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Dynamic Practical Stabilization of Sampled-data Linear Dstributed
Parameter Systems

Ying Tan, Emmanuel Trélat, Yacine Chitour and Dragan BleSi

~ Abstract— In this paper, dynamic practical stability proper-  (A-D) and digital-to-analog (D-A) converters. Consequgnt
ties of infinite-dimensional sampled-data systems are disssed. the designed controller needs to be time-discretized ierord
A family of finite-dimensional discrete-time controllers ae to be implemented using the digital technology. Due to

first designed to uniformly exponentially stabilize numercal Lo
approximate models that are obtained from space and time prevalence of the computer controlled systems, it is often

discretization. Sufficient conditions are provided to enste that ~assumed that the system (1) is between a sampler (A-D
these controllers can be used to drive trajectories of infiie- converter) and a zero-order-hold (D-A converter). et 0

dimensional sampled-data systems to a neighborhood of the denote a sampling period. The control signal is assumed to

origin by properly tuning the sampling period, space and tine o piecewise constant
discretization parameters and choosing an appropriate fikring ’

for initial ditions.
process for initial conditions u(t) = u(kT) A w(k), ¥t € (6T, (k+ D)T), k€N,  (2)

'+ INTRODUCTION hereN is the set of int In th l, the followi
. . .. whereN is the set of integers. In the sequel, the followin
Linear distributed parameter systems (LDPS) arise in &ampled-data system” isgobtained g g

range of different processes such as optical telecommuni-

cations, fluid flows, thermal processes, biology, chemistry i(t) = Ax(t) + Bu(kT), z(0) =z € X, (3)

environmental sciences, mechanical systems, and so on. .

LDPS are modelled by linear partial differential equationdor all ¢ € [kT, (k +1)T), k € N. The control inputu(kT)

(PDEs) or abstract differential equations in an infiniteNeeds to be designed so that trajectories of the sampled-dat

dimensional space, as opposed to linear lumped parame®¥ftem (3) converge to the origin, or a neighborhood of the

systems (LLPS) that are modelled by linear ordinary differorgin. . S _

ential equations (ODES) in a finite-dimensional space. Sampled-data control of linear infinite-dimensional sys-
In this paper, we consider systems governed by partif¢m (1) has been discussed in [21], [26], and references

differential equations with appropriate initial and boang cited therein. In these references infinite-dimensional

conditions that can be represented by the following abistragontinuous-timefeedback controller was first designed to
differential equation, stabilize the system (1) without consideration of sampiing

time, followed by a time-discretization in order to impleme
_ digitally. This is so called an “indirect method”, which
i(t) = Az(t)+ Bu(t),z(0) =z € X,Vt > 0. (1) consists in designing a controller on the continuous model,

Here the state:(¢) belongs to a Banack and the control @Nd then in discretizing the closed-loop system.
input u(¢) belongs to a subset of Banach spdde The G|yen a controlled PDE (1),. it is however not always
operator A maps fromD(A) to X, D(A) is the domain poss_lblg to guess an expression .of a feedback controller
of A, which is a subset in{. The operatotB is a control stab_|l|zmg the system. .In this a.rtlcle., we rathgr propose
operator (in general, unbounded) bh a direct approa.ch, Whlch ponS|sts in Fie5|gn|ng such a
Nowadays most control systems are implemented usi ntroller from flnlte-d|men§|onal gppro_xmatlons thae ar
digital technology since it is very cheap, fast, relativessy o] talneq f_rom space and time dlsc_retlzatlon. The reason
to operate, flexible and reliable. This motivates the irigast [0 designing controllers for approximate models of (1)
tion of the so calledsampled-data systentsat consist of a /€S In several aspects. First of all, in general, analytica
continuous-time plant or process controlled by a discret§Plutions of the infinite-dimensional system (1) or (3) are
time controller as discussed in [5], [22], [23]. The pIant”Ot possible. In various engineering applications, it isyve

and the controller are interconnected via the analog-itadi natural to use numerical solutions. These numerical soisti
are generated by numerical approximate models that come
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and Zwart [9], Lasiecka and Triggiani [17] and referenceto references in [2], [3], [10], [12], [17] to results connérg
therein, it may be a very difficult task to find control lawsthe design of control laws having such uniform properties,
for infinite-dimensional system (1) or (3). At last, the f&yni based on a Riccati procedure.

of finite-dimensional discrete-time controllers are easpé Once a “good” control sequence, A; is available, our
implemented. Indeed, while infinite-dimensional conedl aim is to find (sharp) sufficient conditions that can ensure
are theoretically very important and often arise naturall$his control sequence can be used to drive trajectorieseof th
in theory, the controller has to be finite-dimensional to béfinite-dimensional sampled-data system (3) to the origin
implemented digitally. (or a small neighborhood of the origin).

