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Abstract. In this paper, we show how to use the three dimensional
topological map in order to compute e�ciently topological features on
objects contained in a 3D image. These features are useful for exam-
ple in image processing to control operations or in computer vision to
characterize objects. Topological map is a combinatorial model which
represents both topological and geometrical information of a three di-
mensional labeled image. This model can be computed incrementally by
using only two basic operations: the removal and the �ctive edge shift-
ing. In this work, we show that Euler characteristic can be computed
incrementally during the topological map construction. This involves an
e�cient algorithm and open interesting perspectives for other features.
Keywords. topological features, model for image representation, inter-
voxel boundaries, combinatorial map.

1 Introduction

In this paper, we show how to use the three dimensional topological map [1,
2] in order to compute e�ciently topological features on objects contained in
a 3D image. Topological map is a combinatorial model which represents both
topological and geometrical information of a three dimensional labeled image
with particular properties that makes it a good model for features extraction.
Indeed, it represents the topology of 3D labeled images with a minimal number
of cells, while conserving all the region adjacencies and incidences.

More precisely, the topological map is incrementally built from a 3D image by
using simple removal operations of subdivision cells that verify particular proper-
ties. Moreover, removal operations are controlled in order to preserve topological
information. After all removals, the topological map represents the regions of a
3D labeled image by their boundaries, which are closed orientable subdivided
surfaces.

The main idea of this work is to incrementally compute topological features
on regions of a 3D image during the topological map construction. We present
here the case of Euler characteristic computation; this is a �rst example and our
approach can be extended to several topological features (as canonical polygonal
schema or homology classes computation [3]).
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Euler characteristic χ of a subdivided object is the alternating sum of num-
bers of cells (vertices, edges, faces, etc). Let S be a closed orientable subdivided
surface and let #V (resp. #E, #F and g) be its number of vertices (resp. edges,
faces and tunnels1). In this case, it is well known that χ(S) = #V −#E+#F =
2(1− g) [4] gives the complete classi�cation of surfaces.

Euler characteristic and its variants have several applications to image anal-
ysis and digital geometry [5]. For example, it can be used to prevent topological
alterations in a transformation process or to validate a given segmentation.

Usually, Euler characteristic is computed from a given subdivision, see [6�
9] and references therein. Indeed, it is di�cult to analyze the consequences of
local changes (adding or removing cells) for topological features. However in our
approach, thanks to image scanning and to topological map, consequences of
adding cells to the subdivision can be translated into local cases analysis and
allows us to obtain the variation of the topological features. Hence the Euler
characteristic is computed during the topological map construction with only a
small additional cost.

To the authors knowledge such incremental approach had not been yet pro-
posed. In the general context of pavings, an incremental algorithm can be de-
duced from some results of [10] but this general approach is not well suited for
3D digital imagery.

The paper is organized as follows: Section 2 gives some recalls on topological
map. Section 3 presents our incremental method to compute incrementally Euler
Characteristic and Section 4 concludes and gives some perspectives.

2 Recalls on Topological Maps

2.1 Combinatorial Maps

A subdivision of a 3D topological space is a partition of the space into 4 subsets
whose elements are 0D, 1D, 2D and 3D cells (respectively called vertices, edges,
faces and volumes, and noted i -cell, i = 0 . . . 3). Border relations are de�ned
between these cells, where the border of an i -cell is a set of (j<i)-cells. Two cells
are incident when one belongs to the border of the second, and two i -cells are
adjacent if they are both incident to a common (j<i)-cell.

The topology of nD subdivision of orientable spaces without boundary can be
represented by n-dimensional combinatorial maps, or n-maps [11�15]. Intuitively,
a 3D combinatorial map can be obtained by successive decompositions of an
orientable 3D object. We �rst distinguish the volumes of this object, then the
faces of these volumes, and then the edges of these faces. The elements resulting
from the last decomposition are called darts and are the basic elements of the
combinatorial map de�nition. To obtain the map, adjacency relations between i -
cells are reported onto darts (denoted βi). These βi have to verify some particular
properties in order to ensure the validity of the represented subdivision (for

1 or holes in more general topological context
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example β1 is a permutation and other βi are involutions, see for example [16]
for the formal de�nition).

