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Abstract

From moonlight to bright sun shine, real world kscenes contain a very wide
range of luminance; they are said to be High DywcaRange (HDR). Our visual
system is well adapted to explore and analyze audriable visual content. It is now
possible to acquire such HDR contents with digitameras; however it is not
possible to render them all on standard displayschvhave only Low Dynamic
Range (LDR) capabilities. This rendering usuallperates bad exposure or loss of
information. It is necessary to develop locally gtilze Tone Mapping Operators
(TMO) to compress a HDR content to a LDR one anebkas much information as
possible. The human retina is known to perform sauthsk to overcome the limited
range of values which can be coded by neurons. pilipose of this paper is to
present a TMO inspired from the retina propertiHise presented biological model
allows reliable dynamic range compression with rataolor constancy properties.
Moreover, its non-separable spatio-temporal filethances HDR video content
processing with an added temporal constancy.

Key works. High Dynamic Range compression, tone mappingnaetnodel, color
constancy, video sequence tone mapping.

1 Introduction

In this paper, we propose a method to compress Bigtamic Range images in order
to make visual data perceptible on display medigh wower dynamic range
capabilities. HDR images are our real life visualrld; our eyes perceive everyday a
wide variety of visual scenes with really differelatminance values. Our visual
system is able to cope with such a wide varietynpfit signals and extract salient
information. However, we can notice that, as disedsin [1], neurons cannot code a
wide range of input values. Thus, at the retinall@/compression process occurs in
order to preserve all relevant information in tleeliag process, including color.

A similar idea has been recently introduced witlgitdi High Dynamic Range
imaging. It is now possible to create HDR imagesrewith standard digital cameras
[2] or light simulation [3], nevertheless the deymhent of HDR displays, which
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would be able to render all the acquired dataiilsustder development [4]. Current
displays are Low Dynamic Range and direct HDR imaigaalization would hide a
large part of the information. An alternative i tdevelopment of Tone Mapping
Operators [5, 6] which allow HDR images to be rardeon standard LDR displays
and preserve most of the information to be seeweftleeless, as discussed in [7] a
HDR image cannot be perceived similarly to its L&sion. Human factors related
to this problem are not already known but somdaats created by the tone mapping
conversion can already be measured [8]. They datetkto halo effects and color
distortions and lead to naturalness corruption. exineless, studies on the quality
perception [5, 6, 9] are the only current assessswntions.

The current challenge is to design a TMO able taitliartifacts and preserve the
general ambiance of the original HDR visual sce3®veral operators have already
been proposed and compared [6, 9] and lead to a vadety of approaches. From
computer vision methods to the one inspired byitkeal system, each TMO presents
a different approach and requires specific paramestet for each processed image. In
addition, a new challenge is related to video segagrocessing and has not yet been
explored. The aim is to generate successive tongpethimages which allow a
natural perception sensation without temporal ltees created by frame-by-frame
image optimization.

In this paper, we propose a new TMO based on aar@tiodel. The approach models
retina local adaptation properties, as describedl@ylan et al. work [10] and is
completed by specific spatio-temporal filters oé tretina. The added contribution
involves retina processes which enable spatio-teahpooise removal, temporal
stability introduction and spectral whitening. Thaper is presented as follows:
section 2 describes the proposed retina model dsdpioperties for HDR
compression. Section 3 illustrates the effect afhsa filter in the case of static and
dynamic content processing.

2 Retina biological model

The human retina architecture is based on cellal@rs which process the visual
information from the photoreceptors visual datanyemoint to the ganglion cells
output. The input signals are locally processed biestep so that details, motion and
color information are enhanced and conditionedhigh level analysis at the visual
cortex level. Here, we focus on the known partsghef human retina, which are
suitable for a Tone Mapping Operator design. Theiaito show that tone mapping is
already performed in low level vision so that higlevel visual tasks are facilitated.
Furthermore, modeling these early vision propetass to a fast and efficient TMO.
We choose to work with the model described in {#fhich takes into account the
different low level processes occurring in the matiWe particularly focus on the
foveal vision area and its output called Parvodailahannel, which brings the details
and color information to the central nervous syst&hre aspects taken into account
are detailed in the following:
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« Local luminance and local contrast adaptation atpghotoreceptor and ganglion
cells levels. This biological property is directlipked to our dynamic range
compression topic.

 The spatio-temporal filtering occurring at the GuBexiform Layer level (OPL).
This filtering allows input image frequency speatrtio be whiten and enhances
image details. Moreover, its temporal propertiebval noise reduction and
temporal stability.

» Color sampling: the input image is spatially sardply sensors with different
color sensitivities. Our TMO allows gray scale ador images to be processed
in the same way and introduces color constancyepti@s.