It is by now well known that the scheme “control design/ It is important to note that the control input applied to
discretization” is not commutative (see e.g. [38]). Whereathe sampled-data system (3) is computed from approximate
it is quite easy to prove convergence results for an indirestodels (4). In other words, the controller(kT") in (3)
method, with standard assumptions and a standard Lax pie-generated from a family of finite-dimensional discrete-
cedure (see [18]), obtaining a convergence result for adiretime controllersu, a¢(jAt). Thusu(kT') is not in a typical
approach may be very challenging, due to a possible loss @fntinuous-time state-feedback form that is obtained from
uniformity. Actually, when implementing a direct approachstate measurement(t) of the system (1). Asuy, a:(jAR)
the standard assumptions which are usually ensuring tiean be treated as a kind of “memory” variable, we adopt the
convergence of a given scheme, namely, consistency pltggsminology introduced in [30], [31], “dynamic (practi¢al
uniform boundedness (or stability), are not enough in ganerstabilization” is used in this paper.
to ensure the convergence of the family of controls designedWe stress that we do not assume that there exists an
from the approximate models towards the control of thénfinite-dimensional controller that can practically exgo-
continuous model. As explained in [38], this phenomenon iéally stabilize the exact infinite-dimensional continseu
due to an interference of high frequencies with the mesh &fme system (1) and prove that finite-dimensional discrete-
the discretization; this interference may create spurifige  time controllers computed from numerical approximations
frequency oscillations which, as in a resonance phenomen@®nverge uniformly to the desired one as the discretization
infer the divergence of the direct procedure. parameters tend to zero as done in the literature, in péaticu

In this paper we assume that there exists a family dh the context of the Riccati theory, see, for example, 2], [
finite-dimensional discrete-time approximate models ia th[10], [20], [12], [17], [15] as reference therein. Our resul
vector spaces(;, andU,, after space and time discretization.(Theorem 1) provides sufficient conditions to ensure the
Here h is a parameter for the space approximation antpractical stability properties” of a general class of séealp
At is a parameter for time-discretization. Bothand At  data LDPS by using a dynamic feedback that can “uniformly
are sufficiently small. This family of approximate modelsgxponentially stabilize” numerical approximate modely (4
represented in terms m’;ll(jAt)l, take the following form, More precisely, we obtain sufficient conditions to ensure

that for any given positive paifA, v), there exist a filtering

h (7 + DAL = Aj aefy (JAL) + B asun,ae (jA),  (4)  process depending i\, ) such that for any filtered initial
with the initial conditionz¢ (0) € X, andj € N. Herex¢ € condition, trajectories of the infinite-dimensional saetl
X, up € Uy andA9 ., : X, — X, andBg 4, : Uy, — Xp,. data system (3) with the qontrol input sequence:T)

Furthermore, we assume that the family of controllerf1at iS generated fromu, (jAt) will converge to av-

un a; are carefully designed in the sense that they canéighborhood of origin by properly tuning the sampling

uniformly exponentially stabilize approximate models.(4)P€rodZ’, numerical discretization parametersqndAt) and
More specifically, the solutions of the approximate model§00Sing an appropriate filtering process. These sufficient

(4) satisfy conditions include
, 1 The trajectories from numerical approximations (4)
5 (G + DAL, < Mae 2% ||z5:(0)]l ., have to be “good” enough to well approximate the

trajectories of the exact system (1).

2 up,a¢ has to be uniformly bounded with respect to
space and time discretization parameters.

3 The proper filtering process determined @, v) is
needed to filter out high frequency components of the
initial data.

4 The filtering process has to be compatible with the
uniform stability properties of the approximate models.

To the best of our knowledge, it is the first time to address

the practical exponential stability propertiesf a general

class ofsampled-data LDP®y using a dynamic feedback
at is generated from numerical approximate models (4).

a ISur result can provide useful guideline to choose the sam-

pling period, appropriate numerical schemes including dis

n this paperz (-) represents trajectories generated from approximaté:r(_':‘tiz":ltior| parame_ters as_ We_" as the proper filtering_ pmc_e
models in the vector spack},. It is also worthwhile to highlight that though conditions in

for some positive constanf¥/,, and )\, that are independent
of the choiceh and At.