We present an example of combinatorial map in Fig. 1B, and the correspond-
ing represented object in Fig. 1A. β1 connects an oriented edge and the following
oriented edge incident to the same face and the same volume, β2 connects the
two faces incident to the same edge and the same volume, and β3 connects the
two volumes incident to the same edge and the same face. In order to simplify
the �gures, βi are not explicitly drawn but can be (generally) deduced from the
shape of objects.

A B

Fig. 1. Usual representation of a 3D combinatorial map. (A) A 3D object. (B) Implicit
representation of the corresponding combinatorial map, where βi applications are not
explicitly drawn.

Within the combinatorial map framework, all cells are implicitly represented
through the notion of orbit. Intuitively, an orbit < βi1 , . . . , βij > (d) is the set of
darts that can be reached with a breadth-�rst search algorithm, starting with d,
and using all combinations of all βik or β−1

ik
permutations ∀k, 1 ≤ k ≤ j. With

this notion, each cell is de�ned as a particular orbit. Based on the cells de�nition,
we can retrieve the classical cell degree notion. The degree of an i -cell c is the
number of distinct (i+1)-cells incident to c. Note that in a n-dimensional space,
the degree is not de�ned for n-cells, since (n+1)-cells do not exists in such a
space.

2.2 Removal Operations

Topological maps are constructed mainly by using removal operations. The i -
dimensional removal operation (denoted i -removal) consists in removing an i -
cell. This leads to the merging of the two (i+1)-cells incident to the removed
cell. For 3D subdivisions, we can remove a face (2-removal, e.g. Fig. 2), an edge
(1-removal) or a vertex (0-removal). We only present here the main notions
about these operations. A more complete description can be found in [17] where
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general de�nitions of removal and contraction operations are provided for any
dimension.

d

A B C

Fig. 2. 2-removal of the face incident to dart d. (A) Initial con�guration with two
adjacent volumes. (B) The removed face is isolated. (C) Adjacent faces of the initial
removed face are joined by modifying β2 relations.

Any face of a 3-map can be removed without any constraint (e.g. Fig. 2),
since the degree of a face, in a 3D subdivision, is always equal to one or two.
The face removal operation consists mainly to locally modify the β2 relation for
each dart that belongs to the neighborhood of the removed face (all removal
operations are based on similar principle).

The 1-removal (removal of an edge) can be applied only for edges whose de-
gree is one or two. Otherwise it is not possible to automatically decide how to
connect the faces incident to the removed edge. This operation is achieved in a
similar way than for face removal, but here by modifying β1 relation. Vertex re-
moval can only be applied for vertices whose degree is one or two. This operation
is performed in a similar way than for edge removal, but with di�erent cases to
take into account, due to the un-homogeneous de�nition of combinatorial maps
(β1 is a permutation while others βi are involutions).

Validity of removal operations can be proved whatever the initial con�gura-
tion and the cell to remove (even for degenerated cases, as for example removal
of a dangling face adjacent to an unique volume, see [17]).

2.3 Topological Map

Combinatorial maps can be used to represent labeled images [18�23, 2, 24], where
cells correspond to interpixel or intervoxel elements (pointels, linels, surfels or
voxels). For representing 3D labeled images, the main idea of our approach is
�rst to build a complete combinatorial map, that represents all the intervoxel
cells of the image, and then to progressively simplify it with removal operations,
as long as no topological information is lost. The minimal map obtained by this
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construction scheme, called topological map, represents all the adjacency and
incidence relations between regions of the image.

This is the main property of topological map: to be minimal according to the
number of cells, while conserving all the adjacency and incidence relations. To
avoid losses of information, we control the operations used during the construc-
tion. There are two cases to consider:

� the �rst case is volume disconnection, when a region is completely included
into another one. In this case, we obtain in our model two connected compo-
nents, one which represents the external surface, and a second which repre-
sents the inner surface. We add an inclusion tree on the regions of the image,
that allows us to keep relations between these two surfaces2;

� the second case is face disconnection, when a face has di�erent borders. Here,
we add a constraint on the 1-removal operation in order to avoid this type
of disconnection. Indeed, this case only occurs when we remove a degree one
edge, which is not a dangling edge. By avoiding to remove such an edge, we
keep each face connected, and thus homeomorphic to a topological disk. We
call �ctive edges the particular edges kept by this additional constraint, since
they do not represent an adjacency relation between regions. By opposition,
other edges are called real edges. We introduce the notion of real degree of
a vertex, which is the vertex degree but without considering incident �ctive
edges.

