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1. Introduction. Linear distributed parameter systems (LDPS) arise in a range
of different processes such as optical telecommunications, fluid flows, thermal pro-
cesses, biology, chemistry, environmental sciences, mechanical systems, and so on.
LDPS are modelled by linear partial differential equations (PDEs) or abstract dif-
ferential equations in an infinite-dimensional space, as opposed to linear lumped pa-
rameter systems (LLPS) that are modelled by linear ordinary differential equations
(ODEs) in a finite-dimensional space.

In this paper, we consider systems governed by partial differential equations with
appropriate initial and boundary conditions that can be represented by the following
abstract differential equation,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ X, ∀t ≥ 0. (1.1)

Here, the state x(t) belongs to a Banach space X and the control input u(t) belongs
to a subset of a Banach space U . The operator A maps from D(A) to X, D(A) is
the domain of A, which is a subset in X. The operator B is a control operator (in
general, unbounded) on U .

Nowadays, most control systems are implemented using digital technology since it
is very cheap, fast, relatively easy to operate, flexible and reliable. This motivates the
investigation of the so called sampled-data systems that consist of a continuous-time
plant or process controlled by a discrete-time controller, as discussed in [5, 30, 31].
The plant and the controller are interconnected via the analog-to-digital (A-D) and
digital-to-analog (D-A) converters. Consequently, the designed controller needs to
be time-discretized in order to be implemented using the digital technology. Due to
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prevalence of the computer controlled systems, it is often assumed that System (1.1)
is between a sampler and a zero-order-hold. Let T > 0 denote a sampling period.
The control signal is assumed to be piecewise constant,

u(t) = u(kT )
4
= u(k),∀t ∈ [kT, (k + 1)T ), k ∈ N, (1.2)

where N is the set of integers. In the sequel, the following “sampled-data system” is
obtained.

ẋ(t) = Ax(t) + Bu(kT ),∀t ∈ [kT, (k + 1)T ), k ∈ N. (1.3)

The control input u(kT ) needs to be designed so that trajectories of the sampled-data
system (1.3) converge to the origin, or a neighborhood of the origin.

Sampled-data control of linear infinite-dimensional system (1.1) has been dis-
cussed in [4, 9, 14, 16, 18, 19, 28, 29, 34, 35, 37], and references cited therein. In most
of these references, an infinite-dimensional continuous-time feedback controller was
first designed to stabilize the system (1.1) without consideration of sampling in time,
followed by a time discretization in order to implement digitally. This is an “indirect
method”, which consists of designing a controller on the continuous model, and then
in discretizing the closed-loop system.

Given a controlled PDE (1.1), it is however not always possible to guess an ex-
pression of a feedback controller stabilizing the system. We propose a direct approach,
which consists in designing such a controller from finite-dimensional approximations
that are obtained from space and time discretization. The reason for doing so lies in
several aspects. First of all, in general, analytical solutions of the infinite-dimensional
system (1.1) or (1.3) are not possible to explicitly characterize. In engineering appli-
cations, it is natural to use numerical solutions generated by numerical approximate
models, themselves arising from numerical algorithms such as finite difference meth-
ods, finite element methods, Galerkin approximations and so on. As there are many
numerical algorithms available in literature, engineers just need to pick up one suited
for the particular application. Furthermore, it can be efficient for some applications
when accurate discrete models are available. Secondly, it is appealing for engineers to
design controllers for discretization models. Although there is a large number of pub-
lications on stabilization of systems like (1.1), see Russell [38], Lions [26], Komornik
[20], Curtain and Zwart [11], Lasiecka and Triggiani [24] and references therein, it
may be rather difficult to find control laws for some infinite-dimensional system in
the form of (1.1). At last, the family of finite-dimensional discrete-time controllers
are easy to be implemented. Indeed, while infinite-dimensional controllers are theo-
retically relevant, the effective controller has to be finite-dimensional in order to be
implemented digitally.

It is by now well-known that the scheme “control design/ discretization” is not
commutative (see, for example, [44]). Whereas it is quite easy to prove convergence
results for an indirect method, with standard assumptions and a standard Lax pro-
cedure (see [25]), obtaining a convergence result for a direct approach may be really
challenging, due to a possible loss of uniformity. Actually, when implementing a direct
approach, the standard assumptions which are usually ensuring the convergence of a
given scheme, namely, consistency plus uniform boundedness (or stability), are not
enough in general to ensure the convergence of the family of control inputs designed
from the approximate models towards the control input of the continuous-time model.
As explained in [44], this phenomenon is due to an interference of high frequencies
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with the mesh of the discretization; this interference may create spurious high fre-
quency oscillations which, as in a resonance phenomenon, leads to the divergence of
the direct procedure.

In this paper, we assume that there exist a family of finite-dimensional discrete-
time approximate models in the vector spaces Xh and Uh after space and time dis-
cretization. Here h is a parameter for the space approximation and ∆t is a parameter
for time discretization. Both h and ∆t are sufficiently small. This family of approxi-
mate models, represented in terms of xa

h(j∆t)1, take the following form,

xa
h ((j + 1)∆t) = Aa

h,∆tx
a
h (j∆t) + Ba

h,∆tuh,∆t (j∆t) , (1.4)

with the initial condition xa
h(0) ∈ Xh and j ∈ N. Here xa

h ∈ Xh, uh ∈ Uh and
Aa

h,∆t : Xh → Xh and Ba
h,∆t : Uh → Xh.

Furthermore, we assume that the family of controllers uh,∆t are carefully designed
in the sense that they can uniformly exponentially stabilize approximate models (1.4).
More specifically, the solutions of the approximate models (1.4) satisfy

‖xa
h ((j + 1)∆t)‖Xh

≤ Mae−λaj∆t ‖xa
h(0)‖Xh

,

for some positive constants Ma and λa that are independent of the choice h and ∆t.
As mentioned in [33], it is not always possible to construct a proper control

sequence uh,∆t to uniformly exponentially stabilize a family of finite-dimensional ap-
proximations (1.4) due to the existence of spurious high frequency modes. Uniform
stability properties (controllability and/or observability) of a family of approxima-
tion control systems have been investigated in [12, 33, 41, 42, 43, 44] for different
discretization processes, on different systems. In this paper, for simplicity of the pre-
sentation, we just assume the existence of such “good” controllers. How to design
them is outside the scope of this paper. We however refer readers to [1, 3, 13, 17, 24]
and references therein as concerns results regarding the design of control laws having
such uniform properties, based on a Riccati procedure.

Once a “good” control sequence uh,∆t is available, our aim is to find (sharp)
sufficient conditions ensuring that this control sequence can be used to drive trajec-
tories of the infinite-dimensional sampled-data system (1.3) to the origin (or a small
neighborhood of the origin).

Note that the control input applied to the sampled-data system (1.3) is computed
from approximate models (1.4). In other words, the controller u(kT ) in (1.3) is gen-
erated from a family of finite-dimensional discrete-time controllers uh,∆t(j∆t). Thus
u(kT ) is not in a typical state-feedback form that is obtained from state measurement
x(t) of the system (1.1). As uh,∆t(j∆t) can be treated as a kind of “memory” variable,
by adopting the terminology introduced in [39, 6], “dynamic (practical) stabilization”
is used in this paper.

It is worthwhile to highlight that we do not assume the existence of an infinite-
dimensional controller that can practically exponentially stabilize the exact infinite-
dimensional continuous-time system (1.1) nor prove that finite-dimensional discrete-
time controllers computed from numerical approximations converge uniformly to the
desired one as the discretization parameters tend to zero as done in the literature,
in particular, in the context of the Riccati theory, see, for example, [1, 3, 13, 17,
22, 24, 27] and references therein. Our result (Theorem 3.3) only provides sufficient

1In this paper, xa
h(·) represents trajectories generated from finite-dimensional discrete-time ap-

proximate models in the vector space Xh.
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conditions to ensure the “practical stability properties” of a general class of sampled-
data LDPS by using a dynamic feedback that can “uniformly exponentially stabilize”
numerical approximate models (1.4). More precisely, we obtain sufficient conditions
gauranteeing that for any given positive pair (∆, ν), there exists a filtering process
depending on (∆, ν) such that, for any filtered initial condition, trajectories of the
infinite-dimensional sampled-data system (1.3), with the control input sequence u(kT )
generated from uh,∆(j∆t), will converge to a ν-neighborhood of origin by properly
tuning the sampling period T and the numerical discretization parameters (h and ∆t)
and choosing an appropriate filtering process. These sufficient conditions are listed
below.

