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1 Introduction

In this article we give a hybrid method for
choosing ”good” individuals for the next gene-
ration of Differential Evolution (DE). Keeping
DE to work as is, we add the Least-Square Sup-
port Vector Machine (LS-SVM) approximation
in the end of each generation cycle. Such ap-
proximation uses a subset of selected individuals
of the population. As a SVM core we choose a
second order polynomial kernel function. The
next individual is the optimum of the SVM ap-
proximation function which can be computed
analytically as a solution of a system of linear
equations. This method leads us to the impro-
vement of algorithm convergence.

2 Differential Evolution

Differential Evolution is a recently invented
global optimization technique (Storn and Price,
1995). It can be classified as an iterative sto-
chastic method. Enlarging the Evolutionary Al-
gorithms’ group, DE turns out to be one of
the best population-based optimizers (Storn and
Price, 1996). In the following lines we give a
brief description of DE algorithm.

An optimization problem is represented by
a set of variables. Let these variables form a
D-dimensional vector in continuous space X =
(x1, . . . , xD) ∈ IRD. And let there is some crite-
rion of optimization f(X) : IRD → IR, usually
named either fitness or cost function. Then, the
goal of optimization is to find the values of the
variables that minimize the criterion, i.e. to find

X∗ : f(X∗) = min
X

f(X) (1)

Often, the variables satisfy boundary
constraints

L ≤ X ≤ H : L,H ∈ IRD (2)

As all Evolutionary Algorithms, DE deals
with a population of solutions. The population
IP of a generation g has NP vectors, so-called
individuals of population. Each such individual
represents a potential optimal solution.

IPg = Xg
i , i = 1, . . . , NP (3)

In turn, the individual contains D variables, so
called genes.

Xg
i = xg

i,j , j = 1, . . . , D (4)

The population is initialized by randomly
generating individuals within the boundary
constraints,

IP0 = x0
i,j = randi,j · (hj − lj) + lj (5)

where rand function generates values uniformly
in the interval [0, 1].

Then, for each generation the individuals of
a population are updated by means of a repro-
duction scheme. Thereto for each individual ind
a set of other individuals π is randomly extrac-
ted from a population. To produce a new one
the operations of Differentiation and Recombi-
nation are applied one after another. Next, the
Selection is used to choose the best. Now briefly
consider these operations.

Here, we show a typical model of the Diffe-
rentiation, others can be found in (Storn and
Price, 1995). For that three different individuals
π = {ξ1, ξ2, ξ3} are randomly extracted from a
population. So, the result, a trial individual, is

τ = ξ3 + F · (ξ2 − ξ1) , (6)

where F > 0 is the constant of differentiation.
After, the trial individual τ is recombined

with updated one ind. The Recombination re-
presents a typical case of a genes’ exchange. The



trial one inherits genes with some probability.
Thus,

ωj =
{

τj if randj < Cr

indj otherwise
(7)

where j = 1, . . . , D and Cr ∈ [0, 1) is the
constant of recombination.

The Selection is realized by comparing the
cost function values of updated and trial indi-
viduals. If the trial individual better minimizes
the cost function, then it replaces the updated
one.

ind =
{

ω if f(ω) ≤ f(ind)
ind otherwise

(8)

Notice that there are only three control para-
meters in this algorithm. These are NP – popu-
lation size, F and Cr – constants of differentia-
tion and recombination accordingly. As for the
terminal conditions, one can either fix the num-
ber of generations gmax or a desirable precision
of a solution V TR (value to reach).

The pattern of DE algorithm is presented in
the following way :

Algorithm 1 Differential Evolution
Require: F,Cr,NP – control parameters

initialize IP0 ← {ind1, . . . , indNP }
evaluate f(IP0)
while (stop condition) do

for all ind ∈ IPg do
IPg → π = {ξ1, ξ2, . . . , ξn}

τ ← Differentiate(π, F )
ω ← Recombine(τ, Cr)

ind← Select(ω, ind)
g ← g + 1

end for
end while

3 Least Squares Support Vector
Machine method

Support vector machine (SVM) was propo-
sed as a method of classification and nonlinear
function estimation (Vapnik, 1995). The idea
is to map data into higher dimensional space,
where an optimal separating hyperplane can
be easily constructed. The mapping fulfils by
means of kernel functions, which is construc-
ted applying the Mercer’s condition. The prin-

cipal examples of kernels are polynomials, ra-
dial basis functions, multilayer perceptrons and
others. In comparison with neural network me-
thods SVM’s gives a global solution obtained
from resolving a quadratic programming pro-
blem, whereas those techniques suffer from the
existence of many local minima.

