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Hybridization of Differential Evolution with Least-Square Support Vector Machine

Introduction

In this article we give a hybrid method for choosing "good" individuals for the next generation of Differential Evolution (DE). Keeping DE to work as is, we add the Least-Square Support Vector Machine (LS-SVM) approximation in the end of each generation cycle. Such approximation uses a subset of selected individuals of the population. As a SVM core we choose a second order polynomial kernel function. The next individual is the optimum of the SVM approximation function which can be computed analytically as a solution of a system of linear equations. This method leads us to the improvement of algorithm convergence.

Differential Evolution

Differential Evolution is a recently invented global optimization technique [START_REF] Storn | Differential evolution -a simple and efficient adaptive scheme for global optimization over continuous spaces[END_REF]. It can be classified as an iterative stochastic method. Enlarging the Evolutionary Algorithms' group, DE turns out to be one of the best population-based optimizers [START_REF] Storn | Minimizing the real functions of the ICEC'96 contest by differential evolution[END_REF]. In the following lines we give a brief description of DE algorithm.

An optimization problem is represented by a set of variables. Let these variables form a D-dimensional vector in continuous space X = (x 1 , . . . , x D ) ∈ IR D . And let there is some criterion of optimization f (X) : IR D → IR, usually named either fitness or cost function. Then, the goal of optimization is to find the values of the variables that minimize the criterion, i.e. to find

X * : f (X * ) = min X f (X) (1)
Often, the variables satisfy boundary constraints

L ≤ X ≤ H : L, H ∈ IR D (2)
As all Evolutionary Algorithms, DE deals with a population of solutions. The population IP of a generation g has N P vectors, so-called individuals of population. Each such individual represents a potential optimal solution.

IP g = X g i , i = 1, . . . , N P (3) 
In turn, the individual contains D variables, so called genes.

X g i = x g i,j , j = 1, . . . , D (4) 
The population is initialized by randomly generating individuals within the boundary constraints,

IP 0 = x 0 i,j = rand i,j • (h j -l j ) + l j (5)
where rand function generates values uniformly in the interval [0, 1].

Then, for each generation the individuals of a population are updated by means of a reproduction scheme. Thereto for each individual ind a set of other individuals π is randomly extracted from a population. To produce a new one the operations of Differentiation and Recombination are applied one after another. Next, the Selection is used to choose the best. Now briefly consider these operations.

Here, we show a typical model of the Differentiation, others can be found in [START_REF] Storn | Differential evolution -a simple and efficient adaptive scheme for global optimization over continuous spaces[END_REF]. For that three different individuals π = {ξ 1 , ξ 2 , ξ 3 } are randomly extracted from a population. So, the result, a trial individual, is

τ = ξ 3 + F • (ξ 2 -ξ 1 ) , (6) 
where F > 0 is the constant of differentiation.

After, the trial individual τ is recombined with updated one ind. The Recombination represents a typical case of a genes' exchange. The trial one inherits genes with some probability. Thus,

ω j = τ j if rand j < Cr ind j otherwise (7)
where j = 1, . . . , D and Cr ∈ [0, 1) is the constant of recombination.

The Selection is realized by comparing the cost function values of updated and trial individuals. If the trial individual better minimizes the cost function, then it replaces the updated one.

ind = ω if f (ω) ≤ f (ind) ind otherwise (8)
Notice that there are only three control parameters in this algorithm. These are N P -population size, F and Cr -constants of differentiation and recombination accordingly. As for the terminal conditions, one can either fix the number of generations g max or a desirable precision of a solution V T R (value to reach).

The pattern of DE algorithm is presented in the following way :

Algorithm 1 Differential Evolution Require: F, Cr, N P -control parameters initialize IP 0 ← {ind 1 , . . . , ind N P } evaluate f (IP 0 ) while (stop condition) do for all ind ∈ IP g do

IP g → π = {ξ 1 , ξ 2 , . . . , ξ n } τ ← Dif f erentiate(π, F ) ω ← Recombine(τ, Cr) ind ← Select(ω, ind) g ← g + 1 end for end while
3 Least Squares Support Vector Machine method

Support vector machine (SVM) was proposed as a method of classification and nonlinear function estimation [START_REF] Vapnik | The nature of statistical learning theory[END_REF]. The idea is to map data into higher dimensional space, where an optimal separating hyperplane can be easily constructed. The mapping fulfils by means of kernel functions, which is constructed applying the Mercer's condition. The prin-cipal examples of kernels are polynomials, radial basis functions, multilayer perceptrons and others. In comparison with neural network methods SVM's gives a global solution obtained from resolving a quadratic programming problem, whereas those techniques suffer from the existence of many local minima.

The least squares version of SVM's (LS-SVM) has been recently introduced [START_REF] Suykens | Least Squares Support Vector Machines[END_REF][START_REF] Suykens | Least squares support vector machines classifiers[END_REF]. There, the solution is found by solving a linear system of equations instead of quadratic programming. It results from using equality constraints in place of inequality ones. Such linear systems were named as Karush-Kuhn-Tucker (KKT) or augmented systems.