As mentioned in [25], it is not always possible to construct
proper control sequencey, a; to uniformly exponentially
stabilize a family of finite-dimensional approximations (4
due to the existence of spurious high frequency modes.
Uniform stability properties (controllability and/or ofrw-
ability) of the family of approximation control systems leav
been investigated in [36], [38], [25], [37], [40], [41] for
different discretization processes, on different systemns
this paper, for simplicity of the presentation, we just assu
the existence of such “good” controllers. How to design the
is outside the scope of this paper. We however refer read



the main result are sufficient, they are “sharp”. If one of thé. Numerical approximation
conditions is.not satisfied then the conclusion_of_the main a family of finite-dimensional discrete-time approxima-
resul_t may fail .(countergaxamples can be foun.d in litergturegions (4) are obtained by discretizing (1) in both time
This paper is organized as follows. Section 2 presenty,y space,. In this paper, time-discretization is after space
preliminaries and problem formulation. Sufficient commiis  qiseretization and the numerical approximations have to be
and main results of this paper are sta_lted an_d dlscusseduabodn enough to well-approximate the behavior of the
Section 3 followed by the conclusions in Section 4. system (1). First we introduce adapted assumptions on space
Il. PRELIMINARIES AND PROBLEM FORMULATION approximations, inspired by [17], [15]. Consider two faesl

In this paper.X andU/ are Banach spaces with their norms(X#)o<n<n, @d(Un)o_,<;, Of finite-dimensional spaces.
denoted ag-|y and ||, respectivelyX” is the dual space __ASsumption 1[Consistency of the space  semi-
of X. Let S(t) denote a strongly continuous semigrogp{ discretization scheme] For everyi & (0, ho), there
semigroup) onX, of generator(A, (D(A)) in the system exist mappings R, : D ((—A*)*O‘) - X,
(1). Leta > 0, X_,, denote the completion oX for the ) PR =
norm|z| _,, = [|(BIx — A)~“z||, where a real numbet € Phos Xn = D((fA ) ) ]_%h ' U__H Un and
p(A) is fixed, p(A) is the resolvent set aft and I is the P, : U, — U such that the f0||0W|ng conditions hold.
identity in X. The semigrou(¢) can be extended to @- 1 For everyh € (0, h,), the following holds
semigroup onX_,, denoted by the same symbol, and the

generator of this extended semigroup is an extensiod,of Bpby =Ix,, Babp=lIv,, @)

still denotedA_. With this notatlon,A|saI|_near operatorfrqm where I, and I, are identities inX, and U,

X to X_,. Since A generates &'y-semigroup, there exists respectively.

a real numbew € p(A) such thatd — wix is invertible. 2 For any¢ € D(A*) or anyy € U, we have

DenoteA = A—wIx and the fraction powers df-A)~ are

well-defined.A* is the adjoint ofA. Rx = PaBin}ollx -— 0, (8)
We denotef(X,Y) as the space of all linear bounded I PR " 0 9

operators fromX to Y where bothX andY are Banach H{ U—+<h ’l}wHU he0 ’ ©)

A
spaces and(X) = L(X, X). where Iy is the identity inU. o

The set of integers is denoted @§ the set of real  Remark 1:Equation (8) (or (9)) means that for eadhe
numbers is denoted &. A continuous functiony : R>0 — X (or 4 € U), ash — 0, P,Ry¢ (or P Rb) approaches
R>o is of classKo if 7(0) = 0 and strictly increasing  (or 4). However, the convergence is not uniform, i.e., for
and lim v(s) = oo. The setBx is defined asBn = different¢ (or ¢), the convergence speed will be different.
(z g}ﬁxnx <A}, For everyh € (0,h,), the vector spaces(, and Uy are

The control operatoB in (1) is not necessarily boundéd. endowed with the nornjj-|| ., and||-||;, defined as follows
However it is assumed th& € £L(U, X_,) andB in (1) is

A
admissible (see Definition 1). nllx, = Pudnllx,Von € Xn; (10)
Definition 1: An unbounded linear control operaté € AT
L(U,X_,) is called admissible for the semigrouyt) if Wally, = |[Putnlly  oon € U (11)

the weak solution of (1) with(0) = ¢ € X belongs toX Remark 2:With the endowed norms defined in (10) and
for everyt > 0, wheneveru € £?([0,00],U) and (1) holds (11), it is obvious that?, and P, are both linear bounded
true in X_,. The weak solution can be represented in theperators satisfying

following form _
t 1] 2,30 = ||PhHL(U;L,U =1 (12)
x(t) = S(t)zo +/ S(t —7)Bu(r)dr € X,Vt > 0. (5) Remark 3:By using the Banach-Steinhaus Theorem,
A G0 Condition 2 in Assumption 1 implies that bo#®, and Ry,
Define Lyu = [, S(t — s)Bu(s)ds, the admissible con- are linear bounded operators, whose bounds are unifokm in
troller operator B is equivalent to requiring thal; < Thatis, for allh € (0, h,), there existsBr > 0, independent
L(£%(0,t;U), X). The admissible control operator impliesof &, such that
that the system (1) is well-posed in the sense that the weak

solutions of (1) exist. IRullgx x,) < Brs ||Bn|| < Bg. (13)
With the sampled-data controller defined in (2), the fol- For everyh € (0,h,), we define the approximation
lowing weak solutions of the system (1) are obtained: ~ operatorA; : X, — X, of A* andB; : X;, — U, of B,
t by Ar = R, A* P, andB,’; = R,B*P,. We set4;, = (AZ)*
x(t) = S(t — kT)x(kT) + S(t — 7)Bdru(kT), (6) and B, = (Bj)* with respect to the pivot spack andU.
kT Other than good space-discretization, a good time-
forall t € [kT, (k+1)T) andk € N. discretization is also needed.