1 The trajectories of the numerical approximations (1.4) have to be “good”
enough to well approximate the trajectories of the exact system (1.1);

2 the control sequence uh,∆t has to be uniformly bounded with respect to space
and time discretization parameters;

3 the filtering process determined by (∆, ν) is required in order to filter out
high frequency components of the initial data;

4 in addition, the filtering process must be compatible with the uniform stability
properties of the approximate models.

To the best of our knowledge, it is the first time that the issue of practical exponen-
tial stability properties of a general class of sampled-data LDPS is addressed by using
a dynamic feedback generated by numerical approximate models (1.4). Our result
can provide useful guidelines to choose the sampling period, appropriate numerical
schemes including discretization parameters as well as the proper filtering process.
It is also worthwhile to highlight that, although conditions in the main result stated
below are only sufficient, they are “sharp” in the following sense: if one of the above
mentioned conditions does not hold true, then the conclusion of the main results may
fail (counterexamples can be found in literature).

The present paper is organized as follows. Section 2 provides necessary prelimi-
naries as well as the problem formulation. Sufficient conditions and the main results
are stated and discussed in Section 3. Proofs of the main results are provided in
Section 4 and then they are followed by the conclusions in Section 5.

2. Preliminaries and Problem Formulation. In this paper, X and U are
Banach spaces with their norms denoted as ‖·‖X and ‖·‖U respectively. The dual
space of X is denoted by X ′. Let S(t) denote a strongly continuous semigroup (C0-
semigroup) on X, of generator (A, (D(A)) in System (1.1). Let α > 0; then X−α

denotes the completion of X for the norm ‖x‖−α = ‖(βIX −A)−αx‖X , where β ∈
ρ(A) is fixed, ρ(A) being the resolvent set of A and IX , the identity in X. The
semigroup S(t) can be extended to a C0-semigroup on X−α, denoted by the same
symbol, and the generator of this extended semigroup is an extension of A, still
denoted A. With this notation, A is a linear operator from X to X−α. Since A
generates a C0-semigroup, there exists a real number ω ∈ ρ(A) such that A− ωIX is
invertible. Let A∗ be the adjoint of A and Â = A−ωIX . Then, the fractional powers
of (−Â)α are well-defined. A∗ is the adjoint of A. We use L(X,Y ) to denote the space
of all linear bounded operators from X to Y , where both X and Y are Banach spaces
and L(X)

4
= L(X, X) (see, for example [32] for more details about the semi-group

and weak solutions of the abstract differential equation (1.1)).
The sets of integers and real numbers are denoted as N and R respectively. A

continuous function γ : R≥0 → R≥0 is said to be of class K∞ if γ(0) = 0, γ is strictly
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increasing and lim
s→∞

γ(s) = ∞. The set B∆ is defined as B∆
4
= {x ∈ X |‖x‖X ≤ ∆} .

The control operator B in (1.1) is not necessarily bounded. However it is assumed
that B ∈ L(U,X−α) and it is admissible (see Definition 2.1).

Definition 2.1. An unbounded linear control operator B ∈ L(U,X−α) is called
admissible for the semigroup S(t) if, for every x0 ∈ X, the weak solution of (1.1) with
x(0) = x0 ∈ X belongs to X for every t ≥ 0, whenever u ∈ L2([0,∞], U) and (1.1)
holds true in X−α. The weak solution can be represented in the following form

x(t) = S(t)x0 +
∫ t

0

S(t− τ)Bu(τ)dτ ∈ X, ∀t ≥ 0. (2.1)

With the sampled-data controller defined in (1.2), the following weak solutions of
the system (1.1) are obtained:

x(t) = S(t− kT )x(kT ) +
∫ t

kT

S(t− τ)Bu(kT )dτ, (2.2)

for all t ∈ [kT, (k + 1)T ) and k ∈ N.

2.1. Numerical approximations. A family of finite-dimensional discrete-time
approximations given by (1.4) are obtained by discretizing (1.1) in both time ∆t and
space h. In this paper, time discretization is performed after space discretization
and the numerical approximations have to be “good” enough to well-approximate the
behavior of the system (1.1) (see Assumption 1 and 2 below for a precise definition of
”good”). First we introduce adapted assumptions on space approximations, inspired
by [22, 24]. Consider two families (Xh)0<h<h0

and (Uh)0<h<h0
of finite-dimensional

spaces.
Assumption 1. [Consistency of the space semi-discretization scheme] For every

h ∈ (0, h0), there exist mappings Rh : D((−Â∗)−α)′ → Xh, Ph : Xh → D((−Â∗)−α),
R̄h : U → Uh and P̄h : Uh → U such that the following conditions hold.

1 For every h ∈ (0, h0), the following holds

RhPh = IXh
, R̄hP̄h = IUh

. (2.3)

2 For any φ ∈ D(A∗) or any ψ ∈ U , we have

‖{IX − PhRh}φ‖X −−−→
h→0

0, (2.4)
∥∥{

IU − P̄hR̄h

}
ψ

∥∥
U
−−−→
h→0

0. (2.5)

Remark 1. Note that the convergence hypotheses provided in Eq. (2.4) (Eq.
(2.5) respectively) is not uniform with respect to φ ∈ X (ψ ∈ U respectively).

For every h ∈ (0, h0), the vector spaces Xh and Uh are endowed with the norm
‖·‖Xh

and ‖·‖Uh
defined as follows

‖φh‖Xh

4
= ‖Phφh‖X , ‖ψh‖Uh

4
=

∥∥P̄hψh

∥∥
U

. (2.6)

Remark 2. With the endowed norms defined in (2.6), it is obvious that Ph and
P̄h are both linear bounded operators satisfying

‖Ph‖L(Xh,X) =
∥∥P̄h

∥∥
L(Uh,U)

= 1. (2.7)
5



Remark 3. By using the Banach-Steinhaus Theorem, Condition 2 in Assumption
1 implies that both Rh and R̄h are linear bounded operators, whose bounds are uniform
in h. That is, for all h ∈ (0, h0), there exists bR > 0, independent of h, such that

‖Rh‖L(X,Xh) ≤ bR,
∥∥R̄h

∥∥
L(Xh,X)

≤ bR. (2.8)

For every h ∈ (0, h0), we define the approximation operator A∗h : Xh → Xh of A∗

and B∗
h : Xh → Uh of B∗, by A∗h = RhA∗Ph and B∗

h = RhB∗P̄h. We set Ah = (A∗h)∗

and Bh = (B∗
h)∗ with respect to the pivot space X and U .

Together with a “good” space discretization, a “good” time discretization is also
needed.

Assumption 2. [Time approximation] Let Ah and Bh defined in Assumption 1.
For any h ∈ (0, h0), under an appropriate Courant-Friedrichs-Lewy (CFL) condition,
there exist ∆t∗0(h) > 0 and ρh(·) ∈ K∞ such that for all ∆t ∈ (0, ∆t∗0(h)), for any
ϕh ∈ Xh and νh ∈ Uh, the following conditions hold

∥∥{eAh∆t −Aa
h,∆t}ϕh

∥∥
Xh

≤ ∆tρh(∆t) ‖ϕh‖Xh
, (2.9)

∥∥{
Bh∆t−Ba

h,∆t

}
νh

∥∥
Xh

≤ ∆tρh(∆t) ‖νh‖Uh
. (2.10)

Moreover, for any t > 0, there exists a positive constant B̄A,a = B̄A,a(t, h) such that
∥∥∥(Ah,∆t)

j
∥∥∥

Xh

≤ B̄A,a, ∀j ∈ N, ∆t ∈ [0, t], ∆t ∈ (0,∆t∗0(h)). (2.11)

When Ah is obtained after space semi-discretization (for instance by a finite difference
method), then Aa

h,∆t and Ba
h,∆t become

Aa
h,∆t = ∆t Ah + IXh

, Bh,∆t = ∆t Bh,

which satisfy Assumption 2 with ρh(∆t) = max{‖Ah‖2Xh
, 1}∆t.

Remark 4. Time discretization is performed after the space discretization. In
general, the CFL condition (see discussions on CFL conditions in [10, 15]) is re-
quired in order to guarantee that numerical approximations after space and time dis-
cretizations are “uniformly bounded” on compact intervals (or stable). By using the
well-known Lax-Richtmyer Equivalence Theorem (see, for example [25]), the CFL
condition can ensure that solutions of numerical approximations well approximate so-
lutions of the exact continuous-time infinite-dimensional system. The CFL condition
requires that the time discretization parameter ∆t to be sufficiently smaller than the
space discretization parameter h. Therefore, in numerical discretization schemes, h
is chosen first and then ∆t is chosen accordingly. ◦

Notice that both Assumptions 1 and 2 are rather general. For instance, Assump-
tion 1 holds for almost all of the classical numerical space semi-discretization approx-
imation schemes such as finite-difference methods, finite-element methods, Galerkin
methods, spectral methods and so on.

