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GIT-cones and quivers

N. Ressayre∗

March 6, 2009

Abstract

In this work, we improve results of [Res07, Res08a] about GIT-
cones associated to the action of any reductive group G on a projec-
tive variety X . These results are applied to give a short proof of a
Derksen-Weyman’s Theorem which parametrizes bijectively the faces
of a rational cone associated to any quiver without oriented cycle.
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1 Introduction

We work over the complex numbers field C. Let Q = (Q0, Q1) be a quiver
without oriented cycle. Here, Q0 is the set of vertices and Q1 the set of
arrows. Let β = (β(s))s∈Q0

be a vector dimension of Q and Rep(Q,β)
the vector space of the representations of dimension vector β. The group
GL(β) =

∏

s∈Q0
GL(β(s)) acts naturally on Rep(Q,β). We consider the

group Γ of the characters of GL(β); it is isomorphic to ZQ0. We consider
the cone Σ(Q,β) in Γ⊗Q generated the elements σ ∈ Γ such that there ex-
ists a non zero regular function f ∈ C[Rep(Q,β)] such that g.f = σ(g)f for
any g ∈ GL(β). Actually, it is a convex polyhedral cone. In [DW00, DW06],
Derksen-Weyman showed that Horn’s cones can be obtained in such a way.
This is an important motivation for the study of these cones. Here, we use
general methods of Geometric Invariant Theory to give a proof of a Derksen-
Weyman’s Theorem (see [DW06]) which parametrizes bijectively the faces
of Σ(Q,β).

In Section 2, we improve results of [Res07] about GIT-cones in general.
In particular, Theorem 1 is an improvement of [Res07, Theorem 7], and
Theorem 2 of [Res07, Theorem 6]. So, the examples Σ(Q,β) enlight the
general theory of GIT-cones.

The Horn’s cones can also be obtained as GIT-cones for the action of the
linear groups on products of complete flag varieties. This point of view was
used [BS00, BK06, Res07, Res08a] for example. Whereas, in the literature
this GIT approach of Horn’s problem was distinct from the quiver one, this
work prove that one can use essentially the same techniques in the two cases.

2 Well covering pairs and GIT-cones

2.1 Well covering pairs

Let G be a reductive group acting on a smooth variety X. Let λ be a
one parameter subgroup of G. Let Gλ denote the centralizer of λ in G.
We consider the usual parabolic subgroup P (λ) associated to λ with Levi
subgroup Gλ:

P (λ) =
{

g ∈ G : lim
t→0

λ(t).g.λ(t)−1 exists in G
}

.

Let C be an irreducible component of the fix point set Xλ of λ in X.
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We also consider the Bialinicky-Birula cell C+ associated to C:

C+ = {x ∈ X | lim
t→0

λ(t)x ∈ C}.

Then, C is stable by the action of Gλ and C+ by the action of P (λ).
Consider over G × C+ the action of G × P (λ) given by the formula

(with obvious notation): (g, p).(g′, y) = (gg′p−1, py). Consider the quotient
G ×P (λ) C+ of G × C+ by the action of {e} × P (λ). The class of a pair
(g, y) ∈ G × C+ in G ×P (λ) C+ is denoted by [g : y].

The action of G×{e} induces an action of G on G×P (λ) C+. Moreover,
the first projection G×C+ −→ G induces a G-equivariant map π : G×P (λ)

C+ −→ G/P (λ) which is a locally trivial fibration with fiber C+. Consider
also the G-equivariant map

η : G ×P (λ) C+ −→ X, [g : y] 7→ gy.

Definition. The pair (C, λ) is said to be dominant if η is. The pair (C, λ)
is said to be well covering if η induces an isomorphism over an open subset
of X intersecting C.

Let L ∈ PicG(X). Let x be any point in C. Since λ fixes x, it induces a
linear action of the group K∗ on the fiber Lx. This action defines a character
of K∗, that is, an element of Z denoted by µL(x, λ). One easily checks that
µL(x, λ) does not depends on x ∈ C; it will be denoted by µL(C, λ).

2.2 Total cones and well covering pair

2.2.1 — Consider the convex cones T CG(X) generated in PicG(X)Q by the
L’s in PicG(X) which have non zero G-invariant sections. We will denote
by Xss(L) the open subset of the x’s in X such that some positive integer
n, there exists a G-invariant section of L⊗n such that σ(x) 6= 0. Note that
this definition is standard, only if L is ample. Since Xss(L) = Xss(L⊗n) (for
any positive integer n), one can define Xss(L) if L ∈ PicG(X)Q.

