+2502 [[(9€2|Verp|?)a| Do) dt+25° At [ @* |V ep|* [v]? dt
Q Q Q

T

- 200 |] €ho(0) oo 4 20A [(@6ap0lT.) IDuf(T,)
0

2N [ 64 (PO Ve )T P (T2) + W+ Y < O allrf 2oy + X +
Q
(4.6)
where X = X171 + Xq2 + Xo1 + Xoo + C)\7ﬁ82||11||%2(Q) + C’Aﬁ(sh)QHDUHQLz(Q), J =

Ji1 + Jio + Jor, W = Wiy + Woy and Y = Yy + Yo;. With the following lemma, we
may in fact ignore the terms W and Y.

LEMMA 4.7. Let sh < R. There exists \1 > 1, and 1(\) > 0 such that for X > A\
and 0 < sh < e1(\), we have W >0 and Y > 0.
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LEMMA 4.8. We have
[Re Jf oty 9w Dv* di] < I 87 0] dt + I v Dol dt,

\Reffam o*Dv dt| < Cs® ff Ox.a(1)[v]? dt+Cff|Dv|2 dt,
‘Re (a3 v o) (1) < Cf|5tv| +32f(9AR (Dll*(T2),

with
ﬂﬁ) = sApO(1) + sOy a(sh), l/fl) = sApgO(1) + sOy g (sh).

Recalling the properties satisfied by 1 listed in Assumption 2.1, if we choose
A2 > A; sufficiently large, then for A = Ay (fixed for the rest of the proof) and
sh <e1(A2), from (4.6) and Lemmata 4.7 and 4.8, we obtain

53||U||2L2(Q) + 5||atU||2L2(Q) + S||DU||2L2(Q) (4.7)
+ 5000, ) 720 + 810:0(Te, N2y + 5 [0(Te, 720
< O (Inf Iz + 51DV(T, ey + 8100000, )Eagey)) + X+,
where

= [/ mlvl* dt + ffﬂllatvlz di + ff vi| Dol? dt,
Q

J = [mlo(T +f041|5tv| +f51|Dv| (T%),
Q

with

1 = 520x,.1(1) + 5°Ox, q((sh)?),  Bi = Oy, a(sh),
v1 = 5O0x,a(h+ sh) + Ox,2(1), m = 5>0x,.1(1) + 520, 1((sh)?),
a1 =50y, q((sh)?) +C, & = 505, q,(1).

We can now choose g and hg sufficiently small, with 0 < g9 < e1(\2), and sp > 1
sufficiently large, such that for s > sg, 0 < h < hg, and sh < €, we obtain

33”””%2(@) + 5”8751}”%2(62) + 5||DU||%2(Q) (4.8)
+ s]0v(0, ~)|i2(9) + 5|0 (T, ')|%2(Q) + 8% (T, ')|%2(Q)
< Cnauscasn (7 132q) + 51D0(T, gy + 51000(0, )fEaq.,)

We now proceed with using back the unknown function w in the estimates. In fact we
have the following lemma.
LEMMA 4.9. For sh < & we have

IraDulliaiq) < Ous (lvliac) + D0l
||r8tu||2L2(Q) < Cha8” (||U||2L2(Q) + ||8t”||%2(Q)) ’

[rOu(Ts, ) 320y < O (S2I0(Te, ey + 100(T, MEagey ) -
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Since ¢(T,) = Cst by the properties of ¥ (see Assumption 2.1) and because of the

zero-boundary condition imposed on u at ¢ = 0 we have

10:0(0, )[F2(0y = lrdu(0,.)|72q), 10:0(0, )72 () = 110500, ) |72,
|Dv(T, )72y = r(Te)? [ DT, )| 20

We hence obtained the desired Carleman estimate from (4.8) and Lemma 4.9. O

REMARK 4.10. Note that the term W in (4.6), that we proved to be non-negative,
has no counterpart in the continuous case.

5. Carleman estimates for regular non uniform meshes. We present in
this section a way to extend the above results to the class of non uniform meshes
introduced in Section 1.2, see also Figure 1.1. We chose a function ¢ satisfying (1.7)
to remain fixed in the sequel.

By using first-order Taylor formulae we obtain the following result.

LEMMA 5.1. Let us define ¢ € R™ and ¢ € R™ as follows

hity = h;
Gip1 = h:,WE{O,...,N}, (i:h—*', Vie{l,...,N}.

2

These two discrete functions are connected to the geometry of the primal and dual
meshes M and M, and we have

0 <infd < (1 <sup?’, Vie{0,...,N},
Qo 2 Q0

0 <infy <¢, <sup?’, Viec {1,...,N}.
Qo Qo

[[9"]] Lo
ianO a ’

19"

D(l ooy < .
| C|L Q) = infgoﬁ/

|DC| oo (o) <

We aim to prove uniform Carleman estimates in this framework by using the re-
sult on uniform meshes of Section 4. To any u € C™Y9™ we associate the dis-
crete function denoted by Qmlu € C™0Y9M0 defined on the uniform mesh 9, which
takes the same values as u at the corresponding nodes. More precisely, if u =

N m N m
Zi:1 1[%_%@”%]1@, we let Qmou = Ei:l 1[(7;7%)}1*’(“,%)}1*]114, and (Qmou,)o = Ug,

(Onu)Ni1 = uny1. Similarly, for any v € C™, u = Zf\;o Liosmip0) Uiy ds We set

;0
denote by Q= and Q% their respective inverses. Let us now give commutation
properties between these operators and discrete difference operators. To lighten no-
tation we shall use the same symbols D (resp. D) for the difference operators acting

on C™0Y9%0 and C™Y9™ (resp. on C™0 and C™).

u = Ef\io 1[ih*’(i+1)h*]ui+%. The operators Qm® and Q? are invertible and we

LEMMA 5.2.
1. For any u € C™Y9™ and any v € C™, we have

D(QFou) = QZ°(¢Du), D(QZ0ow) = Q¥ (CDw).
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2. For any u € C™Y9™ we have
Dean) =003, (0 (&%) Doz ).
Proof. Let 0 < ¢ < N. On the one hand, by the definitions of QX0 and D acting
on C™0Y90 e have
(Qn’u)iv1 — (Qm°u);

) B Uil — Uy
(D(Qg)yi u))v—i—% = h* - h* ’

On the other hand, by the definitions of (, Q?, and D acting on C™Y9™ we have

Riva ;g — 1 —
— ((Dujyy = A HH T
ch2
it+3

(Q2°(¢Du)),y

1
2

which proves the first result. The other statements can be proven in a similar manner.
O

LEMMA 5.3. For any u € C™ and any v € C™ we have

(sup ')~ ul L2 ) < 195°ul1a(a,) < (Bf ) fulfa (o),
0

(Sélpﬁ')71|v|%2(n) <[Q0°v[72(qy) < (igfﬁ/)71|v|%2(ﬂ)'
0

Furthermore, the same inequalities hold by replacing by w and Qo by wg, respec-
tively.
Proof. By definition of Q° and of the discrete norms, we have

N N 1 N
180y = 3o A" Il? = 3 b, and fulfagoy = 3 Bl

so that the first property follows from Lemma 5.1. The property for v is proved
similarly. O

To avoid any ambiguity we introduce the following notation. For any continuous
function f defined on Q (resp. on Qo) we denote by Iy, f = (f(;))o<i<ns1 € CTVI™
the sampling of f on 9 (resp. Ilm, f = (f(ih*))o<i<n41 € C™0V9™0 the sampling of
f on My).