2.2. Controller design. Once a family of finite-dimensional discrete-time nu-
merical approximation systems (1.4) are obtained, the control input uh,∆t is designed
to stabilize the approximation system (1.4). A family of “feedback” controllers are
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used in this paper, i.e., uh,∆t(j∆t) = Kh,∆tx
a
h(j∆t). The closed-loop of the approxi-

mation system (1.4) becomes

xa
h ((j + 1)∆t) = Aa

h,∆tx
a
h (j∆t) + Ba

h,∆tuh,∆t(j∆t)
= (Aa

h,∆t + Ba
h,∆tKh,∆t)xa

h(j∆t), xa
h(0) ∈ Xh, ∀j ∈ N. (2.12)

The feedback gain operator Kh,∆t maps from Xh to Uh and is parameterized by
the discretization parameters (h, ∆t). As discussed in the introduction, it is assumed
that we have “good” controllers that can achieve some nice “uniform properties” of
approximate models.

Assumption 3. The family of finite-dimensional discrete-time linear approxi-
mate models (2.12) are exponentially stable, uniformly in small h. That is, let Ma

and λa be positive constants, there exists h∗1 > 0 such that, for any h ∈ (0, h∗1), there
exists ∆t∗1(h) > 0 such that for any ∆t ∈ (0, ∆t∗1(h)), the solutions of systems (2.12),
denoted as xa

h(j∆t) = xa
h(j∆t;xa

h(0)), satisfy

‖xa
h(j∆t;xa

h(0))‖Xh
≤ Mae−λaj∆t ‖xa

h(0)‖Xh
, ∀j ∈ N. (2.13)

Remark 5. The stability property in Assumption 3 is only uniform in small h,
though the choices of Ma and λa do not depend on either ∆t or h. As indicated in
the introduction, Assumption 3 is a basic assumption in the proposed controller design
method. We do not discuss, in the present paper, how to derive Assumption 3 in this
work.

In [12, 33, 43, 44], numerical viscosity was employed to ensure uniform stability
of a family of finite-dimensional approximations. Adding such a viscosity in numerical
schemes can ensure that Assumption 3 holds.

For simplicity, xa
h(j∆t; xh(0)), the trajectories of the closed-loop system (2.12)

can be represented as S̃h,∆t(j∆t)xh(0) where S̃h,∆t is the semigroup generated by
(2.12). By using Assumption 3, it can be derived that

∥∥∥S̃h,∆t(j∆t)
∥∥∥

Xh

≤ Mae−λaj∆t. (2.14)

Assumption 3 is consistent with numerical discretization (Assumption 1 and As-
sumption 2) as the choice of ∆t∗1 depends on the choice of h.

Notice that the time discretization parameter ∆t has to be “different” from the
sampling period T . The CFL condition requires that the choice of a proper ∆t
depends on the choice of h in order to ensure that trajectories of approximate models
can well approximate trajectories of the exact model. Usually, ∆t is much smaller
than a small space discretization parameter h. Since the sampling period cannot be
arbitrarily small due to hardware limitation, the time discretization parameter and
the sampling period must be different. The sampling period T is typically much larger
than ∆t. To simplify the presentation, we assume that the ratio between T and ∆t
is an integer, i.e. T

∆t = N, N ∈ N, N ≥ 12.
After mapping from Uh to U by using the operator P̄h (see, Assumption 1) and

with the consideration of the sampling period T , we have

uT = uT,h,∆t(k;x0) = P̄hKh,∆tx
a
h(jN∆t; xa

h(0)), (2.15)

2The result can be extended when T ∈ [N∆t, (N +1)∆t) with a slight modification of the proof.
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where xa
h(j∆t; xa

h(0)) ∈ Xh is the solution obtained from (2.12), satisfying Assumption
3. With the control sequences (2.15), the sampled-data system (1.3) thus becomes

ẋ(t) = Ax(t) + BP̄hKh,∆tuT,h,∆t(k;x0). (2.16)

The controller uT,h,∆t(k; x0) in (2.15) is generated from a family of finite-dimensional
discrete-time approximate models easy to implement in practice.
Control objective. Assume Assumptions 1-3 hold. This paper aims at providing
sufficient conditions to ensure that trajectories of (2.16) converge to a neighborhood
of the origin.

The sampled-data system (2.16) can be re-written as

ẋ(t) = Ax(t) + B̄ūh(kT ), (2.17)

with B̄
4
= BP̄h and ūh

4
= Kh,∆tuT,h,∆t(k;x0). Since the controller ūh belongs to a

finite-dimensional space Xh, the control objective consists of finding sufficient condi-
tions insuring that the controller ūh can drive exponentially an infinite-dimensional
sampled-data system (1.3) to a neighborhood of the origin.

However, Assumptions 1-3 are not strong enough to ensure that the trajectories
of the infinite-dimensional sampled-data system (2.16) will converge. On one hand,
if there are infinitely many unstable modes in the system (2.17), it is not possible to
design a finite-dimensional controller that can stabilize it, as pointed out in [36]. On
the other hand, it is well-known that, for wave-like systems, numerical approximations
may generate spurious solutions that do not exist in the exact model, thus leading
to divergent trajectories, as discussed in [12, 43, 44] and references therein. Other
sufficient conditions are therefore needed.

Theorem 3.3 provides sufficient conditions to ensure that, for any well-behaved ini-
tial condition x0, the control input uT,h,∆t(k;x0) can drive trajectories of the sampled-
data system (2.16) to some neighborhood of the origin. The size of the neighborhood
can be chosen arbitrarily small by tuning the parameters (T, h,∆t) properly and
choosing the appropriate filtering process with respect to this initial condition.

3. Sufficient Conditions and Main Results. This section discusses sufficient
conditions that can ensure that the controller (2.15) can gradually move trajectories of
the sampled-data system (2.16) to some neighborhood of the origin. It is followed by
the statement of the main results (Theorems 3.3 and 3.4). Moreover, is also discussed
the necessity of the conditions required in the statement of the theorems.

3.1. The existence of ε-filtering. In this work, two slightly different ε-filtering
assumptions will be provided, the weaker one and the strong one. We start with the
latter one.

Assumption 4. Let ε > 0 be arbitrary. Then, there exists F = F(ε), a linear
continuous endomorphism of X, and E = E(ε), a finite-dimensional subspace of X,
such that the following conditions hold:
(a) X = E

⊕
F , where F = F (ε) is a closed subspace of X;

(b) there exists bounded linear operators PE ∈ L(E,X) and RE ∈ L(X, E), PF ∈
L(F,X) and RF ∈ L(X,F ) such that (i) REPE = IE and RF PF = IF , where
IE and IF are the identity operators on E and F respectively, (ii) for xE ∈ E

and xF ∈ F ,
∥∥xE

∥∥
E

4
=

∥∥PExE
∥∥

X
and

∥∥xF
∥∥

F

4
=

∥∥PF xF
∥∥

X
respectively. In

that way, one has ‖PE‖L(E,X) = ‖PF ‖L(F,X) = 1;
(c) for every x ∈ X, ‖RFFx‖F = ‖PF RFFx‖X ≤ ε ‖x‖X
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(d) for every x ∈ E (x ∈ F respectively), one has Ax ∈ E (Ax ∈ F respectively),
that is, A induces two operators AE : E → E and AF : F → F , generating
C0-semigroups SE(t) and SF (t) respectively;

(e) the semigroup SF (t) is a uniformly bounded linear operator, i.e., there exists bF >
0 such that ‖SF (t)‖L(X) ≤ bF .

We are now in a position to define precisely the filtering procedure used in this
paper.

Definition 3.1. A element x ∈ X is said filtered if F(ε)x = x, i.e, x ∈
Ker(F(ε)− IX), where F is defined in Assumption 4.

Note that Condition (d) in Assumption 4 implies that the infinitesimal generator

A can be decomposed as A =
[

AE 0
0 AF

]
. In particular, System (1.1) can be

re-written as follows (see [38, Page 711] for more details)

ẋE = AExE + BEu(t), BE = REB, (3.1)
ẋF = AF xF + BF u(t), BF = RF (IX − PERE)B. (3.2)

Intuitively, when diagonalizing (if possible) the C0-semigroup S(t), the subspace E
contains a finite number of unstable modes and F contains an infinite number of stable
(non-positive) modes. Note that, such a decomposition method is widely used in the
controller design of PDEs. For example, it was used in a pole shifting process in [38]
and in structural assignment for parabolic equations using Dirichlet boundary feed-
back in [23] and sampled-data control of infinite-dimensional systems in [28]. It was
also used in [7] for stabilization of semilinear heat equations and in [8] for stabilization
of semilinear wave equations.

