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Abstract

 Locomotion  is  a  behaviour  resulting  from  the  interaction  of  the  nervous  and  muculo-skeletal  systems  and  the 

environment. However the musculo skeletal systems of some terrestrial mammals present an intrinsic ability to realize 

a dynamic stable locomotion. Actual anthropomorphic passive walkers demonstrate that a pure mechanical system with 

leg and arms is able to walk down an inclined plane.  Numerical  simulations confirm that  self-stabilization of the 

mechanics is acting in running too. The necessity to ensure the dynamic stability of a cyclic locomotion set physical 

constraints to the musculo-skeletal system. A description of the locomotor apparatus with neuromechanical variables 

like the stiffness - accessible to the experimentation- enables for maintaining the number of degrees of freedom of 

biomechanical models as low as possible. The maximization of the robustness of the mechanical self-stabilization of 

the models with regard to the body proportions represents for future simulations an optimization criterion which should 

bring a new light to the comprehension of the body proportions.

Keyword  s:   stability locomotion body proportion running quadruped mammals.
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Résumé 

 La  locomotion  résulte  de  l’interaction  du  système  nerveux,  du  système  osteomusculaire  et  de  l’environnement. 

Cependant  le  système  musculo-squelettique  de  certains  mammifères  terrestres  apparaît  avoir  acquis  une  capacité 

intrinsèque à se mouvoir d’une façon dynamiquement stable. Les robot-marcheurs passifs actuels nous montrent qu’une 

structure mécanique avec des jambes et des bras est capable de descendre le long d’un plan incliné sans source de 

contrôle supplémentaire. Les simulations numériques semblent de plus montrer que des phénomènes d’autostabilisation 

de  la  mécanique  sont  à  l’œuvre  pendant  la  course  également.  La  nécessité  d’assurer  une  locomotion  cyclique 

dynamiquement stable est porteuse, elle aussi, de contraintes physiques à définir, à découvrir. L’étude des relations 

entre  stabilité  dynamique  et  morphologie  suppose  une  modélisation  du  système  étudié  et  l’utilisation  de  l’outil 

simulation numérique. Une description du système avec des variables neuromécaniques telle la raideur, accessible à 

l’expérimentation, permet de contenir le nombre de degrés de liberté du modèle. La maximisation de la robustesse de 

l’autostabilisation  mécanique,  c'est-à-dire  la  maximisation  de  l’intensité  de  la  perturbation  que  le  système  en 

mouvement est capable de supporter sans tomber, fournit pour les futures simulations un critère d’optimisation capable 

d’éclairer d’une façon nouvelle notre compréhension des proportions du squelette. 

Mots-clé: stabilité dynamique, locomotion, proportion, segment, course, mammifères quadrupèdes.
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Introduction

By the transition from the sprawled reptilian leg configuration to the parasagittal  mammalian limb, one additional 

segment was added in the fore and hind limbs (scapula and elongation of the tarsus). Thus, scapula and femur, humerus 

and tibia, ulna and tarsus became functional correspondent in mammals [44, 40]. During in-phase gaits (bound, half-

bound, gallop), extensive flexions and extensions occur in the posterior thoracic and the lumbar regions of the spine 

especially in mammals [28]. These back movements act to some extent as an additional proximal segment modulating 

the position of the pelvis up to 40 degree [49]. Mammalian posture seems to follow the “crouched posture and high 

fulcrum” [20] i.e. scapular pivot in fore and hip joint in hind limbs are held at the same level. But intralimb proportions 

and relations between the functional corresponding segments within the kinematical chains are still poorly understood 

if well described by allometry relations within a family [42]. 

The  locomotor  apparatus  evolved  under  the  selective  pressure  of  structural,  (eco-)  physiological  and  mechanical 

constraints. Among them efficiency in energy consumption is certainly one of the most important constraints and is 

expressed in two dual ways to handle with energy during (loco-) motion. 