Let (C, λ) be a dominant pair. Since L 7→ µL(C, λ) is a group morphism,
it induces a linear map from PicG(X)Q to Q, also denoted by µL(C, λ). By
[Res07, Lemma 7], T CG(X) is contained in the halfspace µL(C, λ) ≤ 0.
In particular, intersecting T CG(X) with the hyperplane µL(C, λ) = 0, one
obtains a face F(C) of T CG(X). Indeed, the following lemma shows that
the face only depends on C:

Lemma 1 Let (C, λ) be a dominant pair. Then, F(C) is the set of L ∈
PicG(X)Q such that Xss(L) intersects C.
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Proof. Assume that Xss(L) intersects C. Let σ be a G-invariant section
of L⊗n and x ∈ C such that σ(x) 6= 0. We have: λ(t)σ(x) is equal on one

hand to tnµL(C,λ)σ(x) and on the hand to σ(λ(t)x) = σ(x). It follows that
µL(C, λ) = 0.

Conversely, let L ∈ F(C). Let σ be a non zero G-invariant section of
L⊗n. Since η is dominant, σ is non identically zero on C+. By [Res07,
Proposition 5], µnL(C, λ) = 0 implies that σ is non identically zero on C. In
particular, Xss(L) intersects C. �

Remark. In the above proof, we have only used that η is dominant.
The following theorem is an improvement of [Res07, Theorem 7].

Theorem 1 We assume the rank of PicG(X) is finite and consider T CG(X).
Let (C, λ) be a well covering pair.

The rank of PicGλ

(C) is finite. The codimension of F(C) in PicG(X)Q

equals the codimension of T CGλ

(C) in PicGλ

(C)Q. More precisely, the re-
striction morphism induces an isomorphism from PicG(X)Q/〈F(C)〉 onto

PicGλ

(C)Q/〈T CGλ

(C)〉.

Proof. Let Ω be a G-stable open subset of X such that the natural map
G ×P (λ) (C+ ∩ Ω) −→ Ω is an isomorphism. Since (C, λ) is well covering

one can find such an Ω intersecting C. By [Res07, Lemma 1], PicG(Ω) is

isomorphic to PicGλ

(C ∩ Ω).
Let E1, · · · , Es (resp. D1, · · · ,Dt) be the irreducible components of codi-

mension one of X−Ω (resp. C−Ω). Since G and Gλ are connected the Ei’s
and the Di’s are respectively G and Gλ-stable. We consider the associated
G and Gλ-linearized line bundles LEi

and LDi
.

Consider the following diagram:

⊕iQLEi

- PicG(X)Q

PicG(Ω)Q ≃ PicGλ

(C ∩ Ω)Q

π
X

-

⊕iQLDi

- PicGλ

(C)Q

?

πC

-
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Since X and so C are smooth, the maps πX and πC are surjective.
By construction, LDi

belongs to T CGλ

(C). Moreover, each LEi
has a G-

invariant section with Ei has zero locus. Since Ei does not contains C, this
proves that LEi

∈ F(C). So, it is sufficient to prove that πX(F(C)) =

πC(T CGλ

(C)).

Let L ∈ F(C). Since Xss(L) intersects C, L|C belongs to T CGλ

(C). So,

πX(F(C)) ⊂ πC(T CGλ

(C)).
Conversely, let L be a Gλ-linearized line bundle on C which belongs to

T CGλ

(C) and σ be a non zero Gλ-invariant section of L. Let L̃ be the
G-linearized line bundle on Ω associated to πC(L), and σ̃ the G-invariant
section of L̃ associated to σ. Now, let M ∈ PicG(X) such that πX(M) = L̃.
The section σ̃ induces a non zero G-invariant rational section of M, and so
a non zero regular G-invariant section σ′ of M′ = M +

∑

i L
⊗ni

Ei
for some

non negative integers ni. Since no Ei contains C, σ′ is not identically zero
on C; in particular, M′ ∈ F(C). Since, πX(M′) = πX(M) = πC(L), it

follows that πX(F(C)) ⊃ πC(T CGλ

(C)). Note that details about the above
argue can be found in the proof of [Res07, Theorem 7]. �

2.2.2 — The set of ample G-linearized line bundles generate an open
convex PicG(X)+Q in PicG(X)Q. We set: ACG(X) = PicG(X)+Q ∩ T CG(X).