As discussed in [38], AE can be generated by spanning the first M unstable
eigenvalues of the operator A, where M is some fixed integer, and AF can be generated
by spanning infinitely many stable eigenvalues of A. If AE is known exactly, by
constructing appropriate feedback control laws to stabilize M unstable modes without
moving the others, it is possible to obtain the practical stability properties of the
system (2.16) when the initial condition is filtered. However E may not be known
a priori in most applications. For example, engineering practitioners sometimes can
“guess” what E should be with some uncertainty measure (noise on estimation), up
to a certain precision level ε, as indicated in Condition (b) in Assumption 4.

Assumption 4 also requires the existence of ε-filtering for any given ε (the quality
of the filter). That is, for any ε > 0 arbitrary, it is possible to construct a well-
designed filter so that Condition (b) holds. This is a relatively strong assumption
leading to a strong result in which ∆ and ν can be any positive constants, as shown
in Theorem 3.3: how to choose ε for the filter depends on the set in which the initial
condition stays and the neighborhood of the origin to which the solutions of System
(2.2) converge. The smaller the ν (the size of the neighborhood) and the larger the
∆ (the set containing the initial condition), the smaller the ε is needed, requiring a
better filtering process (see Theorem 1).

In practice, it is not always possible to obtain a filtering process achieving the
given precision requirement ε. A weaker version of Assumption 4 can be used when
practitioners know roughly on the space E and can guess the size of ε with respect to
the E.

Assumption 5. There exist a linear continuous operator F : X → X, a subspace
E = E ⊂ X with dim(E) < ∞ and a positive constant ε = ε(F), such that conditions
(a)–(e) in Assumption 4 hold.
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With a weaker filtering assumption, a weaker result for System (2.16) will be
obtained, as shown in Theorem 3.4. It states that ν, the size of the neighborhood of
the origin (or offset) will be determined by ε. The better is the filter (the smaller ε),
the smaller ν will be obtained in practical stabilization. Designing a proper filtering
process is natural in the control of the PDEs and the control performance depends on
the choice of filtering processes. How to design this ε-filtering is outside of the scope
of this paper.

3.2. High frequency filtering property. If AE is known, System (1.1) can
be practically stabilized by a finite-dimensional controller on E. However, AE is not
completely known in general. The approximation of E is known according to As-
sumption 4 with an approximation error majorized by ε. Since B is an unbounded
control operator, the existence of F can perturb stable modes of the sampled-data sys-
tem (1.3) through B and may lead to divergent trajectories. Therefore, the following
assumption is also needed.

Assumption 6. “High frequency filtering property” (HFFP) with respect to ε-
filtering is satisfied for System (1.1). That is, let ε defined in Assumption 4 or As-
sumption 5, for any y(·) ∈ L2([0, t], U) satisfying ‖y(t)‖U ≤ e−λyt, ∀t ≥ 0 for some
positive λy, then the following inequality holds

∥∥∥∥
∫ t

0

SF (t− s)RF (IX − PERE)By(s)ds

∥∥∥∥
X

≤ ε, ∀t ≥ 0. (3.3)

Assumption “HFFP” is new and plays a crucial role in our general problem
setting. It reflects what has been done by E. Zuazua and his coauthors in their
work in which filtering out high frequencies components is needed (see discussion in
[12, 43, 44, 45]). It is also consistent with what engineers are always doing in practice,
when applying filters to their process to regularize their data.

Notice that Assumption “HFFP” is not restrictive in the control of PDEs. For
instance, if A is analytic and B is admissible (e.g., parabolic PDEs), then Assumption
“HFFP” is always satisfied, as possible high frequency components are automatically
damped out (see more discussion in [12]); if A is not analytic (e.g. hyperbolic PDEs),
a “uniform gap assumption” (see [33] where it is combined with a moment method
and also [8, 38]) can ensure that Assumption “HFFP” holds.

3.3. Uniform boundedness of Kh,∆t. The following assumption is always
needed when the direct method is employed.

Assumption 7. There exists h0 > 0 such that for any h ∈ (0, h0), there exist
∆t∗K(h) > 0 such that for all ∆t ∈ (0, ∆t∗K(h)), there exists BK > 0 such that the
family of feedback control operators satisfy ‖Kh,∆t‖L(Xh,Uh) ≤ BK .

Remark 6. Assumptions 3 and 7 are satisfied with the Riccati procedure that
appears in the LQR optimal control problems (See discussion and results in [3, 1, 13,
17, 24, 22, 33]). ◦

3.4. Uniform Hurwitzian property. Assumptions 1 and 2 ensure the exis-
tence of “good” numerical algorithms. Assumptions 3 and 7 guarantee the existence
of good finite-dimensional controllers uh,∆t. Assumptions 4 (or 5) and 6 ensure that
“good” filtering process is available. However, it is still not enough to ensure that
trajectories of the sampled-data system (2.16) do converge. The compatibility require-
ment (or uniform Hurwitzian property) is also needed. The space semi-discretization
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models are used in this assumption:

ẋh(t) = Ahxh(t) + BhKh,∆txh(t), (3.4)

with the initial condition xh(0) ∈ Xh. The solutions of (3.4) with the control input
uh(t) are represented as xh(t; x0, uh(t)).

Assumption 8. “Uniform Hurwitzian property” (UHP) is satisfied for System
(2.16). That is, let ME and λE be positive constants with ME > 1. Let the feedback
control operators Kh,∆t be defined in (2.12). Then, there exist T ∗E > 0 and h∗E > 0
such that, for T ∈ (0, T ∗E) and h ∈ (0, h∗E), there exists ∆t∗E(h) such that, for ∆t ∈
(0, ∆t∗E(h)) and z0 ∈ E, solutions of the following system, denoted as z(t; z0),

ż(t) = REPhAhRhPEz(t) + REPhBhKh,∆tRhPEz(kT ), (3.5)

with z(0) = z0 ∈ E, satisfy

‖z(t; z0)‖E =
∥∥PESE

T,h(t)z0

∥∥
X
≤ MEe−λEt ‖z0‖E , (3.6)

where SE
T,h represents a family of semigroups generated by System (3.5).

Although Assumption 8 plays an important role in our results, it is not always easy
to verify whether this assumption holds or not in practice. The following proposition
provides a sufficient condition which is easier to check to ensure that Assumption 8
holds.

Proposition 3.2. If the family of matrices REPh(Ah + BhKh,∆t)RhPE is uni-
formly Hurwitz for h small enough and ∆t selected according to Assumptions 1 and
2, then Assumption 8 holds true.

Sketch of Proof: Since the matrix REPh(Ah + BhKh,∆t)RhPE is uniformly Hur-
witz, the stability property is independent of the choice of h and ∆t. Applying a
standard emulation result [31], or indirect method as in [5] leads to the conclusion. ¤

Remark 7. The filtered feedback matrix REPh(Ah + BhKh,∆t)RhPE can be
treated as the matrix Ah + BhKh,∆t viewed “through E”. Proposition 3.2 is a general
emulation result on the sampled-data control of finite-dimensional systems with sam-
pling period T . Note that, since the stability properties of REPh(Ah +BhKh,∆t)RhPE

are uniform in h, the choice of T ∗ is independent of the choice h. ◦
Remark 8. Assumption 8 is satisfied if the discretization scheme is built on E

and such numerical schemes are called spectral, or modal, that is, E ⊂ Im(Rh), for
h small enough, cf. [7, 8]. ◦

Although the controller (2.16) is not a feedback, Assumption 8 ensures that all
unstable modes can be exponentially stabilized by controllers designed for numerical
approximations.

3.5. Main result. The main result of this paper is stated as follows.
Theorem 3.3. Let (∆, ν) be positive constants. Assume that Assumptions 1, 2,

3, 4, 6, 7 and 8 hold true with ε defined in Assumptions 4-6. Then, there exists T ∗ > 0,
h∗ > 0 such that, for T ∈ (0, T ∗) and h ∈ (0, h∗), there exists ∆t∗(h) > 0 and two
positive constants M and λ such that, for ∆t ∈ (0,∆t∗(h)), x0 ∈ B∆∩Ker(F(ε)−IX),
the trajectories of (2.16), denoted as x(t) = x(t;x0, uT,h,∆t(k; x0)), are well-defined
on R+ and satisfy

‖x(t; x0, uT,h,∆t(k; x0))‖X ≤ Me−λt ‖x0‖X + ν, (3.7)

for all t ∈ [kT, (k + 1)T ), k ∈ N. ◦
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The above stability result belongs to the realm of “practical exponential stability”.
In general, obtaining “practical stability” is easier than “stability” (see discussion
in [44]). In the context of the paper, it is not always possible to obtain exponen-
tially stability properties when the direct method is applied to general sampled-data
infinite-dimensional systems. Due to the existence of the sampling mechanism, nu-
merical approximation errors as well as the estimation error ε on E, practical stability
properties are (probably) the best result that one could obtain.