First:  reduction  of  muscular  work as  much as  possible.  Kustnezov [40] interpreted  the incorporation  of  the third 

segment as an energy saving adaptation which enables the reduction of the mechanical work of leg muscles against 

each other during the stance phase. The author calculates from his model the kinematics which minimizes muscular 

work during locomotion over flat  ground and found a kinematics comparable to the kinematics  observed in small 

mammals ( [48, 50] and overview in [24]).

Second: storage or conversion of kinetic energy during one phase to recover it in another phase of the movement [2, 3]. 

Cavagna  et  al.  [12,  18]  described  two mechanisms:  The  inverted  pendulum during  slow motions  and  the  elastic 

mechanism during fast  movements.  In the first  case,  kinetic and gravitational  potential  energy associated with the 

motion of the centre of body mass differ in their phase and this results in a transfer of kinetic into potential energy and 

back within the locomotor cycle. In contrast to this, kinetic and gravitational potential energies vary in phase in the 

elastic  mechanism and thus  there  is  no conversion  between  kinetic  and gravitational  potential  energy  during fast 

locomotion but in place the kinetic energy is provisory stored in elastic element – tendons and muscles [57, 41, 43] -  

and is restored in a next phase of the movement. Elastic energy storage is assumed for small mammals as well as for 

larger mammals [12] although there is no need to assume it in order to explain their energy balance [37, 38]. 
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The  named  strategies  are  a  response  to  the  physical  constraints  applied  by  interactions  of  the  body  with  its 

environment. Mechanical interaction as one of the components of this interaction (beside physico-chemical) is often 

explained  as  the  necessity  to  support  the  body weight  i.e.  resist  gravitational  forces.  But  this  is  also  true  during 

locomotion. Inverse dynamic analysis demonstrates that the net torques created in the joints by muscles work mainly 

against gravity [60, 22]. However, anti gravitational action is only one vector of the mechanical interaction.

The stability of locomotion particularly at key events as escaping or hunting if stability and manoeuvrability are most 

important- is a second vector of this interaction. The study of the relationships between stability and morphology has to 

be embedded into one possible approach described by this contribution.

Dynamic stability during locomotion

A standing quadrupedal animal is in static equilibrium. The feet, as points of ground contact, map a polygon called 

polygon of support. As long as the vertical projection of its centre of body mass remains inside the polygon the animal 

is said to be statically stable. This is  the case during slow walking which is described as a succession of quasi-static 

equilibrium. Three legs are always in contact  to the ground. The triangle of support changes periodically and the 

vertical projection of the centre of mass then moves from one triangle to the next. At any time the animal is able to stop 

its forward motion if the speed is low and therefore the quantity of movement (mass time speed) is small. Cartmill et al. 

[10]  show on the basis of a large set  of footfall  patterns that  quadruped mammals prefer  limb coordinations  that 

maximize the time of existence of such a polygon of support during walking. If speed is increased, a preference for 

limb co ordinations that involve diagonal pairs of limbs is given. During trotting, the polygon is reduced to a diagonal 

line connecting one hand and the ipsilateral foot. Thus, trotting animals have already leaved the frame of a succession 

of quasi-static equilibrium state to meet dynamic equilibrium. Idem gallop, bound, half-bound. 

Stability qualifies equilibrium. Equilibrium is said to be statically stable if a system returns to its initial equilibrium 

after a perturbation as for instance a pendulum after deflection from its vertical position. In case of a cyclic movement 

the motion of a system is said stable if it is able to go back to its nominal trajectory after perturbation. This restrictive 

definition of dynamic stability represents more than simply remaining on the feet. Since motion of a living organism 

underlies variability, the given definition is rarely realized in nature. In many studies on stability of motion systems, 

particularly in the robotics, a system is more pragmatically assumed stable if it reaches a neighbour stable state after a 

perturbation even if it does not return exactly to its nominal state. 
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Addressing the right degree of complexity

Locomotion is generally described as the behaviour which results from the interaction of the musculo-skeletal system 

and the neural system and environment components. It is a complex task which exhaustive description would require 

hundreds of variables. The aim of modelization is to reduce the number of variables – i.e. the number of degrees of 

freedom (d.o.f.) - to a necessary minimum. 