The architecture of the proposed model followshiwdogical model architecture and
is depicted on figure 1.

Color Color
multiplexing demultiplexing
Color HD Mx Photoreceptors Ganglion cells dMx Color tone mapped

image local adaptation local image
adaptation

C——

MPL filter \
Local

Raw gray level Sibtlation Gray level tone
HDR image modulation mapped image
Fig. 1: simplified model of the proposed retina modelld€Eprocessing is an additional
processing, which requires preliminary input imagdtiplexing and output picture
demultiplexing.

The input image can be either a raw gray image owéliplexed color one. Then,
color processing appears as an additional proagsainich consists of preliminarily
multiplexed color information followed by a filteny stage, then a demultiplexing
stage. The key-point of the model is actually theo tlocal adaptation steps,
corresponding respectively to photoreceptors angylgan cells, and the OPL filter
placed between them. As discussed in [1], the phoéptor's local adaptation is
modulated by the OPL filter.

2.1 L ocal adaptation

Photoreceptors are able to adjust their sensitivityy respect to the luminance of
their spatio-temporal neighborhood. This is moddbigdthe Michaelis-Menten [1]
relation, which is normalized for a luminance rargfe[0, Vmax] (Eq. 1). Vmax
represents the maximum pixel value in the image-iB5the case of standard 8 bits
images. It may vary greatly in case of High DynaRange images.

cp=, KPR (p)

R(p)+Ry(p) (1)

Ry(p) =V, L(p)+ Vo (1-7;) )
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In this relation, the respong§¥p) of photoreceptop depends on the current excitation
R(p) and on a compression parameRer(p) which is linearly linked to the local
luminanceL(p) (cf. Eq.2) of the neighborhood of the photorecegtoThis local
luminanceL(p) is computed by applying a spatial low pass filtethe input image.
This low pass filtering is actually achieved by therizontal cells network as
presented later on. Moreover, in order to increffesability and make the system
more accurate, we add R (p) the contribution of a static compression parameter
of value range [0;1]. Compression effect is reinémr whenV, tends tol or is
attenuated when reachin@ Photoreceptord/, value is set to 0.7 as a generic
experimental value.

Figure 2 shows the evolution of sensitivity wittspect toRo (p) and illustrates the
effect of such a compression on a back-lit pict@ensitivity is reinforced for low
values ofRo (p) and is kept linear for high values. As a restits tmodel enhances
contrast visibility in dark areas while maintainiitgn bright areas.

HDR input image

“ET s O

50 100 150 200 250
Input signal
Fig. 2. photoreceptors local luminance adaptation. Laditput response with regard to the
local RO (p) value. Right: effect on a HDR image iffravww.openexr.orly

2.2 OPL: Spatio-temporal filtering and contour enhancement

The cellular interactions of the OPL layer can bedeied with a non-separable
spatio-temporal filter [1] whose transfer functifor 1D signal is defined in eq. (3)
where fs and ft denote respectively spatial and temporal frequettisy transfer
function is drawn on figure 3.a. This filter can tmnsidered as a difference between
two low-pass spatio-temporal filters which moded {photoreceptor netwonsh and
the horizontal cell network of the retina. As discussed in [10, 1], the outpiuthe
horizontal cells network ) is very low spatial frequency limited and can be
interpreted as the local luminanicgp) required by the photoreceptors local adaptation
step (eq. 2). Moreovekn filter's temporal low pass effect allows local lumance
computation to be temporally smoothed. Finallyaageneral rule, globatop, filter
has a spatio-temporal high-pass effect in low feagies which results in a spectral
whitening of the input. Its high-frequency low-paffect enables the removal of the
structural noise.

FOPL(fs’ ft) = th(f51 ft)l:(l_ Fh(fs7 ft))
1 3)
1+ B +2a, (1- cos(2f,))+ j 2, ,

with F(f, )=
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with subscripi=ph ori=h.

a.
OPL filter transfer function

b.
image filtering sample

OPL Input Retina OPL filter output

C -
Spectral ]
whitening effect

Input spectrum Retina OPL spectrum output
Fig. 3: OPL filter transfer function and illustration @$ effect on an image and its spectrum
(input image is the output of the photoreceptoevimus stage).

Ppn is the gain of filterFph. Settingfph to 0 cancels luminance information and a
higher value allows luminance to be partially pss=s;fph is typically set to 0.7
which allows a good general effect. Parametgrandz; stand respectively for the
space and time constants of the filters. Tempoodde is minimized whemph is
increased. Besides, the higherthe slower temporal adaptatiamn spatial filtering
constant should be remained low (close to 0) ineor preserve high spatial
frequenciesan allows local luminance to be extracted; its generlue is set to a
space constant of 7 pixels.