If F is a face of T CG(X), F0 denotes its intersection with PicG(X)+Q . To

any ample L ∈ PicG(X)Q which does not belong to ACG(X), using mainly
Kempf’s Theorem, we associated in [Res07] a well covering pair (C, λ) (ac-
tually, defined up to conjugacy). Note that, to do this we need to fix a
“norm” on the set of one parameter subgroups of G invariant by conjugacy.
When restricted to Y (S) ⊗ Q, (where Y (S) denotes the group of one pa-
rameter subgroups of any subtorus S of G), this norm becomes the norm
associated to a scalar product. The face F(C) is also denoted by F(L).
[Res07, Theorem 6] asserts that any face of ACG(X) equals F◦(L) for some
ample L 6∈ ACG(X). Here, we need an improvement of this result.

Let Kλ denote the neutral component of the kernel of the action of Gλ

on C. Note that PicGλ/Kλ

(C)Q is naturally embedded in PicGλ

(C)Q; and

contains T CGλ

(C).

Theorem 2 Let F be a face of ACG(X). Consider the set ∆(F) of ample
L 6∈ ACG(X) such that F = F◦(L).

Then,

(i) There exists L ∈ ∆(F) such that the associated pair (C, λ) satisfies

ACGλ

(C) has non empty interior in PicGλ/Kλ

(C).
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(ii) ∆(F) contains a non empty open subset of PicG(X)+Q −ACG(X).

Proof. Let S be a maximal torus of Kλ. Let S′ be a torus of Gλ such that
the product induces an isogeny from S×S′ onto a maximal torus T of Gλ and
Y (S) is orthogonal with Y (S′). Let Hλ be the connected subgroup of Gλ

such that the product induces an isogeny Kλ × Hλ −→ Gλ and containing
S′.

Consider the restriction morphism p : PicG(X) −→ PicHλ

(C). Note

also that PicHλ

(C)Q is isomorphic to PicGλ/Kλ

(C)Q.

Let L ∈ ∆(F). We assume that the interior of ACGλ

(C) in PicGλ/Kλ

(C)

is empty. By [Res07, Lemma 9], p(L) belongs to ACHλ

(C). By Theorem 1,
one can find a neighbor Lǫ of L such that p(Lǫ) does not belong to the span

of ACGλ

(C). By [Res07, Lemma 10], on can find such a Lǫ such that the face

of ACHλ

(C) viewed from Lǫ is the whole ACHλ

(C). By [Res07, Lemma 11],
one may assume that F(Lǫ) = F . Moreover the proof of [Res07, Lemma 11]
shows that Cǫ (with obvious notation) is strictly contained in C. By induc-
tion on the dimension of C we just proved that there exists L ∈ ∆(F) such

that interior of ACGλ

(C) in PicGλ/Kλ

(C) is non empty.

By the same argue as above, one can prove that there exists L ∈ ∆(F)

such that p(L) belongs to the interior of ACHλ

(C)∩Imp in Imp. In this case,

p−1(ACHλ

(C))∩(PicG(X)+Q−ACG(X)) has non empty interior in PicG(X)Q.
Moreover, by [Res07, Lemma 10], this set is contained in ∆(F). The second
assertion is proved. �

3 Application to quiver representations

3.1 Definitions

In this section, we fix some classical notation about quiver representations.
Let Q be a quiver (that is, a finite oriented graph) with vertexes Q0 and

arrows Q1. An arrow a ∈ Q1 has initial vertex ia and terminal one ta. A
representation R of Q is a family (V (s))s∈Q0

of finite dimensional vector
spaces and a family of linear maps u(a) ∈ Hom(V (ia), V (ta)) indexed by
a ∈ Q1. The dimension vector of R is the family (dim(V (s)))s∈Q0

∈ NQ0.
Let us fix α ∈ NQ0 and a vector space V (s) of dimension α(s) for each

s ∈ Q0. Set

Rep(Q,α) =
⊕

a∈Q1

Hom(V (ia), V (ta)).
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Consider also the groups:

GL(α) =
∏

s∈Q0

GL(V (s)) and SL(α) =
∏

s∈Q0

SL(V (s).