Due to the different  physical  mechanisms acting in slow and fast  locomotion, the number of  d.o.f.  is  reduced by 

addressing these two types of locomotion separately. 

Applying Newton’s first principle of dynamics, the forces exerted by the limbs on the ground (i.e. ground reaction 

forces) and measured by the use of ergo meters [11] can be integrated numerically two fold. The integration leads to the 

motion of the centre of mass (c.o.m.) of the body. 

During trotting and in-phase gaits, motions of the centre of mass of mammals occur mainly in the parasagittal plane. At 

trot, gait symmetry and resulting torsions of the spine around the longitudinal body axis lead this parasagittal motion of 

the CoM. At in-phase gaits spine bending movements lead to extensive parasaggital movements of the pelvis which 

contribute up to half of the stride length in small mammals [21,23,24,49]. Therefore the lateral excursion of the centre 

of mass is  smaller  than its vertical  ones.  Thus,  a modelization of a quadruped mammal during fast  locomotion is 

reasonable  in  a  two  dimensional  plane  whereas  a  two  dimensional  model  of  slow  locomotion  will  be  a  partial 

description of the reality. It is assumed that models deal with straight forward locomotion.

Most simulations studies of the last 15 years can be classified into three types which differ in the description of the 

interaction between neuronal and mechanical systems and emerged after the publication of three basic articles: Taga 

[55] modelized a rough musculoskeletal and a rough nervous system separately which interaction produces a stable 

cyclic motion. McGeer [31] studies the passive walking of a structure along an inclined plane, and investigates the 

passive properties of the mechanics disregarding voluntary the role of the nervous system. In direct line to the works of 

Cavagna  and  Taylor,  Blickhan  [7]  proposed  a  synthetic  model  taking  into  account  elastic  energy  storage  during 

running: the spring-mass model.

5



Multibody dynamics 

Tagas’ purpose [55] was to test whether a stable walk is able to emerge from the interaction of mechanical and nervous 

systems defined as follows: The mechanical structure was modelized by a series of rigid segments -three for each limb 

and a rigid trunk. Taga associates a couple of neuro-oscillators with each limb joint, an assumption founded on its 

existence in a primitive specie - the lamprey [30] and a presumption of its existence in other species. The localization 

of  the neuro-oscillators  was recently  identified  in  a  tetrapod [13].  Each  pair  of  neuron influences  the pair  of  the 

adjacent proximal joint. A relatively simple mathematical neuron model (integrator) was assumed. Torques acting at 

the joints were assumed proportional to the output signal of the neurons. Taga was able to get the model walking stably 

through the settings of the “right” values of the parameters into the model. This study became the core of others,  

integrating almost all bones and muscles [36], optical sense, and obstacle avoidance into the neuro-controller. With 

this,  the  number  of  degree  of  freedom  of  Tagas’  basic  model  was  considerably  increased.  The  proposed  neuro-

controllers and their development largely founded the success of actual Japanese humanoid robots. 

Morphologists can learn from complex simulations if they address the right level of complexity. But the quality of the 

extrapolations made with very complex models [e.g. 36] with hundred of variables is rather poor. Due to the extremely 

large parameters space and the redundancy in the models (however redundancy is also present in living systems), the 

search for optimal value of some choosen variable with regard to stability does not lead to significant results since 

changes in the value of one parameter can easily be compensated by the change of others.

Thus for  the study of  the evolution of  musculo skeletal  design  it  seems to  be more  promising to  comprehend  a 

construction  step  by  step  and  reconstruct  it  stepwise.  In  the  field  opened  by  Taga’s  work  -  i.e.  coupling  of  one 

mechanical and one neuronal system – as a morphologist the most interesting simulations are the attempt to discover 

how few features of the reality is necessary to let a given behaviour emerge. With this aim Ijspeert [56] investigates for 

instance the transition from a standing wave to a travelling wave during the locomotion of a salamander transiting from 

land to water. 

