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Abstract

We introduce a method for computing homology groups and their generators of
a 2D image, using a hierarchical structure i.e. irregular graph pyramid. Starting
from an image, a hierarchy of the image is built, by two operations that preserve
homology of each region. Instead of computing homology generators in the base
where the number of entities (cells) is large, we first reduce the number of cells by a
graph pyramid. Then homology generators are computed efficiently on the top level
of the pyramid, since the number of cells is small, and a top down process is then
used to deduce homology generators in any level of the pyramid, including the base
level i.e. the initial image. The produced generators fit on the object boundaries. A
unique set of generators, called the minimal set, is defined and its computation is
discussed. We show that the new method produces valid homology generators and
present some experimental results.
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1 Introduction

Handling ‘structured geometric objects’ is important for many applications
related to geometric modeling, computational geometry, image analysis, etc.
One has often to distinguish between different parts of an object, according
to properties which are relevant for the application. For image analysis, a
region is a (structured) set of pixels or voxels, or more generally a (struc-
tured) set of lower-level regions. At the lowest level of abstraction, such an
object is a subdivision 1 , i.e. a partition of the object into cells of dimension
0, 1, 2, 3 ... (i.e. vertices, edges, faces, volumes ...) [1,2]. In general, combi-
natorial structures (graphs, combinatorial maps, n-G-maps etc.) are used to
describe objects subdivided into cells of different dimensions. The structure
of the object is related to the decomposition of the object into sub-objects,
and to the relations between these sub-objects: basically, topological informa-
tion is related to the cells and their adjacency or incidence relations. Further
information (embedding information) is associated to these sub-objects, and
describes for instance their shapes (e.g. a point, respectively a curve, a part
of a surface, is associated with each vertex, respectively each edge, each face),
their textures or colors, or other information depending on the application. A
common problem is to characterize structural (topological) properties of han-
dled objects. Different topological invariants have been proposed, like Euler
characteristics, orientability, homology,... (see [3]).

Homology is a powerful topological invariant, which characterizes an object
by its ”p−dimensional holes”. Intuitively the 0−dimensional holes can be seen
as connected components, 1−dimensional holes can be seen as tunnels and
2−dimensional holes as cavities. For example, the torus in Fig.1(a) contains
one 0−dimensional hole, two 1−dimensional holes (each of them are an edge
cycle) and one 2−dimensional hole (the cavity enclosed by the entire surface of
the torus). This notion of p−dimensional hole is defined in any dimension. An-
other important property of homology is that local calculations induce global
properties. In other words, homology is a tool to study spaces, and has been
applied in image processing for 2D and 3D image analysis [4,5]. Although
in this paper we use 2D binary images to show the proof of concept, we do
not encourage usage of homology groups and generators to find connected
components in 2D images, since efficient approaches already exist [6]. How-
ever, these ’classical’ approaches cannot be easily extended for many problems
that exist in higher dimensions, since our visual intuition is inappropriate and
topological reasoning becomes important. Computational topology has been
used in metallurgy [7] to analyze 3D spatial structure of metals in an alloy
and in medical image processing [8] in analyzing blood vessels. In higher di-
mensional problems (e.g. beating heart represented in 4D) the importance of

1 For instance, a Voronoi diagram in the plane defines a subdivision of the plane.

2



a4

a3

a2

a1

a5

a6

a7

f2

f1

Fig. 1. (a) : a triangulation of the torus. (b) : a simplicial complex made of 1
connected component and containing one 1−dimensional hole.

homology groups and generators becomes clear because of the nice and clean
formulation which holds in any dimension (number of connected components,
tunnels, holes, etc). One can think of other applications, as a preprocessing
step, to speed up recognition of complex shapes in large image databases, e.g.
images are first filtered based on their topological invariants and afterward are
matched using shapes, appearances, etc.