They acts naturally on Rep(Q,α).
The character group of GL(α) identifies with Γ = ZQ0; to σ ∈ ZQ0, we as-

sociate the character χσ defined by χσ ((g(s))s∈Q0
)) =

∏

s∈Q0
det(g(s))σ(s).

3.2 Three cones

3.2.1 — Consider the algebra C[Rep(Q,α)] of regular functions on Rep(Q,α)
endowed with the GL(α)-action. For σ ∈ ZQ0, we denote C[Rep(Q,α)]σ the
set of f ∈ C[Rep(Q,α)] such that for all g ∈ GL(α), g.f = χσ(g)f . We
embed Γ = ZQ0 in ΓQ := QQ0. Let Σ(Q,α) denote the convex cone of ΓQ

generated by the points σ ∈ Γ such that C[Rep(Q,α)]−σ is non reduced to
{0}.

3.2.2 — Consider the projective space X = P(Rep(Q,α) ⊕ C). The
formula

g.(R, t) = (gR, t) ∀g ∈ GL(α) , R ∈ Rep(Q,α) and t ∈ C,

defines an action of GL(α) on X and a GL(α)-linearization L0 ∈ PicGL(α)(X)
of the line bundle O(1) on X. We are now interested in the GIT-cone
ACGL(α)(X). Since any line bundle on X admitting non zero sections is
ample, ACGL(α)(X) = T CGL(α)(X).

For n ∈ Z and σ ∈ Γ, set L(n, σ) = L0 ⊗ σ ∈ PicGL(α)(X). Note that
L(n, σ) = O(n) as a line bundle. We have the following obvious

Lemma 2 The map Z×Γ −→ PicGL(α)(X), (n, σ) 7→ L(n, σ) is an isomor-
phism of groups. Moreover, L(n, σ) is ample if and only if n is positive.

Lemma 2 allows to embed ACGL(α)(X) in Q × ΓQ. Set P(Q,α) =
ACGL(α)(X) ∩ {1} × ΓQ. General properties of ACGL(α)(X) imply that
P(Q,α) is closed convex rational and polyhedral. Moreover, it is contained
in the convex hull of the restrictions to the center of GL(α) of the weights
of a maximal torus of GL(α) on Rep(Q,α) ⊕ C; and so, it is compact. Fi-
nally, P(Q,α) is a rational polytope in ΓQ. Moreover, ACGL(α)(X) is the
convex cone generated by P(Q,α) in such a way the faces of ACGL(α)(X)
and P(Q,α) correspond bijectively.

3.2.3 — We consider Rep(Q,α) as an open subset of X by R 7→ (R, 1);
and we identify the complement with P(Rep(Q,α)).
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Proposition 1 (i) We have: Xss(L0) = Rep(Q,α).

(ii) The point 0 ∈ ΓQ is a vertex of P(Q,α).

(iii) The cone of ΓQ generated by P(Q,α) is Σ(Q,α).

Proof. Since Q has no oriented cycle, one can chose a numeration of the
vertices such that the index of ta is greater than the index of ia for all
a ∈ Q1. Consider the one parameter subgroup λ0 of GL(α) acting on the
vector space corresponding to the vertex indexed by i as an homothetie of
coefficient ti.

The point 0 ∈ Rep(Q,α) ⊂ X is an isolated fixed point of λ0. Set
C0 = {0}. One easily checks that C+

0 = Rep(Q,α) and that λ0 is central
in GL(α): it follows that (C0, λ0) is a well covering pair. Let F(C0) (resp.
P(C0)) denote the face of T CGL(α)(X) (resp. P(Q,α)) associated to (C0, λ0).

Viewed the action of the center of GL(α) on the fiber over 0, F(C0) is
contained in Q+L0.

Since (R, t) 7→ t is a GL(α)-invariant section of L0, Rep(Q,α) ⊂ Xss(L0).
Then, F(C0) = Q+L0.

Since 0 is the only closed GL(α)-orbit in Rep(Q,α), Xss(L0)//GL(α)
is only one point. So, Xss(L0) contains only one closed orbit O which
is contained in the closure GL(α).0. We deduce that O = {0} and that
Xss(L0) = Rep(Q,α).