Passive walking dynamics 

McGeer [31] designed (originally) a toy that was able to walk down along a slope without additional external control, 

propelled  only  by  the  gravitation.  Bipedal  passive  walker  models  and  robots  were  then  developed  with 

anthropomorphic dimension with or without knees and/ or feets [26, 14, 32]. A periodic input of energy at the hip even 
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enables a stable walk on a horizontal and even ground. More recently Collins et al. [15] developed a 3D simulation 

model includings arms which movements stabilized the model successfully [39]. Despite the fact that passive walker 

actually disregard some features of the walking motion (ankle extension at the end of the stance phase for instance), 

this main result demonstrates that the body mechanics do not only evolved in order to enable an economic walking but  

also a stable walking and that this mechanical stability is founded on synergies in the motion of the different part of the  

body. The  results  give  raise  to  conceptual  development.  Following  this,  is  it  appropriate  to  subordinate  the 

musculoskeletal system to the nervous system in the case of a cyclic (automatic) motion? Or should we accept the idea 

that mechanics control the neuronal system just like the neuronal system control mechanics [9]? 

Spring mass models for fast locomotion

Blickhan [7] found a roughly linear relationship between the ground reaction force and the distance from the centre of 

mass to the point of ground contact at the preferred hopping frequency of humans. He  introduced the spring mass 

system in order to model this relationship (figure 1A). The spring mass model has only five degrees of freedom (mass, 

spring stiffness, spring length, speed vector, angle of attack) and fitted the experimental data with a precision more than 

20% in the range of measurement. It comes up to the requirement of Cavagna et al. [12] that the energy balance of 

middle and large sized mammals during fast locomotion cannot be explained without assuming elastic energy storage. 

The  described  linearity  is  surprising  because  force  length  relationships  of  an  isolated  muscle  are  not  linear,  the 

geometry of bones head articulation is not circular and thus the relation of the lever arm of a given muscle versus joint 

aperture is also not linear. The integration of these components leads first to a linear force-length relationship [59].

Farley et al. [16, 17] extended the validity of the spring mass model to the description of trotting quadrupeds. In this 

description the spring represents the action of a pair of diagonal limbs. Hackert et al. [33, 34] confronts the spring mass 

model  to  in-phase  gaits  of  small  mammals  and showed that  the force  length relationships  in  forelimbs were  also 

roughly linear in small mammals. But linearity is achieved as a consequence of the intense sagittal spine flexion at in-

phase gaits that shifts the centre of body mass cranially [35]. A roughly linearity of the force length relationships means 

that the stiffness – that means the ratio of the change in the force (measured in Newton) through the corresponding 

change in a length (deformation) - is almost constant during the stance phase of forelimbs. The role of limb’s stiffness 

(in Nm-1) and thus the role of compliance – was already recognized as one determinant of locomotion [7][8][45][46] 

but its direct involvement in the achievement of a dynamic stable locomotion was demonstrated clearly only recently.  
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Stiffness of a structure and dynamic stability

The stiffness of a musculo-skeletal structure can be split into two major components: (a) a passive component linked to 

the intrinsic properties of the materials and (b) an active component (depending on muscle activation and geometry). 

Muscles force does not necessary result in movement. If agonist and antagonist muscles are activated synchronously so 

that torques of agonist and antagonist muscles remain in equilibrium, no movement will occur in the articulation but its 

stiffness will be increased. Feldman [19] demonstrates that the control of only one parameter is sufficient to control 

joint stiffness and aperture.

Dynamic stability  of  the spring-mass  system -  i.e.  its  ability  to  bounce  stably-  was studied first  by Schwind and 

Koditchek  [51].  They  derived  an  analytical  criterion  from the  linearized  (i.e.  approximated)  equation  of  motion. 