The usage of homology groups and generators in image processing is a new
topic and is not widely spread. In this paper we introduce a new method for
computing homology groups and their generators using a hierarchical structure
which is build by using two operations: contraction and removal. These two
operations are used also in [9] to incrementally compute homology groups and
their generators of 2D closed surfaces, but a hierarchy is not build. The current
paper also considers the geometry of the produced generators, and defines and
studies the concept of minimal generator set.

The paper is structured as follows. Basic notions on homology and irregular
graph pyramids are recalled in Section 2 and Section 3. The proposed method
to compute homology groups and their generators is presented in Section 4
and the property of the resulting generators are detailed. Section 5 presents
the concept of minimal generator set. Experimental results on 2D images that
show the correctness of the new method are found in Section 6.

2 Homology

In this part, the basic homology notions of chain, cycle, boundary, and homol-
ogy generator are recalled. Interested readers can find more details in [10].

The homology of a subdivided object X can be defined in an algebraic way
by studying incidence relations of its subdivision. Within this context, a cell
of dimension p is called a p−cell and the notion of p−chain is defined as a
sum

∑nb p−cells
i=1 αici, where ci are p−cells of X and αi are coefficients assigned

to each cell in the chain. Homology can be computed using any group A

3



for the coefficients αi. But, the theorem of universal coefficients [10] ensures
that all homological information can be obtained by choosing A = Z. It is also
known [10] that for nD objects embedded in RD, homology information can be
computed by simply considering chains with moduli 2 coefficients (A = Z/2Z).
Note that in this case, a cell that appears twice on a chain vanishes, because
c+ c = 0 for any cell c when using moduli 2 coefficients ( i.e. if a cell appears
even times we discard it otherwise we keep it). In the following, only chains
with coefficients over Z/2Z will be considered. Note that the notion of chain
is purely formal and the cells that compose a chain do not have to satisfy any
property. For example, on the simplicial complex illustrated on Fig.1(b) the
sums: a1 + a4, a3 and a2 + a7 + a4 are 1−chains.

For each dimension p = 0, . . . , n, where n = dim(X), the set of p−chains
forms an abelian group denoted Cp. The p−chain groups can be put into a
sequence, related by applications ∂p describing the boundary of p−chains as
(p− 1)−chains:

Cn
∂n−→ Cn−1

∂n−1−→ · · · ∂1−→ C0
∂0−→ 0,

which satisfy ∂p∂p−1(c) = 0 for any p−chain c. This sequence of groups is
called a free chain complex.

The boundary of a p−chain reduced to a single cell is defined as the sum of its
incident (p− 1)−cells. The boundary of a general p−chain is then defined by
linearity as the sum of the boundaries of each cell that appears in the chain
e.g. in Fig.1(b), ∂(f1 + f2) = ∂(f1) + ∂(f2) = (a1 + a2 + a7) + (a7 + a3 + a6) =
a1 + a2 + a3 + a6. Note that as mentioned before, chains are considered over
Z/2Z coefficients i.e. any cell that appears twice vanishes.

For each dimension p, the set of p-chains which have a null boundary are
called p-cycles and are a subgroup of Cp, denoted Zp e.g. a1 + a2 + a7 and
a7 + a5 + a4 + a3 are 1−cycles. The set of p-chains which bound a p + 1-
chain are called p-boundaries and they are a subgroup of Cp, denoted Bp e.g.
a1 + a2 + a7 = ∂(f1) and a1 + a6 + a3 + a2 = ∂(f1 + f2) are 1−boundaries.

According to the definition of a free chain complex, the boundary of a bound-
ary is the null chain. Hence, this implies that any boundary is a cycle. Note
that according to the definition of a free chain complex, any 0−chain has a
null boundary, hence every 0−chain is a cycle.

The pth homology group, denoted Hp, is defined as the quotient group Zp/Bp.
Thus, elements of the homology groups Hp are equivalence classes and two
cycles z1 and z2 belong to the same equivalence class if their difference is a
boundary ( i.e. z1 = z2 + b, where b is a boundary). Such two cycles are called
homologous e.g. let z1 = a5+a4+a3+a7, z2 = a5+a4+a6 and z3 = a1+a2+a3
; z1 and z2 are homologous (z1 = z2 +∂(f2)) but z1 and z2 are not homologous
to z3. Let Hp be a homology group generated by q independent equivalence
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Table 1
Translation of homology notions to graph theory.