The last assertion of the proposition is a direct application of [Res08a,
Theorem 4]. �

3.2.4 — Consider now the projective space D = P(Rep(Q,α)) endowed
with the GL(α)-action. We are now interested in the GIT-cone ACGL(α)(D).

We have the following obvious

Lemma 3 The restriction map ρD : PicGL(α)(X) −→ PicGL(α)(D) is an
isomorphism of groups. Moreover, ρD(L) is ample if and only if L is.

Lemma 3 allows to embed ACGL(α)(D) in Q × ΓQ. Set P(D,Q,α) =
ACGL(α)(D)∩{1}×ΓQ. Obviously, P(D,Q,α) is a rational polytope in ΓQ.

Via the identification of Lemma 3, the relation between P(D,Q,α) and
P(Q,α) is as follows:

Proposition 2 The polytope P(Q,α) is the convex hull of 0 and P(D,Q,α).
We assume moreover that Q has no cycle (even non oriented). Then,

P(D,Q,α) is a face of P(Q,α). In particular, P(D,Q,α) is an affine section
of Σ(Q,α).
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Proof. Let σ ∈ ΓQ. It is clear that σ ∈ P(D,Q,α) if and only if Xss(σ)
intersects D, if and only if Xss(σ) is not contained in Xss(0). By [Res00],
this is equivalent to the fact that the closure of the GIT-class of σ does not
contain 0. In particular, all the vertices of P(Q,α) excepted 0 belong to
P(D,Q,α); the first assertion follows.

With the additional assumption, one can easily construct a central one
parameter subgroup λ(t) of G(α) which acts on each Hom(V (ia), V (ta)) (for
a ∈ Q1) by multiplication by t. Then, (D,λ) is a well covering pair; this
implies that P(D,Q,α) is a face of P(Q,α). �

3.2.5 — Propositions 1 and 2 proves that when Q has no cycle, the
descriptions of the three cones are equivalent. From now on, we are mainly
interested in Σ(Q,α) viewed as the cone generated by P(Q,α); that is to
the faces of P(Q,α) containing the vertex 0:

Lemma 4 Let (C, λ) be a dominant pair. Then, F(C) contains 0 if and
only if C contains 0.

Proof. The point is that {0} is the only closed orbit in Xss(0). Actually, if
F(C) contains 0, C has to contains 0 by [Res07, Theorem 5]. Conversely, if
C contains 0, µ0(C, λ) = 0. �

3.3 Dominant pairs

3.3.1 — Let σ ∈ Γ and α a vector dimension. We set:

σ(α) :=
∑

s∈Q0

σ(s)α(s).

We consider the one parameter subgroup λα of GL(α) acting on V (s) by
t.Id for any s ∈ Q0: σ(α) is simply the composition σ ◦ λα. Note that λα

acts trivially on Rep(Q,α). This implies that P(Q,α) is contained in the
hyperplane H(α) consisting of the σ’s such that σ(α) = 0.

Definition. The dimension vector α is called a rational Schur root if P(Q,α)
or equivalently Σ(Q,α) has non empty interior in H(α).

If there exists R ∈ Rep(Q,α) whose the stabilizer in GL(α) has dimen-
sion one, α is said to be a Schur root.

9



The second notion is very classical (see [Kac82]) and the first one very
natural in our context. We will explain the relation between these two no-
tions in Paragraph 3.3.5.

3.3.2 — Decompositions of dimension vectors. Let α be a vector
dimension of Q.

Definition. A Z-decomposition of α is a family of dimension vectors αi in-
dexed by Z such that αi = 0 with finitely many exceptions and α =

∑

i∈Z αi.
An ordered decomposition of α, is a sequence (β1, · · · , βs) of non-zero vector
dimensions such that α = β1 + · · · + βs. We denote the decomposition by
α = β1+̃ · · · +̃βs.

3.3.3 — Let λ be a one parameter subgroups of GL(α). For any i ∈ Z

and s ∈ Q0, we set Vi(s) = {v ∈ V (s) |λ(t)v = tiv} and αi(s) = dimVi(s).
Obviously, α =

∑

i∈Z αi form a Z-decomposition of α which determines λ
up to conjugacy.

The parabolic subgroup P (λ) of GL(α) associated to λ is the set of
(g(s))s∈Q0

such that for all i ∈ Z and s ∈ Q0 we have g(s)(Vi(s)) ⊂
⊕j≤iVj(s).