Seyfarth et al. [52] performed dynamic simulation of a non linearized model and demonstrate its ability to bounce 

stably for some combinations of the forward speed, the spring-leg stiffness and the angle of attack which is the angle 

spanned by spring-leg with the ground line at the instant of touch down. That is within a range of values of stiffness  

and angle of attack and mass position a stable behaviour can be generated (figure 1D). Thus small irregularities of the 

ground which would result in small changes of the mass position relative to the ground can be overcome without 

resetting the values of the system, i.e. without control. This concept of a mechanical  stabilisation without external 

control is known in physics as self-stabilization. 

Approximations  are numerous by spring mass models. During forward movement the spring mass model describes 

only the stance phase of a spring-leg not the swing phase. The spring-leg is assumed to be massless and from the point  

of  view of the dynamics a massless  object  cannot  realize  a  motion. Thus,  in the simulation the leg is  artificially 

positioned with a given angle of attack during the flight phase of the spring mass system before the next ground 

contact. This is an important restriction but 85% of the mass is included in the head-trunk structure in small mammals. 

Limbs of small mammals are light indeed and therefore assuming massless legs is appropriate. Additionally the model 

assumes that ground reaction forces keep the direction of the spring -, towards the centre of mass and this is only true 

as well in humans as in quadruped at constant speed and during the middle stance phase [6].

The comparison between the spring mass system and galloping small mammals show additional descriptive limits. The 

simple spring mass model trajectory undulates with one maximum and one minimum per cycle whereas the centre of 

mass of galloping small mammals may have more than two extremum within each locomotor cycle. This gives raise to 

the development of extended springs-mass models in order to take the back dynamics into account (fig 1C). Hackert 

and Fischer [35] propose to see the flexion of the spine in small mammals and the associated forward displacement of 
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the centre of mass as a way to adjust the angle of attack of fore limbs and thus to use mechanical self-stabilization 

mechanism. Back flexion co-determines the position of the centre of mass and back stiffness sets the rough instant of 

touch down of the forelimb by controlling the downwards motion of the centre of mass during hind limbs’ stance 

phase. In respect to the simple spring mass system, Seyfarth et al. [54] implement a rotation of the spring leg during its 

late swing phase when the mass has reached the apex of its trajectory. With this, the authors show that a tuning of the 

instant and verticality of the leg at touch down may influence positively the dynamic stability of the system. This may 

explain the retraction of the fore limb observed in galloping mammals before touch down [24]. 

Models and templates: Learning from neuromechanical models stepwise.

The  spring  mass  model  developed  from  the  status  of  a  simple  mechanical  model  for  human  hopping  to  a 

neuromechanical template. Full and Koditschek [25] proposed to face the spring mass template like an asymptotical 

limit to which running systems tend to. Moreover, the authors conceptualized a method (rather new in the field of 

motion studies) to handle with complex system involving a lot of degrees of freedom. First: reduce the number of 

degrees of freedom by projecting the problem onto one plane, second then model it in this plane, then progressively 

include new additional degrees of freedom. This method is comparable to the early stage of movement learning in child 

[5] when degrees of freedom are introduced and the stiffness of the limbs reduced stepwise during growth [47].

The introduction of the neuromechanical parameter “stiffness” leads to a level of description that enables provisory to 

“disregard” how the stiffness is generated i.e. to disregard the muscles, their insertion and activation. The number of 

degree of freedom of the biomechanical model becomes then considerably lower.

Distribution of the global stiffness onto the joints

The spring mass model is a model at the level of organisms.  Limb stiffness can be compared between species after 

normalization by mass and length. Blickhan and Full [8] introduce the relative stiffness  k = (Fmax/mg) / (∆ l/l)  and 

found a values around 8 for animals as different as insect and horses. This conveys that animals segmented limbs have 

comparable material characteristics.