The least squares version of SVM’s (LS-SVM)
has been recently introduced (Suykens et al.,
2002; Suykens and Vandewalle, 1999). There,
the solution is found by solving a linear sys-
tem of equations instead of quadratic program-
ming. It results from using equality constraints
in place of inequality ones. Such linear systems
were named as Karush-Kuhn-Tucker (KKT) or
augmented systems.

Nevertheless, it remains the problem of ma-
trix storage for large-scale tasks. In order to
avoid it an iterative solution based on the conju-
gate gradient method has been proposed. Its
computational complexity is O(r2), where r is
rank of matrix. We mention briefly LS-SVM’s
applied to function approximation problem.

The LS-SVM model is represented in the fea-
ture space as

y(X) = 〈υ, φ(X)〉+ b , (9)

with X ∈ IRD, y ∈ IR and φ(·) : IRD → IRnh

is a nonlinear mapping to higher dimensional
feature space.

For given training set {Xk, yk}nk=1 the opti-
mization problem is formulated as

min
υ,ε

Υ(υ, ε) =
1
2
〈υ, υ〉+ γ

1
2

n∑
k=1

ε2k (10)

subject to equality constraints,

yk = 〈υ, φ(Xk)〉+ b + εk (11)

where k = 1, . . . , n.
So Lagrangian is

L = Υ−
n∑

k=1

αk{〈υ, φ(Xk)〉+ b + εk − yk} (12)

where αk are Lagrange multipliers.
By applying the Karush-Kuhn-Tucker condi-

tions of optimality(Fletcher, 1980; Fletcher,
1981)

∂L

∂υ
=

∂L

∂b
=

∂L

∂εk
=

∂L

∂αk
= 0 (13)



the result can be transformed in matrix form[
0 ~1T

~1 Ω + γ−1I

] [
b
α

]
=
[

0
y

]
(14)

where y = [y1 . . . yn], ~1 = [1 . . . 1], α =
[α1 . . . αn] and Mercer’s condition

Ωij = 〈φ(Xi), φ(Xj)〉 = K(Xi, Xj) (15)

with i, j = 1, . . . , n.
Then by solving the linear system (14) the

approximating function (9) is

y(X) =
n∑

k=1

αkK(Xk, X) + b . (16)

4 Principle of hybridization

The idea of DE’s hybridization with LS-SVM
lies in the approximation of the cost function
at the end of each generation. For that, n best
individuals are chosen from the population by
means of a sort procedure. The LS-SVM ap-
proximation (16) is constructed on basis of these
individuals. Then, by solving a linear system of
D variables the optimum of such approximation
can be easily found. Next, if its cost function is
better (lower in case of minimization) than that
of the worst individual, the obtained optimum
replaces the worst one in the population. It is
shown on the figure 1. Now we’ll discuss it in
more detail.

Fig. 1 – DE’s hybridization with LS-SVM.

Let the cost function f(X) be a nonlinear
(perhaps epistatic, non differentiable and multi-
modal) function. Generally, there is no winning
approach to calculate the global optimum by
deterministic methods. Instead, heuristics give

positive results, but they may converge quite
slowly. Here we show one of the methods ap-
plied to iterative population-based technique,
which allows to increase the convergence rate.
By way of illustration we chose the Differen-
tial Evolution algorithm. The proposed hybridi-
zation does not touch the algorithm itself, but
only incorporate one extra function at the end
of each iteration. We consider this procedure in
four steps.