LEMMA 5.4. Let f be a continuous function defined on Q2. We have

Qgﬁ“ﬂmf :Hmo(foﬂ)'

(szuﬁsm

In particular, for any u € we have

Qe (Mg f)u) = T, (f 0 9) Qo).
We can now prove the following discrete Carleman estimate for our elliptic operator
P = —92 — D(v4D-) on the mesh M.

THEOREM 5.5. Let ¥ satisfy (1.7) and ¥ be a weight function satisfying assump-
tion 2.1 for the observation domain w. For the parameter A > 1 sufficiently large,
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there exist C, so > 1, hg > 0, g9 > 0, depending on w, Ty, ¥, reg(y), such that for
any mesh M obtained from ¥ by (1.8), we have

*lle*Pul 2 () + slle™ Dpull72(g) + slle™ Dull72(q) + sle*? (0, )72 q)
+ sezs‘p(T*)|8tu(T*, )|%2(Q) =+ SSQQSw(T*)|U(T*, )|%2(Q)

<C (||eswp%||2LZ(Q) + 52T Du(T., )| 320 + sl Dpu 0, .)|2LZ(M)) . (5.1)

for all s > s9, 0 < h < hy and sh < &g, and u € €>([0,T],C™V9™), satisfying
ulroyxa = 0, ul,1.)x00 = 0.

Proof. We set w = Qm°u defined on the uniform mesh 9. By using Lemma 5.2,
we have
my (7 pm mo 7+ 92 2 o, Vd
Qne (CP™u) = (Qn°¢) 9w — D ((QﬁO?)Dw> : (5.2)

We see that the right-hand side of (5.2) is a semi-discrete elliptic operator of the form
P = 0% — D(&D-) applied to w, where

G=0nl &=07' (5.3)
By using assumption 2.1 and (1.7), we now observe that , the function ¢ o : (¢, x) —
¥(t,9(x)) is a suitable weight function associated to the control domain wy = 9~ (w)
in Qq, i.e. that 1 o ¥ satisfies assumption 2.1 for the domains ¢ and wy.

In Theorem 4.1, we have obtained a discrete uniform Carleman estimate for P™°
and the weight function 1 o9 on the uniform mesh 2y. We can now deduce the same
result on the non-uniform mesh 971.

Firstly, we observe that there exists Cy -, such that we have reg(§) < Cy_, uni-
formly with respect to h*, with & = (£1,&2) as defined in (5.3). Then, choosing
reg? = Cy  in the proof of Theorem 4.1, we see that estimate (4.8) holds

10w 2 gy + s1194(e*0w) 3 gy + 51D D) 32y

+ s|es‘p°ﬁ(0")8tw(0, ')|2L2(Qo) + 5|0 (e*?w)/(T.,, ')&2(90) + s3e2s0(T+)

w(T*) )|%2(Qo)
Dw(T*, .)|%2(QO)+S|68¢019(07~)8,5U)(0, ')|2L2(w0)) R
(5.4)

<C (HestﬁPmowH%2(Q0)+5€28¢(T*)

and the constant C' is uniform in h* for s sufficiently large and with sh* < ¢, for
e sufficiently small. Note that, setting &y = (infq, ©¥')eo, we see that the condition
sh < &y on the size of the non-uniform mesh 9t implies the condition sh* < g¢ for
the uniform mesh 9M,.
Secondly, by using the previous lemmata 5.1, 5.2, 5.3, 5.4 and considering each
term above separately, we see that we have the following estimates.
e For the third term in the Lh.s. of (5.4)

||D(€S(<p0ﬁ)w)||2L2(Qo) = ||D(€S(<p°ﬁ)Q?“)Hé(%) = [ DQy° (eswu)H%%Qo)
= 125" (¢D(e**u)) |72 (o) = (8512133 9)HCD(e* P u) |72 ()

3 nN—1/: N2 s 2
> (bgfﬁ) (inf )7 D (e u)l L2 @)
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e For any « € {0,1}, we have

107 (e w)[|72(qy) = 1Qm0OF (1) Z2(q,) > (S;zlpﬁ’)’II\f??(eS‘OU)IIQLz(Q)y
0

and similar inequalities hold for the other terms in the Lh.s. of (5.4).
e By using (5.2) and (5.3) we have

le*2" P™ow|[ 12 g, = [le*?*” Q0 (CP™u))|[72(qq) = 1950 (€™CP™u)1Z2q,)
< (inf ) TP ula gy < (supd)? (inf ') e Pl
0 Qo 0

e Finally, since ¥(wp) = w, we have

€597 0 90(0, ) 720y = 19 (€57 u(0,)) 72 0
< (inf 0') 7?9 (0, )72 ) -
Qo

The proof is complete. O

6. A partial discrete Lebeau-Robbiano spectral inequality. In this sec-
tion, with the Carleman estimate we just proved, we obtain a Lebeau-Robbiano type
spectral inequality for the lower part of the spectrum of the operator A™. The con-
stant we shall obtain in this inequality is in fact uniform w.r.t. to the step size of the
chosen mesh 1.

We recall that we denote by ¢™ a set of discrete orthonormal eigenfunctions,
¢; € C™, 1 < j < M|, of the operator A™ with homogeneous Dirichlet boundary
conditions, and by u™ the set of the associated eigenvalues sorted in a non-decreasing
sequence, ft;, 1 < j < |9,

THEOREM 6.1 (Partial discrete Lebeau-Robbiano inequality). Let 9 satisfying

(1.7). There exist C > 0, €1 > 0 and hgy such that, for any mesh 9 obtained from ¥
by (1.8) such that h < hg, for all 0 < u < e1/h?, we have

2 2
> el = f‘ > Oék(bk‘ < Cecﬁf‘ > ard
Q m m

ppEpM g ER w ppEp
pp<p B <u B <p

, V(ar)i<k<om € C.