Assumption 2:[Time approximation] LetA; and By

2The control operatoiB is called bounded if it maps boundedly into the i
105 12 . come from Assumption 1. For any € (0, h,), under an
state spaceX . OtherwiseB is called “unbounded” (with respect to the state P ( ;o)

spaceX). Unbounded control operators appear naturally when rigalith ap_propriate Courant-Friedrichs-Lewy (CFL) conditiorerth
boundary or pointwise contrals. exists Ati(h) > 0 and pn(-) € Ko such that for all



At € (0, At%(h)) such that for anyp, € X, andv, € Up, At € (0,At;(h)), solutions of systems (17), denoted as

the following conditions hold T3 (jAL) = 2 (jAL; 2¢(0)), satisfy
{28 — Af ar onlly, < Aton(A0) lonllx,  (14)  [25(GAE23(0)]x, < Mae 8 23(0)]lx, . (18)
[{BrAt — Bji A} I/hHXh < Atpn(At) [vnlly, - (A5)  forall j € N. o

As indicated in Introduction, Assumption 3 is a basic as-

Moreover, for any > 0, there exists3a .. = Ba,a(t, h) > 0 sumption in the proposed controller design method.

such that For simplicity,z? (j; 1 (0)), trajectories of the closed-loop
H(Ah_At)jH < Baa, (16) system (17) can be represented$sa(jAt)z,(0) where
' L(Xn) ' Sh.at IS @ semigroup generated by (17). Using Assumption
for all jAt € [0,¢] and At € (0, At:(h)). o 3, it can be derived that

When A;, is obtained after space semi-discretization, if a

Q - —AajAt
finite difference method is used ., and By ,, can be HShAt(JAt)H[;(Xh) < Maem 7 (19)
Afy ar = AtAp + Ix,, Baar = AtBy, Remark 6: Assumption 3 is consistent with numerical
. _ ) discretization (Assumption 1 and Assumption 2). Since in
satisfying , Assumption 2 with  py(Al) = numerical schemes, the choicest! depends on the choice
maX{HAhHC(Xh) At, At}- of h, the stability property is only uniform in small, (see

Remark 4:Time discretization is done after the spacelefinition of uniform stability in small parameters in [34,
discretization parameteh is fixed. In general, the CFL Defintion 1]), though the choices dff/, and ., depend on
condition [8], [11] is needed to ensure that numerical agpro neither At nor h. o
imations after space and time discretization are “unifgrml Remark 7:In [25], [38], [40], [41], numerical viscosity
bounded” on compact intervals (or stable). By using the-welwas employed in the numerical schemes to ensure uniform
known Lax-Richtmyer Equivalence Theorem [18], the CFLstability of a family of finite-dimensional approximatians
condition ensures that solutions of numerical approxiometi Adding such a viscosity in numerical schemes can ensure
can well approximate solutions of the exact continuougtimthat Assumption 3 holds. o
infinite-dimensional system. The CFL condition requirestth It is worthwhile to highlight that the time-discretization
the discretization of time\¢ should be sufficiently smaller parameteAt has to be “different” from the sampling period
than the discretization of spade Therefore, in numerical 7. The CFL condition requires that the choice of proger
discretization schemesg, is chosen first and\t is chosen depends on the choice afin order to ensure that trajectories
accordingly. of approximate models can well approximate trajectories of

Remark 5: Assumption 1 is very general. It holds for the exact model. Usually)t is much smaller thah and can
almost all of the classic numerical space semi-discrétimat be very small. Since the sampling period cannot be arldifrari
approximation schemes such as finite-difference methodsnall due to the hardware limitation, the time-discretoat
finite-element methods, Galerkin methods, spectral methogarameter and the sampling period have to be diffefEns.

and so on. Assumption 2 is also very general. o typically much larger tham\¢. To simplify the presentation,
] we assume that the ratio betwe&hand At is an integer,
B. Controller design ie. L =N,NeN,N > 1.

