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Apprentissage de dictionnaires parcimonieux adaptés pour la séparation d'images

Cet article propose une nouvelle méthode pour séparer une image en une superposition linéaire de composantes morphologiques ayant des structures caractéristiques. Pour chaque composante, un dictionnaire adapté est appris depuis des images d'exemples. Chaque composante est caractérisée par une décomposition parcimonieuse dans le dictionnaire associé. L'algorithme d'analyse en composantes morphologiques permet de résoudre de façon itérative le problème d'optimisation correspondant à la recherche des composantes. L'utilisation de dictionnaires adaptés permet de résoudre certains problèmes inhérents à l'utilisation de dictionnaires fixés à l'avance. Les résultats numériques montrent la nécessité de cette adaptivité pour capturer des motifs texturés complexes.

Décomposition variationnelle et parcimonieuse 1.Décomposition d'images

Le problème de la séparation d'image consiste à décomposer une image f ∈ R N de N pixels en différentes composantes f = s u s où chaque u s capture un certain type de structures. Cette séparation peut se formaliser dans un cadre variationel comme l'optimisation de (u s ) S s=1 pour résoudre min u1,...,u S

1 2 f - S s=1 u s 2 ℓ 2 + λ S s=1 E s (u s ), (1) 
où chaque énergie E s : R N → R + favorise les images ayant un type spécifique de structures.

Débruitage. Le problème le plus simple correspond au débruitage où l'on cherche une seule composante f ≈ u 1 qui capture les structures telles que les contours de l'image. Le résiduel fu 1 est seulement supposé d'énergie bornée et le paramètre λ doit être fixé en fonction de ce niveau de bruit. Le modèle de Rudin-Osher-Fatemi [ROF92] correspond ainsi à l'utilisation de E 1 (u 1 )

def.

= ||u 1 || TV def.

=

|∇ x u 1 |dx, où la norme de variation totale ||•|| TV impose aux contours de u 1 d'avoir un faible périmètre et retire de u 1 les oscillations dues au bruit et à la texture.

Décomposition structure/texture. Yves Meyer étend ce modèle en incluant une composante additionnelle f = u 1 +u 2 où u 2 capture les structures oscillantes des textures [Mey01]. Ceci correspond à l'utilisation des énergies 1.2 Modèles parcimonieux dans des dictionnaires globaux.

E 1 (u 1 ) def. = ||u 1 || TV (2) et E 2 (u 2 ) def. = ||u 2 || G = min u1=div(g) ||g|| ℓ ∞ . (3) 
Une alternative à ces énergies exploitant des espaces fonctionnels consiste à exploiter la décomposition de chaque composante u s = D s x s dans un dictionnaire D s ∈ R N ×ms , m s N . Le degrés de parcimonie d'une telle décomposition peut se mesurer à l'aide de la norme ℓ 1

||x s || ℓ 1 def. = j |x s [j]|.
Pour des dictionnaires redondants m s > N , un tel jeu de coefficients x s ∈ R ms n'est pas unique, mais on peut définir une énergie de décomposition comme

E s (g) def.
= min 

x∈R ms µ 2 ||g -D s x|| 2 ℓ 2 + ||x|| ℓ 1 , (4) 

Modèles parcimonieux dans des dictionnaires locaux.

Cet article utilise non seulement des dictionnaires D s ∈ R N ×ms globaux sur l'ensemble des N pixels de l'image, mais également des dictionaires locaux pour capturer des structures fines des textures. Un tel dictionnaire D s ∈ R n×ms est utilisable pour représenter les imagettes (patchs)

R k (g) ∈ R n de n def. = τ × τ pixels extraites d'une image g, ∀ 0 k < n, R k (g)[i] = g(k 1 + i 1 , k 2 + i 2 ), où k = k 1 + τ k 2 avec 0 k i < √ N est l'index du pixel (k 1 , k 2 ).
De façon similaire à l'énergie (4) associée à un dictionnaire global, on peut définir une énergie E s (g) associé à un dictionnaire local D s . Cette énergie permet de contrôler la parcimonie des décompositions de toutes les imagettes R k (g) dans D s . L'énergie E s (g) est définie comme min

(x k ) k ∈R ms ×n µ 2N N -1 k=0 ||R k (g) -D s x k || 2 ℓ 2 + ||x k || ℓ 1 . ( 5 
)
Dans cette énergie, chaque x k correspond aux coefficients de la décomposition de l'imagette R k (g) à l'aide du dictionnaire D s .