Proof. We adapt the proof presented in Section 2. We introduce the following
semi-discrete function u(t) = >_, . o ak% ¢, which satisfies the boundary
conditions listed in the discrete Carleman estimate of Theorem 5.5 and P™u = —d7u+
A”u = 0. For some K > 0, sg > 0, hg > 0 and g9 > 0, uniform w.r.t. 9%, we thus

have

s3e25‘p(T*)|u(T*7 .)|%2(Q) <K (SeQSWd(T*)

DU(T*, )|2L2(Q) + 5|€S(p(0")8tu(07 )|%2(w)) )

for s > sg, 0 < h < hg and sh < g9. As in the proof of Theorem 1.1 it suffices to
obtain %82|U,(T*)|%2(Q) > K|Du(T*)|2L2(Q). In fact we have

1 .
UL ) > - % ok sinh(T, )

HEe<p

1 .
S Jau sinh (/)

min g <p

|DU(T*)|%2(Q) <
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since the discrete functions Doy, 1 < 7 < |90, satisfy fQ vaDor Doy = jppn. It
thus suffices to have s%/(2p) > K/Ymin. Since sh < o, this can be made possible if
i< Ymined /(2K h?). The result follows with &1 = Yy,ine8/2K. O

7. Uniform controllability of the lower part of the spectrum. Proof
of Theorem 1.4. Let ¢ satisty (1.7) and 9t be a mesh defined by (1.8) such that
h < hg. We set uZ, . = e1/h?, with hg and &1 given by Theorem 6.1. Let j™ =
max{7j; 2% < p2 }. We recall the following notation from the introduction

E; = Span{¢y; pr < 22]} cC™, jeN,

and denote by I, the L?(Q)-orthogonal projection onto E;.
LEMMA 7.1. There exists C > 0 such that, for j < j™ and S > 0, the semi-
discrete solution g in €°°([0,S], E;) to the adjoint parabolic system
—0ig+ A"g=0 in (0,5) x Q
q=0 on (0,8) x 09, (7.1)
q(S) = qr € Ej,
satisfies the following observability estimate

0027 S

fflq )[? dt.

12(0) 720 <

Proof.  If q(0) = X, <025 bkg. Then q(t) = 3_, <005 n(t)r with au(t) =
bpetxt. Parabolic dissipation and Theorem 6.1, since 2%/ < e;/h?, then yield

S S
S|q |L2(Q S_(/)‘ L2(Q)dt=£| Z Oék(t)(bk&z(g)dt

g <229

02"'1‘f| S o (t) | 2dt = 06027ff| )2 dt. O

0w pyp<2%

We now consider the following partial control problem

Oy + A%y =g, (1,v) in (0,5) x Q
y=20 on (0,5) x 99, (7.2)
y(0) =yo € E; in Q.

With the previous observability result we have the following lemma.

LEMMA 7.2. There exists C > 0, such that for j < j™, there exists a control
function w € L2((0,5) x Q) that brings the solution to system (7.2) to zero at time
S, and which satisfies

lwlz2¢0,9)x0) < 05_%602J|y0|1;2(9)-

We shall denote by Vj(yo,a,S) such a control when working on the time interval
(a,a+ S) instead.

We now present the iterative construction of the control function. We write
[0,7/2] = Ujenlay, aj+1], with ag = 0, aj41 = a; + 2T}, for j € N and Tj = K277
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with p € (0, 1) and the constant K is such that 2 Z;io T; = T/2. The control function
is defined as follows, for 0 < j < 7™,

if t € (aj,a; + 15, v(t) =V;(Igy(a)), a;,Tj)
and  y(t) =St —aj)y(a;) + } S(t — s)v(s)ds,

aj

ifte(aj+Tj,a41], v(t)=0and y(t)=St—a; —Tj)yla; +1j),

and v(t) = 0 for t € [ajmq,T] where S(t) denote the semi-group S(t) = e A7 In
particular, [|S(t)||(z2,z2) < 1. This choice of the control function v in the time interval
la;,a; +Tj], 7 < j™, implies

ly(a; +T)) |2 < (1+Ce“®)|y(a;)|r2@), and Igy(a; +1;) =0.

During the passive period, t € [a;+1T}, a;+1], there is an exponential decrease of the L?

25
norm, |y(a;4+1)|r2(0) < e 2 Ty
above we thus obtain

ly(a; +T})|12(0), and from the value of T}, introduced

j(2—p)
F2 gy (

|y(aj+1)|L2(Q) < eCQ’— aj)|L2(Q),

which gives [y(a;11)[12() < eXh=o(C2 K2yl 1001 With p € (0,1), there
exists C' > 0, such that

23(2—p)

ly(aj1)lr2) < Ce™@ lole2),  0< 7 <j™. (7.3)

Since 2207+ > ¢ /h? = p . it furthermore follows that

_ (2—p)
ly(ajm )|z < Ce " "yl L2 (-

The constant C' depends only on the map ¥ defining the mesh 91 but not on the mesh
size h.
Concerning the L? norm of v we have ||v||2L2(Q) =Y o<j<im ||U||2L2((a_,~,aj+Tj)xQ)'

From Lemma 7.2 and Estimate (7.3) we deduce

— C —1 0929 —c2l-1(2=p)
[0l|Z2 0.7y x62) < (CTO P+ Y 0T e e ) lyol72()-
1<5<g™

Hence, arguing as above there exists 0 < Cr < oo, independent of h, depending only
on ¢, such that

IVl 20,7y x2) < CTlyolr2()-

Since v(t) = 0 for t € [a;m +T;m,T] and since 220741 > ) /h2 = it furthermore
follows that
2
(D) p20) < Ce™ ™M yo| 12,
as HEjmy(ajm + Tjm) = 0. This concludes the proof of Theorem 1.4.

REMARK 7.3. If we chose to directly control in the space Ejm based on the partial
observability result of Lemma 7.1, instead of the Lebeau-Robbiano construction of the
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control function we have done here, we would obtain a L?> norm of the control that
diverges to +00 as h goes to zero. The Lebeau-Robbiano construction, making use of
the natural parabolic exponential decay, is a key point to obtain a uniform bound for
the L? norm of the control.

With the null controllability result we have obtained in Ejm in Theorem 1.4, we
have the following observability result which improves upon Lemma 7.1.

COROLLARY 7.4. For j < j™ and S > 0, the semi-discrete solution q in
> ([0, 5], E;) to system (7.1) satisfies the following uniform observability estimate

s 1
14(0)] L2 () < CT({ﬂq(t)P dt)*

Finally, in the spirit of the work of [LT06] the controllability result we have
obtained yields the following relaxed observability estimate

COROLLARY 7.5. There exist Cr > 0 and C' > 0 depending on Q, w, T, and ¥,
such that the semi-discrete solution q in €*°([0,T],C™) to

—Oq+ A"qg=0 in (0,T) x Q,
qg=0 on (0,T) x 09,
Q(T) =(gr € Cgmv

in the case h < hg, satisfies

1
2

T 2
4(0) 12y < Or( [ [1a()? dt)” + e/ gp| 2o,
0w

Using this observability inequality, we can now provide some constructive way to
compute a suitable semi-discrete control function. To this end, let h — ¢(h) € Rt be
a function which tends to zero when h goes to 0 and such that e=¢/"* /¢(h) — 0. We
have the following result.

THEOREM 7.6. Let Cp, C' and hgy being the same as in Corollary 7.5.

For any mesh M obtained from ¥ by (1.8) such that h < hg, and any yo € C™,
we consider the functional qp € C™ +— J™(qr) defined by

om 1 T 2 ¢(h) 2
I (ar) = 5 ; |4()|L2(w) dt + = lar[Lai@) + (0, 4(0))L2(0),
where t — q(t) is the solution to the adjoint problem —0yq+ A™q = 0 with final data
oT) = qr.