The result proved in Theorem 3.3 extends previous results obtained in [28] in two
ways: (i) in the aforementioned paper, only sampling is considered and the controller is
designed for continuous-time systems; (ii) in the present paper, the system considered
is more general (A is not analytic and B is unbounded) than that in [28].

Normally, one cannot get the suitable filtering process to achieve the required
precision ε, which is determined by ν and ∆ (see Theorem 3.3). In most of situations,
engineers have a filter with known “ε”, and then the size of the neighborhood depends
on the quality of the filter (see Assumption 5). When a weaker assumption is used,
it leads to a weaker result given next.

Theorem 3.4. Let (∆, ε) be positive constants. Assume Assumptions 1, 2, 3, 5,
6, 7 and 8 hold true. Then, there exists T ∗ > 0, h∗ > 0 such that, for T ∈ (0, T ∗),
and h ∈ (0, h∗), there exists ∆t∗(h) > 0, two positive constants M and λ and a class
K∞-function γ such that, for ∆t ∈ (0, ∆t∗(h)) and x0 ∈ B∆ ∩Ker(F(ε) − IX), the
trajectories of (2.16), denoted as x(t) = x(t;x0, uT,h,∆t(k; x0)) are well-defined on R+

and satisfy

‖x(t; x0, uT,h,∆t(k; x0))‖X ≤ Me−λt ‖x0‖X + γ(ε), (3.8)

for all t ∈ [kT, (k + 1)T ), k ∈ N. ◦
Sketch of proof. The proof of Theorem 3.4 is similar to the proof of Theorem 3.3,

with a slight modification of Step 1. ¤
Remark 9. In [22], Labbé and Trélat discussed necessary and sufficient condi-

tions under which uniform controllability properties of a family space semi-discretized
approximations imply the controllability properties of the exact model (1.1) for parabolic
systems. The main result in their paper [22, Theorem 3.1] implies Theorem 3.3 in the
parabolic case, though the complete argument of this implication would require several
developments. ◦

Remark 10. When the infinitesimal generator A in (1.1) is analytic, i.e. Sys-
tem (1.1) is parabolic, HFFP condition is automatically satisfied. Assumption 3 and
Assumption 7 are satisfied with the Riccati procedure (see discussion in [3, 1, 13, 17,
24, 22] and references therein). Under such a situation, the filtering process is not
required since high frequency components are naturally damped. Sharp estimates of
convergence of Sh(t) to S(t) therefore exist (see [24, Chapter 4]), which can greatly
simplify the proof of our main result. ◦

Remark 11. If suitable numerical viscosity terms are added in the numerical
schemes in our main result, Assumptions 3 and 7, 8 and 6 hold (see discussion in
[33] for more details). Therefore, by choosing appropriate numerical schemes, the
assumptions in Theorem 3.3 or Theorem 3.4 are not restrictive.

Theorem 3.3 provides a useful guideline for engineers to choose appropriate nu-
merical schemes (h and ∆t), sampling period T and filtering processes. There are four
design parameters (T, h, ∆t, ε) that are determined by the performance requirement
(∆, ν). Therefore, how to design these parameters is of great importance to ensure
that the proposed method can work for a general sampled-data LDPS.

12



3.6. Discussion on necessity of the assumptions. Although the proposed
method (designing controllers for approximate models) is widely used in engineering
applications, assumptions in Theorem 3.3 may be very hard to check in practice. How-
ever, our result shed the light on how to properly design sampled-data controllers for
infinite-dimensional systems by using numerical approximate models. Furthermore,
Assumptions 4–8 are not only sufficient, but also necessary. If one of them fails, then
counterexamples can be found in literature, as explained below.
Assumption 4 or Assumption 5. The initial condition x0 must be filtered. The

role of ε-filtering is to filter out the high frequency components in space
for the given initial condition x0 of the exact system (1.1). It is important
to note that the assumption of ε-filtering (Assumption 4 or Assumption 5)
and filtering out high frequency components of initial conditions is necessary.
Counterexamples can be found when wave-like equations are considered. It
is well-known that, for hyperbolic systems, high frequency components of
initial conditions may not be damped and will interfere with the numerical
discretization, generating spurious oscillation and leading to divergent trajec-
tories. Such discussion can be found in [44, 43, 12]. ◦

Assumption 6. That assumption cannot be removed in general, as A is not re-
stricted to be analytic and B is an unbounded operator. For example, when
the hyperbolic PDEs are considered, “resonance” phenomena may occur if
Assumption “HFFP” is not satisfied. Unstable trajectories thus could be
obtained (see discussion in [33] and references therein).

Assumption 7. If that assumption is not satisfied, when h and ∆t tend to zero,
‖Kh,∆t‖Xh

may tend to infinity, leading to divergent control input uT,h,∆t(k;x0)
(see discussion in [44]). Uniform boundedness of Kh,∆t is thus necessary.

Assumption 8. That assumption actually plays a crucial role in Theorem 3.3. Intu-
itively, if the numerical schemes are not compatible, i.e., some unstable modes
cannot be detected and stabilized by numerical approximations, it is not pos-
sible to obtain convergent trajectories of the sampled-data system (1.3). If
the discretization scheme is not spectral (i.e., Assumption 8 does not hold),
then the trajectories of the sampled-data system (1.3) may diverge, see, for
example, [41] in which finite differences are used.

4. Proof of the main result.

4.1. Propositions and Corollaries needed in the proof of Theorem 3.3.
Introducing two different control inputs for the space discretization system (3.4):

u1(t)
4
= Kh,∆txh(t), (4.1)

u2(t)
4
= Kk,∆txh(kT ), ∀t ∈ [kT, (k + 1)T ), ∀k ∈ N, (4.2)

then xh(t; xh(0);u1(t)) and xh(t; xh(0), u2(t)) represent solutions of (3.4) with two
different control inputs respectively. The following propositions are needed in the
proof of the main result.

Proposition 4.1. Consider the following linear finite-dimensional continuous-
time system

ẋ(t) = Φx(t), x(0) ∈ Rn, (4.3)

and its time-discretization

x(k + 1) = Φa
T x(k), x(0) ∈ Rn. (4.4)
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Then, we use φe(t;x(0)) and φa
T (k; x(0)) to denote the solutions of (4.3) and (4.4)

respectively. Let δ > 0 be arbitrary. Assume that the following conditions hold.
1. There exist T0 > 0 and ρ(·) ∈ K∞ such that for all T ∈ (0, T0)∥∥eΦT − Φa

T

∥∥
Rn ≤ Tρ(T ).

2. For any t > 0, there exists BA,a(t) > 0 such that
∥∥∥(Φa

T )k
∥∥∥
Rn
≤ BA,a(t),∀k ∈ N such that kT ∈ [0, t].

Then, there exists T ∗ > 0 such that, for T ∈ (0, T ∗), the following holds

‖φe(kT ;x(0))− φa
T (k;x(0))‖Rn ≤ δ ‖x(0)‖Rn , ∀k ∈ N, kT ∈ [0, t]. (4.5)

Proof of Proposition 4.1: Consider δ > 0 and t > 0. Define

T ∗
4
= min

{
ρ−1

(
δ

BA,a(t) · eΦt · t
)

, T0

}
,

where ρ(·) and T0 are defined in Condition 1 above.
For any kT ∈ [0, t], k ∈ N, it follows that

‖φe(kT ; x(0))− φa
T (k;x(0))‖Rn =

∥∥∥∥∥
k−1∑

i=0

(Φa
T )i (

Φa
T − eΦT

)
eΦ((k−1−i)T )x(0)

∥∥∥∥∥
Rn

≤ BA,a(t)
k−1∑

i=0

∥∥(
Φa

T − eΦT
)∥∥
Rn eΦt ‖x(0)‖Rn

≤ BA,a(t) · eΦt · (k − 1) · T · ρ(T ) · ‖x(0)‖Rn

≤ BA,a(t) · eΦt · t · ρ(T ) · ‖x(0)‖Rn = δ ‖x(0)‖Rn , ∀T ∈ (0, T ∗),

which completes the proof of Proposition 4.1. ¤
In order to extend Proposition 4.1 to an infinite-dimensional setting, a more

general notation is used.
Definition 4.2. Let Θ be a compact subset of Rnθ where nθ ∈ N. A parameter-

ized set S1 of functions x(·) : I → X where I is any subinterval of the form [0, t∗),
with t∗ ∈ [0,∞], is said to be a flow if, for all x0 ∈ X and θ ∈ Θ, the following holds.