The topological map construction is made through 5 steps, each one being a
simpli�cation of the map obtained by the previous step:

Step 1: Initialization. Given a 3D labeled image, build a 3-map representing a 3D
grid made of cubic volumes, plus an enclosing volume which represents the
in�nite region.

Step 2: Remove each face shared by two voxels having the same label. This step
merge volumes that belong to the same region. After this step, each boundary
between two regions is represented by a unique surface made of square faces
(corresponding to surfels).

Step 3: Remove each degree two edge, and each dangling edge, except isolated edges.
This step simpli�es the boundaries of each region by merging its faces. We
can classify each edge e depending on its degree d:

• d > 2: e is not removed due to the precondition of the 1-removal opera-
tion. This type of edge belongs to a junction of di�erent boundaries;

• d = 2: e is removed because the two incident faces belong to the same
boundary and can thus be merged into a unique face. Moreover, this
removal can not involves a disconnection since the two faces are di�erent;

• d = 1 and e is an isolated edge: this case corresponds to the minimal rep-
resentation of a sphere with two vertices, one isolated edge and one face.

2 Nevertheless the problem of interlaced rings is not take into account by inclusion tree
but this is a main drawback of all topological structures. This could be eventually
avoided by adding �ctive faces to keep cells homeomorphic to balls
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Thus, e is not removed otherwise we remove a surface that represents an
adjacency relation;

• d = 1 and e is a dangling edge: e is removed because it not represents
an adjacency relation and its removal can not involves a disconnection;

• d = 1 and e is not a dangling edge: e is not removed to avoid the
disconnection of the face. This is the unique case which involves the
creation of a �ctive edge.

Step 4: Remove each real degree two vertex incident to two non-loop edges, after
shifting all �ctive edges incident to this vertex. This step simpli�es the
boundaries of each region by merging real edges. Since this step and the
following are both concerned by the real degree vertex, explanations are
merged and presented after the last step.

Step 5: Remove each real degree zero vertex incident to at least two edges, including
one non-loop edge, after shifting all �ctive edges incident to this vertex,
except one non-loop edge. This step simpli�es the boundaries of each region
by grouping �ctive edges on same vertices.
We can classify each vertex v depending on its real degree d. We consider the
real degree and not the degree since �ctive edges are not take into account
during this simpli�cation of boundaries. But they are necessary to keep each
face connected and for that, they are shifted (pushed along one incident
edge) before the vertex removal. If the real degree d is:

• d > 2: v is not removed since it belongs to a junction of di�erent bound-
aries with more than two real edges;

• d = 2: if at least one real edge is a loop, v is not removed since the
loop corresponds to a face and thus represents an adjacency information.
Otherwise, v is removed since the two incident real edges belong to the
same boundary;

• d = 1: v is not removed because the real edge is a loop (same reason
than the previous case);

• d = 0: if v is incident to an unique edge, it is not removed since this is
the case of the sphere. If v is only incident to 2k loops, v is not removed
since this case corresponds to the minimal representation of a torus with
k holes. Otherwise, there are at least 2 edges and at least one non-loop
edge. In this case, v is removed in order to regroup �ctive edges on a
same vertex.

We can see a �rst example in Fig. 3 which shows a 3D image and the cor-
responding topological map. The second example given in Fig. 4 shows a case
where a region R1 is totally included into another one R2 without other adja-
cency regions. In such a case, the representation obtained in topological map
corresponds to classical canonical representation of surfaces (in our example we
obtain the torus canonical representation with 1 vertex, 2 edges and 1 face).

We have presented here the construction of topological map by successive
steps. But in practice, we use an incremental extraction algorithm (presented
for example in [25, 2]) which extract topological map in a single scan of the
image. The image is scanned from left to right, from behind to front and from



Topological Map to Compute Incrementally Topological Features 7

R
1

R
2

R
3

R
0

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

A B C

Fig. 3. (A) A 3D image. (B) The corresponding topological map (partial representation
without the in�nite volume). (C) The represented subdivision in intervoxel elements.

