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Chapter 1

Definition of evidence
fusion rules on the basis of
Referee Functions

Frédéric Dambreville

Délégation Générale pour I’Armement,
DGA/CEP/EORD/FAS,
16 bis, Avenue Prieur de la Céte d’Or
Arcueil, F 94114, France

Form mail: http://email.fredericdambreville.com

Abstract. This chapter defines a new concept and framework for constructing
fusion rules for evidences. This framework is based on a referee function, which
does a decisional arbitrament conditionally to basic decisions provided by the
several sources of information. A simple sampling method is derived from this
framework. The purpose of this sampling approach is to avoid the combinatorics
which are inherent to the definition of fusion rules of evidences. This definition
of the fusion rule by the means of a sampling process makes possible the con-
struction of several rules on the basis of an algorithmic implementation of the
referee function, instead of a mathematical formulation. Incidentally, it is a ver-
satile and intuitive way for defining rules. The framework is implemented for
various well known evidence rules. On the basis of this framework, new rules
for combining evidences are proposed, which takes into account a consensual
evaluation of the sources of information.

Keywords: Evidence, Referee Function, Sampling, Dempster-Shafer
rule, PCR6.
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Notations

e J[b], function of boolean b, is defined by I[true] = 1 and I[false] = 0.
Typically, I[z = y| has value 1 when & = y, and 0 when x # y,

e Being given a frame of discernment O, the structure G® is 2°, the power
set on O, or D®, the hyperpower set on ©, or any constrained hyperpower
set defined on ©. It is assumed ) € G© |

e 1., is an abbreviation for the sequence x1,--- , %, ,

e max{x1, - ,x,}, or max{x1.,}, is the maximal value of the sequence
1., . Similar notations are used for min,

e max;ex{f(z)}, or max{f(z) / v € X}, is the maximal value of f(z) when
x € X . Similar notations are used for min

1.1 Introduction

Evidence theory 7 E] has often been promoted as an alternative approach
for fusing informations, when the hypotheses for a Bayesian approach cannot
be precisely stated. While many academic studies have been accomplished,
most industrial applications of data fusion still remain based on a probabilistic
modeling and fusion of the information. This great success of the Bayesian
approach is explained by at least three reasons:

e The underlying logic of the Bayesian inference [E] seems intuitive and
obvious at a first glance. It is known however [E] that the logic behinds
the Bayesian inference is much more complex,

e The Bayesian rule is entirely compatible with the preeminent theory of
Probability and takes advantage of all the probabilistic background,

e Probabilistic computations are tractable, even for reasonably complex
problems.

Then, even if evidences allow a more general and subtle manipulation of the in-
formation for some case of use, the Bayesian approach still remains the method
of choice for most applications. This chapter intends to address the three afore
mentioned points, by providing a random set interpretation of the fusion rules.
This interpretation is based on a referee function, which does a decisional ar-
bitrament conditionally to basic decisions provided by the several sources of
information. This referee functions will imply a sampling approach for the def-
inition of the rules. Sampling approach is instrumental for the combinatorics
avoidance [f.

In the recent literature, there has been a large amount of work devoted to the
definition of new fusion rules [fi] to [[4] . The choice for a rule is often dependent
of the applications and there is not a systematic approach for this task. The
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definition of the fusion rule by the means of a sampling process makes possible
the construction of several rules on the basis of an algorithmic implementation
of the referee function, instead of a mathematical formulation. Incidentally, it
is a versatile and intuitive way for defining rules. Subsequently, our approach
is illustrated by implementing two well known evidence rules. On the basis of
this framework, new rules for combining evidences are also proposed. Typically,
these new rules takes into account a consensual evaluation of the sources, by in-
validating irrelevant sources of informations on the basis of a majority decision.

Section E introduces the notion of referee function and its application to the
definition of fusion rules. A sampling method is obtained as a corollary. Sec-
tion [L. establishes the referee functions for two known rules. Section [L.4 defines
new fusion rules. Section [L.§ concludes.

1.2 Referee function and fusion rules

Let © be a set of propositions, on which the information is represented. Let G©
be a power set or an hyperpower set (possibly constrained) defined over O.

1.2.1 Referee function

Definition. A referee function over G® for s sources of information and with
context v is a mapping X, Y1.; — F(X|Y1.5;) defined on propositions X, Y7, €
G® , which satisfies:

o F(X|Yi47) >0,
o > F(XVig7)=1,
XeGe

o If there is i € [1, s] such that ¥; = 0, then F(0|Y1.5;7) = 1.
for any X,Y1., € G®.
A referee function for s sources of information is also called a s-ary referee
function. The quantity F'(X|Y1.s;7) is called a conditional arbitrament between
Y1.s in favor of X. Notice that X is not necessary one of the propositions Y7.; ;

typically, it could be a combination of them. The case X = () is called the
rejection case.