1. For all x0 ∈ X and θ ∈ Θ, the set S1(x0, θ) is used to denote the functions
x(·) verifying x(0) = x0.

2. If x(·) ∈ S1(x0, θ) and t1 ∈ domain(x(·)), then x(t1+ ·) belongs to S1(x(t1), θ)
for every θ ∈ Θ.

An auxiliary flow S2 will be considered with no dependence with respect to the
parameter θ, wherwhich starts from the same initial condition x0 of S1, is denoted as
S2(x0). With the above notations, Proposition 4.1 will be extended as follows.

Proposition 4.3. Assume that the following conditions hold:
1. there exists three positive real numbers M1,λ1 and θa > 0 such that, for x0 ∈

X, θ ∈ Θ satisfying ‖θ‖Rnθ ∈ (0, θa) and x(·)S1(x0, θ), one has ‖x(t)‖X ≤
M1e

−λ1t ‖x0‖X for all t ∈ I;
2. the solutions of the flows S1(x0, θ) and S2(x0) can be made arbitrarily close

on compact time intervals. That is, given any δ > 0 and t ∈ I, there exists
θb > 0 such that, for θ ∈ Θ satisfying ‖θ‖Rnθ ∈ (0, θb), x(·) ∈ S1(x0, θ) and
y(·) ∈ S2(x0), the following holds

‖x(s)− y(s)‖X ≤ δ ‖x0‖X , ∀s ∈ [0, t]; (4.6)
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3. the solutions of the flow S2(x0) are bounded on compact time intervals, that
is, for any t ∈ I, there exists L > 0 such that ‖y(s)‖X ≤ L ‖x0‖X , for all
s ∈ [0, t].

Then S2(x0) is exponentially stable.
Proof of Proposition 4.3: Let c ∈ (0, 1) and δ ∈ (0, c) be arbitrary. Let M1 and

λ1 come from Item 1 of the proposition. Define t
4
= 1

λ1
ln

(
M1
c−δ

)
and let this t and the

given δ determine θb > 0 via Item (2) of the proposition. Consider x0 ∈ X, θ ∈ Θ
such that ‖θ‖Rnθ ≤ θ∗ = min{θa, θb} and x(·) ∈ S1(x0, θ). For simplicity, we assume

that I = R+. Introduce now a sequence of times ti
4
= it, where i = 0, 1, 2, . . . and

consider the solution y(ti+1, x0). Thanks to the second property of the flow, we can

write that y(ti+1)
4
= y(ti+1, x0) = y(t, y(ti)). At each ti, we reinitialize the flow S1

with y(ti), we denote it x(t, y(ti), θ).
Then, we can write for all ti, x(ti) ∈ X and y(s) ∈ S2(y(ti)):

‖y(ti+1)‖X = ‖y(t, y(ti))‖X

≤ ‖x(t, y(ti), θ)‖X + ‖x(t, y(ti), θ)− y(t, y(ti))‖X

≤ M1 exp(−λ1t) ‖y(ti)‖X + δ ‖y(ti)‖X

= (c− δ) ‖y(ti)‖X = c ‖y(ti)‖X .

Moreover, we can write that

‖y(ti)‖X ≤ ci ‖x0‖X ≤ e−λti ‖x0‖X ,

where λ
4
= ln(1/c). Finally, using Item 3 of the proposition, we can write that, for

s ∈ [ti, ti+1],

‖y(s)‖X ≤ L ‖y(ti)‖X ≤ L ‖y(ti)‖X ≤ Le−λti ‖x0‖X

= Leλ(s−ti)e−λs ‖x0‖X

≤ L exp(λt)e−λs ‖x0‖X ≤ Me−λs ‖x0‖X , (4.7)

which completes the proof of Proposition 4.3, with M
4
= Leλt. ¤

The following corollaries can be obtained from Propositions 4.1 and 4.3.
Corollary 4.4. Assume that Assumptions 1, 2 and 7 hold. Then there exist pos-

itive real numbers Mp,1, λp,1, h
∗
p,1 such that, for h ∈ (0, h∗p,1), there exists ∆t∗p,1(h) > 0

so that, for ∆t ∈ (0, ∆t∗p,1(h)), solutions of (3.4) with control inputs u2(·) satisfy

‖xh(t, xh(0), u2(t))‖Xh
≤ Mp,1e

−λp,1t ‖xh(0)‖Xh
, ∀h ∈ (0, h∗p,1), t ≥ 0. (4.8)

Proof of Corollary 4.4: Let h∗p,1 = min{h∗1, h0}, where h∗1 and h0 are defined in
Assumption 3 and Assumption 2 respectively. Let t > 0 and δ > 0. Denote Ψe

h =
Ah + BhKh,∆t and Ψa

h,∆t = Aa
h,∆t + Ba

h,∆tKh,∆t. Then, one has

xa
h(k + 1) =

(
Aa

h,∆t + Ba
h,∆tKh,∆t

)
xa

h(k) = Ψa
h,∆tx

a
h(k),

ẋh(t) = (Ah + BhKh,∆t) xh(t) = Ψe
hxh(t), u(t) = u1(t) = Kh,∆txh(t).

The proof is completed by showing the following facts.
Fact 1 For any fixed h ∈ (0, hp,1), Ah ∈ Xh and Bh ∈ L(Uh, Xh).
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Thus for any fixed h, there exists positive constants BA,h and BB,h such that

‖Ah‖Xh
≤ BA,h, ‖Bh‖L(Uh,Xh) ≤ BB,h. (4.9)

Fact 2 From Assumption 7, it follows that ‖Kh,∆t‖L(Xh,Uh) ≤ BK .
Fact 3 For any h ∈ (0, h∗p,1), there exists ρ̄h(·) ∈ K∞ such that

∥∥∥eΨe
h∆t −Ψa

h,∆t

∥∥∥
Xh

≤ ∆tρ̄(∆t).

Proof of Fact 3: Let ρh(·) be defined in Assumption 2. Then, using Assumption 2,
for any h ∈ (0, h∗p,1), there exists a positive constant ∆t∗p,1(h) and class K∞-functions
ρ̄1,h(·) and ρ̄2,h(·) such that

∥∥eAh∆teBhKh,∆t∆t −Ψa
h,∆t

∥∥
Xh

≤
∥∥eAh∆t

(
eBhKh,∆t∆t − IXh

−BhKh,∆t∆t
)∥∥

Xh
+

∥∥eAh∆t −Aa
h,∆t

∥∥
Xh

+
∥∥(

eAh,∆t∆t − IXh

)
BhKh,∆t∆t

∥∥
Xh

+
∥∥BhKh,∆t∆t−Ba

h,∆tKh,∆t

∥∥
Xh

≤ ρ̄1,h(∆t)∆t + ρh(∆t)∆t + ρ̄2,h(∆t)∆t + ρh(∆t)∆t = ρ̄(∆t)∆t.

Fact 4 Using Assumption 2, let δ > 0 and t > 0. Then, for any h ∈ (0, h∗p,1), there
exists ∆t∗p,1(h) > 0 such that

‖xa
h(j)− xh(j∆t;xh(0), u1(t))‖Xh

≤ ∆ ‖xh(0)‖Xh
, ∀j ∈ N, ∆t ∈ [0, t].