This functional J™ has a unique mimiser denoted by qr,opt € C™. This minimiser
produces a solution qop: of the adjoint problem such that, if we define the control
function v(t) = 1,q(t) then we have:

e The cost of the control is bounded as follows

T
| Oy < (G o+ 60l
e The controlled solution y to (1.9) is such that

ly(T)|L20) < Vo(h) (CT + v ¢(h)) 1Yol 2 (0)-
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The proof of this result is not written here as it can be done along the lines of
the proofs given for instance in [GL94, LT06]. Some further details will be given in
[BHL09c], in connection with its fully-discrete counterpart.

Let us give some final remarks:

1. In practice, the functional J™ is quadratic, strictly convex and coercive.
Hence, the computation of gppt can be performed by using a conjugate
gradient algorithm.

2. The same result holds with ¢(h) = Ce=C/"" . Such a choice can be however
quite unconvenient in practice as we do not know in general the value of
the constant C' and since e~ /4’ is very likely to be smaller than machine
precision for reasonable values of h.

3. A natural choice for ¢ is ¢(h) = hP® with 8 > 0 as large as desired. Minimizing
J? we then obtain a control family that is uniformly bounded with respect
to h and such that the final state y(T') tends to zero like h%/2. Note that the
numerical scheme defined by the semi-discrete operator d; — D(y4D) provides
at most second-order accuracy for the computation of smooth solutions of
the parabolic problem under study. A natural choice is then ¢(h) = h*. In
fact, a choice of a smaller value for ¢(h) only results in a larger number of
iterations of the conjugate gradient algorithm to achieve convergence.

4. As the semi-discrete controls we have obtained are bounded in L2, then,
up to a subsequence, these semi-discrete controls converge towards a function
v € L?((0,T) xw) that actually drives the solution of the continuous parabolic
problem to zero at time T'.

5. In addition to space discretization, a time discretization can also be car-
ried out (implicit Euler scheme or more general #-schemes). One can then
observe the convergence of the fully-discrete control function to the semi-
discrete control function as the time step goes to zero. See [BHLO09c| for
details, in particular for error estimates.

Appendix A. Proofs of some technical results in Section 3.

A.1. Proof of Lemma 3.7. For a multi-index §, by induction we have
0% = NIVl o +18](18] - DA Te0().

To prove (3.1) we proceed by induction on || + |3|. The result holds for |o] = 0 and
any 3, and we assume it also holds in the case |a|+|3| = n. In the case |a|+|8] = n+1,
with |a| > 1, we write o = o/ + o with |@”| =1 and we have

%(r0p) = —s0°(rd™ ((975) p)) = —50° <5 > G)ETy) ra‘s;")
I8 =a!
= —3 ) ; (‘;/’) (gl) (85”4.5//_’_0‘//%0) 8ﬂl(7”86,p),
I 4§ =al

B8+ =3

Using the inductive hypothesis we see that the largest power in s in obtained by
picking & = o' and ¢” = 0 in the previous sum. The remainder is of the form
(la] = 1)s!*1=1O(1). The terms we selected lead to

—sﬂl+§,7ﬂ (gl)A\ﬁ”\¢(Av¢ﬁ”+a” +18"|0(1)) (|a’|‘ﬁ,|(_s(p)|al‘)\‘ﬁ,+a/‘vwa,+/@l

o1 (s0)@ A1 0(1) + [ (o] = 1)1 05 (1))
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which follows as

< > (5,)|O/|6’|> (—sip) el 81 +lal g+
B'+p"=p 7
+18](s9)!INHPITIO(1) + (Jof — 1)s1*171 05 (1),

which concludes the proof of the first result, since >4, 5,_5 (g,) |o/ |12l = |a|l8l. The

same proof applies to 9°(pd°r).

For (3.2), we first consider the case |a] = 0. We set v(z,oh) := r(x)p(z+oh) and
simply have v(z,oh) = es(¢@)—el@taoh)) — cOA(h) hy a first-order Taylor formula,
which gives the result in the case |3| = 0. For |3| > 1, we observe that d°v(x, oh) is
a linear combination of terms of the form

s* 07 (p(x) = p(x + ah)) - - 8% (p(x) — p(x + oh))v(z,oh),
]-Skg |ﬂ|a ﬁl"""ﬁk:ﬂv

which gives 0%v(z,oh) = Ox((sh)!P1)e® (") j e, the result in the case |a| = 0.
Next, for |a| > 1, we write r(2)(0%p)(x + oh) = v(x,0h)ue(x + oh), where we
have set pq := r0%p. By (3.1), this yields

(@)@ ) +oh) = S (5) (@ v(x,0h) (07 palx + o))
B+B=B

= Ox(sl°1(1 + (sh)1P1))eOrM O
A.2. Proof of Proposition 3.9. We recall that rp = 1. By Lemma 3.6 we
have 770%p(x) = 0%p(x) + Chp(x fo 2)0,0%p(x + oh/2) do, which by Lemma 3.7
yields r7+9%p = rd%p + s1°1O0x(sh)e O*(gh) = s|("‘0>\,ﬁ(1). The proof is the same for

r7—0%. For rDp, rA0%p = 7"51\;), rA20%p = 7"51\;), and rDDp we proceed similarly,
exploiting the formula in Lemma 3.6 and then applying the result of Lemma 3.7, e.g.,

Do(z) = p(o) + C1p(a) [ (1~ ol Pr(o) 02p)(a + o1/2) do

= Oup(x) + 5p(2)Ox,5((sh)?) = s7(2)Or,a(1).

Noting that ADp = IS;)(x) = (2h)"Y(p(x + h) — p(z — h)) we proceed as we did for
Dr. O

A.3. Proof of Lemma 3.10. By Lemma 3.6, we write

D(9°(ro“p))(x) = 0,0°(ro“p)(z) + Ch? j (1 —|o])2030°% (ro“p)(x + oh/2) do

-1

By Lemma 3.7 we have 020°(r0%p) = O,(s®!), which yields the first result in the
case k = 1. For the case k = 2, we proceed similarly, making use of the last formula
listed in Lemma 3.6. For the averaging cases, we make use of the second formula in
Lemma 3.6.

As in the proof of Lemma 3.7 we set v(x,ch) := r(x)p(x + oh). We have

DO v(x,oh) = (0.0 V) (@ + 0'h/2,0h) do' = Ox (1), |B|<18l, (A1)

DN =
L
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for sh < R by Lemma 3.7. Next, with p, = ro%p, we write r(x)0%p(z + oh) =
v(x,0h)pia (x + oh), which gives DOP(r(x)0%p(z + oh)) as a linear combination of
terms of the form

A@ (., 0h) DO pa(. + ah)) + D@7 v(,oh) A pia(- +0h), 5"+ " =5,

by the continuous and discrete Leibniz rules (Lemma 3.2). By the first part and
Lemma 3.7 we have D(0% jio(z + oh)) = Oy 4(s/%). By Lemma 3.7, 9% v(x,0h) =
Ox.a(1) and 0% o (x + oh) = Oy «(s!®). The last result hence follows from (A.1).
We proceed in a similar way for the case k = 2. O

A.4. Proof of Lemma 3.11. For the first two results, we proceed as in Lemma 3.10
and use Corollary 3.8.