Once a family of finite-dimensional discrete-time numeri- After mapping fromU;, to U by using the operator
cal approximation systems (4) are obtained, the contraltinp P, (see, Assumption 1) and with the consideration of the
un, At is designed to stabilize the approximation system (4gampling periodl’, we have

A family of “feedback” controllers are used in this paper. _ _ ar- 4
That is up at(jAt) = Kp, arxf (jAt). The closed-loop of "7 = ur ek o) = PoKnacwi (N AL 23(0)), - (20)

the approximation system (4) becomes wherez¢ (jAt; 24 (0)) € X, is the solutions obtained from

0 (i 1AL = A% « 2% (iAL) + BY AL (17) and they satisfy Assumption 3. With the pre-designed
zi, (7 +1)At) A AL TR Y )a+ hmu’“it(? ) control sequences from (20), the sampled-data system (3)
= (A% ac T Bj acKna0)3 (1A, (17)  thys becomes

wherezf (0) € Xp,,Vj € N. S(1) = Ax(t B )
» Vs = + BP,K k;xo). 21
The féedback gain operatdf;, o; maps fromX; to U, &) =(t) B, acur ok 2o) @D

and is parameterized by discretization paraméterat). As  The controllerur , a:(k;zo) in (20) is generated from a
discussed in Introduction, it is assumed that we have “goodamily of finite-dimensional discrete-time approximatedno
controllers that can achieve some nice “uniform propettiesls, it is easy to be implemented in practice. On the other
of approximate models. hand, it is well-known in literature that when wave-like sys

Assumption 3:The family of finite-dimensional discrete- tems are considered, numerical approximations may generat
time linear approximate models (17) are exponentially stespurious solutions that do not exist in exact model, leading
ble, uniformly in small h. That is, let M, and A\, be to divergent trajectories as discussed in [38], [40], [41]
positive constants, there exist§ > 0 such that for any and reference therein. Therefore, Assumptions 1-3 are not
h € (0,h7), there existsAt;(h) > 0 such that for any enough to ensure that trajectories of the infinite-dimeredio



sampled-data system (21) will converge. Other sufficierdperators satisfying|Pell;x x) = 1 and |Re|l;(x gy <

conditions are needed. Bp and RgPr = Ip where I is the identity onFE.
Control objective. Assume that Assumptions 1-3 hold.For any 2 € X, it is said filtered if F(e)x = =z, i.e,

This paper aims at providing sufficient conditions to ensure € Ker(F(e) — Ix).

that the trajectories of (21) will converge to a neighborthoo Ag is the restriction ofd on E while A is the restriction

of the origin. of A on F. Condition (¢) in Assumption 4 implies that
Remark 8:The sampled-data system (21) can be rethe infinitesimal generator A can be decomposeddas-
written as AOE 0 . In particular, the system (1) can be re-written
. = _ F
i(t) = Ax(t) + Bup(kT), (22)  as follows (see [33, Page 711] for more details)
with B = Bph and iy, 2 Kh7AtuT7h7At(k;mo). Since the i = AExE + Bpu(t) (23)
controller @y, (kT) is in a finite-dimensional spac&}, the i = Apzt + Bru(t), (24)

control objective becomes to find sufficient conditions te en here Br — P B andBe — (I P B
sure that a finite-dimensional controller can drive an itdini WV elre Eh_ d.ERE I.a.n lf” ~ (')til_ h%,RE) - Intu-
dimensional sampled-data system (3) to a neighborhood H€ly: when diagonalizing, It possible, the,-semigroup
the origin exponentially. o (t), FE contains a finite number of unstable modes dnd

If there are infinitely many unstable modes, it is no ontains an infinite number of stable (non-positive) modes.
possible to design a finite-dimensional controller that ca&Ote that, such a decomposition method is widely used in

drive trajectories of general infinite-dimensional syst€2®)
to the origin (or a neighborhood of the origin) as pointe
out in [28]. Therefore, other sufficient conditions are iade
needed.

Our main result provides sufficient conditions to ensur
that for any initial conditionz, that is well-behaved, the semilinear wave equations
control input u k;xzo) can drive trajectories of the . . ' .
sampled—g)ata g;éfetrg”n,(zoi) to some neJighborhood of t eAS discussed in [33]Ax can be generated by spanning

origin. The size of the neighborhood can be chosen arbitrari irst M unstable eigenvglue_s pf. the operatband A{” can
small by tuning the parameter’, h, At) properly and be generated by spanning infinitely many stable eigenvalues

; ; - : f A. If Ag is known exactly, by constructing appropriate
choosing the appropriate filtering process with respediéo t © E o )
initial cognditionpp P gp P feedback control laws to stabilizZe unstable modes without

moving the others, it is possible to obtain the practical sta
I11. SUFFICIENT CONDITIONS AND MAIN RESULT bility properties of the system (21) when the initial comnatit