One of the most relevant effects is spectral wiitggnwhich compensates for the 1/f
spectrum of natural images as shown in figure 3.bdcappens on a limited portion
of the spatial frequency spectrum.

2.3 Retina ganglion cells final dynamic compression step

The ganglion cells of the Parvocellular channekree the information coming from
the OPL. They act as local contrast enhancers amdnadeled by the Michaelis-
Menten law similar to the photoreceptors as disedis® [11] but with different
parameters. Indeed, the local luminance valuelase® to a smaller area around each
cell since receptor fields are smaller. Also, aeaeral rule, the compression effect is
more powerful at the ganglion cells level. The pagterV, is then higher than the
one of photoreceptors and is typically set to Gigure 4 shows results of this local



6 AlexandreBenoitl*, David Alleysson2, Jeanny HeraultBatrick Le Callet4

adaptation on the OPL's output stage. This latgrifilg allows the final luminance
compression of originally very dark areas.
B (]

Ganglion cells input Ganglion cells output
Fig.: Effect of the ganglion cells local adaptationp(ih image is the output of the OPL
previous stage)

2.4 Color processing

To deal with color, it is possible to take advaetagf the photoreceptors color
sampling properties. As described in [10], sinceh@ fovea photoreceptors (mainly
cones) sample the visual scene with three diffesensitivities (Long, Medium and
Short wavelengths: with L, M and S cones), the spetof the color sampled image
presents special properties. Luminance spectrucensered on the low frequencies
while color information spectrum is located in héghfrequencies. Modeling such
properties consists in multiplexing the color imagefore processing it with the
previously presented retina model and demultipigxtnafterwards, as presented in
figure 1. As a consequence, designing a TMO witthsan approach while preserving
high spatial frequencies allows luminance map tddmed and color information to
be kept.

Demultiplexed
tone mapped image

Fig. 5: color multiplexing and demultiplexing on the TMBoundaries”.
Moreover, from a computational cost point of vigsocessing color only requires an
additional color multiplexing/demultiplexing stagie the gray level processing core.
Towards this end, we propose to use the color d@gitaxing algorithm presented in
[12] which supports different color sampling methd@ayer, Diagonal, Random).
Following the TMO scheme depicted on figure 1, fegus shows the color

Input HOR color image Multiplexed HDR image Tone mapped image
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management steps of the algorithm. Using Bayerrcgdonpling, color spectrum is
translated in high spatial frequencies. Thus, siD&& filter with a low value ofph
keeps those frequencies, color information remanthanged.

To sum up, the human retina naturally achievesrdolee mapping and its simplified
model allows digital HDR images to be processethénsame way. Notice that this
current application is suitable to deal with higmdmic range in terms of luminance;
issues related to gamut limitation are not congider

3 Design of aretinabased TMO

As shown in the previous section, the retina mdnigudes many properties required
for low level image tone mapping. Indeed, its pniiary goal is to condition visual
signals in order to make them compliant with thébsaguent image analysis
“operators”. In addition to its image processingpaerties, this model has the ability
to present a low computational cost: the gray Ig@rekessing part requires only 16
operations per pixel. Color management dependshenchosen demultiplexing
method -here it requires less than 200 linear diperaer pixels.

Consequently, we follow the biological model anct wdl the tools described on
figure 1. Actually, the proposed TMO is rather danto the one proposed by Meylan
& al. [10] but it adds the contribution of the ORilter which achieves a more
complete retina model, taking into account tempasgects. The main advantage is
that the OPL intermediate filter allows spectralitehing and temporal information
management. For simplification, we first descrilie properties for static visual
scenes and then deal with video sequences progessin

3.1 Static content

Even if human factors related to HDR imaging ar¢ well known, some critical

points have been reported in literature. A briegreiew of the main issues and the

response introduced by our method are presentéteifollowing. Refer to figure 6

for image samples.

» The first point is related to artifacts generatinrthe tone mapping process: since
luminance is compressed, algorithms have a tendeémcgenerate halos and
contours around the boundaries of high luminanaalignt of visual scenes [5,
13]; e.g, sun and lights boundaries. Our algorithmits such artifacts since low
spatial frequency energy is lowered and logarithmiompression of
photoreceptors is very local (typically 7-pixel wjd

e Color constancy is the second challenge. It is noftmpaired when color
components are manipulated independently [2]. Ruentltiplexing stage, our
method naturally remains color information in higgatial frequencies and do not
change them. Furthermore, objects color informaisopreserved, independently
of the illuminant color [1].