Homology theory Graph theory

0-cell, 1-cell, 2-cell vertex, edge, face

0-chain, 1-chain, 2-chain set of vertices, set of edges, set of faces

0-cycle, 1-cycle, 2-cycle set of vertices, closed path of edges, closed path of faces

classes C1, · · · , Cq, any set {h1, · · · , hq | h1 ∈ C1, · · · , hq ∈ Cq} is called a set
of generators for Hp. For example, either {z1} or {z2} can be chosen as a
generator of H1 for the object represented in Fig.1(b).

Note that some of the notions mentioned before could be confused with simi-
lar notions from graph theory. Tab.1 associates these homology notions with
notions classically used in graph theory.

3 Irregular Graph Pyramids

In this part, basic notions of pyramids like receptive field, contraction kernel,
and equivalent contraction kernel, are introduced. For more details see [11].

A pyramid (Fig. 2a) describes the contents of an image at multiple levels
of resolution. A high resolution input image is at the base level. Successive
levels reduce the size of the data by a reduction factor λ > 1.0. The reduction
window relates one cell at the reduced level with a set of cells in the level
directly below. The contents of a lower resolution cell is computed by means
of a reduction function the input of which are the descriptions of the cells
in the reduction window. Higher level descriptions should be related to the
original input data in the base of the pyramid. This is done by the receptive
field (RF) of a given pyramidal cell ci. The RF(ci) aggregates all cells (pixels)
in the base level of which ci is the ancestor.

0

1

h

reduction window

ci

RF(ci)

(G0, G0)

Gk

Gk

a) Discrete levels b) Image to dual graphs

Fig. 2. a) Pyramid concept, and b) representation of the cells and their neighborhood
relations by a pair of dual plane graphs at the level 0 and k of the pyramid.
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Each level represents a partition of the pixel set into cells, i.e. connected sub-
sets of pixels. The construction of an irregular pyramid is iteratively local [12].
On the base level (level 0) of an irregular pyramid the cells represent single
pixels and the neighborhood of the cells is defined by the 4(8)-connectivity
of the pixels. A cell on level k + 1 (parent) is a union of neighboring cells
on level k (children). This union is controlled by so called contraction kernels
(CK) [13], a spanning forest which relates two successive levels of a pyramid.
Every parent computes its values independently of other cells on the same
level. Thus local independent (and parallel) processes propagate information
up and down and laterally in the pyramid. Neighborhoods on level k + 1 are
derived from neighborhoods on level k. Higher level descriptions are related
to the original input by the equivalent contraction kernels (ECK). A level
of the graph pyramid consists of a pair (Gk, Gk) of plane graphs Gk and its
geometric dual Gk (Fig. 2b). The vertices of Gk represent the cells on level k
and the edges of Gk represent the neighborhood relations of the cells, depicted
with square vertices and dashed edges in Fig. 2b. The edges of Gk represent
the borders of the cells on level k, solid lines in Fig. 2b, including so called
pseudo edges needed to represent neighborhood relations to a cell completely
enclosed by another cell. Finally, the vertices of Gk (circles in Fig. 2b), repre-
sent junctions of border segments of Gk. The sequence (Gk, Gk), 0 ≤ k ≤ h is
called irregular (dual) graph pyramid. For simplicity of the presentation the
dual G is omitted afterward.

4 Computing Homology Generators in a Graph Pyramid

There exists a general method for computing homology groups. This method
is based on the transformation of incidence matrices [10] (which describe the
boundary homomorphisms) into their reduced form called Smith normal form.
Agoston proposes a general algorithm, based on the use of a slightly modified
Smith normal form, for computing a set of generators of these groups [3]. Even
if Agoston’s algorithm is defined in any dimension, the main drawback of this
method is directly linked to the complexity of the reduction of an incidence
matrix into its Smith normal form, which is known to consume a huge amount
of time and space. Another well known problem is the possible appearance of
huge integers during the reduction of the matrix. A more complete discussion
about Smith normal algorithm complexity can be found in [14]. Indeed, Agos-
ton’s algorithm cannot directly be used for computing homology generators
and different kinds of optimisations have been proposed.