Firstly, n best individuals (circles on the fi-
gure 1) are picked out from the population
{indk, f(indk)}nk=1. The selection criterion is
the n best values of individuals’ cost function
f(indk). Thereto a sort procedure is used. For
providing a good approximation it is necessary
to balance n between the dimension of indivi-
duals D and the population size NP taking into
consideration the properties of cost function.
Our choice of inferior limit for n is n > D + 1.
The LS-SVM support values αk are proportio-
nal to the errors at the data points (Suykens et
al., 2002). Moreover, a ”big” n also increases
the numerical errors (nearly singular matrix
αmin
αmax

→ 0) on solving the system (21). The su-
perior limit n ≤ NP is obvious. It is always
necessary to keep in mind : the less is n the less
iterations are needed to find the support values
αk.

Secondly, these individuals represent support
vectors (17) for the LS-SVM approximation mo-
del (9) and we find their support values αk. Such
type of SVM’s is preferable due to its rapidity
([(n+1)× (n+1)] system solving) and the pos-
sibility of handling a great number of training
data (a Hestenes-Stiefel conjugate gradient me-
thod).

{indk, f(indk)}nk=1 ⇔ {Xk, yk}nk=1 (17)

Thirdly, in particular case it is easily to find
the optimum of this approximation (triangle on
the figure 1). Let (16) is a model for function
approximation, where n is a number of support
vectors (depth of approximation) and K(Xk, X)
is a second order polynomial kernel function

K(Xk, X) = (〈Xk, X〉+ 1)2 , (18)

with X, Xk ∈ IRD. Such a kernel was chosen
to provide the convexity of the approximation
function and the facility to find its optimum



analytically. This optimum X∗ can be found
from the following condition of optimality :

dy(X)
dX

=
∂y(X)
∂X(ξ)

= 0 , (19)

where X(ξ), ξ = 1, . . . , D are components of a
vector X.

The extremum condition (19) gives the sys-
tem of D linear equations :

∂y(X)
∂X(ξ)

=
n∑

k=1

αk ·
∂K(Xk, X)

∂X(ξ)
=

= 2
n∑

k=1

αk (〈Xk, X〉+ 1) Xk(ξ) ≡ 0 ⇔

n∑
k=1

αkXk(ξ)
D∑

ϕ=1

Xk(ϕ)X(ϕ) =

D∑
ϕ=1

X(ϕ) ·
n∑

k=1

αkXk(ξ)Xk(ϕ) =

= −
n∑

k=1

αkXk(ξ)

(20)

Or alternatively, in the matrix form

A ·X = B , (21)

where

A = a(ξ, ϕ) =
n∑

k=1

αkXk(ξ)Xk(ϕ)

B = b(ξ) = −
n∑

k=1

αkXk(ξ)

(22)

The optimum is found by solving this system.
Fourthly, we compare calculated from (21)

optimum X∗ (square on the figure 1) with the
worst individual in the population ind∗ (the hi-
ghest black point on figure 1). The better one
takes place in the population.

ind∗ =
{

X∗ if f(X∗) ≤ f(ind∗)
ind∗ otherwise

(23)

where

ind∗ : f(ind∗) = max
1≤i≤NP

f(indi). (24)

Thus, at each new generation we refresh the
population with an approximated optimum in
the hope that it falls near to the real one, or
at least it replaces the worst individual of the
population.

5 Comparison of results

In order to test our approach we chose three
test functions (25) from a standard test suite for
Evolutionary Algorithms (Whitley et al., 1996).
The first function, Rotated Ellipsoid f1, is a true
quadratic non separable optimization problem.
The next two functions, Rastrigin’s f2 and Ack-
ley’s f3, are an example of highly multimodal
functions. They contain millions of local optima
in the interval of consideration.

f1(X) =
20∑
i=1

 i∑
j=1

xj

2

f2(X) =
20∑
i=1

[x2
i − 10cos(2πxi) + 10]

f3(X) = −20 exp

−0.2

√√√√ 1
30

30∑
i=1

x2
i

−
− exp

(
1
30

30∑
i=1

cos(2πxi)

)
+ 20 + exp

(25)

The simulation of the algorithms have been
made in the MATLAB environment with using
of LS-SVMlab Toolbox (Pelckmans et al., 2003).

We fixed the control parameters of DE, the
same for all functions : NP = 100 and F = 0.5.
The constant of recombination Cr = 0 (there is
no recombination) in order to make the DE al-
gorithm rotationally invariant (Salomon, 1996;
Price, 2003). The maximal number of genera-
tions gmax is selected for each function separa-
tely in order to provide a good visual illustra-
tion of the convergence. n = NP – the depth of
approximation. The average results of 10 runs
are summarized in the table 1. The convergence
dynamics of these test functions is shown on the
figures 2-4.