» Natural rendering is the general issue for imagee tonapping. Even though
details extraction in bright and dark areas ofsaal scene is the final goal, it can
change the image initial balance and reduce itsashyo [2, 14, 6]. Global
ambiance luminance should be preserved in orderaiatain the initial « goal of
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the image » and the areas at which the photographets the observers to look

at. Concerning that specific issue, our algorithioves luminance ambiance to be

less compressed by lowering the value of phototecely, parameter. It is a

matter of trade-off: either luminance ambiance sahor all details extraction.

In addition, it is generally difficult to identifg unique TMO parameters setting which
would allow many different images to be tone mapaed look “natural”. Each TMO
algorithm generally has its own parameters whichulh be optimized for each
image, resulting in a supervised tone mapping E®icelowever, some algorithms
already present good parameters stability and gem@atural-looking images with a
large set of pictures, e.g. the Meylanal. [10], Mantiuk’s [15] algorithm and our
contribution.

Figure 6 gives examples of tone mapping resultk wie proposed algorithm and
other results coming from [10], another human Jisyatem based TMO [15], which
includes visual cortex models but less retina prilge and Reinhard’s TMO [2],
which is more focused on local adaptation retir@pprties. Note that generic default
values were used as unique parameter set for eattioth On these examples, color
constancy is achieved for both [10] and our methtte they manage color in a
similar way. Meylan’s method compresses luminace karger extent, which allows
details to be more visible. In parallel, the prambsmethod keeps better global
luminance ambiance and provide minimal halo effetsa compromise, dark details
may remain hidden because the variandeodp) is less due to an additional temporal
filtering. While comparing all methods, we can $@sv different results can be from
one algorithm to the other. Actually, apart froomstancy problems, naturalness and
artifacts limitation versus details extraction gadff is the most difficult to reach.
Also, our method, [10] and [15] appear in these @amas optimal TMOs with a
constant parameters set. However, only future Viguality tests will allow rigorous

comparisons to be made.
Input HOR image Proposed TMO [Meylan2007] [Mantiuk2006] [Reinhard2005]

Fig. 6 : tone mapping results comparison between ouroagprand other existing methods
(refer to [16] for higher resolution results). Gugorithm does not generate halos (refer to the
two last examples), nevertheless, dark areas’ldetain be hidden (refer to the first two
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examples). The other compared algorithms can bestteact details in dark areas but halos or
color distortion can appear. Also, locked paranseded accurate tone mapping are not
supported by all the algorithms presented in tame.

3.2 Video content
As mentioned in [17], TMO encounter critical praike when visual content
changes with time. Indeed, from frame-to-frameicaltlight changes can appear and
since current TMO are independently optimized facte frame, the reconstructed
video sequence can be degraded by successive eliatedr tone mapping operations.
This problem is even more difficult to overcome whaealing with global image
TMO, which generate a tone mapped image dependimgthe global image
luminance. This problem is more limited in the ca$docal operators such as [10,
13] and our method. However, video content tonepimapis a very recent challenge
and it is not already possible to compare results @ the lack of real HDR video
contents. Here, we propose in figure 7 some sangblasHDR video sequence shoot
to illustrate some properties of our method. Sudtigint changes do not impact
global luminance of the tone mapped images.

-

frama 528 trama S4B

Fig.7: HDR video sequence tone mapping results sampéer (o [16] for higher resolution
results). In this test sequence, the sun geneoatds halos on the camera, the most important
changes are related to sudden sun disappearing@yehring depending on camera position
and objects on the visual scene. Our method albetails to be constantly extracted whatever
luminance change there are. Moreover, colors aagéndynamic remain stable.

Our TMO presents temporal constants, which acttooal luminance processing
adaptation. Particularly, the spatio-temporal hantal cells low pass filter of the OPL
filter computes the local luminance with a memoffea. This results in smooth
transitions when luminance changes suddenly. Al photoreceptors stage allows
spatio-temporal noise removal at the beginnindgheftone mapping process.

Conclusion

This paper proposes a Tone Mapping Operator (TM&et on a human retina
model. It imitates some parts of the foveal retiinectionalities including its
luminance compression properties and adds theibatitm of temporal information
processing. This “biologic” algorithm is able taopess a wide variety of images with
natural rendering and has a good potential forosislEquences processing. Moreover,
the method presents good color constancy propedies its color management
flexibility enables easier practical implementation

Future work could aim at identifying human factordjich would allow to identify
the main clues of the most appropriate TMO andsidis parameters in that sense, as
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well as visual perception tests in order to furthesess the subjective quality of the
Tone Mapping operators.
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