Based on the work of [15,16], an optimisation for the computation of homol-
ogy generators, based on the use of sparse matrices and moduli operations has
been proposed [17]. This method avoids the possible appearance of huge inte-
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gers. The authors also observed an improvement of time complexity dropping
from O(n2) to O(n5/3), where n is the number of cells of the subdivision.

An algorithm for computing the rank of homology groups i.e. the Betti num-
bers has been proposed in [18]. The main idea of this algorithm is to reduce the
number of cells of the initial object in order to obtain a homologically equiv-
alent object, made out of less cells. In some special cases (orientable objects),
Betti numbers can directly be deduced from the resulting object. However,
this method cannot directly provide a set of generators. Based on the previ-
ously mentioned work, an algorithm for computing a minimal representation
of the boundary of a 3D voxel region, from which homology generators can
directly be deduced has been defined in [9].

4.1 Description of the new method

The method we propose in this paper has the same philosophy as the methods
of Kaczynski and Damiand [19,20]: reducing the number of cells of an object
for computing homology. Moreover, we keep all simplifications that are com-
puted during the reduction process by using a pyramid. In this way, homology
generators can be computed in the top level of the pyramid, and can be used
to deduce generators of any level of the pyramid. In particular, we show how
generators of the higher level can be directly down-projected on the desired
level (using equivalent contraction kernels).

Starting from an initial image, we build an irregular graph pyramid. The
method we provide here is valid as long as the algorithm used for the con-
struction of the pyramid preserves homology. In particular, we show here that
the decimation by contraction kernels, described in Section 3 [13], preserves
homology of a subdivided object. Indeed, homology of the initial image can
thus be computed in any level of the pyramid, and in particular in the top
level where the object is described with the smallest number of cells.

Moreover, we use the notion of receptive field and equivalent contraction ker-
nel, and show that the generators of homology groups of any level of the
pyramid can be deduced from those computed on the higher level. Note that
in special cases, the higher level of the pyramid may be reduced to exactly a
set of generators of the initial image, as shown in [9].

Our method can be summarized in the following steps :

1 Starting from a labeled image, a graph pyramid {G0, G1, . . . , Gk} is built
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1

2

3 3′

4

Fig. 3. Computing generators of homology groups using an image pyramid.

using contraction kernels of cells with the same label.
2 Homology groups generators are computed for Gk.
3 Homology generators of any level i can be deduced from those of level i+ 1

using the contraction kernels. In particular, we obtain the homology gener-
ators of the initial image.

Note that homology generators of the lowest level can directly be deduced from
the highest level using the notion of equivalent contraction kernel (arrow 3′

in Fig.3). Fig.3 illustrates the general method that we propose for computing
homology generators of an image.

4.2 Preserving homology on irregular graph pyramids

The algorithm described in [18] is based on operations of interior face reduction
that reduce the number of cells of the subdivision. The main idea is to find a
p−cell a and a (p + 1)−cell b, such that a is incident to b. Then a and b are
removed and the boundary of the other p−cells that were adjacent to a are
modified such that the new boundary ∂(b′) is defined as its initial boundary
added with the boundary of b. Indeed, if a is incident to exactly two p−cells
b and b′, the result of the corresponding interior face reduction can be seen as
the removal of a and the merging of b and b′. It is proved in [18] that interior
face reduction preserves homology.

Observing the dual graph, the operations of contraction and removal that
are used to build each level of the pyramid are interior face reduction: two
faces that are merged share a common edge that is removed, and an edge is
contracted if one of its endpoints is incident to exactly two different edges.
Thus, homology is preserved in every level of the pyramid.
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v
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v

CK1(v)

ECK0(v)

Fig. 4. Top-down delineation of a generator computed in G2.