The proof of Corollary 4.4 can now be completed by applying Proposition 4.1 and
Fact 4. ¤

Corollary 4.5. Assume that Assumptions 1, 2 and 7 hold. Then, there exists
positive constants (Mp,2,λp,2), h∗p,2 and T ∗p,2 such that, for h ∈ (0, h∗p,2) and T ∈
(0, T ∗p,2), if one defines the piecewise-constant control u2 by Kh,∆txh(kT ) on [kT, (k+
1)T ), k ∈ N, then the solutions of (3.4) corresponding to u2(·) satisfy

‖xh(t;xh(0), u2(k))‖Xh
≤ Mp,2e

−λp,2t ‖xh(0)‖Xh
, ∀t ≥ 0. (4.10)

Proof of Corollary 4.5 : Let h∗p,2 = h∗p,1, where h∗p,1 is defined in Corollary4.4. We
first prove the following fact.
Fact a If δ > 0 and t > 0, then there exists T ∗ > 0 such that, for T ∈ (0, T ∗) and

h ∈ (0, h∗p,2), one has

‖xh(kT ;xh(0), u1(t))− xh(kT ; xh(0), u2(t))‖Xh
≤ δ ‖xh(0)‖Xh

Proof of Fact a: It follows that
∥∥∥∥∥e(Ah+BhKh,∆t)T − eAhT −

∫ T

0

eAhτdτBhKh,∆t

∥∥∥∥∥
Xh

≤ ∥∥eAhT
(
eBhKh,∆tT − IXh

−BhKh,∆tT
)∥∥

Xh
+

∥∥(
eAhT − IXh

)
BhKh,∆tT

∥∥
Xh

+

∥∥∥∥∥
∫ T

0

(
eAhτ − IXh

)
dτBhKh,∆t

∥∥∥∥∥
Xh

.
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Applying Proposition 4.1, it follows that there exists ρp,2(·) ∈ K∞ such that
∥∥∥∥∥e(Ah+BhKh,∆t)T − eAhT −

∫ T

0

eAhτdτBhKh,∆t

∥∥∥∥∥
Xh

≤ ρp,2(T )T,

which concludes the proof of Fact 4.
Using Corollary 4.4 as well as Proposition 4.3, the proof of Corollary 4.5 is complete.
¤

Remark 12. Corollaries 4.4 and 4.5 show that there exists positive constants
h∗p,2, T ∗p,2, α1 and α2 such that, for T ∈ (0, T ∗p,2) and h ∈ (0, h∗p,2), there exists
∆t∗p,2(h) = ∆t∗p,1(h) > 0 (from Corollary 4.4) such that, for ∆t ∈ (0, ∆t∗p,2(h)), the
following inequalities hold

‖xh(t; xh(0), u1(t))− xh(t; xh(0), u2(t))‖Xh
≤ α1 ‖xh(0)‖Xh

, ∀t ≥ 0; (4.11)
‖xh(j∆t; xh(0), u1(t))− xa

h(j; xh(0))‖Xh
≤ α2 ‖xh(0)‖Xh

, ∀j ∈ N. (4.12)

With the help of above propositions and corollaries, the next step consists of
proving Theorem 3.3.

4.2. The proof of Theorem 3.3. We first re-write (2.15) as

uT,h,∆t(k; x0) = P̄hKh,∆tS̃h,∆t(k)Rhx0. (4.13)

It leads to the sampled-data system (2.16)

ẋ(t) = Ax(t) + BuT,h,∆t(k;x0))

= Ax(t) + BP̄hKh,∆tS̃h,∆t(k) (Rhx0) , x(0) = x0, (4.14)

where S̃h,∆t(t) represents a family of semigroups that are generated from Assumption
3.

Let ε = ε(∆, ν) = ν
(bR+bF )∆ , where bR and bF are defined in Eq. (2.8) and

Condition (e) in Assumption 4 respectively. Assume that ‖x0‖X ≤ ∆, and x0 ∈
A∆,ν = Ker(F(ε) − IX). Let x = PExE + PF xF where xE = REx and xF =
(IX − PERE)x. Let ζ0 = Rhx0, ζ0,E = RhPEREx0 and ζ0,F = Rh {IX − PERE}x0.
For the closed-loop infinite-dimensional system (4.14), we decompose its solution along
E and F respectively, that is,

ẋE = AExE + REBP̄hKh,∆tS̃h,∆t(k)ζ0,E + REBP̄hKh,∆tS̃h,∆t(k)ζ0,F , (4.15)

ẋF = AF xF + RF (IX − PERE)BP̄hKh,∆tS̃h,∆t(k)ζ0, (4.16)

where AE and AF in (4.15) and (4.16) are induced operators of A in E and F with
C0-semigroups SE(t) and SF (T ) respectively.

The proof consists of three steps.
Step 1 We first show that solutions of System (4.16) can be made sufficiently small.

Proof of Step 1: The solution of System (4.16) can be written as

xF (t) = SF (t)xF,0 +
∫ t

0

SF (t− s)RF (IX − PERE)BP̄hKh,∆tS̃h,∆t(k)ζ0,(4.17)

for t ∈ [kT, (k + 1)T ), k ∈ N.
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Noticing that S̃h,∆t(k)ζ0 represents a family of solutions of the finite-dimensional
discrete-time approximations (2.12), there exists positive constants Mu, λu

such that the following inequalities hold:
∥∥∥S̃h,∆t(k)ζ0

∥∥∥
Xh

≤ Mae−λaT ‖ζ0‖Xh∥∥∥P̄hKh,∆tS̃h,∆t(k)ζ0

∥∥∥
Xh

≤ Mue−λut ‖ζ0‖Xh
,

since Kh,∆t is uniformly bounded, ∆t ∈ (0, ∆t∗1(h)) and P̄h is a bounded
linear operator uniformly in h.
By using Condition (e) in Assumption 4, it yields

‖SF (t)xF,0‖F = ‖PF SF (t)xF,0‖X ≤ bF ε ‖x0‖X ≤ bF ε ‖x0‖X

≤ bF ε∆, (4.18)

for any x0 ∈ B̄∆ ∩Ker(Fε − IX).
On the other hand, using Assumption “HFFP” property (cf. Assumption 6),
one has ∥∥∥∥

∫ t

0

SF (t− s)RF (IX − PERE)BP̄hKh,∆tS̃h,∆t(k)ζ0ds

∥∥∥∥
X

≤ εbR ‖x0‖X ≤ bR∆ε. (4.19)

By combining (4.18) with (4.19), Step 1 holds true with (bR + bF )∆ε = ν. ◦
Step 2 We show that the solution of System (4.15) is practically exponentially stable

in h.
Proof of Step 2: By adding and subtracting the following terms,

REPhAhRhPExE(t), (a)
REPhBhKh,∆tRhPExE(t;PEREx0), (b)
REPhBhKh,∆tRhPExE(k; PEREx0), (c)

REBP̄hKh,∆tRhPExE(k; PEREx0), (d)
REPhBhKh,∆tRhPExE(k; PEREx0), (e)

REBP̄hKh,∆txh(k; ζ0,E , u2(t)), (f)
REBP̄hKh,∆txh(k; ζ0,E , u1(t)), (g)

for any t ∈ [kT, (k + 1)T ), System (4.15) can be re-written as

ẋE(t) = REPhAhRhPExE(t) + REPhBhKh,∆tRhPExE(kT ; PEREx0)
+RE (A− PhAhRh)PExE(t)
+RE

[
BP̄h − PhBh

]
Kh,∆tRhPExE(t; PEREx0)

+RE

[
BP̄h − PhBh

]
Kh,∆tRhPERE

(
xE(k;PEREx0)− xE(t; PEREx0)

)

+REBP̄hKh,∆t

[
xh(k; ζ0,E , u2(k))−RhPExE(k; PEREx0)

]

+REBP̄hKh,∆t [xh(k; ζ0,E , u1(t))− xh(k; ζ0,E , u2(k))]
+REBP̄hKh,∆t [xa

h(k; ζ0,E)− xh(k; ζ0,E , u1(t))]
+REBKh,∆tx

a
h(kT ; ζ0,F )

= REPhAhRhPExE(t) + REPhBhKh,∆tRhPExE(kT ;PEREx0)
+ς1,hxE(t) + ς2,h,∆tx

E(t) + ς3,T,h,∆t(t) + ς4,T,h,∆t(t) + ς5,T,h,∆t(t)
+ς6,T,h,∆t(t) + ς7,T,h,∆t(t), (4.20)
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where

ς1,h
4
= RE (A− PhAhRh)PERE , (4.21)

ς2,h,∆t
4
= RE

[
BP̄h − PhBh

]
Kh,∆tRhPERE , (4.22)

ς3,T,h,∆t(t)
4
= ς2,T,h,∆t

(
xE(k; PEREx0)− xE(t; PEREx0)

)
, (4.23)

ς4,T,h,∆t(t)
4
= REBP̄hKh,∆t

[
xh(k; ζ0,E , u2(k))−RhPExE(k; PEREx0)

]
,(4.24)

ς5,T,h,∆t(t)
4
= REBP̄hKh,∆t [xh(k; ζ0,E , u1(t))− xh(k; ζ0,E , u2(k))] , (4.25)

ς6,T,h,∆t(t)
4
= REBP̄hKh,∆t [xa

h(k; ζ0,E)− xh(k; ζ0,E , u1(t))] , (4.26)