Now, Rep(Q,α)λ is the set of the (u(a))a∈Q1
’s such that for any a ∈ Q1

and for any i ∈ Z, u(a)(Vi(ia)) ⊂ Vi(ta). It is isomorphic to
∏

i Rep(Q,αi).
In particular, the irreducible component C of Xλ containing 0 is isomorphic
to P(

∏

i Rep(Q,αi) ⊕ C).
Moreover, C+ ∩ Rep(Q,α) is the set of the (u(a))a∈Q1

’s such that for
any a ∈ Q1 and for any i ∈ Z, u(a)(Vi(ia)) ⊂ ⊕j≤iVj(ta).

Consider the morphism ηλ : G ×P (λ) C+ −→ Rep(Q,α). Note that,
P (λ), C and C+ only depend (up to conjugacy) on the ordered decomposi-
tion of α induced by the Z-decomposition

∑

i αi in an obvious way. From
now on, we will consider the map ηβ1+̃···+̃βs

associated to the ordered de-
composition of α; it is defined up to conjugacy. We will say that the ordered
decomposition is dominant respectively birational if ηβ1+̃···+̃βs

is. We will
say that the decomposition is well covering if (C, λ) is. If the decomposition
is dominant, we will denote by F(β1+̃ · · · +̃βs) the corresponding face of
P(Q,α).

Lemma 5 Let β = β1+̃ · · · +̃βs be a dominant ordered decomposition. Then,
F(β1+̃ · · · +̃βs) is generated by the face H(β1) ∩ · · · ∩ H(βs) ∩ Σ(Q,β) of
Σ(Q,β).
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Proof. Let (C, λ) be a dominant pair associated to β = β1+̃ · · · +̃βs. Let
us fix V = (V (s))s∈Q0

of dimension β. Let V = V 1⊕V s be a decomposition
such that V i has dimension βi. The torus (C∗)s acts on V as follows; the
ith component acts by homothetie on V i. The induced action of (C∗)s on
C is trivial. So, (C∗)s has to acts trivially on any point in F(C); it follows
that, F(C) is contained in H(β1) ∩ · · · ∩ H(βs).

Conversely, let σ ∈ H(β1) ∩ · · · ∩ H(βs) ∩Σ(Q,β). Since (C, λ) is cover-
ing, Xss(L(1, σ)) intersects C+. But, since σ ∈ H(β1) ∩ · · · ∩ H(βs), λ acts
trivially on L(1, σ)|C . By [Res07, Lemma 4], this implies that Xss(L(1, σ))
intersects C. �

3.3.4 — Let α, β ∈ NQ0. Following Derksen-Schofield-Weyman (see [DSW07]),
we define α ◦ β to be the number of α-dimensional subrepresentation of a
general representation of dimension α + β if it is finite, and 0 otherwise.

We now recall a description of well covering ordered decomposition from
[Res08b]:

Proposition 3 The ordered decomposition β = β1+̃ · · · +̃βs is well covering
if and only if

∀i < j βi ◦ βj = 1.

3.3.5 — We can now explain the name “rational Schur root”. Let us
first reprove two well known lemmas:

Lemma 6 If α ◦ β 6= 0 and α ◦ γ 6= 0 then α ◦ (β + γ) 6= 0.

Proof. In [DSW07], Derksen-Schofield-Weyman proved that α ◦ β is the
dimension of C[Rep(Q,α)]σ for well chosen weight σ. With this character-
ization, the lemma just follows from the fact that C[Rep(Q,α)]SL(α) is an
algebra. In this work, α ◦ β is always the degree a map η; and, we include
a proof using this point of view.

Consider a pair (C, λ) (resp. (C ′, λ′)) associated to the ordered decom-
position α+̃β (resp. α ◦ γ) in Rep(Q,α + β) and Rep(Q,α + γ). Since
α ◦ β 6= 0, ηα+̃β is generically finite. Moreover, by [Res08b, Lemma ],
λ acts trivially on the restriction to C of the determinant bundle of η.
It follows that for general x ∈ C = Rep(Q,α) ⊕ Rep(Q,β), the differen-
tial of ηα+̃β at x is an isomorphism. In the same way, the differential of
ηα+̃γ is an isomorphism for x′ general in Rep(Q,α) ⊕ Rep(Q,β). A direct
computation implies now that ηα+̃(β+γ) is an isomorphism for y general
in Rep(Q,α) ⊕ Rep(Q,β) ⊕ Rep(Q, γ) ⊂ Rep(α + β + γ). In particular,
α ◦ (β + γ) 6= 0. �
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Lemma 7 We have:

Σ(Q,β) = {σ ∈ Γ : σ(β) = 0 and σ(α) ≤ 0 ∀α s.t. α ◦ (β − α) 6= 0}.