4.3 Delineating generators

A 1D generator in Gk = (V k, Ek) is a closed path connecting vertices of
Gk and surrounding at least one hole. Each vertex v ∈ Gk is the result of
contracting a tree (contraction kernel CK) of Gk−1. Each edge (v1, v2) ∈ Gk

corresponds to a surviving edge (w1, w2) ∈ Gk−1 with w1 ∈ CKk−1(v1) and
w2 ∈ CKk−1(v2) i.e. an edge that has neither been contracted nor removed 2 .

Given a generator in Gk, mapping it to the level below is done by identify-
ing the surviving edges in Gk−1 corresponding to the generator edges in Gk

and, where the generator is disconnected, adding paths to fill in the gaps and
reconnect. For every two consecutive edges not having a common vertex in
Gk−1 but having one in Gk, the unique path connecting their disconnected
endpoints in the contraction kernel CK ⊂ Gk−1 of their shared vertex in Gk

is added.

Because each path added in Gk−1 is entirely part of a contraction kernel, with
contraction being used in the dual only for boundary simplification purposes,
never connecting two different boundaries, and because the building process
preserves homology (see Sec. 4.2) the obtained generators will be homologous
to the ones in Gk.

Reiterating this process of mapping the generator cycles of Gk from k to
k − 1, . . . to 0, cycles in G0 corresponding to the generators of the top level
can be identified. By replacing the contraction kernels, with the equivalent
contraction kernels, using the same methodology, the generator cycles of Gk

can be directly mapped to G0. For an example, see Fig. 4.

4.4 Controlling the geometry of the generators

When computing homology generators with Agoston’s method, directly on the
initial image, we cannot have any control of their geometry. More precisely,

2 Not part of any simplification.
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Fig. 5. (a) Bottom level, and (b) top level of the pyramid.

the aspect of the obtained generators is directly linked to the construction of
incidence matrices, which is determined by the scanning of each cell of the
initial image (see [17] for a first study of the influence of different parameters
on the geometry of generators).

We prove in this section that for 2D images, the presented method provides a
set of generators that always fit on the borders of a region R. In the following,
an edge on the border of a 2D region is called a border edge.

First, we show that any 1−cycle in the top level of the pyramid contains
only border edges. Second, we show that the down-projection of a 1−cycle
composed of border edges, is still a cycle composed of border edges.

Property 1 Any 1−cycle in the top level of the pyramid computed with the
presented method contains only border edges.

Proof On the top level, a region is represented by a unique 2D cell. Hence
each edge of the top level is either a border edge or an edge linking two different
borders of R (we call it a pseudo edge).

Let z be a 1−cycle on the top level, if z contains any pseudo edge e = (v1, v2),
where v1 and v2 are two vertices that stand on two different borders of R, then
R is made of at least two 2D-cells, which is not possible as any region on the
top level is made of only one cell. Hence, any 1−cycle on the top level of the
pyramid contains only border edges. 2

Let us consider Figure 5(b), which represents the top level of the pyramid built
from the initial image represented in Figure 5(a). The subdivision is made of
one 2D-cell R1; four border edges e1, e2, e3, e4; two pseudo edges e5, e6; and
four vertices. The property 1 ensures that for this subdivision, any 1−cycle
can be written as α1e1 + α2e2 + α3e3 + α4e4, where αi = 0, 1, i = 1 . . . 4.

Property 2 The delineation of a top level 1−cycle that lies only on borders
results in a 1−cycle in the bottom level that lies only on borders.

Proof A 1D generator can me made out of more than one closed path, in this
case its down-projection is done separately for each of them. The process of
generator delineation (down-projection) presented in Section 4.3 requires for
each of its closed paths:
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• identifying in the bottom level the surviving edges that correspond to the
given top level edges
• adding paths connecting two identified edges, if their associated edges from

the top level share a vertex (if two identified edges share a common vertex,
no path is added).

The identified surviving edges are guaranteed to lie on borders because of their
one to one association to their corresponding top level edges.