ς7,T,h,∆t(t)
4
= REBP̄hKh,∆tx

a
h(k; ζ0,F ). (4.27)

Then, the solution of System (4.15) becomes

xE(t) = SE
T,h(t)xE(0) +

∫ t

0

SE
T,h(t− s)ς1,hxE(s)ds

+
∫ t

0

SE
T,h(t− s)ς2,h,∆tx

E(s)ds +
∫ t

0

SE
T,h(t− s)ς3,T,h,∆t(s)ds

+
∫ t

0

SE
T,h(t− s)ς4,T,h,∆t(s)ds +

∫ t

0

SE
T,h(t− s)ς5,T,h,∆t(s)ds

+
∫ t

0

SE
T,h(t− s)ς6,T,h,∆t(s)ds

+
∫ t

0

SE
T,h(t− s)ς7,T,h,∆t(s)ds. (4.28)

The proof will be completed by showing the following facts.
Fact 1 Let ρa(·) be a class K∞-function. Then, there exists ha > 0 such that,

for h ∈ (0, ha), the following inequality holds

‖RE (A− PhAhRh)PE‖E ≤ ρa(h). (4.29)

Proof of Fact 1: Note that REAPE is an endomorphism of E thus it is
bounded as well as REPhAhRhPE . Using Assumption 1, it yields

‖REAPE −REPhAhRhPE‖E −−−→
h→0

0.

Therefore Fact 1 holds true. ◦
Using Fact 1, let δ > 0 be arbitrary. One has

∥∥∥∥
∫ t

0

SE
T,h(t− s)ς1,hxE(s)ds

∥∥∥∥
E

≤
∫ t

0

MEe−λE(t−s)ρa(h)
∥∥xE(s)

∥∥
E

ds

≤
∫ t

0

δ

2

∥∥xE(s)
∥∥

E
ds,

by choosing h small enough.
Fact 2 Let ρb(·) be a class K∞-function. There exists hb > 0 such that, for

h ∈ (0, hb), the following inequality holds
∥∥RE

(
BP̄h − PhBh

)
Kh,∆tRhPE

∥∥
E
≤ ρb(h). (4.30)

Proof of Fact 2: Similar to the proof of Fact 1, using the fact that E is
finite-dimensional space, the result holds. ◦
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Using Fact 2, let δ > 0 be arbitrary, we have
∥∥∥∥
∫ t

0

SE
T,h(t− s)ς2,h,∆tx

E(s)ds

∥∥∥∥
E

≤
∫ t

0

MEe−λE(t−s)ρb(h)
∥∥xE(s)

∥∥
E

ds

≤
∫ t

0

δ

2

∥∥xE(s)
∥∥

E
ds

by choosing h small enough.
Fact 3 For any δ > 0, there exists T ∗2 > 0 such that the following inequality

holds
∥∥xE(k;PEREx0)− xE(t;PEREx0)

∥∥
E
≤ δ.

Fact 4 For any fixed t > 0, there exists a class K∞-function ρc(·) such that, for
z0 ∈ E, the following holds.

‖REPh {xh(s; RhPEz0, u2(k))−RhPEREz(s; z0)}‖E ≤ ρc(h),(4.31)

for all s ∈ [0, t]. Here z(t; z0) represents solutions of System (3.5) with
the initial condition z0.
Proof of Fact 4: Note that xT,h(k; RhPEz0) represents solutions of a Sys-
tem (3.4), whose initial condition is RhPEz0 and u2(t) = Kh,∆tx(kT ),∀t ∈
[kT, (k + 1)T ), k ∈ N.
Denoting ξh(t) = RhPEz(t), we have two systems in Xh,

ẋh(t) = Ahxh(t) + BhKh,∆txh(kT ), xh(0) = RhPEz0,

ξ̇h(t) = RhPEREPh [Ahξh(t) + BhKh,∆tξh(kT )] , ξh(0) = RhPEz0.

When they are projected onto E, it follows that

REPhẋh(t) = REPh [Ahxh(t) + BhKh,∆txh(kT )] ,

REPhξ̇h(t) = REPh {RhPEREPh [Ahξh(t) + BhKh,∆tξh(kT )]}
= REPhRh (PEREPh) [Ahξh(t) + BhKh,∆tξh(kT )] .

Obviously

‖REPhRhPE − IE‖L(E) −−−→
h→0

0, (4.32)

in which the convergence is uniform for small h since dim E < ∞. Note
that Ph is uniformly bounded and PE and RE are bounded according
to the Lax-Richtmyer Equivalent Theorem [25].34 . ◦

Fact 5 There exist positive constant α3 and h∗2 such that, for h ∈ (0, h∗2), t ∈
(0,∞) and z0 ∈ E, one has

‖REPh {xh(t;RhPEz0, u2(k))−RhPEREz(t; z0)}‖E ≤ α3 ‖z0‖E .(4.33)

3Since Ah
4
= RhAPh ∈ Xh, and by using Fact 1 in the proof of Corollary 4.5, eRhAPht is

uniformly bounded for any finite time t. Therefore Lax-Richtmyer Equivalent Theorem is applicable.
4It is worthwhile to note that, since two solutions are evaluated in E, the convergence does not

depends on the choice of z0. In general, ρc(·) is determined by the given initial condition when an
infinite-dimensional space X is considered.
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Proof of Fact 5: Given t > 0 and z0, then choosing h∗2 = ρ−1
c ( δ

2 ) and
using Fact 4 yield

‖REPh {xh(s; RhPEz0, u2(k))−RhPEREz(s; z0)}‖E ≤ δ, ∀s ∈ [0, t].

Assumption 8 implies that REPhRhPEREz(s; z0) is exponentially sta-
ble, uniformly in small h. Using Proposition 4.3 and Assumption 8, it
can be shown that REPhxh(s; RhPEz0, u2(k)) is exponentially stable,
uniformly for small h. This concludes the proof of Fact 5. ◦

Fact 6 REBKh,∆t is uniformly bounded by BE,T,h for T > 0, k ∈ N, h ∈ (0, h∗)
and ∆t ∈ (0, ∆t∗(h), where h∗ and ∆t∗(h) are defined in Assumption 7.
Proof of Fact 6: Note that REB is a compact operator as REB has a
finite range. Using Banach-Steinhaus Theorem [21, page 249] yields the
result. ◦

We finally prove the theorem as follows. From what precedes, Facts 1 to 3
handle ς1,T,h,∆t(t) to ς3,T,h,∆t(t) respectively. Moreover, Fact 4 and 5 handle
ς4,T,h,∆t(t) and Fact 6 finally handles ς7,T,h,∆t(t).
Moreover, Corollaries 4.4 and 4.5 take care of ς5,T,h,∆t(t) and ς6,T,h,∆t(t)
respectively. By combining Facts 1-6 with the two corollaries and by using
Gronwall Lemma, it yields

∥∥xE(t)
∥∥

E
≤ ∥∥SE

T,h(t)
∥∥

E
‖PEREx0‖E +

∫ t

0

∥∥SE
T,h(t− s)

∥∥
E

ρa(h)E

∥∥xE(s)
∥∥

E
ds

+
∫ t

0

∥∥SE
T,h(t− s)

∥∥
E

ρb(h)
∥∥xE(s)

∥∥
E

ds

+
∫ t

0

∥∥SE
T,h(t− s)

∥∥
E

ρb(h)δds

+
∫ t

0

∥∥SE
T,h(t− s)

∥∥
E

α3 ‖PEREx0‖E ds

+
∫ t

0

∥∥SE
T,h(t− s)

∥∥
E

α1 ‖RhPEREx0‖Xh
ds

+
∫ t

0

∥∥SE
T,h(t− s)

∥∥
E

α2 ‖RhPEREx0‖Xh
ds

+
∫ t

0

SE
T,h(t− s)BE,T,hMa ‖RhPEREx0‖Xh

ds.

≤ Me−λt ‖x0‖X . (4.34)

Since
∥∥xE

∥∥
E

=
∥∥PExE

∥∥
X

, the proof of Theorem 3.3 is now completed by combining
Step 1 and Step 2. ¤

5. Conclusions. In this paper, practical exponential stability properties of the
sampled-data infinite-dimensional systems using controllers generated from numeri-
cal approximations are discussed. The controllers are first designed such that they
uniformly exponentially stabilize a family of finite-dimensional discrete-time approx-
imations. Then, they are used in sampled-data infinite-dimensional systems. Under
some tight sufficient conditions, by tuning the parameters (T, h, ∆t), the resulting
controllers will practically stabilize the sampled-data infinite-dimensional system for
any initial condition x0 ∈ B∆ that is properly filtered.
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