Fusion rule. Let be given s basic belief assignments (bba) mi.; and a s-ary
referee function F' with context my.s. Then, the fused bba my @ - -- & mg[F]
based on the referee F' is constructed as follows:

Z F(X|Y15,mls)Hml(}/Z)

Y1..€G® i=1

1= > FOYrgmus) [[ma(v)
i=1

Y1.:€G®

mi@® - ®m[F](X) = I[X # 0] (1.1)
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From now on, the notation &[my.4|F] =my @ --- & mg[F] is used.

The value z = ZYLSEG@ F(0|Y1.5;ma.s) [17_; mi(Y;) is called the rejection rate.
Examples. Refer to section E and @

1.2.2 Properties

Bba status. The function @[m;.s|F] defined on G® is actually a basic belief
assignment.

Proof. Tt is obvious that ®[my.4|F] > 0.
Since I[0) # 0] = 0, it is derived ®[m1.5|F](0) = 0.
From ) ycqe F(X|Yi;mas) =1, it is derived:

Z Z FX|§/157mls Hmz

XeGPY1.:€G®

= Z <Hml(Y;)> Z F(X|Yl:s§m1:s)

Y1.,€G® \i=1 XeG®
S

2. Imv

Y1.,€G® i=1
S

I S mo -

=1 Y;€G®

As a consequence:

> IX #0) Z F(X|Yiisi mass) Hml

XeG® s €G®
+ § F@D/ls»mls Hmz z -
Y1.:€G®

([

1.2.3 Sampling process

The definition () makes apparent a fusion process which is similar to a prob-
abilistic conditional decision on the set of propositions. Notice that the basic
belief assignments are not related, in practice, to physical probabilities. But the
implied mathematics are similar, as well as some concepts. In particular, the
fusion could be interpreted as a two stages process. In a first stage, the sources
of information generates independent entries according to the respective beliefs.
Then, a final decision is done by the referee function conditionally to the entries.
As a result, an output is produced or not.

This interpretation has two profitable consequences. First at all, it provides an
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intuitive background for constructing new rules: in our framework, a new rule
is just the design of a new referee. Secondly, our interpretation makes possi-
ble sampling methods in order to approximate and accelerate complex fusion
processes. Notice that the sampling method is used here as a mathematical
tool for approximating the belief, not for simulating an individual choice. In-
deed, evidence approaches deal with belief on propositions, not with individual
propositions.

Sampling algorithm. Samples for the fused basic belief assignment @[m.|F]
are generated by iterating the following processes:

Entries generation: For each i € [1,s], generates Y; € G® according to the
basic belief assignment m;, considered as a probabilistic distribution over
the set G,

Conditional arbitrament:

1. Generate X € G® according to the referee function F(X|Y1.s;m1.s),
considered as a probabilistic distribution over the set G® |

2. In the case X = (), reject the sample. Otherwise, keep the sample.

The performance of the sampling algorithm is at least dependent of two factors.
First at all, a fast implementation of the arbitrament is necessary. Secondly,
low rejection rate is better. Notice however that the rejection rate is not a
true handicap. Indeed, high rejection rate means that the incident bbas are
not compatible in regard to the fusion rule: these bba should not be fused. By
the way, the ratio of rejected samples will provide an empirical estimate of the
rejection rate of the law.

1.2.4 Algorithmic definition of fusion rules

As seen previously, fusion rules based on referee functions are easily approxi-
mated by means of sampling process. This sampling process is double-staged.
The first stage computes the samples related to the entry bbas m;.;. The sec-
ond stage computes the fused samples by a conditional arbitrament between the
different hypotheses. This arbitrament is formalized by a referee function.

In practice, it is noteworthy that there is no need for a mathematical definition
of the referee function. The only important point is to be able to compute the
arbitrament. We have here a new approach for defining fusion rules of evidences.
Fusion rules may be defined entirely by the means of an algorithm for computing
the conditional arbitrament.

Assertion. There are three equivalent approaches for defining fusion rules in
the paradigm of referee:

e By defining a formula which maps the entry bbas mi.s to the fused bba
my @ - ®ms (classical approach),
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e By defining a referee function F', which makes the conditional arbitrament
F(X|§/i:s; ml:s) )

e By constructing an algorithm which actually makes the conditional arbitra-
ment between Yi.s in favor of X .