For comparative anatomists global models as the spring mass model are less informative since morphometric data 

normally are not involved in the models. It is possible to introduce them into a model, by distributing the elasticity (of 

the spring) onto the joints and thus introducing a massless polysegmental kinematic connected with rotational springs 

10



(Fig 1C). The stiffness is then the ratio variation of the joint torque over variation of the joint aperture i.e. the slope of 

the tangent at the torque-aperture characteristics.

Seyfarth et al. [53] studied the stability of a massless three segmented leg very much in detail ( for equations see [53] )  

in order to describe its stabilizing behaviour in dependence to its initial configuration (zig-zag or arc like) and stiffness 

laws (constant or variable).  The model assumes that the rotational springs act at the joints in a quasi elastic mode 

without dissipation i.e. joint torques have the form Ti = ki (φ  - φ o)
ν  

 (Eq. 1). That is the torques - angle characteristics 

do not show hysteresis. Neglecting the torques at the foot pad, the torques equilibrium equation then simplifies into 

T1d1+T2d2=0 (Eq. 2) (figure 1B). Seyfarth et al. assumed a symmetric loading of the limb during stance phase: the 

compression of a zig-zag like kinematical chain depends on the stiffness of its joints. With similar values of joints 

stiffness, a load results in a flexion of all joint angles at a time to the same extent, else the segmental chain would 

collapse first at the joint of less stiffness than others. But studies on the intralimb kinematics of small mammals [27, 

24]  and  birds  [1,  58]  during  running  show that  changes  occur  in  all  joints  at  the  same  time  and  thus  point  to 

symmetrical loading and stiffness equilibrium. 

Assuming symmetrical loading the torques equilibrium equation (Eq. 2) then simplifies into k12 / k23 = l1 / l3 (figure 1B) 

whereas the length of the second segment vanish from the equations [47]. Numerical simulations of in place hopping of 

this elastic limb model lead to the following result: stability is enhanced if a short first segment correspond a long third 

segment and reciprocally [47]. The figure 1E presents limb geometry of some terrestrial birds. Birds seem to follow this 

simple “rule”.

Actually no quadruped model has been studied in the same detail. One prerequisite is a better experimental knowledge 

of the torques-aperture characteristics in quadruped mammals in order to limit the parameter space in the simulations. 

The experimental determination of the torque-aperture relationships (and following of the stiffness laws) at the level of 

each joint is accessible performing inverse dynamic calculations of the limbs. These experimental characteristics will 

also point out the level (distal versus proximal) at which energy dissipation occurs in the limbs during a cycle of gallop. 

Spring-mass models disregard up to now fully energy dissipation up to the theoretical work of Berkemeier [4]. Inverse 

dynamic analysis is in small quadruped mammals a rather difficult  but realizable task [55] since it is necessary to 

record  separately  the  force  exerted  by  each  limbs.  Outgoing  from  the  torque-aperture  relationships  numerical 

simulations of a segmented biomechanical  model of a quadruped with few degrees of freedom could be calculated 

looking for  “optimal” limb proportion with regard to the  robustness  of  stability  i.e.  the degree of  disturbance  the 

11



structure will accept to overcome without falling.  The robustness of stability can be considered as an optimization 

criterion in the frame of the mechanical self-stabilization hypothesis.

Concluding remarks

The influence of morphology onto stability cannot be understood intuitively and necessitates  the use of numerical 

simulations.  Stability  emerges for  some  value  of  the  parameters  -  segment’s  length,  articular  stiffness…-  and  is 

fundamentally  unpredicable.  The  hypothesis  that  intrinsic  stability  of  the  musculo-skeletal  mechanics  exerted  an 

evolutionary pressure that lead to the real body proportions was recently sustained by some simulation studies [52] [33] 

which found a good correspondance between the values of the parameters that stabilize spring mass models of humans 

and small mammals running on one hand and the experimental values of stiffness and angle of attack on the other hand. 

If stability generally results from the common action of the nervous and mechanical system, the nervous system can 

find in a self-stabilized mechanics a way to delegate and thus to improve one part of its work particularly at high speed 

where the reaction times have to be kept short. This would accord well with the decentralized structure of neural 

control (see Viala et al. and Jamont et al. in this issue). 