For the last results we use the continuous and discrete Leibniz rules (Lemma 3.2)
and Lemma 3.10. O

A.5. Proof of Proposition 3.12. Taylor formulae yield

Dp(z) = 28+ h)z_h”(‘” —M) o p(a) + 2 } (1—|o)203p(x + oh) do, (A.2)

which in turn gives
. — . 1 . .
D*AI0%(rDp))(x) = DA 9% (10, p)(z) + Ch2 [ (1 — |o|)*DF AT 9% (r(2)32 p(x + oh)) do,
Z1

and the first result follows by Lemma 3.10 (and Lemma 3.7 for the second equality).
Next, from Lemma 3.6, we write
1
D*(rDDp)(z) = D*(rd;p)(x) + Ch® [ (1 — |o])* D*(r(2)d; p(x + oh)) do,
-1
and the third result follows as above. For D*(rA2p) we use the formula for A%p given
in Lemma 3.6 and proceed as above. O

A.6. Proof of Proposition 3.13. From (A.2) we write
ATD*0” (r2(9°p)Dp ) (x) =ATD*0° (r2(9° p)dup) (x)

1 . <
£ OB [ (1~ [o]PAIDR0% (r2(0% )00 + o) (x) do.
21
and we conclude with Lemma 3.11. For the next two results we use the formulae
listed in Lemma 3.6 and proceed as above.
From Lemma 3.6, equation (A.2), and by Lemma 3.11 we have

AID** (r?DpD?p) = AVDFO (r?(9,p)D2p)
1
+Ch? [ (1 —|o])2ATD*0*(r?02p(. + oh)2p) do
—1
1
+C'h? [ (1 —|o|)® AIDFO* (r%(0up)dtp(. + oh) do
-1
+CC'ht [ (1 —|o])?(1 — |o'])*AID*0*(r202p(. + oh)O2ip(. + o’h)) do do’
[-1,1)2

= 0;0%(r*(0:p)0;p) + 5°Ora((sh)?).
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The last result follows similarly. O

Appendix B. Proofs of intermediate results in Section 4.

In this section, the calculus results of section 3 will be used and multiple averaging
and difference operators will act on the weight functions and the coefficients £; and &;.
In the discrete setting, this in fact requires additional discretization points outside the
meshes. This can be done quite naturaly since the weight functions and the coefficients
are sufficiently smooth in a neighborhood of Q.

We shall also use the notation Do and A, introduced in Remark 3.14 and denote by
Do f (resp. Aaf) their respective actions on C™ (with extended boundary conditions).

B.1. Proof of Lemma 4.2. By Propositions 3.5 and 3.9, we have

[rDp(7* Dv)[Z2(0) = |77 (rDp) Dol 2(q) — h(TD_P)(2)|DU|2%

< Cx 8’| Doz (B.1)
Similarly we have
|7“D_p(T7Dv)|2L2(Q) < C)\7ﬁ82|DU|%2(Q). (B.2)
We also observe that
(D Dp)Dv|Z2q) £ rDDp)*(Dv)? = £ (rDDp)?) (Dv)?
h 5 h
— 2((DDRIDL — Z(r(DDp)rs | Dol
which, by Proposition 3.9, yields
[r(DDp) Do} 2y < Cx s’ [Dol]2q)- (B.3)
We also find
|7”D_pm|%2(ﬂ) S C)\,.Q82|D'U|%2(Q). (B4)
We note that
(0220 < J [0 = [0/72(q) — (If}li +ol3 1) < f|v|2 [0]22(q) (B.5)
Q 2
by Proposition 3.5 and since v?” = 0. Since D¢y, is bounded by reg’, by Proposi-
tion 3.9 and (B.5), we thus have
|(r(Dé&2q)Dp + hO(1)r(DDp))o[1a(q) < Cxa5* (L + (sh)*)[v]22(q)- (B.6)

Similarly, since D&, and Agyp are bounded, estimates (B.1)—(B.4) and (B.6) yield
the result, after an integration w.r.t. ¢. O

B.2. Proof of Lemma 4.3. From the forms of A;v and Byv we have I;; =
Q1+ Q2 + Q3 + Q4 with

Q1 =2Re [[ £7(dp) (07v)0w* dt, Q2 =2Re [[ &1&2rDp (0fv)Du* dt,
Q Q

Qs = 2Re [[ &7%(01p)p D(é24Dv)Ov* dt, Qq = 2Re [[ &27*p Dp D(&a,Dv) Do dt.
Q Q
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Computation of Q;. With 2Re(0%v)0;v* = 9;|9yv|?, an integration by parts
yields

T,

01 = — [ 20,(rup) |Orv]? dit + [f Er(00) |atv|2]
Q Q 0
T,

— 5N [[ €20(00)2 0yl dt — s) [f&fso(@tw) |aw|2] 180 ol dr, (B.T)
Q Q Q

0

with 8 = sApO(1), by Lemma 3.7.

Computation of Q2. Since v|;—o = 0, an integration by parts yields Q2 =
M+ QP + QP with

él) = —2Re [[ £1&0,(rDp) () Dv* dt, 52) = —2Re [[ &&rDp (8yv) 0 Dv* dt,
Q Q

) <2 Re [ 162 Dp(00) DT

The last term, Qg‘”, vanishes since 1)|,—7, = Cst. Since v9™ = 0, by Proposition 3.5
and Lemma 3.3 we have

1) = —2Re [] (6 &AGDR) o Dv* di — ] D(€,6:0,6Dp) a1\ Do d,
Q Q

RV

— h? —
) = —2Re [[ &16rDp v 9 Dv* dit — 5 I D(&1&arDp) Dol dt,
Q Q

and, after an integration by parts w.r.t. ¢, we have
2

2
R =1 I D& D) D i — T I DEEAGDR) (L) DT,

Since 2 Re 5;) 0y Dv* = D|0yv|? by Lemma 3.2, a discrete integration by parts (Propo-
sition 3.5) yields

2
() = [ D& &rDp) |9l dt — o [ D(&1&rDp)| D] .
Q Q

LEMMA B.1. Provided sh < R, we have
D(&1&orDp) = —sA*(£1£20(0:1)?)a + sApaO(1) 4 sOx a(sh),
D(&1&rDp) = —sN61620(021)° 4 sApO(1) + 5O x(sh),

6162007 Dp)= —5N2(E1620(010)(D210))a + 5ApaO(1) + 505 z(sh),
D(&6:07(rDp)) = sOx 1(1), D(&1£0,(rDp)) = sOx a(1).
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If follows that
Q2 = — s\’ g5152¢(3x¢)2|3tv|2 dt + 2s)\? Reg(€1€2sﬁ(at¢)(5m¢))d Oy D™ dt
+ g’yg)|D8tv|2dt + Sh2‘g0)\’_ﬁ(1)|DU|2 dt + shzg(’))\’ﬁ(lﬂDvF(T*)

+Jf B2 |0,0|% dt + Re I/ a2V Du* dt, (B.8)
Q Q

with
1
1Y = N (61620(0:0))a + B2 sApaO(1) + hOx ((sh)?),
ﬁﬁ) = sApO(1) 4+ sOx a(sh), aﬁ’l) = sApqO(1) + sO, a(sh).