Proof. Let σ ∈ Σ(Q,β). We already saw that σ(β) = 0. Let α be such
that α ◦ (β − α) 6= 0. Since ηα+̃(β−α) is dominant, σ(α) ≤ 0.

The converse inclusion is a direct consequence of [Kin94] (see [DW00,
Remark 5]). �

Here, comes an easy variant of Derksen-Schofield-Weyman’s saturation
Theorem:

Lemma 8 We have:
Σ(Q, kβ) = Σ(Q,β).

Proof. The inclusion Σ(Q, kβ) ⊂ Σ(Q,β) is a direct consequence of Lem-
mas 6 and 7.

The converse inclusion follows from Derksen-Weyman’s Reciprocity Prop-
erty (see [DW00, Corollary 1]). We include here a simpler proof. Let
(V (s))s∈Q0

be vector spaces of dimension vector β. Consider (Hom(Ck, V (s))s∈Q0

as a Q0 family of vector spaces of dimension vector kβ. Then, for the nat-
ural inclusion Rep(Q,β) ⊂ Rep(Q, kβ), Rep(Q,β) is the fix point set of
H = (GLk)

Q0 ⊂ GL(kβ). Moreover, the centralizer of (GLk)
Q0 in GL(kβ)

is isomorphic to GL(β). By a Luna’s Theorem (see [Lun75]), for any lin-
earized ample line bundle a point x ∈ Rep(Q,β) is semistable for L and the
action of GL(β) if and only if it is for the action of GL(kβ). It follows that
P(Q,β) ⊂ P(Q, kβ). The lemma is proved. �

Proposition 4 A vector dimension α is a rational Schur root if and only
if it is positively proportional to a Schur root.

Proof. The Ringle form is denoted by 〈·, ·〉. Let β be a Schur root. By
[Sch92, Theorem 6.1], X contains stable points for the action of GL(β)/Im(λ0)
and the line bundle L(1, 〈β, ·〉−〈·, β〉). It follows that Σ(Q,β) has non empty
interior in H(β). By Lemma 8, kβ is a rational Schur root for any positive
integer k.

Conversely, let β be a rational Schur root. Let d denote the gcd of the
β(s) for s ∈ Q0. By Lemma 8, β = β/d is a rational Schur root. Consider the
canonical decomposition β = β1 + · · ·+βs of β (see [Kac82]). Then, Σ(Q,β)
is contained in H(β1)∩· · ·∩H(βs). Since Σ(Q,β) spans the hyperplane H(β),
it follows that H(β) = H(β1) = · · · = H(βs). So, the βi’s are proportional;
since, β is indivisible, it follows that s = 1 and that β is a Schur root. �
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3.4 Derksen-Weyman’s Theorem

3.4.1 — The ordered decomposition β = β1+̃ · · · +̃βs is called an ordered
decomposition by rational Schur roots if β1, · · · , βs are rational Schur roots.
To any such decomposition we associate the (unordered) set {β1, · · · , βs} ⊂
NQ0. Let Ws(β) denote the set of subsets obtained in such a way from well
covering ordered decomposition by s rational Schur roots.

We can now state and prove Derksen-Weyman’s Theorem:

Theorem 3 Let β be a vector dimension. Let d denote the dimension of
Σ(Q,β) and n the cardinality of Q0. For any s = n − d, · · · , 0, the map

Θ : Ws(β) −→ {faces of Σ(Q,β) of codimension d}
{β1, · · · , βs} 7−→ H(β1) ∩ · · · ∩ H(βs) ∩ Σ(Q,β),

is a bijection. Moreover, the family (β1, · · · , βs) is linearly independent.

Proof. In this proof, we prefer to consider the faces of P(Q,α) containing
0 rather than faces of Σ(Q,α). By Proposition 1, this is equivalent.