As we can see such hybridization gives posi-
tive results, the algorithm converges much more
quickly. But it is also clear that it consume much
more time now. So the next question arise : is
the algorithm really effective ? May be during



fi D gmax η, % DE DEh

1 20 100 22.1 1.070e+2 4.246e-4
2 20 300 11.6 1.170e+2 2.618e+1
3 30 100 18.8 7.713e+0 1.019e-1

Tab. 1 – Comparison of DE and DEh ap-
proaches, the number of generations is fixed. D
– dimension of test function. η – efficiency of
approximation. DE and DEh – the optimal va-
lues of the cost (test) function for classical and
hybrid (LS-SVM) scheme accordingly.

this time the classical DE could arrive at better,
more optimal value ? To answer on this ques-
tion we increased the maximal number of ge-
nerations g∗max in the classical DE so, that the
algorithms work roughly the same time in both
cases tDE∗ ' tDEh

. The table 2 summarizes the
obtained results.

fi g∗max DE∗ DEh

1 1000 4.598e+1 4.246e-4
2 2300 8.211e+1 2.618e+1
3 1250 6.127e+0 1.019e-1

Tab. 2 – Comparison of DE∗ and DEh, the
algorithm time is fixed.

Nevertheless, as may be seen from the table
2, the hybrid DE algorithm converges better.
Thus, after these comparisons we can confirm
that such hybridization is quite promising.

6 Remarks

However, in spite of the demonstrated po-
tency of our approach its efficiency of approxi-
mation is far from ideal. To estimate it a effi-
ciency measure η have been introduced. η eva-
luates the percentage of successful approxima-
tion, i.e. when the approximated optimum re-
places the worst individual.

The average efficiency values is roughly 20%.
In others words only 1/5 of iterations with LS-
SVM is effective. Moreover, these are the first
iterations. So, the rest of iterations do not need
such hybridization. It is only loss of computa-
tional time.

As the analyse shows this problem is cau-
sed by numerical inaccuracies during solving the
system (21). When the cost function approaches

Fig. 2 – Rotated Ellipsoid function.

Fig. 3 – Rastrigin’s function.

Fig. 4 – Ackley’s function.



to its optimum (zero in our case) this numerical
effect appears.

We are looking for other methods in order to
improve the optimum approximation as well as
the numerical solving of our systems.

As an example a very simple approximation
could be proposed. Let calculate, for instance,
a barycenter of n best individuals.

X∗ =
1
n

n∑
i=1

X̂i (26)

In comparison with LS-SVM method there are
several advantages :

– no numerical peculiarities ;
– no inferior limits on n : 2 ≤ n ≤ NP ;
– very fast ;
– more efficient : η ' 70%.
On the other side, its convergence is not as

rapid as in the case of LS-SVM’s one, but it
remains faster than in the classical DE.

To confirm it numerically 10 runs have also
been made. The depth of approximation n = 10
have been fixed. The results are summarized in
the table 3. The convergence dynamics is illus-
trated on the figures 5-7.

fi D gmax η, % DE DEb

1 20 100 100. 9,003e+1 2,089e+2
2 20 300 47.0 1,118e+2 6,588e+1
3 30 100 83.1 7,030e+0 8,589E+0

Tab. 3 – Comparison of the classical DE and
the barycenter approximation DEb approaches.

It is clear that such a simple idea already in-
creases the convergence rate.

7 Conclusion

Hybridization of an iterative population-
based stochastic heuristics with approximation
techniques presents a rather promising trend.
The main idea consists in finding the best so-
lution(s) on basis of selected potentially good
individuals, which replace the worth one(s).
Such iterative refreshment of population leads
to increasing of algorithm convergence. By the
example of Differential Evolution an obvious
convergence amelioration have been established.
Further work is necessary in order to improve
numerical performances of our method.

Fig. 5 – Example of barycenter approximation,
Rotated Ellipsoid function.

Fig. 6 – Example of barycenter approximation,
Rastrigin’s function.

Fig. 7 – Example of barycenter approximation,
Ackley’s function.
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