This section discusses sufficient conditions that can ensdf filtéred. HoweverE: may not be known griori in most
that the controller (20) can gradually move trajectories ofPPlications. In most cases, engineering practitioners ca
the sampled-data system (21) to some neighborhood of tHH€ss” whatE should be with some uncertainty measure
origin. It is followed by the statement of the main resultNCIS€ on estimation) up to certain precision levelas
(Theorem 1 and Corollary 1). Due to space limitation, thédicated in Condition (b) in Assumption 4.
proof is omitted. Moreover, the necessity of conditions in ASSUMPtion 4 also requires the existence-iftering for

the controller design of PDEs. For example, it was used in
(f pole shifting process in [33] and in structural assignment
or parabolic equations using Dirichlet boundary feedback
in [16] and sampled-data control of infinite-dimensional
gystems in [21]. It was also used in [6] for stabilization
of semilinear heat equations and in [7] for stabilization of

main result is also discussed. any givene (the quality of the filter). That is, for any > 0
arbitrary, it is possible to construct a well-designed ffike
A. The existence offiltering that Condition (b) holds. As will be shown in Theorem 1,

Assumption 4:Let e > 0 be arbitrary. There exist a linear NOW to choose: for the filter depends on the set in which
continuous operataF = F(e) satisfyingF : X — X and a the |n|}|ql condlt_lon stays an_d the offset the neighborhobd
subspace? = E(e) C X with dim(E) < oo, such that the the origin to which the solutions of the system (6) converge.
following conditions hold The smaller thev (the size of the neighborhood) and the

(a) X = EQF for some closed® = F(e), where @ larger the A (the set containing the initial condition), the
denotes the direct sum. ’ smaller thee is needed, requiring a better filtering process

b) Vo € X, Fr = 22 + F with HxFH < e (see Theorem 1). This is a strong filtering requirement.

Wherexé c Eandaf e F X = X In practice, it is not always possible to obtain a filtering

process that can achieve the given precision requirement
(c) ;c))r ?f?gtmise i ?g:jicee sF Z)’ V;fa?;\;leAm. EEE (orEAzned e. A weaker version of Assumption 4 can be used when
A o r ,F Aw and Ap energtéc —s:mi [OUDS practitioners know roughly on finite-dimensional spake
SFt. E)S 2 E i Flg 0 9rOUPS  and can guess the size ofwith respect to theZ. Then a
d SE(t) an Ef( ) rtlasgec “ée ?jlll' tor i.e. th weaker result for the system (21) will be obtained, in which
(d) F'(t> g a un(l) ormg/thm{[nse ' inear ogeéa or. 1.€., ereyl the size of the neighborhood of the origin (or offset) will
eXiStsbp > SAUC allSr®)lz(x) < Br- be determined by. The better is the filter (the smalle},
We denote||z”||, = ||Pzz®|,, where Py is a linear the smallerv will be obtained in practical stabilization (see
operator mapping fron& to X . Another linear operatoRg ~ Corollary 1). Designing a proper filtering process is ndtura
is a map fromX to FE. Both Py and Rg are bounded linear in the control of the PDEs and the performance of PDEs



depends on the choice of filtering processes. Due to spafmdlowing compatibility requirement (or uniform Hurwitan

limitation, how to implement thig-filtering is outside of the property) is also needed.

scope of this paper. Assumption 7:*Uniform Hurwitzian property” (UHP) is

: L satisfied for system (21). That is, |&fr and g be positive

B. High frequency filtering property constants withM g > 1. Let the feedback control operators
If Ap is known, the system (1) can be practically stabilized<;, A, be from (17). There existg}, > 0 andh% > 0 such

by a finite-dimensional controller o&r. However, Ag is that for all T € (0,7%), for any h € (0,h%), there exists

not completely known. The approximation &f is known At (h) such that for allAt € (0, Atk (h)), for all zy € E,

according to Assumption 4 with the approximation error ugolutions of the following system, denoted &$; z),

to e. SinceB is an unbounded control operator, the existence

of € can perturb stable modes of the sampled-data system (BY) = RePnAnRyPez(t) + RePyBnKnatRnPez(kT), (26)

throughB_and may Iead tc_) divergent trajectories. ThereforgNith 2(0) = 2 € E satisfy

the following assumption is also needed.
Assumption 5:*High  frequency filtering property” 12(t; 20)|| 5 = | Prz(t; 20)]|

(HFFP) with respect toe-filtering is satisfied for the _ E —Apt

system (1). That is, let be from Assumption 4, for any = |Peszatz], < Mee™* Jlzollp, 27)

y(-) € £2([0,4),U) satisfying|ly(t)]|, < e, ¥t > 0 for  whereSE, represents a family of semigroups generated by

some positive\,, the following inequality holds the system (26).