R2

R
1

A B C

Fig. 4. (A) A region R1 totally included into another one R2. This is a partial rep-
resentation of a 3D image with other regions around R2 but that are not adjacent to
R1. (B) The corresponding topological map (partial representation without the in�nite
volume) with one face, two edges and one vertex. (C) The surfels that compose the
boundary surface between R1 and R2.

up to bottom. For each voxel, a cube is added to the combinatorial map already
built. Then, we remove some faces, edges and vertices, depending on the local
current con�guration.

3 Incremental Euler Characteristic Computation

Euler characteristic χ of each surface of topological map can be computed using
the alternated sum of numbers of i-cells, for each i = 0 . . . 3. We propose here
to compute incrementally the Euler characteristic during the topological map
construction, with only a small additional cost. This can be achieved just by
studying the di�erent removal operations and their e�ect on the number of cells.

The incremental Euler computation given here is only valid for regions rep-
resented by a unique surface in topological map. An orientable surface without
boundary is completely characterized by χ (this also can be done with its genus).
Euler characteristic of a set of surfaces does not give any characteristic infor-
mation on surfaces. To extend this work in order to obtain topological features
for region made of many surfaces, we need to study other characteristics. For
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example, we are currently interesting on homology groups and the way they can
be computed incrementally by using topological map.

In the following, we note #F the number of faces, #E the number of edges,
and #V the number of vertices of a region, and χ the Euler characteristic before
each operation, and we use the same notation with the pre�x n (#nF , #nE,
#nV and nχ) for the same numbers after the operation.

3.1 Cube Creation

The �rst step of the incremental extraction algorithm consists in creating a
cube and add it to the combinatorial map already built. Thus, we just increase
the number of cells of the region that contains this voxel #nV = #V + 8,
#nE = #E + 12 and #nF = #F + 6 in order to count all the cells of the new
cube. After this step, some cells are eventually counted twice. Moreover we can
have temporally an invalid Euler characteristic since it corresponds to several
surfaces. But the following simpli�cations are going to eventually decrease these
numbers, depending on the current con�guration, and �nally, one connected
component is re-obtained and thus the valid Euler characteristic.

3.2 2-removal

The face removal is used directly after the cube creation, and uniquely on faces
of the new cube in the case of the incremental algorithm. For this reason, faces
considered here are only square faces, made of 4 edges. Faces are only removed
between volumes that belong to the same region, and thus there are only a
region which is concerned by this removal and for which we need to update its
topological characteristics.

#nF = #F − 2, since faces are counted twice in the initial subdivision and
the both half faces are removed during the 2-removal (see example in Fig. 5).

#nE = #E − 4. There are two cases depending on the degree of the edges
incident to the removed face. If the degree of each edge is greater than two
(e.g. Fig. 5), each edge is counted twice in the initial subdivision and grouped
after the removal. Thus, there are 8 edges before, and 4 after which gives the
di�erence −4. The second case is when some edges incident to the removed face
are degree two edges (e.g. Fig. 6). In this case, degree one edges are counted only
once in the initial subdivision, but are completely removed after the 2-removal
operation. For this reason, both cases involve exactly the same evolution on the
number of edges.

#nV =?. Concerning the number of vertices, the problem is more compli-
cated. Indeed, there are many di�erent cases, depending on the number of ver-
tices counted twice in the initial subdivision, and depending also on the number
vertices that are grouped or not after the face removal. Since the number of cases
seems to be too much important, we use the topological map in order to update
the number of vertices.