As presented in Section 4.3, each path added reconnects two consecutive sur-
viving edges, and is a sub-path of the equivalent contraction kernel of the
common vertex the two surviving edges share in the top level. Because the
equivalent contraction kernels are trees, the added paths are unique [21].

Moreover, these paths lie on borders because:

• in the bottom level, for any two vertices of one border there are exactly two
paths that connect them and which are made only of border edges,
• border edges are never removed (just contracted or surviving),

we can conclude that the unique path used to reconnect the vertices of two
consecutive surviving border edges is made only of border edges. 2

5 Optimizations On The Top Level - The Minimal Generator Set

We have shown in the previous Section that our method provides a set of
generators that always fit on the borders of the object. As can bee seen in
Section 6, the set of generators that fit on the borders of an object is not
uniquely defined. In this section, we go one step further and show that any of
these possible sets of generators can be transformed such that each generator
surrounds exactly one hole; we call this set the minimal set of generators.

Fig. 6 illustrates an object with 3 holes. Let a denote the outer border of
the object, and let b, c and d denote the three closed curves corresponding
to the borders of the three holes. Among others, {a, b, c} and {b+ c, c+ d, d}
are possible basis of H1; and {b, c, d} is the minimal one, as each generator
surrounds exactly one hole.

A set of generators is called minimal if none of the generators intersect, each
surrounds exactly one hole, and all generators fit on borders. A minimal set
of generators does not contain the outer border of the object (a in Fig. 6).

Two H1 generators are separate if they neither intersect nor are in an inclusion
relation. Their interiors are disjoint. Note that the term separate has to be

11
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Fig. 6. A 2D shape with 3 holes.

extended to higher dimensions as additional relations exist e.g. in 3D, imagine
two closed curves (rings), like the rings of a chain. By the previous definition
they would be separate even though they are not.

Conjecture If all H1 generators of a connected object in 2D are separate,
each one surrounds one hole.

Let us call this set of generators independent.

Property 3 An independent set of generators fitting to the borders of the
object is minimal.

Proof The set of borders of an object consists of the k borders separating
the object from its k holes (b, c and d in Fig. 6), and the outside border
(a in Fig. 6), separating the object from the background. If the given set of
generators is independent, the outside border cannot be one of them, and there
can be no intersection or overlapping. The given generator set is made of the
k borders surrounding the k holes - which make up the minimal generator
set. 2

Having an arbitrary set of generators it can be transformed to an independent
set by the following operations:

(1) shrinking: independently from all the others, each generator cycle is
continuously transformed inside the object such that its interior is re-
duced to 0, with holes blocking the movement of the generator. Imagine
a balloon with some solid objects inside (representing the holes) from
which we draw out all the air.

(2) operating with generators: if {a1, ..., an} is a basis of a group, replac-
ing any element ai by ai + kaj, with i 6= j and k an integer, will generate
a basis of the same group. Any basis can be build from the minimal
one. Looking at it the other way around, consider a basis containing an
element a that surrounds k holes h1, ..., hk, k > 1 then there is another
element a′ in this basis that surrounds l holes h′1, ..., h

′
l with k > l ≥ 1 and

h′1, ..., h
′
l ⊂ h1, ..., hk. By replacing the element of the basis a by a−a′, we

still have a basis, but now the new element a−a′ surrounds only k− l < k
holes. We can conclude that starting from any basis, we can always come
up with a new basis where each element surrounds only one hole. More-

12



over, if we start with a basis where all the generators fit on borders, we
obtain the minimal set. (Addition and subtraction of shrunken generators
can be done by adding new edges and removing common ones.)

Note that for the 2D case, computing the minimal generator set can be easily
done by taking the borders separating the object from the holes. In the top
level of the pyramid these holes are surrounded by self loops or by cycles with
a reduced number of edges. If using concepts like in [22], enumerating all these
edges is done in linear time in the number of border edges of the object in the
reduced map. Extension to any dimension is planned.