t Remark 11:When there is no sampling, (26) becomes a
/ Sr(t—s)(Ix — PeREg)By(s)ds|| <k, (25) continuous-time system on a finite-dimensional spacin
0 X the following form
for all t > 0. .
“HFFP” assumption is new and it plays a crucial role in (t) = Rp Py (An + BrKn,ae) BuPpz(t). (28)

our general problem setting. It reflects what has been done Pyyqer such a situation Assumption 7 is ensured whgr-
E. Zuazua and his coauthors in their work in which fiIteringBhKh A IS Hurwitz for1 any selected and At as well as
out high frequencies components are needed (see discussi®fiform boundedness oK), A: (See Assumption 6). When

in [38], [39], [40], [41]). It is also consistent with what e filters with E, the filtered feedback matrix:
engineers are always doing in practice, when applying ilter

to their process to regularize their data. RgPy(Ap + BrKn at)Ri P,

Remark 9: The HFFP assumption is not restrictive in the ) . L
control of PDEs. Whem is analytic andB is admissible, should be also uniformly Hurwitz. This filtered f_eedback
for example, when we consider parabolic PDEs, ‘HFFpMatrix can be treated as the matu, + By, Ky, a¢ viewed

is always satisfied as possible high frequency componer‘\‘fg"ough E". _ ) ©
are automatically damped out (see more discussion in [41]). Rémark 12:As RpPy(An + BpKpat)RrPp is uni-
When A is not analytic, for example when hyperbolic PDE ormly Hurwitz in small h, thg_re exists a sufficiently small
are considered, “uniform gap assumption” used in [25] = > 0 such that the stability properties of (26) can be

combined with a moment method as in [33], [7] can ensurgPtained for allT" < (0, T%). This is a general emulation
that “HEEP” condition holds. o result on the sampled-data control of finite-dimensionat sy

tem with a sampling period’. Note that since the stability
C. Uniform boundedness of the feedback control operatgroperties ofRg Py, (A, + BnKp at) Ry Pe are uniform in

K at h, the choice ofl™* is independent of the choide o
The following assumption is always needed when the Remark 13:Assumpti0n 7 is satisfied when the discretiza-

direct method is employed. tion scheme is built o and such numerical schemes are
Assumption 6:There existsh, > 0 such that for any» € ~ called spectral, or modal, that i%; C I'm(Ry), for all h

(0, h,), there existsAti(h) > 0 such that for allAt ¢ Small enough as discussions in [6], [7]. °

(0, At%(h)), there existsBx > 0 such that the family of AIthou_gh the controller (21) is not in a feedback form, As-
feedback control operators Satiqu(h,AtHL(X} Uy < By. ~sumption 7 ensures that all unstable ques can be exponen-
Remark 10:Assumptions 3 and 6 are satisfied with thelially stabilized by using controllers designed for nuroeti
Riccati procedure that appears in the LQR optimal contr@Pproximations.
problems (See discussion and results in [3], [2], [10], [12] .
[17], [15], [25]). o E. Main result
. . The main result of this paper is stated as follows.
D. Uniform Hurwitzian property Theorem 1:Let (A,v) be positive constants. Assume
Assumptions 1 and 2 ensure the existence of “goodAssumptions 1- 7 hold true witlke in Assumptions 4-5
numerical algorithms. Assumptions 3 and 6 guarantee tlietermined byA,v. Then there exis™ > 0, h* > 0
existence of good finite-dimensional controllers o¢. As- such that for allT € (0,7*), for any h € (0,h*),
sumptions 4 and 5 ensure that “good” filtering process ithere existsAt*(h) > 0 and positive constantd/ and
available. However, it is still not enough to ensure thaf, such that for allAt € (0,At*(h)), for every zy €

trajectories of the sampled-data system (21) do convetye. TBa N Ker(F(e) — Ix), the trajectories of (21), denoted



asxz(t) = x(t; xo,urna(k; o)), with the so constructed Remark 16:If suitable numerical viscosity terms are
parametergT, h, At) exist and satisfy added in the numerical schemes in our main result, As-
" sumptions 3 and 6, 7 and 5 hold (see discussion in [25] for
[ (t; 2o, ur n,at(k; 20))| x < Me™™ |lzolly v (29)  more details). Therefore, by choosing appropriate nuraeric
for all t € [kT, (k + 1)T), k € N, o sche_mgs, the assumptions in Theorem 1 (Corollary 1) are not
estrictive. o
heorem 1 provides a useful guideline for engineers to
a\%]oose appropriate numerical schemesiid At), sampling

a filter with known %", then the size of the neighborhood period T" and filtering processes. There are four design

depends on the quality of the filter. Thus, a weaker resuﬂarameters@, h, At, ) that are determined by th_e perfor-
can be obtained in the following corollary. mance requirementA, v). Therefore, how to design these

Corollary 1: Let (A, ¢) be positive constants Assumeparameters is of great importance to ensure that the prdpose
Assumptions .1- 7 hold7true Then there esi&t> 0 .h* -0 method can work for a very general sampled-data LDPS.