We just count the number of vertices incident to the removed face before its
removal, and count again the same number after this removal. The di�erence
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A B

Fig. 5. Face removal where no edge incident to the face is a degree 2 edge. (A) Before
the 2-removal The new cube is drawn on the right of the current region (we do not
have represented two faces to see the interior of the volume). (B) After the removal:
the 2 dark grey faces are removed, and the 8 bold edges are merged into 4 edges.
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A B C

Fig. 6. Face removal where some edges incident to the face are degree 2 edges. (A) Be-
fore added the new cube (drawn in white) in a region made of 4 voxels. This addition
will be done by 2-removing both dark grey faces. (B) Subdivision obtained after the
�rst 2-removal. 3 faces are not drawn in order to see the interior of the volume. The
black thick edge incident to the second face to remove is a degree one edge (i.e. incident
twice to the same face). (C) After the second face removal, the degree one edge has
completely disappeared.

gives immediately the new number of vertices depending on the old one. Of
course, this solution involves a small additional cost. But this cost is very small
since we are in a 3D discrete grid and thus we are sure that at most 6 edges are
incident to a given vertex.

3.3 1-removal

The third step of the construction of topological map consists in removing each
degree two edge, and each dangling edge (except isolated edges). Now, the initial
combinatorial map can have di�erent kind of volumes, since we have already
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merged some of them during the �rst step. But the map is already closed and
when we process an edge, we are sure that this edge is incident to two volumes.
For this reason, number of cells need to be updated in a same way for both
regions incident to the removed edge.

When we remove an edge, two possible di�erent cases can be obtained:

� when a degree two edge is removed;
� when a degree one dangling edge is removed.

Other cases are avoided by de�nition of topological map.

First case: Degree two edge This case is shown in Fig. 7. The new charac-
teristics are: #nF = #F − 1: two faces are merged into one; #nE = #E − 1:
one edge is removed; #nV = #V : the number of vertices is still unchanged; and
thus nχ = χ: there are no topological modi�cation.

d

Fig. 7. 1-removal of the degree two edge incident to dart d. (A) Before the 1-removal.
(B) After.

Second case: Degree one dangling edge This case is shown in Fig. 8. The
new characteristics are: #nF = #F : since the removed edge is inside a face, no
face are merged; #nE = #E − 1: the edge is removed; #nV = #V − 1: due
to the removal of the edge, the degree one vertex incident to the removed edge
vanishes; and thus nχ = χ: the Euler characteristic remains unchanged.

Thus we can conclude that the 1-removal does not change Euler characteristic
of concerned regions, whatever the con�guration of the removed edge.

3.4 0-removal

The last step of the construction of topological map consists in removing each
vertex which is either:
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d

A B

Fig. 8. 1-removal of the degree one dangling edge incident to dart d. (A) Before the
1-removal. (B) After. The removal of the edge involves the disappearance of the degree
one vertex.

� a real degree two vertex incident to two non-loop edges, after shifting all
�ctive edges incident to this vertex;

� a real degree zero vertex incident to at least two edges, including one non-
loop edge, after shifting all �ctive edges incident to this vertex, except one
non-loop edge.

The additional conditions (concerning the non-loop edges) ensure that the
0-removal does not involves the disappearance of a face. Thus, there are only
two cases to consider:

� when the degree of the vertex is two;
� when the degree of the vertex is one and the edge is dangling.

Indeed, there are the two unique possible con�gurations obtained after the �ctive
edges shifting starting from both cases (given above) of the topological map
construction.

Actually, these two cases involve the same modi�cations: the disappearance
of one edge and one vertex. Thus, the new characteristics are: #nF = #F ,
#nE = #E − 1, #nV = #V − 1 and thus nχ = χ. We can conclude as for
the 1-removal: the 0-removal does not change Euler characteristic of concerned
regions.

Note that for 0-removal, there are many regions that are concerned by these
modi�cations: each region which is incident to the removed vertex. Thus, topo-
logical characteristics need to be updated for each such regions.

3.5 Fictive Edge Shifting

We also need to study the possible evolutions during the �ctive edge shifting.
This can be done immediately since there is no modi�cation, neither for the
number of volumes, nor for faces, edges and vertices. Obviously, the Euler char-
acteristic remains unchanged after this operation.
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3.6 Experimentations

We have implemented the incremental Euler characteristic computation in our
computer software which computes the topological map incrementally. This pro-
gram is developed in C++ without particular optimization. All our experiments
were made on a classical personal computer with a Athlon 2000MHz CPU and
512Mb of memory and a Linux Debian System.

Our experiments are made on random arti�cial images in order to be able
to test easily many di�erent images. We have generated images of size range
4 × 4 × 4 to 160 × 160 × 160, and for each size we have generated 10 random
images in order to compute an average of the obtained results. For each image,
the number of generated regions is a random number between 1 and the size of
the image.