2 Analyse en Composante Morphologiques L'algorithme d'analyse en composantes morphologiques (MCA) [SED04] permet de résoudre de façon itérative le problème de séparation variationnelle (1) dans le cas d'énergies parcimonieuses E s comme défini à l'équation (4). La caractéristique principal de cet algorithme est que le paramètre λ de régularisation décroît de façon linéaire à chaque itération pour atteindre une valeur λ min finale qui correspond au niveau de régularisation souhaité, et vaut λ min = 0 dans le cas d'une séparation sans bruit. Cette décroissance de λ permet d'accélérer la convergence de l'algorithme et permet de calculer le minimiseur à chaque étape à l'aide d'un seuillage non-linéaire.

Pour la décomposition d'une image en sa partie géométrique et sa partie texturée, l'approche originale [SED04] utilise des dictionnaires fixé d'ondelettes D W (voire de curvelets pour améliorer l'extraction des contours) ainsi que de cosinus locaux D C . Cet article étend l'algorithme MCA au cas d'énergies E s issue de dictionnaires locaux D s comme défini à l'équation (5).

L'algorithme MCA opère en optimisant successivement sur chaque composante u s en conservant les autres composantes (u ℓ ) ℓ =s constantes. Ceci demande, à chaque étape, la minimisation de min

v∈R n 1 2 ||r s -v|| 2 ℓ 2 + λE s (v) où r s = f - ℓ =s u s .
Cette minimisation s'effectue de façon approchée en deux étapes, qui diffèrent selon que l'on considère un dictionnaire global ou local (Calcul des coefficients) Dictionnaire global : Le calcul des coefficients x ∈ R ms s'effectue par seuillage des coefficients du résidu r s

x ⋆ = S λ (D s T r s ) où S t (x) = {s t (x j )} j (6) avec s t (a) def. = |a| + sign(a)t si |a| > t, 0 si |a| t. ( 7 
)
Dictionaire local :

Les coefficients x ⋆ = (x ⋆ k ) k de la dé- composition de chaque sous-image R k (r s ) se calculent en minimisant x ⋆ k = argmin x 1 2 ||R k (r s ) -D s x|| 2 ℓ 2 + λ||x|| ℓ 1 .
(Reconstruction) La composante u s est mise à jour à partir des coefficients parcimonieux calculés. Dictionaire global : on pose u s def.

= D s x ⋆ . Dictionaire local : à cause du chevauchement des sousimage R k (D s x k ), la reconstruction nécessite un moyennage

u s (a) = 1 τ 2 |k-a| τ R k (D s x k )(a -k). (8) 
L'algorithme MCA, résumé dans le pseudo-code 1, effectue la mise à jour successive de chaque u s . Le paramètre de régularisation λ décroît à chaque itération.

Initialisation : ∀ s, u s = 0, λ = λ max . Boucle : Tant que λ > λ min , Pour chaque composante s, le résidu est calculé : r s = fℓ =s u s .

(Décomposition) Calcul des coefficients x ⋆ de la décomposition parcimonieuse de r s (dictionnaire global, équation ( 6)) où de chaque imagette (R k (r s )) k (dictionnaire local, équation (2)).

(Reconstruction) Calcul de u s à l'aide u s def.

= D s x ⋆ (dictionnaire global) où par moyennage (dictionnaire local, équation (8)).

(Mise à jour du seuil) λ ← λδ.

Table 1: Pseudo-code pour l'analyse en composantes morphologiques.

3 Apprentissage de dictionnaires 

(x k ) k ∈R ms ×p p k=1 µ 2 ||y k -Dx k || 2 ℓ 2 + ||x k || ℓ 1 .
sous la contrainte additionnelle de normalisation ||d j || ℓ 2 = 1 des colonnes des D considérés. Cette optimisation est non-linéaire et non-convexe et l'algorithme K-SVD (5) permet de trouver un minima local en alternant sur le calcul des coefficients (x k ) k optimaux et du dictionnaire D. Le pseudo-code 2 détaille l'enchaînement de ces deux étapes. La figure 1 (d) montre un dictionnaire appris. On observe que les atomes d k capturent les caractéristiques de la texture utilisée comme exemple montrée figure 1 (a).

Initialisation : Le dictionnaire est initialisé avec une transformée en cosinus D = D C et x k ← D T y k . Boucle : Tant que D n'a pas convergé, D fixé : les coefficients (x k ) sont mis à jour pour chaque exemple x k en minimisant

x k ← argmin x µ 2 ||y k -Dx|| 2 ℓ 2 + ||x|| ℓ 1 .
Cette optimisation peut être résolue de façon approchée par matching pursuit, voir [Mal98]. (x k ) k fixé : pour chaque atome d j , on note I j = {k \ x k [j] = 0} l'ensemble des exemples qui utilisent l'atome d k . Cet atome d j est mis à jour en minimisant

d j ← argmin g min x k∈Ij ||ỹ k -x[k]g|| ℓ 2 , ỹk = y k - ℓ =j x k [ℓ]d ℓ .
Cette minimisation est équivalente à une approximation de rang 1 de la matrice contenant les signaux ỹk pour k ∈ I j , ce qui peut être résolu par une décomposition en valeurs singulières (SVD).