It is sometime much easier and more powerful to just construct the algorithm
for conditional arbitrament.

The following section illustrates the afore theoretical discussion on well known
examples.

1.3 Referee functions for some existing rules

1.3.1 Dempster-shafer rule

Classical definition. Let be given s sources of information characterized by
their bbas m1.s. The fused bba mpgr obtained from my.; by means of Dempster-
Shafer fusion rule [El, is defined by:

Mpsr(0) =0 and mpsr(X) = ma(X)

= T for any X € G® \ {0} .

where ma(+) corresponds to the conjunctive consensus:

ma(X) = Z Hml(YZ) )

YiNn---NY,;=X i=1
Yy, ,Y.€G®

Definition by referee function. The definition of a referee function for
Dempster-Shafer is immediate:

Mpsr = B[M1.s[Fpsr] where Fogr(X|[Y1.s53mas) =1 lX N ﬂ Yy
k=1

Algorithmic definition. The algorithmic implementation of Fi,s+ is described
subsequently and typically implies possible conditional rejections:

Conditional arbitrament:
1. Set X = ﬂi:l Y:,

2. If X = (), then reject the sample. Otherwise, keep the sample.
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1.3.2 PCRG6 rule

The proportional conflic redistribution rules (PCRx) have been introduced By
Dezert and Smarandache [@] The rule PCR6 has been proposed by Martin
and Osswald in [[L(] .

Classical definition. Let be given s sources of information characterized by
their bbas mi.s. The fused bba mpcrs obtained from mq.; by means of the
PCR6 rule is defined by:

Mpcre (Q) =0,

and, for any X € G® \ {0}, by:

mPCRG(X) = Mmn (X)

s—1

s H Mo, () Yo, ()
+Zmi(X)2 Z =1 . (1.2)

s—1
s ly N X=0 ) E :
nk:1 (k) ° ml(X) + ma-i(j)(YUi(j))
Yo, 1), Yo,(s—1) EG —

j=1

where ma(+) corresponds to the conjunctive consensus:

S
ma(X) & 0 []mavy),
Yin-NY,=X i=1
Y1, ,Y;€G®
and the function o; counts from 1 to s avoiding i :

o)) = xI[j<i+(G+1)xI[j>1i.
N.B. If the denominator in (@) is zero, then the fraction is discarded.

Definition by referee function. Definition E could be reformulated into:

I[X =Y;] mi(Y;) H m; (Y;)

mPCRG(X):mA(X)+Z Z s
=1 Mp_, Ya=0 (Y
yrj.,,-cf Yoec® ; my(Y;)

and then:

mPCR,G(X) - m/\(X) + Z HmZ(YZ) =1 S . (1.3)

e > mi(Y5)
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At last, it is derived a formulation of PCR6 by means of a referee function:
Mpcre = @[ml:s|FPCR6] s

where the referee function Fpcge is defined by:

FPCRG (X|§/i:s; ml:s) =

S

D IX =Y my(Y5)

+1 =1
> my(Y))
=1

(1.4)

IP-H%#@ (Ye=0
k=1 k=1

Algorithmic definition. Again, the algorithmic implementation is immedi-
ate:

Conditional arbitrament:
L IF(_, Vi #0, then set X =();_, V&
2. Otherwise:
(a) Define the probability P over [1, s] by:

m;(Y;) .
P=—=—"—— foranyi€[l,s],
Zj:l m;(Y;)
(b) Generate a random integer k € [1, s] accordingly to P,
(c) set X =Y .

It is noticed that this process does not produce any rejection case X = (). As a
consequence, the last rejection step has been removed.

Essentially, this algorithm distinguishes two cases:

e there is a consensus; then, answer the consensus,

e there is not a consensus; then choose an entry among all entries propor-
tionally to its belief. It is noteworthy that there is no attempt to transform
the entries in this case.

This algorithm is efficient and is not time-consuming. The whole sampling
approach should be a good alternative for approximating PCR6, particularly
on large frames of discernment.
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1.3.3 Any rule?

Is it possible to construct a referee function for any existing fusion rule?

Actually, the answer to this question is ambiguous. If it is authorized that F
depends on mq.s; without restriction, then the theoretical answer is trivially yes.

Property. Let be given the fusion rule m; & - - - ® my, applying on the bbas
m1.s. Define the referee function F' by:

F(lel:s;ml:s) =m; - @mS(X) for any X,Y1.5 € G®..