Nevertheless, it remains the problem of matrix storage for large-scale tasks. In order to avoid it an iterative solution based on the conjugate gradient method has been proposed. Its computational complexity is O(r 2 ), where r is rank of matrix. We mention briefly LS-SVM's applied to function approximation problem.

The LS-SVM model is represented in the feature space as

y(X) = υ, φ(X) + b , (9) 
with X ∈ IR D , y ∈ IR and φ(•) : IR D → IR n h is a nonlinear mapping to higher dimensional feature space.

For given training set {X k , y k } n k=1 the optimization problem is formulated as

min υ, Υ(υ, ) = 1 2 υ, υ + γ 1 2 n k=1 2 k (10)
subject to equality constraints,

y k = υ, φ(X k ) + b + k (11)
where k = 1, . . . , n. So Lagrangian is

L = Υ - n k=1 α k { υ, φ(X k ) + b + k -y k } (12)
where α k are Lagrange multipliers. By applying the Karush-Kuhn-Tucker conditions of optimality [START_REF] Fletcher | Practical methods of optimisation[END_REF][START_REF] Fletcher | Practical methods of optimisation, volume 2 : Constrained Optimization[END_REF])

∂L ∂υ = ∂L ∂b = ∂L ∂ k = ∂L ∂α k = 0 (13)
the result can be transformed in matrix form

0 1 T 1 Ω + γ -1 I b α = 0 y (14) where y = [y 1 . . . y n ], 1 = [1 . . . 1], α = [α 1 . . . α n ] and Mercer's condition Ω ij = φ(X i ), φ(X j ) = K(X i , X j ) ( 15 
)
with i, j = 1, . . . , n.

Then by solving the linear system ( 14) the approximating function ( 9) is

y(X) = n k=1 α k K(X k , X) + b . ( 16 
)
4 Principle of hybridization

The idea of DE's hybridization with LS-SVM lies in the approximation of the cost function at the end of each generation. For that, n best individuals are chosen from the population by means of a sort procedure. The LS-SVM approximation ( 16) is constructed on basis of these individuals. Then, by solving a linear system of D variables the optimum of such approximation can be easily found. Next, if its cost function is better (lower in case of minimization) than that of the worst individual, the obtained optimum replaces the worst one in the population. It is shown on the figure 1. Now we'll discuss it in more detail. Let the cost function f (X) be a nonlinear (perhaps epistatic, non differentiable and multimodal) function. Generally, there is no winning approach to calculate the global optimum by deterministic methods. Instead, heuristics give positive results, but they may converge quite slowly. Here we show one of the methods applied to iterative population-based technique, which allows to increase the convergence rate. By way of illustration we chose the Differential Evolution algorithm. The proposed hybridization does not touch the algorithm itself, but only incorporate one extra function at the end of each iteration. We consider this procedure in four steps.

Firstly, n best individuals (circles on the figure 1) are picked out from the population {ind k , f (ind k )} n k=1 . The selection criterion is the n best values of individuals' cost function f (ind k ). Thereto a sort procedure is used. For providing a good approximation it is necessary to balance n between the dimension of individuals D and the population size N P taking into consideration the properties of cost function. Our choice of inferior limit for n is n > D + 1. The LS-SVM support values α k are proportional to the errors at the data points [START_REF] Suykens | Least Squares Support Vector Machines[END_REF]. Moreover, a "big" n also increases the numerical errors (nearly singular matrix α min αmax → 0) on solving the system (21). The superior limit n ≤ N P is obvious. It is always necessary to keep in mind : the less is n the less iterations are needed to find the support values α k .

Secondly, these individuals represent support vectors (17) for the LS-SVM approximation model (9) and we find their support values α k . Such type of SVM's is preferable due to its rapidity ([(n + 1) × (n + 1)] system solving) and the possibility of handling a great number of training data (a Hestenes-Stiefel conjugate gradient method).

{ind k , f (ind k )} n k=1 ⇔ {X k , y k } n k=1 (17)
Thirdly, in particular case it is easily to find the optimum of this approximation (triangle on the figure 1). Let ( 16) is a model for function approximation, where n is a number of support vectors (depth of approximation) and K(X k , X) is a second order polynomial kernel function

K(X k , X) = ( X k , X + 1) 2 , ( 18 
)
with X, X k ∈ IR D . Such a kernel was chosen to provide the convexity of the approximation function and the facility to find its optimum analytically. This optimum X * can be found from the following condition of optimality :

dy(X) dX = ∂y(X) ∂X(ξ) = 0 , (19) 
where X(ξ), ξ = 1, . . . , D are components of a vector X.