Proof of Lemma B.1. By Lemma 3.2 and Proposition 3.12, we have

—

D(61&rDp) = D(&1&2) rDp +&&D(rDp) =O(1)(rdep)a + sOx.a((sh)?))
+ ((6162)a + hO)) (02 (rdzp))a + sOx,a((sh)?)),
which yields the second result by Lemma 3.7. We note that D (& &rDp) = Dy (flfgLD_p)

(see Remark 3.14). We have Dy(&162rDp) = Do(€162)As(rDp) + A (&1&2) Do (rDp),
and we proceed as above. The other results follow similarly. O

Computation of Q3. With a discrete integration by parts (Proposition 3.5) and
Lemma 3.2, followed by an integration by parts w.r.t. ¢, we have

Qs = — 2Re [[ E2,D(€112(8:p)F) Brv* Dudit + [[ €24 E10:(r2(Bip)p) |Dof? dt
Q Q
- gggd@%a\ﬁﬁ Dof2)(T.).
LEMMA B.2. Provided sh < R, we have
D(&1r*(0ip)p) = —sA*(E10(00) (020))a + sApaO(1) + 5O a((sh)?),
(&2 @up)p)= —sN(E10(O)D)a + sApaO(1) + 5O a((sh)2),

Er2 (Dup)p= —sME1pdb)a + 5O 2 ((sh)2).

The proof follows from Lemma 3.7, Propositions 3.9 and 3.13. We thus have

Qs =25)\"Re [[ (€162 9(00)(0:0)))a Orv* Dvdt — sX* [[(€1&2 9(i0))*)a| Du|* dt
Q Q
+ A [ (€16200)a(T.) |Dv(T.) + Re [f o) 8,0 Du* dt
Q Q

3 3
+gu§l> |Dv|2dt+£6§1) |Dv[2(T)), (B.9)

where aﬁ) = sApaO(1) + sOx z((sh)?), VS) = sApaO(1) + sOx a((sh)?), and 5%31’) =
SoAﬁ((Sh)Q).
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Computation of Q4. By Lemmata 3.2 and 3.3, We have
Q1= — [[ D(&2&247°p Dp) |Dv[* dt + 2 [ &2(Déxy)r*p Dp [Dv|* dt
Q Q

T, o ___

+ ((§2§2d7”2ﬁDP)N+1|DU|?V+% - (fzfszQﬁDP)MDU@) dt,
0

by a discrete integration by parts (Proposition 3.5).

LEMMA B.3. Provided sh < R, we have
D(&&247° 5 Dp) = —sX\°(£2%0(021)%)a + sApaO(1) + sOx a(sh),
§2(D&a)r*p Dp = sApO(1) + 5O x((sh)?).

Since 75 = 1 + O, a((sh)?) by Proposition 3.9, and since |Dv|? < [Dv|2, it follows
that we have

Q.4 25A2g(522¢(aw¢)2)d|Dv|2dt+gu§§> |Dvl|? dt (B.10)

T,

+ [ (14 O0((s)) ((€2€2arDp)v+1 |DVly g = (€2E2arDp)ol Dl )
0

where I/ﬁ) = sApgO(1) + sOx z(sh).
Proof of Lemma B.3. By Lemma 3.3, and Proposition 3.13 we write

D(6:E23r*5Dp) = D(£xE2g) 12 Dp +€aayg D(r2F Dp)
= O) (10 + 5O 5((5h)2))a + (€22 + hO(1)) (D (1D p) + 5O 2((5h)%))as

and the first result follows from Lemma 3.7. The second result follows from Lemma, 3.7
and Proposition 3.9. O

Gathering of the different terms. The results obtained in (B.7)—(B.10) yield
Iy > Ify + Iy + Wiy + Y — X — Jua,

where If;, Wi1, Y11, and Jy; are as given in the statement of Lemma 4.3, Xu has
the same form as X7; in the statement of Lemma 4.3, and

T,

2
=~ 16 Ol Do e+ 253 [ [ [ 6000
+ [(&0(0:4)%)a | Dvf? +2 Re [ (6120(0r)(9r))a v Dv*| dt.
Q Q

Note that the first term in I?; comes from the fact that we added exactly the opposite
term in Wi; in order to ensure that W > 0 (see Lemma 4.7 and its proof). We conclude
the proof of Lemma 4.3 with the following lemma. O

LEMMA B.4. Provided sh < &, we have I?; > Il g Ox(sh) |0yv|? dt.

Proof. We write

— 2 T. T,
b = 2502 [ gpd‘ £1(8,0)a Brv + (ggamw)dm] dt + 252 [ L(t)dt > 25)2 [ L(t) dt,
Q 0 0
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with

N 2
L(t) = [ €7 (0)?[0p]* — f(w&%(atw)z)dk?tvl? - %é(&f@(&wf)dIDatvI?dt

P(O0)2 o] f(f%@wtw%d@?m?

J
Q
=&

Q

— J (e - (ff@(aﬂb)Q)d) D10,
Q

by Lemma 3.3 and Proposition 3.5 as v9™ = 0. We conclude since £7¢p(ds1))? —
(€20(041))?)a = hOx(1) by Lemma 3.6. O

B.3. Proof of Lemma 4.4. From the forms of Ajv and Bov we have [;5 =
Q1 + Q2 with

Q1= —2sRe [[&1(A¢p)v* v dt and Q2 = —2sRe [[ 75 (Aep) v* D(€a,Dv) dt.
Q Q
With an integration by parts w.r.t. ¢ we obtain Q; = 2s fo &1(Agyp) |0pv|? dt + Ry,

where

R; = 2sRe ff &0 (Aep) v™ Opv dt — 2s Reffl(Agw)(T*)v*(T*)atv(T*)
= sff (’))\ ) [v]? dt + sf(’)A ) w2 (T) + RefOA v (Ty)Opv(Ty),

using 2Rev* ;v = 94|v|?, and an additional integration by parts w.r.t. t, since
§10:(Agp) = OA(1), &107(Acp) = Or(1) and & Acp(Ty) = Ox(1).