6 Experiments on 2D Images

We present and discuss initial experiments that have been performed on 2D
images. For each shape, we have computed homology generators directly on
the initial image, and on the top level of the pyramid (with and without
Agoston). Note that for visualisation purposes each edge of a 1D generator is
shown by pixels incident to it.

Tab. 2 shows the number of 0D, 1D and 2D−cells on the initial image and on
the top level of the pyramid, for the shape presented Fig.7 and Fig.8. One can
observe that for each shape the total number of cells is considerably reduced on
the higher level of the pyramid. Thus, the computation of homology generators
can be done on much smaller matrices on the top level instead of the initial
image. In Fig.7 and Fig.8, it can be seen that our new method provides a valid
set of generators in each case.

Moreover, using the classical method, we cannot have any control of the ge-
ometry of the generators computed. More precisely, the aspect of the obtained
generators is directly linked to the construction of incidence matrices, which
is determined by the scanning of each cell of the initial image. The shape
shown on Fig.9 has been obtained from rotating Fig.7. In Fig.9(a), one can
observe that the aspect of the generators computed on the initial image ”fol-
lows” the scanning of the cells (from top to bottom, and left to right). The

Table 2
The number of cells on the initial image and on the top of the pyramid.

Initial image Top of the pyramid

0D-cells 1D-cells 2D-cells 0D-cells 1D-cells 2D-cells

Fig.7. 8153 15785 7630 7 10 1

Fig.8 10352 20148 9793 9 13 1
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(a) (b) (c)

Fig. 7. (a): the homology generators computed on the initial image. (b): the
down-projected generators. (c): minimal set.

(a) (b) (c)

Fig. 8. (a): the homology generators computed on the initial image. (b): the
down-projected generator. (c): minimal set.

(a) (b)

Fig. 9. Influence of the scanning (compare with Fig.7 (a) and (b)).

generators obtained in Fig.9(b) always fit on the boundaries of the image (See
section 4.4).

One can note that the sets of cycles obtained in Fig.7(a) and Fig.7(b) do
not surround the same (set of) 1D−holes of the shape S. Indeed, these two
sets are two different basis of the same group H1(S): let a, b and c denote the
equivalence class of cycles that surround respectively the left eye, the right eye,
and the mouth. The set of generators in Fig.7(a) describe H1(S) in the basis
{a+b, c, a} whereas in Fig.7(b), H1(S) is described in the basis {a, a+b+c, b}.
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(a) (b) (c)

Fig. 10. (a): original image. (b): segmentation. (c): down-projected generators (in
black).

(a) (b)

(c) (d)

Fig. 11. (a): segmented image. Generators overlaid on the original image (b): the
homology generators computed on the initial image. (c): the down-projected gener-
ator. (d): minimal set.

In Fig.10, and Fig.11 real world images are shown. We have first segmented
the images (e.g. one can choose the minimum spanning tree based pyramid
segmentation [23], and build generators on these segmented images - for clarity
of the presentation we used a binary segmentation, Fig.10(b) and Fig.11(a)).
Fig.10(a) shows the original image, Fig.10(b) the used binary segmentation,
and Fig.10(c) the brightened image with the obtained generators in black.

In Fig.11 white means 1−dimensional hole. The basis in Fig.11(b), 11(c), and
11(d) are different but they are basis of the same first homology group. The
generators shown in Fig.11(c) and 11(d) are nicely fitted on the borders of
regions (1D−holes).
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7 Conclusion

We have presented a new method for computing homology groups of images
and their generators, using irregular graph pyramids. The homology generators
are computed efficiently on the top level of the pyramid, since the number
of cells is small, and a top down process (down-projection) delineates the
homology generators of the initial image. Some preliminary results have been
shown for 2D binary images. The generators computed with this new method
fit on the boundaries of objects. The concept of minimal generator set is
defined and studied.

In a future work, we plan to extend this method to 3D and nD images, using
the (already existing) structures of 3D and nD irregular pyramids. We also
plan to use the minimal generator set and the property that down-projected
generators always fit on boundaries, and apply homology generators for object
matching and object tracking.
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