The extremum condition ( 19) gives the system of D linear equations :

∂y(X) ∂X(ξ) = n k=1 α k • ∂K(X k , X) ∂X(ξ) = = 2 n k=1 α k ( X k , X + 1) X k (ξ) ≡ 0 ⇔ n k=1 α k X k (ξ) D ϕ=1 X k (ϕ)X(ϕ) = D ϕ=1 X(ϕ) • n k=1 α k X k (ξ)X k (ϕ) = = - n k=1 α k X k (ξ) (20)
Or alternatively, in the matrix form

A • X = B , (21) 
where

A = a(ξ, ϕ) = n k=1 α k X k (ξ)X k (ϕ) B = b(ξ) = - n k=1 α k X k (ξ) ( 22 
)
The optimum is found by solving this system. Fourthly, we compare calculated from (21) optimum X * (square on the figure 1) with the worst individual in the population ind * (the highest black point on figure 1). The better one takes place in the population.

ind * = X * if f (X * ) ≤ f (ind * ) ind * otherwise ( 23 
)
where

ind * : f (ind * ) = max 1≤i≤N P f (ind i ). ( 24 
)
Thus, at each new generation we refresh the population with an approximated optimum in the hope that it falls near to the real one, or at least it replaces the worst individual of the population.

Comparison of results

In order to test our approach we chose three test functions (25) from a standard test suite for Evolutionary Algorithms [START_REF] Whitley | Evaluating evolutionary algorithms[END_REF]. The first function, Rotated Ellipsoid f 1 , is a true quadratic non separable optimization problem. The next two functions, Rastrigin's f 2 and Ackley's f 3 , are an example of highly multimodal functions. They contain millions of local optima in the interval of consideration.

f 1 (X) = 20 i=1   i j=1 x j   2 f 2 (X) = 20 i=1 [x 2 i -10cos(2πx i ) + 10] f 3 (X) = -20 exp   -0.2 1 30 30 i=1 x 2 i   - -exp 1 30 30 i=1 cos(2πx i ) + 20 + exp (25) 
The simulation of the algorithms have been made in the MATLAB environment with using of LS-SVMlab Toolbox [START_REF] Pelckmans | LS-SVMlab Toolbox User's Guide[END_REF].

We fixed the control parameters of DE, the same for all functions : N P = 100 and F = 0.5. The constant of recombination Cr = 0 (there is no recombination) in order to make the DE algorithm rotationally invariant [START_REF] Salomon | Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions : A survey of some theoretical and practical aspects of genetic algorithms[END_REF][START_REF] Price | New Ideas in Optimization, Part 2 : Differential Evolution[END_REF]. The maximal number of generations g max is selected for each function separately in order to provide a good visual illustration of the convergence. n = N P -the depth of approximation. The average results of 10 runs are summarized in the table 1. The convergence dynamics of these test functions is shown on the figures 2-4.

As we can see such hybridization gives positive results, the algorithm converges much more quickly. But it is also clear that it consume much more time now. So the next question arise : is the algorithm really effective ? May be during Nevertheless, as may be seen from the table 2, the hybrid DE algorithm converges better. Thus, after these comparisons we can confirm that such hybridization is quite promising.

f i D g max η

Remarks

However, in spite of the demonstrated potency of our approach its efficiency of approximation is far from ideal. To estimate it a efficiency measure η have been introduced. η evaluates the percentage of successful approximation, i.e. when the approximated optimum replaces the worst individual.

The average efficiency values is roughly 20%. In others words only 1/5 of iterations with LS-SVM is effective. Moreover, these are the first iterations. So, the rest of iterations do not need such hybridization. It is only loss of computational time.

As the analyse shows this problem is caused by numerical inaccuracies during solving the system (21). When the cost function approaches to its optimum (zero in our case) this numerical effect appears.

We are looking for other methods in order to improve the optimum approximation as well as the numerical solving of our systems.

As an example a very simple approximation could be proposed. Let calculate, for instance, a barycenter of n best individuals.

X * = 1 n n i=1 Xi ( 26 
)
In comparison with LS-SVM method there are several advantages : -no numerical peculiarities ; -no inferior limits on n : 2 ≤ n ≤ N P ; -very fast ; -more efficient : η 70%.

On the other side, its convergence is not as rapid as in the case of LS-SVM's one, but it remains faster than in the classical DE.

To confirm it numerically 10 runs have also been made. The depth of approximation n = 10 have been fixed. The results are summarized in the table 3. The convergence dynamics is illustrated on the figures 5-7. It is clear that such a simple idea already increases the convergence rate.

Conclusion

Hybridization of an iterative populationbased stochastic heuristics with approximation techniques presents a rather promising trend. The main idea consists in finding the best solution(s) on basis of selected potentially good individuals, which replace the worth one(s). Such iterative refreshment of population leads to increasing of algorithm convergence. By the example of Differential Evolution an obvious convergence amelioration have been established. Further work is necessary in order to improve numerical performances of our method. 
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  , % Tab. 1 -Comparison of DE and DE h approaches, the number of generations is fixed. D -dimension of test function. η -efficiency of approximation. DE and DE h -the optimal values of the cost (test) function for classical and hybrid (LS-SVM) scheme accordingly.this time the classical DE could arrive at better, more optimal value ? To answer on this question we increased the maximal number of generations g * max in the classical DE so, that the algorithms work roughly the same time in both cases t DE * t DE h . The table 2 summarizes the obtained results.

	DE	DE h
	1 20 100 22.1 1.070e+2	4.246e-4
	2 20 300 11.6 1.170e+2 2.618e+1
	3 30 100 18.8 7.713e+0	1.019e-1