We compared the time needed to compute Euler characteristic with the clas-
sical method (counting the number of cells and compute the altering sum) and
with our incremental method. We can see in Fig. 9 the results obtained by our
experiments. Moreover, we have also veri�ed that both methods give the same
result.

Time

With incremental
Euler computation

Extraction of
of topological map

With classical Euler
computation

14

16

12

10

8

6

4

2

0 Length

Length 4 8 16 32 64 96 128 160
Extraction 0 0 0,02 0,17 1,2 3,51 7,72 14,49
Incremental 0 0 0,03 0,19 1,33 3,88 8,53 15,93
Classical 0 0 0,02 0,19 1,44 4,22 9,27 17,46

Fig. 9. Time (in seconds) necessary to extract topological map alone (in black in the
�gure and the �rst line of the array), with the incremental Euler computation (in dark
grey in the �gure and the second line of the array), and with the classical algorithm
(in white and dash line in the �gure and the last line of the array). Each time is the
average of 10 extractions for image of size Length× Length× Length.

We can �rst observe that the additional cost taken by our incremental Euler
characteristic computation is small compared to the time necessary to extract
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the topological map alone. Since we do not have optimized our software, this ad-
ditional time can be reduced by using some programming techniques. Second, we
can observe that our incremental algorithm is faster than the classical algorithm
(about 10%), what shows the interest to use the incremental solution.

4 Conclusion and Perspectives

In this paper, we show how to compute Euler Characteristic �on the �y� during
the topological map construction. This computation is e�cient since topologi-
cal map construction is e�cient and only a small additional cost is needed to
compute Euler Characteristic.

The proposed algorithm is incremental as it uses computations from one
step to determine the result for the next step. Our experiments show that the
additional time necessary to compute incrementally Euler characteristic is very
small. Moreover, this solution is more e�cient than the classical algorithm which
consists in counting the number of cells of the �nal subdivision and using the
altering sum.

This �rst result is interesting since we are able to compute e�ciently during
the topological map construction, a topological feature. Moreover, this compu-
tation can be optimized, either by using some programming techniques, or by
studying the di�erent cases that can occur during face removal in order to re-
move the counting of vertices. For that, it could be possible to study directly the
possible cases by considering directly the added voxel and not only face removal.

Now, we are working on the computation, in a similar way, of other topolog-
ical features. We have �rst results for the canonical polygonal schema computa-
tion. Intuitively, a canonical polygonal schema of a given surface is the minimal
polygon such that when each edges are correctly identi�ed two by two, we ob-
tain the initial surface. We have shown that this notion can be directly obtained
from topological map (for regions that are composed by a unique face since the
polygonal schema is not de�ned for other cases).

The next step is to extend computations of topological features for higher
dimensions in order to be able to characterize any type of regions and not only
those made of an unique surface (which is the case for Euler characteristic). For
that, we are interesting on the calculation of homology groups and generators of
these groups.

Homology groups are topological invariants that deal with holes in a topolog-
ical spaces. These invariants can be computed into each dimension and concrete
interpretation can be given for low dimensions. In dimension 0, homology groups
characterizes connected components, in dimension 1, homology groups charac-
terizes holes, and cavities are described by dimension 2 homology groups3.

3 roughly speaking for each dimension p, the p-th homology group Hp is isomorphic
to a direct sum Z⊕ · · · ⊕ Z︸ ︷︷ ︸

βp

⊕Z/tp1Z⊕ · · · ⊕ Z/tpnZ. where βp is called the p-th Betti

number, the integers tp1, . . . , t
p
n are called the torsion coe�cients of Hp.
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A B

Fig. 10. Illustration of homology generators. (A) For a torus, two paths that surround
the two holes are highlighted. (B) For a Klein bottle, two paths are highlighted, one
surround the hole and the other indicates the torsion part of the Klein bottle.

In order to represent homological informations directly on the image, an
algorithm that computes generators of homology groups can be used [26]. Such
generators are cycles (i.e. closed paths) that surround holes, see examples given
on �gure 10. Our goal is now to compute these generators incrementally during
topological map construction.
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