For concision we now set ¢ = rp (A¢yp). For the term ()2, a discrete integration
by parts gives

Q2 = 25 [[ G&2yq|Dv|? dt + 25 Re [[(Dgq)é240* Dv dt.
Q Q

Since by Proposition 3.9 we have ¢ = Agp + Oy a((sh)?), then
0= (A¢p)a+ Ors(h + (sh)?)

as E\gp = (A¢p)a + Ox(h) since reg(€) < reg’. We note also that

Dq = D(rj)A¢p + (rp)D(Agp) = Oz 1 (1),

by Propositions 3.9 and 3.12. We thus obtain Qa2 = 2s [[(£28¢p)alDv[? dt + R,
with

Ry =5 [[ Oy q(h+ (sh)?)|Dv]? dt+sReff Oxa(1)0*Du dt.
Q

Observing that
Acp = M|Vt + ApO(1), (B.11)

by Lemma 3.7, we obtain the desired result. O
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B.4. Proof of Lemma 4.5. From the forms of Asv and Biv we have Iy =
Q1+ Q2 + Q3 + Q4 with

Q1= 2Reff§ 207 p)(0rp) vO* dt, Qo = 2Reff €178} p)Dp & vDu* dt,

Q3 =2Re ff &1672(DDp) (0p) DOw* dt, Q4 = 2Re ff &2r2(DDp) Dp Du* dt.
Q

Computation of Q1. We set q1 = &212(07p)(0:p). With an integration by
parts, we have

Q1 =ffcn Oyfv)? dt = —ff ) |v|2dt+f6h o] *(T%)
—333A4ff£ (01)) |v|2dt— N[ &0 (Tl
+ffu >|v|2dt+fn<”|v|< T.), (B.12)

by Corollary 3.8, where u( ) = (sAp)20(1) + 520, (1) and 77( ) = = 520,(1).
Computation of Qa. We set qo = & &72(02p)Dp. We have

__ h?
Q2 =2Re [[gzv Dv*dt = [[ G D|v|?dt + 5 [ Dg> |Dv|* dt
Q Q Q
_ h?
= — [[ Dg> [v|*dt + — [[ Dg2 |Dv|? dt,
Q 29
by Proposition 3.5 and Lemmata 3.2 and 3.3, using v7™ = 0.
LEMMA B.5. Provided sh < &, we have Dgs = s*0) g(1) and

DG = Dz = —3(s9)* A& (0:1)?€2(0:1)2 + (sAp)?O(1) + 52O (1) + 520y a((sh)?).
It follows that

Q2 =38\ [ POV @ o duot [[ ) o e+ [P 1D ar, - (B13)
Q

with 2 = (sA)30(1) + s205(1) + $305 x((sh)?) and 12 = sOx «((sh)?).
Proof of Lemma B.5. We write
Dgz = (D(6162)) (97 0)Dp +E16D(2(20)Dp) = O()(r (3} )3 p)a + $* O, (s1)?)
+ ((&162)a + hOM) (02 (r(97p)up))a + s° Ox s ((sh)?)),
by Lemmata 3.2 and 3.13. Since
1207 p)up = —(sXp)* (0:1)) (9t)) + s2OA(1),

0x(r2(07 p)0zp) = —3(s59)* X (0:)*(0:1) + s2Ox(1) + (sAp)* O(1) (B.14)
- 830)\(1)7
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by Corollary 3.8, we have

Daz = =3(s9)°N'€1(0:)62(0:0)” + (sAp)°O(1) + s Ox(1) + 5°Ox,a((sh)?),
and the first result follows. We note that Dga = Dago (see Remark 3.14). We have

Daz = (D2(£12)) A2(r?(97 p) Dp) + (A2(&1€2)) Da(r* (97 p) Dp).
Using Remark 3.14, proceeding as above we obtain the second result. O

Computation of Q3. We set g3 = £16r2(DDp) (9;p). By Proposition 3.5 and
Lemma 3.3, we then have

Qs = 2Re [[ qs00* D dt = ffq38t|v|2dt+ Reff (Dgs)(Dow*) dt,
Q

Qél) Q:(;Q)
LEMMA B.6. Provided sh < &, we have Dqz = s30) g(1).

By Young inequalities, we have the following estimate

Q 2)|<Ch23ff|D8fv|2dt+s sh)? ffcf)Aﬁ )| dt, (B.15)

since |9]? < W and then exploiting Proposition 3.5 and v?™ = 0. Next, with an
integration by parts, we see that

:—ff (Orq3) |v|2dt+fq:3 )[5]*(T%)

= —ff (0:d3) |v|2dt+fq:s DJ(T) — —ff (0¢G3)|Dvl|* dt — —fq3 L) Dv(T,)
= —ff (9:G3) |v|2dt+fQ3 )l *(T.) — —ff 03 )| Dol? dt — —fQ3 )| Dol*(T,),
(B.16)

by Lemma 3.3 and Proposition 3.5, using v9™ = 0.
LemMmA B.7. We have

G = 50y a(1), Mgz = s°0x a(1),
43 = —(sA0)’&1(01))&2(0:0)* + s°Ox a((sh)?) + s*Ox (1),
Oeds = —35° X' &1 (0410)*E2(0:1)° + (sAp)>O(1) + s*OA(1) + s°Ox & ((sh)?).

We have thus obtained,
Qs > 3s°\* ff PP E1(04) 2 (00tp)?0]* dt — (sX)? f(303€1(3t¢)€2(3m¢)2)(T*) v|*(T%)
+ ffu ol dt + [ o (T2) + I v£>|Dv|2dt+ [ 857 IDo(T)

+ ff’721|D3tU| dt, (B.17)
Q
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where
uS) = (sXp)*0(1) + $205(1) + %05 1 ((sh)?),  18) = O a((sh)?) + 52Ox 5(1),
U = 505 a((sh)?), and 6 =505 ((sh)?), 721 = hO(sh).

Proof of Lemma B.6. We have

— _
Dgs = (D(&1&2)) r*(DDp)(8:p) +&1&2 D(r*(DDp)(9ep)) = 5°Ox,5(1),
by Proposition 3.13 and Corollary 3.8, since D(£1£2) is bounded. O
Proof of Lemma B.7. From Proposition 3.13 we have
g3 = E162r%(070)0ep + °Ox 5 ((sh)?),  Dpaz = E1620:(r*(92p)Dep) + 5° O a((sh)?).

By Lemma 3.3, we now write

Gs = £16 7"’2@5\/))55 +hz2 (D(&1&2)) D (r*(92p)0ip) + s> Ox a((sh)?)
= ((&&2)a + RO))((1* (87 p)Drp)a + s°h*Ox a(1)) + K2 O(1)Ox 1(5) + s> Ox a((sh)?)
= (6161*(970)0p)a + 5°Oxz((sh)?) + s2Ox 5 (1), (B.18)
by Lemma 3.11 and Corollary 3.8. Similarly, we find
Oz = (£16201(r*(92p)D1p))a + s°Ox & ((sh)?) + 52O a(1). (B.19)

Iterating the averaging procedure we obtain similar estimates for G5 and 9,4, (sampled
on the primal mesh) and we conclude with Corollary 3.8. O

Computation of Q4. We set g4 = &%r2(DDp) Dp. Observing that Dv* = Do*,
we have

— T*
Qi = [ DIl dt = — [[(Dao) o2 dt+ [ ((a)xsalo s — (anoloy ) dt,
Q Q 0
—_———

2
z(;l) i )

by Lemma 3.2 and Proposition 3.5. We note that v %(Dv)% and Uy 1 =

1
2

—%(DU)N+%. By Proposition 3.9 we have g4 = 5?0, «(1)rDp. It follows that

Ty o o
Q) = (sh)? [ (Oxa(1)(Dp)o| Duf} + Ox 5 (1)(rDp)n 1| Dol ) dt.
0

Next, by Lemma 3.3 and Proposition 3.5, we write
1 _ 1512 h? 2
1 == [J(Daa)|v|* di + = [[(Dga)|Dol” dt
Q Q
- h?
= — [[ Dgalv|* dt + T [ (Dga)|Dvl? dt.
Q Q