Table 2: Pseudo-code pour l'algorithme K-SVD.

Application à la décomposition d'image

Dans une première application, nous avons utilisé un dictionnaire D 1 = D W de transformée en ondelettes redondantes pour capturer la partie géométrique de l'image f , et un dictionnaire D 2 appris. Ce dictionnaire est calculé selon la méthode de la section 3 à partir de la partie d'une texture connue f 0 . L'algorithme MCA décrit à la section 2 est appliqué sur une image f = u 1 + u 2 où u 2 est une texture visuellement similaire à f 0 . La figure 1 

L

  'énergie (5) définie sur des sous-images de n = τ × τ pixels nécessite l'utilisation d'un dictionnaire D s adapté aux structures locales des textures. Pour obtenir de tel dictionnaires, Olshausen et Field [OF96] ont proposé d'apprendre la matrice D s pour représenter de façon optimale un ensemble Y = (y k ) p k=1 ∈ R n×p de p ≫ n imagettes. Ils ont montré que lorsque ces imagettes sont extraites d'un ensemble d'images naturelles, le dictionnaire obtenu est similaire au dictionnaire D W des ondelettes redondantes. De façon à représenter efficacement des motifs texturés, nous employons une stratégie d'apprentissage similaire, en utilisant uniquement des exemples y k issus d'une texture homogène. Le dictionnaire D s ainsi appris est optimisé pour représenter les motifs structurés de cette texture homogène et la composante morphologique u s de la décomposition (1) contient ces motifs. Pour apprendre ce dictionnaire D s , nous utilisons l'algorithme K-SVD de Aharon et al. [AEB06]. Cet algorithme cherche à minimiser l'énergie E s de l'équation (5) en modifiant à la fois les coefficients (x k ) k et le dictionnaire D s . Ceci correspond à l'optimisation sur l'ensemble des dictionnaires D ∈ R n×ms de min

  compare la décomposition (e) utilisant un dictionnaire de cosinus local comme proposé par [SED04] et la décomposition (f) obtenue avec le dictionnaire D 2 appris. Dans une deuxième application, on calcule une séparation f = 4 i=1 u i à l'aide d'un dictionnaire D 1 = D W d'ondelettes invariantes par translation et de dictionnaires appris {D i } 4 i=2 . Chacun de ces dictionnaire D 2 , D 3 , D 4 est appris à partir de sous-images y k extraites autour d'un pixel désigné par l'utilisateur, voir figure 2. La figure 3 montre un autre exemple de décomposition avec une seule composante texturée. Références [AABFC05] J. F. Aujol, G. Aubert, L. Blanc-Feraud et A. Chambolle : Image decomposition into a bounded variation component and an oscillating component. Journal of Math. Im. and Vision, 22(1):71-88, janvier 2005. [AEB06] M. Aharon, M. Elad et A.M. Bruckstein : The K-SVD : An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. On Signal Processing (to appear), 2006.
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 123 Fig. 1 -(a) Texture connue f 0 , (b) texture à extraire u 2 , (c) image à décomposer f = u 1 + u 2 , (d) le dictionnaire D 2 appris, (e) décomposition à l'aide d'un dictionnaire d'ondelettes invariantes D 1 = D W et d'un dictionnaire de cosinus local D 2 = D C , (f ) décomposition à l'aide d'un dictionnaire d'ondelettes invariantes D 1 = D W et du dictionnaire D 2 appris.

  où le produit λµ pondère l'erreur de reconstruction D s x s ≈ u s avec l'erreur de décomposition f ≈ u s .Une telle énergie parcimonieuse nécessite l'utilisation d'un dictionnaire D s adéquat pour capturer efficacement des structures intéressantes de la composante u s . De nombreux dictionnaires ont été proposés pour capturer différents types de caractéristiques des images naturelles. Mal98], qui constitue aussi une trame ajustée. La norme ||D C T v|| ℓ 1 d'une image dans cette trame s'apparente à la norme oscillante de Meyer ||v|| G . Dans cet article, nous allons utiliser les dictionnaires D W et D C correspondant à des trames ajustées pour capturer respectivement la composante a variations bornées et la partie oscillante des images. Ces dictionnaires ont été utilisés entre autres par Starck et al. [SED04], ce qui donne une décomposition semblable à celle de Meyer (2). La suite de cet article explique comment adjoindre à ces dictionnaires fixes des dictionnaires appris pour capturer des structures complexes.
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