Then F is actually a referee function and ®[mq.5|F] =m1 & -+ ®my .
Proof is immediate.

Of course, this result is useless in practice, since such referee function is ineffi-
cient. It is inefficient because it does not provide an intuitive interpretation of
the rule, and is as difficult to compute as the fusion rule. Then, it is useless to
have a sampling approach with such definition.

As a conclusion, referee functions have to be considered together with their ef-
ficiency. The efficiency of referee function is not a topic which is studied in this
chapter.

1.4 A new rule: PCRf4

Definition. For any k € [1,s], it is defined:

Clkls] = {y C [1,s] /card(y) = k} ,

the set of k-combinations of [1, s]. Of course, the cardinal of C[k|s| is (2) .

1.4.1 Limitations of PCR6

The algorithmic interpretation of PCR6 has shown that PCR6 distinguishes two
cases:

e The entry informations are compatible; then, the conjunctive consensus is
decided,

e The entry informations are not compatible; then, a mean decision is de-
cided, weighted by the relative beliefs of the entries.

In other words, PCR6 only considers consensus or no-consensus cases. But
for more than 2 sources, there are many cases of intermediate consensus. By
construction, PCR6 is not capable to manage intermediate consensus. This is a
notable limitation of PCR6.

The new rule PCR{, which is defined now, extends PCR6 by considering partial
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consensus in addition to full consensus and absence of consensus. This rule is
constructed by specifying the arbitrament algorithm. Then, a referee function
is deduced.

1.4.2 Algorithm

The following algorithm try to reach a maximal consensus. It first tries the full
consensus, then consensus of s — 1 sources, s — 2 sources, and so on, until a
consensus is finally found. When several consensus with &k sources is possible,
the final answer is chosen randomly, proportionally to the beliefs of the consen-
sus. In the following algorithm, comments are included preceded by // (c++
convention).

Conditional arbitrament:

1. Set stop = false and k = s,
// k is the size of the consensus, which are searched. At beginning, it is
mazimal.

2. For each v € C[k|s], do:
/] All possible consensus of size k is tested.

(a) If M, Yi # 0, then set wy = [[;c, mi(Y;) and stop = true,
// If a consensus of size k is found to be functional, then it is no
more necessary to diminish the size of the consensus. This is done
by changing the value of boolean stop.
/] Moreover, the functional consensus are weighted by their beliefs.

(b) Otherwise set w, =0,
// Non-functional consensus are weighted zero.

3. If stop = false, then set kK = k — 1 and go back to E,
// If no functional consensus of size k has been found, then it is necessary
to test smaller sized consensus. The process is thus repeated for size k—1.

4. Choose v € C[k|s] randomly, according to the probability:

w.
P =
! Z'yGC[Hs] Wry

// Otherwise, choose a functional consensus. Here, the decision is random
and proportional to the consensus belief.

5. At last, set X = ﬂi@ Y; .
// Publish the sample related to the consensus.
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Algorithm without comment.

Conditional arbitrament:

1. Set stop = false and k = s,

2. For each v € C[k|s], do:
(a) If N;e, Yi # 0, then set wy =[], mi(Y;) and stop = true,
(b) Otherwise set w, =0,

3. If stop = false, then set kK = k — 1 and go back to E,

4. Choose v € C[k|s] randomly, according to the probability:
Wy

P = ———" 1
’ ZVGC[MS] Wy

3

5. At last, set X = (., Y;.

1.4.3 Referee function

Historically, PCR{ has been defined by means of an algorithm, not by means
of a formal definition of the referee function. It is however possible to give a
formal definition of the referee function which is equivalent to the algorithm:

ﬂm—w}

i€y

> I[X—ﬂY;-;é@

FPCRn(X|Y1:s;m1:s) = Z Jeﬁ}ﬁl}% o {I
k=1 "yectjls]

Hmi(Yi)

X min Hcl%z{‘ | {] |:m Y; 75 (Z):| } 7 ~EC[k|s] i€y icy
YE | s !
icy E I m Y, # 0 Hml(yl)
YeC[k|s]  Li€y i€y

(1.5)
Sketch of the proof. The following correspondences are established between the
arbitrament algorithm and the referee function:

e The summation ) ;_, is a formalization of the loop from k = s down to
k=1,

e At step k, the component:
min I Y, =0
j€lk+1,5] ﬂ ’
YEClils] o

ensures that there is not a functional consensus of larger size j > k.
Typically, the component is 0 if a larger sized functional consensus exists,
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and 1 otherwise. This component is complementary to the summation, as
it formalizes the end of the loop, when a functional consensus is actually
found,

e At step k, the component:

Yo | x=Yi#0| [[mv)

O— vyeCk|s] 1€y i€y
Y. LYi#0] [Tmi(v)
vyeC[k|s] €Y i€y

encodes the choice of a functional consensus of size k, proportionally to
its belief. The chosen consensus results in the production of the sample
X

3

e At step k, the component:

max <{ [ ﬂYi#@

veClilsl | |y

tests if there is a functional consensus of size k. The component answers
1 if such consensus exists, and 0 otherwise. It is combined with a mini-
mization of the form:

min{ max < I mYZ—;AQ) , Q% , whereQ<1.
YECk]s] iy
This is some kind of “if ... then” : if a functional consensus of size k
exists, then the value € is computed. Otherwise, it is the value 0. Since
the value 2 encodes a sampling decision, we have here sampling decision,
which is conditioned by the fact that a functional consensus exists.

The equivalence is a consequence of these correspondences.
O

1.4.4 Variants of PCR{

Actually, card(C[k|s]) = increases quickly when s is great and k is not

s
(v
near 1 or s. As a consequence, PCRY implies hard combinatorics, when used
in its general form. On the other hand, it may be interesting to reject samples,
when a consensus is not possible with a minimal quorum. In order to address

such problems, a slight extension of PCRY is proposed now.
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Algorithm.
Let r € [1, s] and let k1., € [1, s] be a decreasing sequence such that:

s>k >-->k->1.

Then, the rule PCR{[k1.,] is defined by the following algorithm.

Conditional arbitrament:
1. Set stop = falseand h =1,
2. For each v € Clkpls], do

(a) If M, Yi # 0, then set wy = [[;c, mi(Y;) and stop = true,
(b) Otherwise set w, =0,

3. If stop = false, then:

(a) seth=h+1,
(b) If h <7, go back to [,

4. If h > r, then reject the entries and end,

5. Otherwise, choose v € C[kp|s] randomly, according to the probability:

6. Set X =), Y: . and end.

1€y

Referee function
FPCR,u[kl:T](X|Y1:s; ml:s) -
I[X = i I Y; = I
[X=0] min { N 0 }+de[ﬁnhn1]]{

je1,r]
YECk;s] Liey h=1 "yeClk;|s]

Yi=0

i€y

}

> I[X—ﬂYﬁé@

X min Ig[%x‘ | {] m Y; £ 0 7 YEC[kps] icy icy
Y€ nls !
s ST 1Y 20| [
Y€C[kpls] Li€y i€y

proof is left to the reader.

PCR6 and PCRf{. Assume that PCR6 is applied to s entries m.; . Then:
PCR6=PCR{]s, 1]
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DST and PCR4. Assume that DST is applied to s entries mq.s . Then:
DST=PCR{]s]

Variant with truncation and rejection. Letr € [1,s]. The rule PCR{[s, s—
1,---,r] will search for maximally sized functional consensus. If it is not possi-
ble to find functional consensus with size greater or equal to r, the algorithm
rejects the entries.

Variant with truncation and final mean decision. Let r € [1,s]. The
rule PCRY[s,s—1,- -, r, 1] will search for maximally sized functional consensus.
If it is not possible to find functional consensus with size greater or equal to r,
the algorithm choose an entry proportionally to its belief.

1.5 Conclusion

This chapter has investigated a new framework for the definition and interpre-
tation of fusion rule of evidences. This framework is based on the new concept
of referee function. A referee function models an arbitrament process condi-
tionally to the contributions of several independent sources of information. It
has been shown that fusion rules based on the concept of referee functions have
a straightforward sampling-based implementation. As a consequence, a referee
function has a natural algorithmic interpretation. Owing to the algorithmic
nature of referee functions, the conception of new rules of fusion is made eas-
ier and intuitive. Examples of existing fusion rules have been implemented by
means of referee functions. Moreover, an example of rule construction has been
provided on the basis of an arbitrament algorithm. The new rule is a quite
general extension of both PCR6 and Dempster-Shafer rule. This chapter also
addresses the issue of fusion rule approximation. There are cases for which the
fusion computation is prohibitive. The sampling process implied by the referee
function provides a natural method for the approximation and the computation
speed-up. There are still many questions and improvements to be addressed.
For example, samples regularization techniques may reduce possible samples de-
generacy thus allowing smaller particles clouds. Some theoretical questions are
also pending; especially, the algebraic properties of the referee functions have
almost not been studied. However, this preliminary work is certainly promising
for future applications.
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