LEMMA B.8. Provided sh < &, we have Dqy = s*0) g(1) and
Das = —s* M%7 (0:0)" + (sA@)?O(1) + 5°Ox /(1) + °On a((sh)?).
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We have thus obtained
Qs =35\ [[ G*&> () [v? dt + [ sy |0l dt + [ v5)| Duf? dt (B.20)
Q Q Q

T, o .
+ [ (Ors((sh))(Dp)ol Dol + Oxa((sh)?) (T Dp)w 41| Duf3, )t
0
where
psy = (sXp)*O(1) + 205 s (1) + $°Ox a((sh)?), 147 = sOxa((sh)?).
Proof of Lemma B.8. By Proposition 3.13 we have

Das = D(&?) *(DDp) Dp +&°D (1*(DDp) Dp)
— O(1) ((P(20)9sp)a + 5*Or ((sh)?))
T (€% + hO(L) (0o (020)Dap))a + 5°Ona((sh)?)
— &30, (920)0:0))a + (Mp)3O(1) + 8O (1) + $°Op al(sh)2).

Arguing as we did in the proof of Lemma B.5; we find that a similar estimate (sampled
on the primal mesh) holds for Dgy. We conclude with Corollary 3.8. O

Collecting the estimates of @Q;, j = 1,2,3, 4, we have obtained in (B.12), (B.13),
(B.17), and (B.20), we conclude the proof of Lemma 4.5. O

B.5. Proof of Lemma 4.6. From the forms of Asv and Bov we have Iyy =
Q1+ Q2 with

Q1= —2sRe [[ &17(02p)(Acp) |v|? dt, and Q2 = —2sRe [[ &r(DDp)(Agyp) To* dt.
Q Q

By Lemma 3.4 we have © = v + h?DDwv/4 which gives Q2 = Q) + Q4 with
Q= —2sRe [[ &r(DDp)(A¢p) |vf* dt,
Q

sh? _ _
§ =0 Re [[ &r(DDp)(Beg) (DD di.
Q

We first work on the expressions @1 and Q5.

LEMMA B.9. Provided sh < & we have &119% p = &152X2(040)?*p? + 5O (1) and
&r(DDp) = &(rdzp + 5°Oxa((sh)?)) = &2(sAp)*(029)* + sOA(1) + s?Ox,a((sh)?)).
The proof follows by Proposition 3.9 and Lemma 3.7.

Using (B.11), we have Q1 + Q4 = — fo plv|? dt with

1= 2s (s N[V P9 + sOA(1) + s°Ox 2((sh)?)) (N*| V[P + ApO(1))
= 25NV *0® 4+ s A2 7 O(1) + 5205 (1) + 5Oy 1 ((sh)?).

We now turn to the term Q4. For concision we set g := 7&(DDp)(Agp). Since
v9™ = 0, discrete integrations by parts give

y sh? - . sh? . _ 9 sh? .
5 = ——Re [[ ¢ (DDv)v* dt = — [[ ¢ |Dv|* dt + —— Re [[(Dq) v*Dv dt
2 29 2

sh? 5 sh? _
= 2 @ 1o dt— 2 DDy of? .
Q Q
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We have A¢p = O,(1) and thus from Lemma B.9 we have ¢ = s20, g(1). The same
estimate naturally holds for g. With the following lemma we conclude the proof. O

LEMMA B.10. Provided sh < &, we have h>DDq = s(sh)Oy a(1).
Proof. We set p = &(Agp) and observe that [|p[lec = O(1), ||Dpllec = OA(1),
and |hDDp||s = Ox(1). We thus have

h>*DDq = h*(DDp) rDDp + 2h*Dp D(rDDp) + h*p (DD(rDDp))
= (h+h*)s>Ox (1),

by Propositions 3.9 and 3.12. O
B.6. Proof of Lemma 4.7. We have W = [[ | p|Dd;v|* dt with

1
p= §h28)\2(£1g0|V§w|2)d + h2sApgO(1) + hO(sh) + h(’)Aﬁ((sh)Q).

Since |Veyp| > C > 0, we see that for A sufficiently large, the first term above domi-
nates the second and third terms for any h, s, so that we obtain p > h?s(C — C’sh)
and thus W > 0 for sh sufficiently small. Next, since reg(¢) < reg’, we see that

T [ —
V= [ (axalDols —alDel3) dt, with = (1+Oxs((sh))Er Dp.
0

By (4.1) we have Y > 0 for sh sufficiently small. O

B.7. Proof of Lemma 4.9. By Lemma 3.2 we have rqyDu = vrqyDp + rqpDv,
which by Proposition 3.9, yields

|’I“dD’U,|%2(Q) < C)\,ﬁ (|7770de|%2(9) + |DU|%2(Q)) ’
We observe that

[or:Dpli20y = [ [0*(raDp)* < [ |v]2(raDp)* = [ v]*(raDp)? = s* [ Ox.a(D)vl?,
Q Q Q Q

since v9™ = 0 and by Proposition 3.9, which yields the first result.
The proof of the second result is similar, yet simpler. We have rd,u = 0y +
r(0¢p)u, which implies

[rOvuliz o) < Caa(10ivlLa0) + 5°[vlia(q))-

The last result follows the same. O

Appendix C. On the construction of the Carleman weight function. We
describe here the succession of arguments used in the construction of the Carleman
weight function . Its regularity class is ‘5’“(@) for a certain k € N prescribed in
advance. Note however that the set  itself needs to be of class €.

We first start with a function ¢1(t) € €°°([0, T%]) such that 9;¢1(0) > C > 0,
Op1(Ty) < —C < 0, and ¢1(0) = ¢1(Tx) = 0, and ¢1(¢t) > 0if t € (0,7%). We
also choose ¢o(x) € (fk(fl) such that ¢ > C > 0 and 0,,¢2 < —C’ < 0 in Vagq,
which can be achieved by choosing the neighborhood Vjq sufficiently small. We
next set ¢(t,x) = ¢1(t)¢2(x). This function satisfies the desired properties listed in
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Assumption 2.1 on the boundaries (0, T%) x 02 (and in its neighborhood (0, T%) x Vaq),
{0} x (2\ w) and {T.} x Q.

We choose g in {0} x w. We enlarge @ in a small neighborhood of yg which leaves
0@ unchanged outside of {0} x w. We call Q this extension of @ and we extend the
function ¢ to Q in a ¢* manner.

The function ¢ exhibits only one critical point points in @. It can be pulled back
to the interior of Q \ @ by composing ¢ with a diffeomorphism (see [F196] for the
construction of such a diffeomorphism). The resulting function is the weight function
1 and it satisfies all the properties listed in Assumption 2.1.

Acknowledgments: The authors thank Assia Benabdallah for discussions on
the subject of the present article.
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