such that for allT" € (0,7*), for any h € (0,h*), there F. Discussion on necessity of assumptions

exists At*(h) > 0 and positive constaTtM and A and Although the proposed method (designing controllers for
7 € Koo, such that for allAt € (O’A_t (), for every approximate models) is widely used in engineering appli-
o € BaNKer(F(e) - Ix), the trajectories of (21), denoted . 4,¢ - assumptions in Theorem 1 may be very hard to
asz(t) = IE(t;ICoaUT,h,A_t(k?f”O))’ ‘_N'th the so constructed check in practice. However, our result shed the light on
parametersT, h, At) exist and satisfy how to properly design sampled-data controllers for indinit
ot w0, wr . an (ks 20)) | < Me—Mt o5 +7(e), (30) dimensional systems by usjng numerical approximate_ r_nod-
els. Furthermore, Assumptions 4-7 are not only sufficient,
forall ¢t € [kT,(k+1)T),k € N. o but also necessary. If one of them fails, counterexamples
The result is “practical exponential stability” implying can be found in literature.
that asymptotic approximate controllability whén tends Assumption 4 The initial conditionz, has to be filtered,
to co. In general, obtaining “practical stability” is much i.e.,zo N Ker(F(e) — Ix) and be bounded bga. The role
easier than “stability” (see discussion in [38]). It is notof e-filtering is to filter out the high frequency components
possible to obtain exponentially stability properties wiige in space for the given initial condition;; of the exact
direct method is applied to general sampled-data infinitesystem (1). It is important to note that the assumption of
dimensional systems. Due the existence of the samplirgfiltering (Assumption 4) and filtering out high frequency
mechanism, numerical approximation errors as well as esemponents of initial conditions are necessary conditions
timation errore on E, practical stability properties are bestensure that Theorem 1 holds. Counterexamples can be found
result that can be obtained. when wave-like equations are considered. It is well-known
The result in Theorem 1 is much more general than resultat for hyperbolic systems, high frequency components of
obtained in [21], in which only sampling is considered andhnitial conditions may not be damped and will interfere with
controller is designed for continuous time system. Moreovethe numerical discretization, generating spurious asiih
the system considered in this paper is much more general ghd leading to divergent trajectories. Such discussion can
is not analytic andB is unbounded) than that in [21]. With be found in [38] (space semi-discretization schemes), in
the help of the analysis tools in this papesfitering and [40] (time semi-discretization schemes) and in [41] (full
“HFFP"), it is possible to extend the result in [21] to a morediscretization schemes). o
general setting. Assumption 5Assumption 5 cannot be removed in general,
Remark 14:In [15], Labbé and Trélat discussed the necas A is not restricted to be analytic and is an unbounded
essary and sufficient conditions under which uniform coneperator. For example, when the hyperbolic PDEs are con-
trollability properties of a family space semi-discretize sidered, “resonance” phenomena may occur if “HFFP” con-
approximations implies the controllability propertiestbfe dition is not satisfied. Unstable trajectories thus could be
exact model (1) for parabolic systems. The main resufibtained (see discussion in [38] and references therein).
in their paper [15, Theorem 3.1] implies presented resufissumption 6.If Assumption 6 is not satisfied, whenand
(Theorem 1) in the parabolic case, though the proof of thi& tend to zero,| Ky a¢ - x,, May tend to infinity. The
implication would require several developments. o control input ur . ac(k; zo) become divergent. Therefore
Remark 15:When the infinitesimal generatot in (1) is  uniform boundedness dk, A+ is necessary in main result.
analytic, i.e. the system (1) is parabolic, HFFP condition iAssumption 7 Assumption 7 is necessary and plays a crucial
automatically satisfied. Assumption 3 and Assumption 6 am®le to ensure that Theorem 1 holds. Intuitively, if the name
satisfied with the Riccati procedure (see discussion ifi}], ical schemes are not compatible, that is, some unstablesnode
[10], [12], [17], [15] and references therein). Under sucttannot be detected and stabilized by numerical approxima-
a situation, the filtering process is not required since higtions, it is not possible to obtain convergent trajectooés
frequency components are naturally damped. Sharp essmatke sampled-data system (3). It is indicated in [36] that
of convergence ofS;,(t) to S(¢t) therefore exist (see[17, when the discretization scheme is far from spectral (that is
Chapter 4]), which can greatly simplify the proof of ourAssumption 7 does not hold), the trajectories of the sampled
main result. o data system (3) may diverge.

Normally one cannot get the suitable filtering process t
achieve the required precision) (that is determined by
andA (see Theorem 1). In most of situations, engineers h



IV. CONCLUSIONS
In this paper, practical exponential stability propertids

[22]

the sampled-data infinite-dimensional systems using con-
trollers generated from numerical approximations are dig¢3!
cussed. The controllers are first designed uniformly expene

tially stabilize a family of finite-dimensional discretierie

approximations. Then they are used in sampled-data infinite4]

dimensional systems. Under some tight sufficient condition

given any positive paifA,v), by tuning the parameters [25]

(T, h, At), for any initial conditionzy € Ba that is properly
filtered, the obtained controllers will gradually move &&j

tories of the sampled-data systemutaeighborhood of the
origin.
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