Actual small mammals, which size is comparable to the oldest fossils of mammals, are a common point of interest for 

the palaeontology and functional morphology. They are good candidates for the required experimental determination of 

the torques-aperture characteristics.  Their body size enables for the most precise localization of all  joint  positions 

including the most proximal using monoplanar videoradiography in a two dimensional frame.  Moreover their size 

enables for the measurement of the ground reaction forces over many locomotor cycles, a prerequisite for a valuable 

integration of the ground reaction forces and thus for the determination of the position of the centre of mass. Thus small 

mammals are appropriate to perform inverse dynamic calculations combining high speed videoradiography (500 fps), 

force measurement and complementary electromyography. The synchronization of all these signals is 100 years after 

Marey’s effort to capture the instant in the movement a realizable [29][22] but exceptional task in integrative animal 

motion  studies.  Dynamic  simulations  on  “hybrid”  models  of  model  B  and  C  (fig.1)  should  reveal  whether  the 

enhancement of the robustness of the mechanical self-stabilisation during locomotion acted as one determinant factor 

during evolution leading to actual body proportions.
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 Caption of figure 1

A) The spring mass system for running and hopping in humans (Blickhan [7]): the position vector r can be computed 

integrating numerically the equation of motion. Model parameters are speed vector v, mass M, stiffness k, length of the 
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spring and angle of attack β  at touch down. B) Distribution of the spring elasticity onto rotational springs located at 

the articulations. In this way morphological parameters as segment length are introduced into the models. (Seyfarth 

[53])  C) Spring mass model of a half-bounding small mammal (Hackert [33]). Back flexion/extension translates the 

centre  of  mass  horizontally  during half-bound leading to adjustments  of the angle of  attack  β .  D)  The dynamic 

stability of the spring mass system. The simulations were done for each combination of the stiffness and the angle of 

attack. The colours represent the number of steps up to 25 performed stably by the model. An extended J-region of 

stability exists for  β  larger than a threshold value of about 25°.  E) Limbs of some terrestrial birds: A result of the 

numerical simulation of the dynamics of the three segmented spring limb with symmetrical loading: A short femur 

correspond a long third segment and vice versa. Does dynamic stability constraint the evolution of our morphology?

Figure 1:  A) Le système masse ressort pour la course et le saut (Blickhan [7]): le vecteur position  r est calculé en 

intégrant numériquement l’équation vectorielle du mouvement. Les paramètres du modèle sont  le vecteur vitesse v, la 

masse M, la raideur  k, la longueur à vide du ressort et l’angle d’attaque  β  à l’instant du posé.  B) Distribution de 

l’élasticité du ressort sur des ressorts de torsion associé aux articulations. Ainsi des paramètres morphologique tells la 

longueurs  des  segments  peut  être   introduite  dans le  modèle.  (Seyfarth  [53])  C)  Modèle masse ressort  d’un petit 

mammifère  pratiquant  le  half-bound (Hackert  [33]).  L’extension/flexion  du  dos  translate  le  centre  de  masse 

horizontalement pendant le half-bound conduisant à des ajustements de l’angle d’attaque β . D) La stabilité dynamique 

du système masse-ressort. La dynamique a été simulée pour chaque combinaison de la raideur et de l’angle d’attaque. 

Les couleurs représentent le nombre de cycles locomoteurs réalisés stablement par le modèle. Une région de stabilité 

étendue en forme de J existe pour des valeurs de  β  plus grande qu’une valeur seuil ici 25°.  E) Les membres de 

quelques  oiseaux  terrestres:  Un résultat  de  la  simulation  numérique  de  la  dynamique  d’une  jambes  élastique  tri-

segmentée avec chargement symétrique : A un court premier segment correspond un troisième long segment et vice 

versa. La stabilité dynamique contraint-elle l’évolution de notre morphologie ? 
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