Let β = β1+̃ · · · +̃βs be a well covering ordered decomposition by ratio-
nal Schur roots. Then, by Lemma 5, H(β1) ∩ · · · ∩ H(βs) ∩ Σ(Q,β) is the
face of Σ(Q,β) corresponding to F(β1+̃ · · · +̃βs). Since the βi’s are rational
Schur roots, Theorem 1 shows that F(β1+̃ · · · +̃βs) has codimension s. Let
us recall that ACGL(β)(X) = T CGL(β)(X). This proves that Θ is well defined.

Let us fix a face F of P(Q,α) of codimension d. By Theorem 2, the
exists an open subset U in PicG(X)+Q − ACG(X) such that F = F(L) for
all L ∈ U . Let (C, λ) be a well covering pair associated to a line bundle
L ∈ U : by Lemma 4, C contains 0. Let β = β1+̃ · · · +̃βs be the ordered
decomposition associated to λ. By Paragraph 3.3.3, η(C,λ) = ηβ1+̃···+̃βs

.
We claim that the βi’s are rational Schur roots. Let us fix i ∈ {1, · · · , s}.

Let λβi
be the central one parameter subgroup of GL(βi) defined in Para-

graph 3.3.1; and, Si be the codimension one subtorus of the center of GL(βi)
such that Y (Si) is orthogonal to λβi

. Consider the subgroup Hi of GL(βi)
generated by the Si and SL(βi). We embed P(Rep(Q,βi) ⊕ C) in X in an
obvious way and consider the restriction morphism:

pi : PicG(X)Q −→ PicHi(P(Rep(Q,βi) ⊕ C))Q.

By construction, the restriction of pi to H(βi) is surjective. Moreover, by
[Res07, Lemma 11], pi(U) is contained in P(Q,βi,Hi). Since pi is an open
map, this implies that P(Q,βi) has codimension one in X(GL(βi))Q. So,
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the βi’s are rational Schur roots and Θ is surjective.

Let β = β1+̃ · · · +̃βs be any well covering ordered decomposition by
rational Schur roots. By Theorem 1, the intersection H(β1) ∩ · · · ∩ H(βs)
has codimension s. This means that the βi are linearly independent.

Let us fix σ ∈ ΓQ such that L(1, σ) belongs to the relative interior of
F := F(β1+̃ · · · +̃βs). Since, βi are rational Schur roots, Theorem 1 shows
that the codimension of F equals s. Note that, ∆(F) contains L(1, σ) in
its closure. We claim that pi(σ) belongs to the relative interior of Σ(Q,βi).
Actually, if not, one can find σǫ in ∆(F) such that pi(σǫ) does not belongs to
Σ(Q,βi). Then, the ordered decomposition associated to σǫ contains strictly
more than s vector dimensions. By Theorem 1 this implies that the codi-
mension of F is strictly greater than s; which is a contradiction.

We now want to prove the injectivity of Θ. Let β = β1+̃ · · · +̃βs be
a well covering ordered decomposition by rational Schur roots and F be
the associated face. We want to obtain the decomposition of β from F .
By Proposition 4 and [Sch92, Theorem 3.2], the canonical decomposition of
βi = aiβi for some positive integer ai and some Schur root βi. Set C =
P(⊕iRep(Q,βi)⊕C) and C0 = P(⊕iRep(Q,βi)

⊕ai ⊕C); and fix embeddings
C0 ⊂ C ⊂ X.

Let L := L(1, σ) be a point in the relative interior of F . Let x be a
general point in C0. Since pi(σ) belongs to the relative interior of Σ(Q,βi),
[Sch92, Theorem 6.1] implies that the orbit of x by the group

∏

i GL(βi)
ai is

closed in Xss(L). By [Lun75], this implies that GL(β).x is closed in Xss(L).
Conversely, by [Res07, Theorem 5], any general closed closed orbit in Xss(L)
intersects C and so C0. This proves that a general closed isotropy in Xss(L)
contains a general point of C0. In particular, any point in a general closed
isotropy of Xss(L) decompose as a sum of a1 indecomposable representations
of dimension β1. . . and as indecomposable representations of dimension βs.
Moreover, such a decomposition is unique and the βi’s are pairwise distinct
(the family is free). The injectivity follows. �
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